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Abstract. The rapid advances in automation technologies, such as ar-
tificial intelligence (AI) and robotics, pose an increasing risk of automa-
tion for occupations, with a likely significant impact on the labour mar-
ket. Recent social-economic studies suggest that nearly 50% of occupa-
tions are at high risk of being automated in the next decade. However,
the lack of granular data and empirically informed models have limited
the accuracy of these studies and made it challenging to predict which
jobs will be automated. In this paper, we study the automation risk
of occupations by performing a classification task between automated
and non-automated occupations. The available information is 910 oc-
cupations’ task statements, skills and interactions categorised by Stan-
dard Occupational Classification (SOC). To fully utilize this information,
we propose a graph-based semi-supervised classification method named
Automated Occupation Classification based on Graph Convolutional
Networks (AOC-GCN) to identify the automated risk for occupations.
This model integrates a heterogeneous graph to capture occupations’ lo-
cal and global contexts. The results show that our proposed method out-
performs the baseline models by considering the information of both in-
ternal features of occupations and their external interactions. This study
could help policymakers identify potential automated occupations and
support individuals’ decision-making before entering the job market.

Keywords: Automated occupation identification · Graph convolutional
network · Semi-supervised classification.

1 Introduction

In light of rapid development in the fields of artificial intelligence and robotics,
the number of jobs for certain occupations is decreasing alarmingly. Also, mas-
sive applications of automation technologies, especially in the workplace, are
raising fears of large-scale technological unemployment and a renewed appeal
for policymakers to handle the consequences of technological change. From a
historical perspective, every disappearance of occupations comes with increasing
unemployment [2,16] which brings individual existence crisis, social instability,
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and techno-phobia that may hinder the future development of science and tech-
nologies. Therefore, occupations’ automated risk identification is critical to both
policymakers and individuals.

Generally, an occupation at risk of being automated has attributes contain-
ing routine and rule-based information, which are prone to be replaced by au-
tomation technologies [5,6]. Predicting the automated risk of occupations can be
performed by capturing the routine and rule-based features in their attributes,
more specifically, their tasks and skills information [4]. Therefore, this predic-
tion task can be conducted as a binary classification between automated and
non-automated occupations by mining their internal attributes and external in-
teractions.

Fig. 1: BLS Projected Declining Occupations in 2030

However, this task becomes more challenging due to the following three char-
acteristics of the data:

• Limited Data Source. Predicting automated risk of occupations requires
tasks and skills data that are at their most granular level to reflect micro dif-
ferences among occupations. Standard labor data from U.S. Bureau of Labor
Statistics (BLS) or Australian Bureau of Statistics (ABS) focus on demo-
graphic, economic or other aggregate statistics that lack resolutions into the
defining features to distinguish different occupations. Extracting granular
tasks and skills data from job recruitment platforms is also not feasible since
they are dynamic, computing expensive and not all jobs are posted online.
The numbers of job posts are also various across occupations which may lead
to imbalanced data [8]. Furthermore, the lack of ground truth data is also a
barrier hindering the prediction of automated risk.
• Non-numerical Data Type. Most of the tasks and skills data are in
text form, which are single words, grouped words or sentences. These text
data cannot be directly processed by statistical models. Current studies [2][6]
use importance or level value attached to each task or skill as its numerical
representations; however, this kind of representation is aggregated and coarse
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which may obfuscate the differential impact of various technologies and skill
requirements then further affects models’ performance in distinguishing oc-
cupations. Therefore, choosing a method that can not only encode the text
data into a numerical format but maintain the features hidden in the context
are necessary.
• Complex Data Structure. Since occupations are likely to interact by
attributes, e.g., they may share similar skillsets, the prediction of automated
risk cannot be limited to occupations’ internal attributes but also the con-
nections with other occupations [4]. Moreover, various attributes may lead to
different data dimension sizes, and the relationships among occupations can
be multiple paths [17]. Therefore, linear data structures are not capable of
capturing all the information, and a more complicated non-linear structure
and computational model should be designed to recognise the patterns in
the information.

Moreover, existing methods designed for the task have several limitations.
For instance, current studies conduct experiments on BLS wages and education
data [35] or the importance level, a numerical value of task statements [2][3], and
they utilise linear data structure to represent the various attributes. According
to the defects mentioned above, the accuracy of their results is unavoidable
compromised. A better solution is to use Natural Language Processing (NLP)
technologies to generate numerical embeddings for tasks and skills text data
and use a non-linear data structure such as a graph to capture not only the fea-
tures of occupations but also the interactions between occupations. Therefore, we
propose a semi-supervised classification method named Automated Occupation
Classification based on Graph Convolutional Networks (AOC-GCN) to identify
the automated risk for occupations. We will be using tasks and skills datasets
extracted from the O*NET database, which is a publicly available occupational
information network containing hundreds of job definitions, to understand the
labour market.

In summary, the contributions of our work are listed below:

• We use Natural Language Processing (NLP) technologies – Word2Vec and
Doc2Vec to generate embeddings for tasks and skills data, which is, to the
best of our knowledge, the first work in this domain using NLP to generate
numerical representations for text data.
• We propose a GCN-based heterogeneous graph classification method that
aggregates both node features and network-wide behaviours, which is also
the first work in this domain.
• Our proposed method significantly outperforms baseline models, and the
results are verified through comparison with government statistical data.

The rest of the paper is organized as follows. Section 2 lists the related
work. We elaborate on the proposed AOC-GCN method in Section 3. Section
4 compares and analyzes the experimental results of our method. In Section 5,
we discuss the results and compare them with government statistical data. In
Section 6, we discuss limitations and future work, and the paper is concluded in
Section 7.
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2 Related Work

2.1 Occupations Automated Risk identification.

Most existing studies about automated occupation identification are based on
expert-based assessments, or basic statistical models focusing on probability
space. Frey et al. [2] assessed the automated probability of occupations using
a Gaussian process classification and concluded that 47% of current US employ-
ment is at high risk of being automated. Similar studies have been conducted
at the impact of automation on occupations in other countries and reached cau-
tionary conclusions: automated occupations rate will be 35% in Finland [10],
59% in Germany [9], and 45 to 60 % across Europe [11]. On the contrary, Arntz
et al. [3] followed the experiments in [2] but used job-level data and a different
coefficient estimates method, and concluded that a less alarming 9% of employ-
ment is at risk. Vermeulen et al. [6] and Arntz et al. [12] also conducted job-level
automatability scorings and get similar findings that about 5% of jobs have au-
tomated risks. However, the data utilized in Arntz et al. are job survey data
conducted on different workers. Arntz et al. considers this data as job level data
compared to occupation level data without considering the duplicates of same
tasks and skills performed by different workers’ job. Therefore, the results may
be underestimated. That is to say, job-level studies consider each task to be in-
dependent and unique which masked the similarity between tasks. Furthermore,
current studies failed to discover the semantic information hidden in text data
and ignored the interactions between occupations.

2.2 Graph Neural Networks.

Recent years have witnessed a growing application in using graph neural network-
based algorithms to solve graph structure problems [23,24,25]. These methods in-
clude both supervised [7] and unsupervised methods [15] [20]. Especially, Graph
Convolutional Networks (GCN) [7] have achieved significant performance com-
pared to previous methods, which is an efficient variant of Convolutional Neural
Networks (CNN) [22] operating directly on graphs. In GCN, both the graph
structure information and node features are also aggregated from neighbours
during convolution. The graph convolution operation is defined as feature ag-
gregations of neighbours, and through iterative convolutions, the whole graph’s
information can be propagated and aggregated to each part of the graph. After
GCN, GraphSAGE [21] is proposed, which is a simpler but efficient inductive
learning model that breaks the limitation of applying GCN in transductive learn-
ing. Furthermore, Graph Attention Networks (GAT) [26] introduces an attention
mechanism into GCN and allows nodes to focus on the most relevant neighbours
during training.

In this paper, a GCN-based method is first applied to automated occupa-
tion classification task through building an occupation-skill graph. Our proposed
method can encode not only the features of occupation but also the interaction
between occupations.
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3 Methodology

3.1 Preliminaries

Generally, GCN-based models [7][21][26] consist of multiple propagation layers
and all the nodes are updated simultaneously in each propagation layer. A prop-
agation layer can be divided into two sub-layers: aggregation and combination.
Let G = (V, E) be a graph with node v ∈ V , edge (v, v′) ∈ E, and node feature
xv = h0

v ∈ Rd0 for v ∈ V where d0 denotes the feature dimension of the node
and hl

v ∈ Rdl denotes the hidden state of node v learned by the l-th layer of
the model. For a GCN with L layers, aggregation and combination sub-layers at
l-th layer(l = 1, 2, ... L) can be written as :

hl
N(v) = σ(W l ·AGG({hl−1

v′ ,∀v′ ∈ N(v)})) (1)

hl
v = COMBINE(hl−1

v , hl
N(v)) (2)

where N(v) is a set of nodes adjacent to v, AGG is a function used to aggregate
embeddings from neighbor nodes of v. W l is a trainable matrix shared among all
nodes at layer l. σ is a non-linear activation function e.g., RELU . hl

N(v) denotes
the aggregated feature of all neighbors of node v at l-th layer. COMBINE
function is used to combine the embedding of node itself and the aggregated
embeddings of neighbors.

For heterogeneous graph with different types of nodes and edges, it always
comes with different sizes of embeddings. For each edge connecting two different
nodes, we generally concatenate the edge embedding from the last propagation
layer together with embeddings of the two nodes this edge links to. Similarly, for
each node, besides the information from neighbor nodes, the features of edges
connected to them are also collected. Therefore the aggregation sub-layer for an
edge e can be defined as:

hl
e = σ(W l

E ·AGGl
E(h

l−1
e , hl−1

U(e), h
l−1
I(e))) (3)

where hl−1
U(e) and hl−1

I(e) denote the hidden states of two types of nodes U and I

from the previous propagation layer and

AGGl
E(h

l−1
e , hl−1

U(e), h
l−1
I(e)) = concat(hl−1

e , hl−1
U(e), h

l−1
I(e)) (4)

For the two nodes u ∈ U and i ∈ I, the aggregated neighbor embedding
hl
N(u) and hl

N(i) can be calculated as:

hl
N(u) = σ(W l

U ·AGGl
U (concat(h

l−1
i , hl−1

e ),∀e = (u, i) ∈ E(u)))

hl
N(i) = σ(W l

I ·AGGl
I(concat(h

l−1
u , hl−1

e ),∀e = (u, i) ∈ E(i)))
(5)

Here the two types of nodes maintain different parameters (W l
U ,W

l
I) and

different aggregation functions (AGGl
U , AGGl

I).
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After aggregating the neighbors’ information, we follow the concatenation in
[6] for the two types of nodes as

hl
u = concat(V l

U · hl−1
u , hl

N(u))

hl
i = concat(V l

I · hl−1
i , hl

N(i))
(6)

Where V l
U and V l

U denote trainable weight matrix for node U and node I, and
the hl

u and hl
i are the hidden states of l-th layer for the two types of nodes.

3.2 Problem Setup

Our purpose is to identify the automated risk for occupations listed in Standard
Classification Code (SOC). The attributes used in this problem are task state-
ments and skills extracted from O*NET database. According to the properties
of data, each task statement is unique for each occupation while each skill data
are a list of skills which are overlapped and shared among other occupations.
So we can build a bipartite graph G(O, S, E) where O is the set of occupation
nodes, S is the set of skill nodes, and E is the set of edges between occupations
and skills. An edge e ∈ E from an occupation o ∈ O to a skill s ∈ S exists if
o contains s. It is worth noting that the task statements data will be used as
occupation nodes’ feature representations which will be introduced in section
3.4. Therefore, the task can be formulated to a node classification problem on
an undirected bipartite graph with two types of attributed nodes.

3.3 Graph Convolutional Networks on Occupation-skill Graph

The occupation-skill graph is a bipartite graph with two types of nodes and
one type of edge. Moreover, there is no attributes on edges in our problem, so
applying a heterogeneous GCN to solve this problem can be excessive. In fact,
we take a shortcut way by applying GCN to treat this bipartite graph as a
homogeneous graph by setting identical dimension sizes for both nodes features.
Therefore, the propagation rule at layer l is this problem can be defined as:

hl
v = COMBINE(hl−1

v , σ(W l ·AGG({hl−1
v′ ,∀v′ ∈ N(v)}))) (7)

where v ∈ O ∪ S, N(v) is a set of nodes adjacent to v, hl
v denote the hidden

states at l-th layer for each nodes.

3.4 Nodes Feature Representation

Text data of task statements and skills should be converted into an embedding
before being encoded as nodes’ features. Here we apply two word embeddings
technologies – Word2vec [27] and Doc2vec [28] to generate feature represen-
tations for occupation nodes and skill nodes. Firstly, we use Glove pretrained
word embeddings to initialize the Word2vec model and retrain the model on task
statements data to aggregate the context and semantic similarity information in
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this domain. The output from the Word2vec model is a word embeddings table
containing vectors for each word. Since the skill data are single word or grouped
words, we represent each skill’s feature by simply applying the word vector or
making additions of multiple word vectors from word embeddings. Then, we
initialize our Doc2vec model with word embeddings from last step and train
on task statements data to generate document-level embeddings as occupation
nodes feature representations. In detail,

h0
s = fusion(w1,w2, ...,wn) (8)

h0
o = doc2vec(t0) (9)

where h0
s, h

0
o denote the initial embedding of a skill node and an occupation

node. w i represents the i-th word vector in a skill generated from Word2vec. t0
is the task statement document of an occupation. Therefore, the parameters of
Word2vec and Doc2vec are trained together with others in the model described
in Section 3.3.

3.5 Semi-supervised Automated Occupation Classification Model

The final embeddings of AOC-GCN are the concatenation of nodes embeddings
learned from Occupation-skill Graph, so we can get

y = softmax(f(concat(zo, zs))) (10)

where zo and zs denote the embeddings of O and S learned by the proposed
GCN method. f(·) is the mapping function to map the embeddings to lower di-
mension space before putting into softmax which is the classifier used to classify
automated and non-automated occupations. This method is semi-supervised be-
cause the whole graph is updated during training process which is on a partially
labeled dataset. The whole pipeline of the study is shown as in Fig 2.

4 Experiment

4.1 Dataset and Metrics

Experiments are conducted on occupation lists, task statements and skills in
Standard Classification Code (SOC) from O*NET database. The label infor-
mation utilized in the experiments is generated from expert-based assessments
on O*NET occupations conducted by [2][6] with automated occupations being
labeled as 1 and non-automated occupations being labeled as 0. However, the
original label information has defects that the number of two classes are un-
balanced, and some occupations are too close e.g., web developer and software
programmer. We preprocess the data and finally select 112 labeled occupations
with 56 automated occupations and 56 non-automated occupations which also
have distance between each other. Then, all the data will form an undirected
graph structure with 910 occupation nodes, 135 skill nodes and 13222 edges.
Training, validation and test set are randomly split with a ratio of 8:1:1. Given
the prediction and ground truth, we evaluate the model’s performance using
accuracy, precision, recall and F1 score.
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Fig. 2: The whole System Pipeline

4.2 Baselines

We compare our model with traditional classification models. Specifically, we
design features of each occupation by concatenate the embeddings generated
from Section 3.4 for both task statements and skills. Then we use zero padding
to make sure all the occupations have identical feature dimension sizes before
putting into baseline models. The chosen baseline models are as following:

• Decision Tree. DT splits the dataset as a tree based on a set of rules and
conditions which is a supervised learning algorithm that can be used for both
classification and regression [32].

• Random Forest. Random Forest is an ensemble method which combines
the output of multiple decision trees to reach a single result [30].

• Adaptive Boost. AdaBoost (Adaptive Boosting) is a boosting technique
that aims at combining multiple weak classifiers to build one strong classifier
and is widely used in both classification and regression problem [29].

• Light Gradient Boosting Machine. LightGBM is a gradient boosting
framework based on decision trees to increase the efficiency of the model and
reduce memory usage [31].

4.3 Results and Analysis

Evaluation. We evaluate the results of AOC-GCN model on O*NET dataset
with above metrics and compare them with baseline models. The results of the
comparison are shown in Table 1 below.
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Table 1: Preprocessed results of O*NET dataset
Method Accuracy Precision Recall F1

Decision Tree 0.7143 0.6667 0.8571 0.7500
Random Forest 0.7500 0.7692 0.7143 0.7407
LightGBM 0.7500 0.6842 0.9286 0.7879
AdaBoost 0.8571 0.8125 0.9286 0.8667
AOC-GCN 0.9091 1.0000 0.8750 0.9333

We find that our AOC-GCN method performs significantly better than other
baseline models, since our model not only uses external node features, but
also capture the graph structural information which is the interactions between
nodes. Besides, baseline models using raw features only already achieve good
results, the GCN’s combination of both semantic and structural information of
relations successfully attains the best performance. Furthermore, our proposed
model ensures high model precision to avoid disturbing non-automated occupa-
tions.

Parameter Experiments. In this section, we explore the effects on the model
performance of different parameters. The key parameters used here are the di-
mensions of initial node embedding sizes and the dimension sizes of GCN layer.
The dimension sizes of node embeddings range from 50 to 300 and the dimension
sizes of GCN layer range from 16 to 512.

(a) Model performance on different
initial node embeddings size

(b) Model performance on different
GCN layer size

Fig. 3: Parameters Effect On Model Performance

We can see from the Fig 3 that with the increase of sizes of initial node
embeddings from 50 to 200, both the accuracy and F1 scores rise and reach
the maximum value. When the size is greater than 200, both of the values keep
stable. The same pattern can be found in GCN layer dimension sizes, when the
size increases from 16 to 256, both of the accuracy and F1 increase. When the size
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is greater than 256, the two scores keep unchanged. Therefore, we can conclude
that the model gets the best performance when the initial node embeddings size
is greater than 200 and the GCN layer dimension size is greater than 256.

Graph Embeddings Visualization In this section, we visualize the embed-
dings generated from the GCN layer using t-Distributed Stochastic Neighbor
Embedding (t-SNE) [33] which is a feature reduction technique mitigating the
effects of the “Curse of Dimensionality”. We also conduct an unsupervised K-
means clustering on the dataset and visualize the result using a dimensionality
reduction algorithm Principal component analysis (PCA) [34]. Through compar-
ison, we can find out the difference between applying unsupervised learning and
semi-supervised learning. The results are showing in Fig 4 and 5.

Fig. 4: t-SNE projection of GCN embeddings

Fig. 5: PCA projection of K-means clustering
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We discover that there is a distinct boundary between label 1 and label 0
which are colored in blue and red in t-SNE projection of GCN embeddings in Fig
4. However, there is no distinguishable separation of two K-means clusterings
colored in red and blue from PCA projection Fig 5, in which labels are annotated
in the graph as 1 and 0. It means that GCN semi-supervised method achieved
much better performance compared to the unsupervised training by using only
a small portion of labelled training data.

5 Results and Discussion

In this section, we apply the model with the best performance to conduct pre-
dictions on the rest of 798 unlabelled occupation nodes to get the probabilities
of their automated risk. Part of the results is shown in Table 2.

Table 2: Top 10 Occupations in High Risk of Being Automated
Occupation Risk

File Clerks 0.7002
Real Estate Brokers 0.6968
Word Processors and Typists 0.6943
Payroll and Timekeeping Clerks 0.6941
Data Entry Keyers 0.6940
Transportation Engineers 0.6938
Credit Analysts 0.6938
Insurance Appraisers, Auto Damage 0.6938
Insurance Underwriters 0.6938
Tax Examiners and Collectors, and Revenue Agents 0.6938

Our results show that the maximum probability of automated risk is 0.7002
which is the “File Clerks”. We follow the definition in [2] and set 69% as the cut-
off point so that if the probability is greater than 69% then this occupation has
a risk of being automated. Then we obtain 230 occupations and a percentage of
25.3% among all occupations are at risk of being automated. This result is lower
than the experiments conducted by [2][9][10] which are about 50% occupations
are at risk and is also higher than [3][6] which conducted a job-level estimation
of 9% automated risk. Considering the defects in occupation-level and job-level
automated risk estimations, our result is quite reasonable to reach a median
value between these two estimations since it predicts the occupation-level risk
using granular task and skills data.

To further validate our results, we compare them with “U.S. Bureau of Labor
Statistics (BLS) Occupations with the largest job declines, 2020 and projected
2030”. It projected out 29 occupations that have declining employments in 2030.
The outcome is visualized in Figure 6.

We assume that automated risk greater than 50% would cause employment
declining and we can find that 76% of the BLS projected declining occupations
have automated risks higher than 50% except for “customer service represen-
tatives”, “computer programmers”, “inspectors, testers, sorters, samplers and
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Fig. 6: BLS Projected Declining Occupations in 2030

weighters” which have an automated risk probability of 0.1%, 8.15% and 7.5%
that are obviously automated safe but are projected declining in 2030. This dis-
crepancy can be caused by rules used in expert assessment of the ground truth
data. According to [2], experts assess the risks based on three attributes of an oc-
cupation which are “perception and manipulation”, ”creative intelligence tasks”
and “social intelligence tasks”. i.e., “customer service representatives” have tasks
including persuading and dispute resolution which requires higher social intel-
ligence and perception, therefore, they are not easy to be automated according
to the analysis in [2]. BLS projection made predictions based on employment
change in time series. And employment decline may be caused by various rea-
sons e.g., supply and demand change [6], other than automation technologies
which mean the declining employment of “customer service representatives” can
be caused by the demand change, i.e. some the customers’ basic demands can be
satisfied by AI dialogue agents. That is to say, expert assessment based on occu-
pations’ attributes only can be biased since some occupations may still decline
even if they have tasks and skills that automation technologies cannot perform
because of the supply and demand change. Overall, the performance and eval-
uation demonstrate the effectiveness of our AOC-GCN method in occupation’s
automated risk prediction.

6 Limitations and Future Work

We acknowledge several limitations in our method and the results presented
in this paper. Firstly, data limitations hindered the performance of our model.
O*NET is the only globally admitted database in labour market, however, it
only classified 1016 occupations, and this data size limited the performance of
classification using machine-learning method. Moreover, each occupation is an
aggregation of several jobs which still obfuscates the difference between jobs.
Secondly, lack of ground truth data is also a barrier that inhibits predictions
of automated risk. Currently, most of the ground truths are expert assessments
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based on occupation’s attributes which are inevitably subjective to some ex-
tent. Expert assessments based on occupations’ attributes can be biased with-
out considering the supply and demand change. Moreover, there is no job-level
or skill-level ground truth data which impedes predictions on a more granular
level. Thirdly, predicting on static information cannot capture the technological
change and labor trends since the employment trends and changing demand for
specific tasks and skills might change faster than static O*NET data can cap-
ture. Therefore, our future work will focus on automated risk identifications on
job-level which requires more granular ground truth data such as which skills
or tasks decide a specific occupation being automated [19]. Moreover, the study
will be conducted on real-world datasets that capture technological change, em-
ployment trends and supply and demand change.

7 Conclusion

In this paper, we applied the AOC-GCN model to the Occupation-skill graph to
identify the automated risk of a specific occupation. The initial node embeddings
are generated from Word2vec and Doc2vec. GCN learns the graph structure and
interactions between occupations. Extensive experiments and comparisons with
real-world projections demonstrate the effectiveness of our method. Our study
paves the way for understanding where to concentrate upskilling efforts in the
following decades [1]. In the future, we will further extend our model to solve
more granular-level tasks in labour market.

References

1. Ahadi, A., Kitto, K., Rizoiu, M.A., Musial, K. (2022) Skills Taught vs Skills Sought:
Using Skills Analytics to Identify the Gaps between Curriculum and Job Markets.
In: International Conference on Educational Data Mining. pp. 538–542. Durham,
UK https://doi.org/10.5281/zenodo.6853121

2. Frey, Carl & Osborne, Michael. (2013). The Future of Employ-
ment: How Susceptible Are Jobs to Computerisation?. Oxford Martin.
114.https://doi.org/10.1016/j.techfore.2016.08.019.

3. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich. (2017). Re-
visiting the Risk of Automation. Economics Letters. 159. 157-
160.https://doi.org/10.1016/j.econlet.2017.07.001.

4. Frank, Morgan & Autor, David & Bessen, James & Brynjolfsson, Erik & Cebrian,
Manuel & Deming, David & Feldman, Maryann & Groh, Matthew & Lobo, José
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