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Abstract: Data availability is a significant issue and barrier 
for modeling and analyzing low voltage networks. This paper 
develops, implements, and compares several prediction 
algorithms for finding missing values in energy usage for 
commercial consumers. Four predictive machine learning 
models, such as random forest regression, linear regression, 
multi-layer perceptron, and decision trees, are utilized in this 
paper. Four commercial users from a regional city in Australia 
are selected as a dataset based on 30-minute intervals. Firstly, 
the obtained data is analyzed and pre-processed and then 
utilized for model training and testing. RMSE and MAE 
measures are used to compare the effectiveness of each machine 
learning model. This paper concludes that the multi-layer 
perceptron model provides better performance than that of 
random forest, decision tree, and linear regression. The RMSE 
and MAE of MLP model are 4.7472 and 4.2103, respectively, 
when using individual users as a training set. 
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I. INTRODUCTION  
In order to meet growing electrical demands in an effective 

and economical way while reducing glasshouse emissions, 
there has been an increasing focus on developing and 
deploying smart grids (SGs) and smart buildings [1]. The 
expanding intermittent renewable energy sources like wind 
and solar can support the need for smart grids [2]. A set of 
dispersed loads are served by a cluster of distributed energy 
resources known as a microgrid (MG) in both linked and 
isolated grid modes. Different distributed generating 
technologies are taken into consideration, with the loads 
presumed to be variable. System reliability and supply 
security-related considerations are considered during the 
design of MGs [3]. 

The accuracy of the network and demand data determines 
the quality of the knowledge retrieved, learning, and decision-
making issues. Particularly with MGs, the issue of missing 
values (MVs) can significantly affect the decisions that can be 
drawn from this data. The quantity and quality of load demand 
data are crucial for the planning, design, and operation of 
MGs. As for most rural communities, full data sets are not 
available; it is important to find effective measures to handle 
and utilize the partial data set. The determination of the full 
data from the given partial information can boost the 
operational flexibility, resilience, integrated energy 

management capabilities, self-sufficiency, and dependability 
of power systems [4].  

MVs are a genuine issue in the planning and design of any 
system, but they seem to be more prevalent in power systems 
because of insufficient sensors and network visibility issues. 
For utilizing data from smart meters, MV imputation 
techniques have advanced in the field of power systems 
research, but further studies are required to determine the most 
effective way to manage missing data. 

In order to calculate the MVs, the following requirements 
need to be satisfied: (i) The distribution of the data should not 
be changed by the MV prediction algorithm; (ii) The 
prediction algorithm must preserve the connections between 
the data set's attributes; and (iii) The prediction approach 
should not be very complicated or expensive in terms of time 
and cost. MVs should be correctly identified and updated in 
order to make it simple to apply all algorithms for different 
applications. Consequently, numerous precise and 
sophisticated machine learning (ML) techniques have been 
developed as a result of recent developments in computing 
technology. However, further comparative analyses need to be 
undertaken to find the best and most reliable method for 
determining missing values in the data set. 

The issue of MVs is often addressed from the perspective 
of pre-processing. Using the mean value to replace an 
unknown attribute is a typical MV imputation procedure that 
could provide results that deviates from ideal results [5]. 
Lakshminarayan et al. [6] investigate the application of ML-
based substitutes to conventional "statistical data" for 
computing MVs. A unique approach for MVs reconstruction 
using fuzzy similarity is presented by Barladi et al. [7]. 

Planning and running sustainable energy systems require 
a number of fundamental building blocks, one of which is the 
dynamics of power use, quality, and volume of load data. The 
problem is that there are missing values in electricity 
consumption data. This paper compares the accuracy in 
calculating missing electricity energy consumption values in 
regional Australia using four machine learning algorithms: 
random forest regression, linear regression, multi-layer 
perceptron, and decision trees. The remainder of the paper is 
organized as follows: ML models: random forest, linear 
regression, and multi-layer perceptron are discussed in 
Section 3. Section 4 discusses the proposed methodology and 
Section 5 represents the dataset. Section 6 includes the 



experimental analysis and results, followed by conclusions in 
Section 7. 

II. RELATED WORK 
It is unlikely to get complete data from any meters and 

recorded systems. The completeness of the collected data is 
mostly related to the dependability of transmission and 
storage. Between 3 and 4 percent of MVs are recorded in 
smart meter systems that have been put in place, for instance, 
because of scheduled outages [8]. MVs in recorded data are 
typical issues as a result of these difficulties. The majority of 
applications that involves the MVs, can be handled by pre-
processing the data, even if certain applications can 
accommodate partial data [9]. 

The time series data from observed power generation or 
consumption in the context of smart meters often depends on 
a variety of variables, including the weather, daily routines, 
societal conventions (such as weekends or vacations), and 
more [10]. These components frequently result in well-known 
patterns with various periodicities (intra-day, daily, monthly, 
etc.) [11]. Studies that address missing data for the building 
energy system are few. One strategy is to remove any missing 
numbers and then analyze the behavior of the building using 
the data that is now available. The problem with this approach 
is that it may only have a tiny collection of observations to 
simulate the behavior of the building [12]. 

Mean imputation is another strategy in which any MV is 
substituted with the average amount of the remaining 
variables [13]. The variable's distribution and the connections 
among variables are distorted by this technique, which can 
lead to significant discrepancies between anticipated and 
actual values. The alternative approach to dealing with 
missing data is to replace those values with constants (e.g., 
average or zero). This has been utilized for situations where 
gaps in the data are intolerable [14]. Regression analysis has 
historically been the most widely used modeling method for 
estimating energy use [15]. The prediction of energy usage has 
also been made using artificial neural networks (ANN) [16]. 
An artificial neural network was trained in [16] on simulated 
data to create "a mapping between input and output," and then 
the predictive model was applied to forecast energy usage. 

In reality, NNs have shown to be effective tools for data 
analysis across a variety of fields. The use of decision trees 
(DTs) as a "decision support" tool for a "production system" 
has also been demonstrated to be effective [17]. Although 
infrequently used in energy consumption prediction, a 
comparison of these diverse "data analysis and modeling" 
methodologies has been taken into consideration in a number 
of applications. 

The hourly electricity usage of two educational facilities 
in Florida was predicted using a random forest (RF) [18]. They 
investigated how well an RF model performed predictions 
with various parameter values. The outcomes of the 
simulation showed that the RF was less susceptible to the set 
of variables and that the empirical methodology was superior. 
González and Zamarreno [19] employed straightforward 
"back-propagation NN" for the prediction of short-term 
construction loads. For the models to forecast hourly energy 
consumption, actual and predicted amounts of the "current 
load", "temperature", "hour", and "day" were utilized as 
parameters. It has been shown that the suggested model 
produces reliable outcomes. 

A straightforward NN may be utilized to connect energy 
use to several inhabitants and the weather (such as outdoor air 
temperature and relative humidity), as shown by Nizami and 
Al-Garni [20]. They determined that ANN performed better 
after comparing the data with a regression model. Due to its 
speed and ability to be employed for real-time control 
applications, ANN models have been constructed in the 
majority of research in place of sophisticated dynamic 
simulation programs. 

III. MACHINE LEARNING MODELS 
The presented predictive models in this section can be 

utilized to derive imputed figures in which significant portions 
of the data are not available to deal with the MVs problem in 
the power consumption dataset. 

A. Random Forest Regression 
Breinman and Cutle [21] developed the initial RF model. 

With the help of a voting system, a group of trees is employed 
in the ensemble technique known as RF to achieve the desired 
result. Each tree is created employing a randomly chosen 
"training subset" and a randomly chosen feature subset. This 
suggests that the trees are reliant on the variables' amounts in 
the dataset that was individually sampled while applying a 
uniform distribution for all trees. 

The average of each induced tree's predictions serves as 
the final forecast in the case of regression. Additionally, the 
caret implementation was applied to this procedure. Due to its 
relative insensitivity to hyperparameter settings, RF has a 
significant benefit [22]. Due to its feature of being a group of 
DTs trained on various portions of the same training set, RFs 
are also less prone to overfitting. 

The attractive qualities that RF provides make it a 
desirable instrument for predicting energy usage. The first of 
RF's properties is that it takes into account predictor 
interaction [23]. The ensemble learning theory on which it is 
built, enables it to learn both basic and complicated tasks. 
Finally, compared to other ML approaches (such as ANN, 
SVM, etc.), RF's hyper-parameters do not require as much 
fine-tuning, and frequently default settings can produce great 
results. 

B. Linear Regression 
The regression approach is frequently employed in 

forecasting techniques, and when updating MVs using one or 
more auxiliary variables, the same concepts are used. While 
an LR technique is more appropriate for datasets with non-
binary numerical variables than logistic regression is for 
datasets with binary variables. 

Despite its ease of use and benefits over more complicated 
prediction methods, the use of LR could result in data that are 
poorly correlated and have a skewed distribution. The issue is 
frequently avoided by inserting a noise factor to LR, which 
also minimizes the "bias" while boosting each anticipated 
value with a "residual term". Benefits of this "stochastic 
regression" include the replacement of each unavailable data 
with a fresh "imputed value" rather than a previously used one 
[24]. 

The simplest and most basic regression analysis 
procedure, known as multiple LR (MLR), builds the 
connection model between a response variable and a number 
of explanatory variables. According to the following equation, 
Eq. (1), its response variable 𝑌 is taken to be a linear function: 



𝑌 = 𝛽 + 𝛽!𝑋! + 𝛽"𝑋" +⋯+ 𝛽#𝑋#  (1) 

where 𝑌 represents the response variable, the explanatory 
variable is expressed as 𝑋$, and 𝛽 is the constant coefficient. 
MLR models were employed in forecasting home energy 
demands for a very long time because of how simple they are 
to use. 

MLR was used by Trigo-González et al. [25] to calculate 
Chile's hourly solar power production. In order to determine 
the energy needs in connection to any weather conditions, 
Ciulla [26] employed MLR and created a straightforward but 
accurate energy forecast model. In order to create a model for 
predicting the performance of a ground source heat pump 
system time-by-time based on MLR, Park et al. [27] examined 
the factors that have an impact on the performance of "large-
scale ground source heat pump" systems. 

C. Multi-Layer Perceptron 
ANN is the third approach used in this paper to forecast 

energy usage. A lot of ANNs have been utilized to forecast 
building energy demand. Their aptitude for dealing with 
nonlinear issues has been shown in the literature. ANNs are 
robust, "fault-tolerant," and "noise-immune" by nature, 
making it simple for them to model erratic home energy 
system data. Due to its benefits, such as its capacity to learn 
complicated behavior, ANNs are regularly used for pattern 
recognition and predictions [28]. The "input layer," "hidden 
layer," and "output layer" are the three basic layers that make 
up the structure of an ANN model. The synaptic weight of 
each connection connecting the neurons was adjusted until the 
difference was small (minimizing "Sum Squared Error"), 
consequently providing regularization for the model. The 
original output was compared to the intended output [29]. 

The weight is a graphical depiction of how important a 
neuron's input is. The network solution structure for this paper 
was an ANN structure of the Multilayer Perceptron Model 
(MLP) type with an "error backpropagation" learning 
technique. The data received by the input layer was computed 
using an appropriate nonlinear transfer function in the hidden 
layer. Equation (2) shows the ANN model in detail: 

𝑦% = 𝛼& + ∑ 𝛼'#
'(! 𝑓+∑ 𝛽$'𝑦%)$ + 𝛽&'*

$(! , + 𝜀% (2) 

where 𝑚 refers to how many input nodes, 𝑛 refers to how 
many hidden nodes, 𝑓  is the "Sigmoid Transfer function", 	
1𝛼' , 𝑗 = 0, 1, … , 𝑛7 is the weights vector from the output layer 
to the hidden layer and 1𝛽$' , 𝑖 = 0, 1, … ,𝑚; 	𝑗 = 0, 1, … , 𝑛7 is 
the input to the hidden nodes' weight. 

D. Decision Tree 
An empirical tree in DT modeling is a segmentation of the 

data produced by the application of a set of straightforward 
rules. Through the repeated process of splitting, these models 
provide a set of rules that may be utilized for prediction. The 
DT produces a model that may represent interpretable rules or 
logic statements, which gives it a significant advantage over 
other modeling techniques. 

An essential aspect of trees that produce axis parallel 
decision surfaces is their explanatory capabilities [30]. 
Additionally, the classification may be carried out without the 
need for intricate calculations, and both continuous and 
categorical data can be employed with the approach. The 
outcomes of DT models also clearly show how important 
particular aspects are for categorization or prediction. Though, 

DT induction is prone to noisy data and typically does not 
outperform neural networks for nonlinear data [31]. Generally 
speaking, the method is better suited for categorical result 
prediction, and DTs are less ideal for use with time series data 
unless clear trends and sequential patterns are present. 

IV. PROPOSED METHODOLOGY 
The prediction of the energy consumption is carried out 

using random forest regression, linear regression, and multi-
layer perceptron models. We transfer the knowledge obtained 
from existing users to more users through ML models. The 
procedure of the proposed method is illustrated in Figure 1. 

 
Fig. 1. The procedure of energy consumption prediction using ML models 

V. SIMULATION DATA 
We use real energy data (kWH) from a regional town in 

Australia. The training data corresponds to a time period 
between July 1, 2017, 12:30 AM, and June 1, 2022, 12:00 
AM, and was at 30-min time resolution. The model includes 
four commercial users, and they are divided into 75% 
"training set" and 25% "test set." The four users are classified 
in phase 3. 

The summary statistics of energy consumption for the four 
users are illustrated in Table 1. User 4 has the highest average 
30-min consumption of 55.35 kWh, while user 3 has the 
lowest average 30-min consumption of 7.90 kWh during the 
entire period. The minimum 30-min is 13.27 kWh for user 4, 
while it is zero for all other users, which means there was no 
energy consumption during a certain time of the day. User 4 
has the highest maximum 30-min of 131.96 kWh, followed by 
58.84 kWh, 52.74 kWh, and 39.82 kWh for users 1, 2, and 3, 
respectively. User 4 has the highest standard deviation of 
15.20, while user 3 has the lowest standard deviation of 5.06. 
User 3 has the highest skewness of 1.06, while user 2 has the 
lowest skewness of 0.33. User 1 has the highest kurtosis of 
1.22, while user 2 has the lowest kurtosis of -0.62. All users 
have the same 30-min data points of 86, 207, which covers 
around five years. 



TABLE I.  SUMMARY STATISTICS OF 30-MIN ENERGY CONSUMPTION 
DATA FOR FOUR USERS (KWH) 

 User 1 User 2 User 3 User 4 
Average 13.81 27.44 7.90 55.35 
Min. 0.00 0.00 0.00 13.27 
Max. 58.84 52.74 39.82 131.96 
Standard deviation 7.44 7.97 5.06 15.20 
Skewness 1.01 0.34 1.06 0.61 
Kurtosis 1.22 -0.62 1.07 0.23 
Count 86,207 86,207 86,207 86,207 

We aggregate the energy consumption values at each time 
interval for three users and then get the average. Figure 2 
shows the 30-min energy consumption for the average 
aggregated values of three users over the period of analysis. 

 
Fig. 2. Timeseries of 30-min energy consumption 

Figure 3 represents the Box plot of yearly versus quarterly 
energy consumption for the average aggregated values of 
three users. It is obvious that the interquartile range is the 
highest for the year 2017. The year 2020 has the lowest 
interquartile range between 12-15 kWH, mainly due to 
COVID-19. The interquartile range is the highest in quarter 
three but the lowest in quarter four. 

 
Fig. 3. Box plot of energy consumption: (a) yearly vs. (b) quarterly  

Figure 4 shows the energy consumption distribution for 
each user and the average of aggregated three users. All data 
are positively skewed with the exception of user 4. 
 

(a) User 1 

 
(b) User 2 

 

(c) User 3 

 
(d) User 4 

 
(e) Average aggregated values of three users 

 

Fig. 4. Energy consumption distribution 

Figure 5 shows the mean energy consumption of for each 
user and an average of aggregated three users grouped by year, 
quarter, month, and day. For yearly analysis, energy 
consumption dropped in 2020 due to COVID-19. For 
quarterly analysis, quarter two has the lowest mean energy 
consumption while quarter three has the highest mean. For 
monthly analysis, July has the highest mean energy 
consumption, while March has the lowest. For daily analysis, 
day 8 has the highest mean energy consumption, while the 
lowest is day 2. 

(a) User 1 

 
  



(b) User 2 

 
(c) User 3 

 
(d) User 4 

 
(e) Average aggregated values of three users 

 

Fig. 5. Mean KWH grouped by year, quarter, month, and day 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 
The data was split into two groups before being fed to the 

ML algorithm, with 75% of the dataset being used as training 
data groups and the remaining 25% being utilized for testing. 
Each ML algorithm was trained using the training sets of data 
to produce a prediction model. These models produce results 

that correspond to the data on observed energy use. The 
remaining data was saved to test the trained prediction model. 

Based on "Root Mean Square Error (RMSE)" and "Mean 
Average Error (MAE)", each forecasting model is assessed. 
Given that 𝐴% are the actual values of energy consumption and 
𝑃% are the forecast values for 𝑛 data points, the formula is as 
illustrated in equations (3)-(4) correspondingly. These 
methods of measurement are useful for comparing the three 
imputation algorithms. 

𝑅𝑀𝑆𝐸 = @∑ (-!).!)"#
!$%

#
  (3) 

𝑀𝐴𝐸 = !
#
∑ |𝐴% − 𝑃%|#
%(!   (4) 

These two metrics are frequently used to evaluate a 
technique's effectiveness for time series forecasting [32-33]. 
These two measurements have the benefit that the average 
prediction error of a model is given in the same units of the 
predicted variable. Lower values are preferred for the two 
measures, which can be assumed to have values larger than or 
equal to 0. The similarity between the simulated and observed 
values is shown by both RMSE and MAE. 

The sample standard deviation of the discrepancy between 
the real and the estimated is represented by RMSE. Due to the 
fact that prediction mistakes are squared, RMSE penalizes big 
errors severely. As a result, the RMSE might be helpful when 
we wish to avoid making significant forecasting mistakes.  

The MAE calculates the average size of the predictions' 
mistakes. Since MAE expresses the absolute mistake, it is 
simple to comprehend. 

We provide two case studies, an individual user's training 
set and an average aggregated training set. We analyze 
individual users because it is important in the operation of the 
microgrid, while we analyze the average of aggregated users 
because it is important in the planning phase. 

A. Case Study 1 
The first case study refers to training the dataset of 

individual users (1, 2, and 3) and using user 4 as a test set. 
Table 2 reports the RMSE and MAE of the predicted values 
against the actual values of the four ML models. MLP model 
shows superior predictive power in comparison with RF, LR 
and DT models. The RMSE value of MLP, LR, RF, and DT 
are 4.7472, 4.7480, 9.6486, and 6.7745, respectively. The 
MAE value of MLP, LR, RF, and DT are 4.2103, 4.2111, 
7.8740, and 5.2971, respectively. 
TABLE II.  SCENARIO ANALYSIS (INDIVIDUAL USERS TRAINING SET) 
 RMSE MAE 
Random Forest Regression 9.6486 7.8740 
Linear Regression 4.7480 4.2111 
Multi-Layer Perceptron 4.7472 4.2103 
Decision Trees 6.7745 5.2971 

B. Case Study 2 
As a robust test, we tested one user against the average of 

aggregated values of three users (1, 2, and 3) as a training set. 
The results of RMSE and MAE are shown in Table 3. The 
values of RMSE and MAE are close in case study 1 and 2 but 
case study 1 is slightly better than case study 2 for RF, LR, 
and MLP models. Having the training set of individual users 
yields better results for all ML models compared to having the 
training set of average aggregated values of the remaining 
individual users. This is because the higher the number of 



users, the higher the predictive power of the ML models, as 
we have more data in the training set to interpolate trends. 

TABLE III.  SCENARIO ANALYSIS (AVERAGE AGGREGATED USERS) 
 RMSE MAE 
Random Forest Regression 9.6500 7.8918 
Linear Regression 4.7486 4.2115 
Multi-Layer Perceptron 4.7481 4.2114 
Decision Trees 6.1337 4.9200 

VII. CONCLUSION 
The ability to estimate energy usage is crucial for facility 

managers, building owners, and energy suppliers to make 
well-informed decisions. In this paper, four ML models were 
used to impute the missing values (RF, LR, MLP, and DTs). 
The RMSE and MAE techniques were used to calculate the 
difference between the anticipated values and actual values. 
The fact that the RMSE and MAE variations between the four 
types of models are often relatively minimal shows that the 
four modeling approaches are largely equivalent in 
forecasting energy consumption. We get to the conclusion 
that, generally, the MLP model outperforms both RF, DTs, 
and conventional LR in terms of predictive power. The RMSE 
and MAE of MLP model are 4.7472 and 4.2103, respectively, 
when using individual users as a training set. In terms of future 
work, we intend to expand the training set by using more data 
and adding other ML models (naïve mean and MLP tuned), 
since this method has been successful in solving other time 
series forecasting issues. We will also include a performance 
comparison of these algorithms with real-time prediction. 
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