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A B S T R A C T   

The conventional experimental methods to determine biomass heating value are laborious and costly. Numerous 
correlations to estimate biomass’ higher heating values have been proposed using proximate analysis. Recently, 
the utilisation of artificial neural network (ANN) has been extensively applied to predict HHV. However, most 
studies of ANN to estimate the biomass’ HHV only use one algorithm to train a small number of biomass datasets. 
The specific objective of this study is to predict the HHV of 350 samples of biomass from the proximate analysis 
by developing an ANN model which was trained with 11 different algorithms. This study fills a gap in the 
research on how to predict the HHV of biomass using numerous ANN training algorithms utilising sizeable 
biomass datasets. Results show that the ANN trained with Levenberg-Marquardt gave the highest accuracy. The 
Levenberg–Marquardt algorithm shows the best fit giving the highest R and R2 values and the lowest MAD, MSE, 
RMSE and MAPE. Compared with previous biomass HHV prediction studies, the ANN model developed in this 
study provides improved prediction accuracy with higher R2 and lower RMSE. Results from this study have also 
indicated that the Levenberg-Marquardt should be the first-choice supervised algorithm for feedforward- 
backpropagation.   

1. Introduction 

Biomass is a promising bioenergy resources due to its net-balanced 
CO2 emissions [1–3]. The utilisation of biomass needs a thorough un-
derstanding of its key fuel properties. One of crucial properties to 
determine is the higher heating value (HHV). HHV is described as the 
total heat liberated when one unit fuel mass is burned entirely, including 
the latent heat stored in the vapourised water of liquid as the product of 
combustion. Therefore, fuel with greater HHV will produce relatively 
higher energy output. 

A bomb calorimeter is normally used to determine HHVs, but this 

conventional method is complicated, laborious and expensive to 
perform. To overcome these problems, a number of correlations have 
been recommended to quantify higher heating values using the proxi-
mate and ultimate (elemental) analysis. In terms of proximate analysis, 
biomass has a higher heating value that is positively correlated with the 
composition of fixed carbon but negatively related to the ash content 
[1]. In general, the biomass comprises of greater than 50% volatile 
content (dry basis) with less than 50 and 30% of ash and fixed carbon, 
respectively as shown in Fig. 1a. 

As for the elemental analysis, biomass normally has higher H/C and 
O/C ratios than the typical solid fossil fuels as shown in Fig. 1b. The 
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ultimate analysis offers an elemental composition of biomass. However, 
such analysis is expensive and requires specific experimentation 
method. The approach of proximate analysis is a more straightforward 
and affordable way, making it a major area of interest for HVV esti-
mation of biomass. It determines the biomass components characterised 
by fixed carbon (FC), ash content and volatile matter (VM). 

In addition to proximate analysis, previous studies have noted the 
importance of soft computation method like an artificial neural network 
(ANN) as the prediction tool to predict biomass’ HHV. Keybondorian 
et al. [5], for instance, developed multi-layer perceptron (MLP) ANN to 
estimate the HHV based on the volatile matters, ash content and fixed 
carbon. In their similar study, Keybondorian et al. [6] utilised the sup-
port vector machine to predict 350 samples of biomass’ HHV. The MLP 
ANN model was also developed by Darvishan et al. [7] to estimate the 
biomass’ HHV according to their ultimate analysis. It was found that the 
MLP-ANN gave great accuracy with the coefficients of determination 
(R2) for the testing and training stages being 0.999312 and 0.999986, 
respectively. Using iterative neural networks adapted with partial least 
squares (INNPLS), Hosseinpour et al. [8] successfully predicted the HHV 
based on their proximate investigation having the R2 > 0.95, MAPE 
<3% and MSE <0.62. 

Although several studies have indicated the promising of ANN 
models to estimate the HHV of biomass, little attention has been paid to 
investigate various ANN’s training algorithm for a large number of 
datasets. It is remarkably challenging to determine which algorithm 
would give the best performance accuracy for a particular task. This 
study used artificial neural networks model trained with eleven different 
training algorithms to predict the biomass’ HHV. Data comprising of 350 
samples biomass’ HHV in the range between 5.6 and 34.4 MJ/kg were 
gathered from previous studies to develop the model. This study aims to 
predict the HHV of 350 samples of biomass from the proximate analysis 
by building an ANN model trained with 11 different algorithms. This 
study fills a gap in the research on how to predict the HHV of biomass 
utilising numerous ANN training algorithms with sizeable biomass 
datasets. 

2. Material and method 

2.1. Data gathering 

Data of 350 biomass’s HHV along with their proximate analysis have 
been gathered from previous studies [8–11]. The dataset has the values 
of fixed carbon, volatile matter, and ash content (dry weight basis) 
ranging from 1.0 to 91.5%, 0.9–92.0% and 0.1–77.7%, respectively with 
the HHV value differs from 5.6 to 34.4 MJ/kg. The data were allocated 
randomly by 70% (245), 15% (52) and 15% (53) for training, validation 

and test, respectively. The flowchart for the overall methodology is 
shown in Fig. 2. 

2.2. Artificial neural network 

In this study, the feed-forward backpropagation network was used as 
the learning algorithm due to its effectiveness. Log-sigmoid (logsig) was 
set as the hidden layer transfer functions, whereas the linear (purelin) 
was set as the output layer. The network was trained using 11 different 
training algorithms as shown in Fig. 3. 

The ANN’s structure used in this study is illustrated in Fig. 4. The 
input layer consists of three neurons, while the hidden and output layers 
have ten and a neuron, respectively. A previous study by Veza et al. [12] 
showed that the ANN topology with ten hidden neurons offered the best 
results for various ANN’s training algorithm. 

Fig. 1. (a) Proximate and (b) elemental compositions of biomass [4]. Reused with permission from Elsevier.  

Fig. 2. Flowchart of neural network algorithm.  
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2.3. Performance criteria 

To evaluate the accuracy of prediction of each model, six different 
parameters were used; R, R2, MAD, MSE, RMSE and MAPE. In the 
equations, n represents the number of samples, while M and P signify the 
measured (actual) and predicted values, respectively. These criteria 
have been used in earlier studies [13] and can be calculated using the 
following equations: 

R is the correlation coefficient. It is used to determine how strong a 
relationship between data. The R value is between − 1 and 1. The value 
of 1 signifies a solid positive relationship, while − 1 suggests a clear 
negative relationship. An R value of 0 indicates no correlation at all. The 
correlation coefficient can be calculated using the following equation: 

Correlation Coefficient (R)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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R2 is the coefficient of determination. It provides information on how 
many data points fall within the results of the regression equation. A 
higher R2 is an indication of a better fit. Coefficient of determination is 

particularly useful to find the likelihood of future cases falling within the 
predicted values. The determination coefficient is not sensitive to out-
liers. Therefore, other criteria that are sensitive to outliers are required, 
such as MSE and RMSE. The determination coefficient can be calculated 
using the following equation: 

Determination Coefficient
(
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MAD or Mean Absolute Deviation measures the prediction accuracy 
by averaging the absolute value of each error. It is particularly helpful 
when measuring prediction errors which have the same units. MAD can 
be calculated using the following equation: 

Mean Absolute Deviation (MAD)=
1
n
∑n

i=1
|Mi − Pi| (3) 

MSE or Mean Square Error is the average of the square of the dif-
ference between the real and predicted values. It is used to determine 
how close the predictions to actual values. It is sensitive to outliers and 
punishes larger error more. Small value signifies better prediction. MSE 
can be calculated using the following equation: 

Mean Squared of Error (MSE)=
1
n
∑n

i=1
(Mi − Pi)

2 (4) 

RMSE or Root Mean Square Error is simply the square root of the 
mean square error. Like MSE, RMSE is sensitive to outliers, punishes 
larger error more, with lower value indicating better fit. Lower the 
RMSE, the closer is the prediction to the actual values. RSME can be 
calculated using the following equation: 

Root Mean Squared of Error (RMSE)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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2

√

(5) 

MAPE or Mean Absolute Percentage Error is one of the most exten-
sively utilised measure for checking prediction accuracy. It is scale in-
dependent and can be used to compare series on different scales. 
However, it can become undefined when the actual value is 0. MAPE can 
be calculated using the following equation: 

Mean Absolute Percentage of Error (MAPE)=

{
100
n
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}

%

(6)  

Fig. 3. Training algorithms used in this study.  

Fig. 4. The structure of ANN with 3–10-1 configuration.  

Fig. 5. R and R2 values for the eleven ANN training algorithms.  
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3. Results and discussions 

Fig. 5 depicts the R and R2 results of the developed eleven ANN’s 
training algorithms for predicting the biomass’ HHV using their proxi-
mate analysis. It was shown that the highest R and R2 values close to 1 
are given by the Levenberg-Marquardt algorithm, indicating a decent 
agreement between the predicted and real values. Furthermore, the LM 
algorithm also provides the least errors where it can be seen in Fig. 6 that 
its MAD, MSE, RMSE and MAPE are the lowest of all the examined 
training algorithms with 0.7153, 0.9786, 0.9892 and 4.1264, 
respectively. 

Several factors may contribute to the highest performance accuracy 
of the Levenberg–Marquardt algorithm. One of the factors is the LM’s 
capability to adjust the learning rate by itself. Also, the 

Levenberg–Marquardt gives a compromise between the Gauss-Newton’s 
speed and the certain steepest descent method convergence, thus out-
performing simple gradient descent and other conjugate gradient 
methods. Similar to the Quasi Newton techniques, the Levenberg- 
Marquardt approaches the speed of second order training without the 
necessity to calculate the matrix of Hessian. Therefore, it has the capa-
bility to accelerate the training and convergence of the algorithm. 
Although LM requires more memory than other algorithms, it is the 
fastest algorithm. Fig. 7 displays the R values of LM algorithms for four 
different stages. 

Overall, the Levenberg–Marquardt shows the greatest performance 
with the highest R and R2 values and the lowest MAD, MSE, RMSE and 
MAPE. This is further illustrated in Fig. 8 for 350 samples of biomass. 
The performance of the BFG algorithm is almost similar to that of the LM 
algorithm. However, it is worth noting that the computation require-
ment for BFG algorithm will rise geometrically with the network size as 
a matrix inverse equivalent need to be calculated for each iteration. It 
was also found that the Gradient Descent Adaptive Learning Rate (GDA) 
algorithm gave the worst performance accuracy where its R and R2 are 
the lowest and its MAD, MSE, RMSE and MAPE are the highest of the 11 
examined training algorithms in this study. GDA is a function of training 
which updates bias and weight values according to the gradient descent 
with the rate of adaptive learning. The worst prediction accuracy of GDA 
algorithm may be attributed to the sensitivity of the learning rate. If it 
was set excessively high, the algorithm would be unstable, but if it is 
overly small, the algorithm would be significantly longer to converge. 

Table 1 summarises the six statistical parameters performance (R, R2, 
MAD, MSE, RMSE and MAPE) of the eleven ANN’s training algorithms to 

Fig. 6. Errors for the eleven ANN training algorithms.  

Fig. 7. Values of R of LM algorithms for the training, validation, test and 
all processes. 

Fig. 8. Actual and predicted HHV for various test cases using ANN Levenberg- 
Marquardt training algorithm. 

Table 1 
Performance evaluation of ANN models.  

ANN training 
algorithm 

R R2 MAD MSE RMSE MAPE 

GDA 0.8976 0.8057 1.3187 3.1670 1.7796 8.2078 
GDX 0.9028 0.8151 1.2914 2.8247 1.6807 7.4174 
SCG 0.9417 0.8868 0.9513 1.7076 1.3067 5.8094 
R 0.9446 0.8924 1.1761 2.6187 1.6183 7.0959 
CGB 0.9480 0.8987 0.8927 1.5297 1.2368 5.1738 
OSS 0.9482 0.8990 0.8824 1.5261 1.2353 5.2834 
CGF 0.9497 0.9020 0.8737 1.4977 1.2238 5.1166 
RP 0.9515 0.9053 0.8785 1.4378 1.1991 5.0920 
CGP 0.9544 0.9109 0.8623 1.3396 1.1574 5.0835 
BFG 0.9554 0.9127 0.8412 1.3131 1.1459 4.8755 
LM 0.9669 0.9350 0.7153 0.9786 0.9892 4.1264  
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predict the HHV of 350 samples biomass according to their proximate 
analysis. 

Compared to previous studies, the ANN model developed in this 
study provides significant improvement owing to its highest R2 and 
lowest RMSE values. This indicates that the ANN-LM model with a 3-10- 
1 network structure model successfully predict the HHV of biomass with 
a decent-performance accuracy that has not yet been found in the pre-
vious studies. Keybondorian et al. in their two separate studies [5,6] also 
used 350 samples of biomass to estimate their HHVs using the multi 
layer perceptron (MLP) ANN and SVM. However, their R2 values are 
slightly lower and their RMSE values are also marginally higher than the 
present study. The closest performance accuracy is given by Samadi 
et al. [14] using the gradient-boosted regression trees (GBRT) where it 
was reported that the fixed carbon had the most significant impact on 
the biomass HHV. The performance accuracy comparison of the present 
study with previous published works is summarised in Table 2. 

4. Conclusion 

The design of new systems fuelled with biomass requires funda-
mental knowledge of its higher heating value (HHV) due to its essential 
role in representing the energy output. The traditional approach to 
determine the heating value is difficult and expensive. In this study, an 
ANN model was built utilising a dataset of 350 samples of biomass. To 
predict the biomass’ higher heating value in term of their proximate 
analysis (fixed carbon, volatile matter and ash content), 11 different 
ANN training algorithms using a 3-10-1 network structure were 
compared and analysed. Results revealed that the ANN trained with 
Levenberg-Marquardt gave the highest accuracy. This model effectively 
predicted the HHV with the highest R and R2. Also, the LM algorithm 
gave the least errors than any of the other 11 examined algorithms with 
MAD, MSE, RMSE and MAPE at 0.7153, 0.9786, 0.9892 and 4.1264, 

respectively. Therefore, the ANN-LM model with a 3-10-1 network 
structure could be regarded as a promising substitute to the empirical/ 
experimental correlations. Furthermore, comparison with previous 
biomass HHV prediction models proves that the developed ANN-LM 
gave the highest R2 with the least RMSE. Despite its better prediction 
accuracy, it is recommended that further research be undertaken in 
investigating the optimum neuron numbers in the hidden layer. This can 
be done by performing numerous trial and errors. Also, network types 
other than feed-forward backpropagation such as the Elman and Hop-
field networks are worth investigating. 

Credit author statement 

Ibham Veza: Conceptualization, Formal analysis, Writing – original 
draft, Visualization. Irianto: Resources, Funding acquisition, Writing- 
Reviewing & Editing. Hitesh Panchal: Investigation, Resources, Project 
administration. Permana Andi Paristiawan: Supervision, Funding 
acquisition. Muhammad Idris: Resources, Visualization. I. M. Rizwa-
nul Fattah: Writing- Reviewing & Editing, Supervision. Nicky R. Putra: 
Methodology, Validation. Rajendran Silambarasan: Formal analysis, 
Writing – original draft. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

[1] L.J.R. Nunes, Biomass gasification as an industrial process with effective proof-of- 
concept: a comprehensive review on technologies, processes and future 
developments, Res. Eng. 14 (2022), 100408, 2022/06/01/. 

[2] K. Homchat, S. Ramphueiphad, The continuous carbonisation of rice husk on the 
gasifier for high yield charcoal production, Res. Eng. 15 (2022), 100495, 2022/09/ 
01. 

[3] T.D. Agonafer, W.B. Eremed, K.D. Adem, Biogas-based trigeneration system: a 
review, Res. Eng. 15 (2022), 100509, 2022/09/01/. 

[4] L. Leng, et al., A review on pyrolysis of protein-rich biomass: nitrogen 
transformation, Bioresour. Technol. 315 (2020), 123801, 2020/11/01/. 

[5] E. Keybondorian, H. Zanbouri, A. Bemani, T. Hamule, Application of MLP-ANN 
strategy to predict higher heating value of biomass in terms of proximate analysis, 
Energy Sources, Part A Recovery, Util. Environ. Eff. 39 (22) (2017) 2105–2111. 

[6] E. Keybondorian, H. Zanbouri, A. Bemani, T. Hamule, Estimation of the higher 
heating value of biomass using proximate analysis, Energy Sources, Part A 
Recovery, Util. Environ. Eff. 39 (20) (2017) 2025–2030. 

[7] A. Darvishan, H. Bakhshi, M. Madadkhani, M. Mir, A. Bemani, Application of MLP- 
ANN as a novel predictive method for prediction of the higher heating value of 
biomass in terms of ultimate analysis, Energy Sources, Part A Recovery, Util. 
Environ. Eff. 40 (24) (2018) 2960–2966. 

[8] S. Hosseinpour, M. Aghbashlo, M. Tabatabaei, M. Mehrpooya, Estimation of 
biomass higher heating value (HHV) based on the proximate analysis by using 
iterative neural network-adapted partial least squares (INNPLS), Energy 138 
(2017) 473–479, 2017/11/01/. 

[9] J. Parikh, S. Channiwala, G. Ghosal, A correlation for calculating HHV from 
proximate analysis of solid fuels, Fuel 84 (5) (2005) 487–494. 

[10] D.R. Nhuchhen, P.A. Salam, Estimation of higher heating value of biomass from 
proximate analysis: a new approach, Fuel 99 (2012) 55–63. 

[11] S. Hosseinpour, M. Aghbashlo, M. Tabatabaei, Biomass higher heating value (HHV) 
modeling on the basis of proximate analysis using iterative network-based fuzzy 
partial least squares coupled with principle component analysis (PCA-INFPLS), 
Fuel 222 (2018) 1–10, 2018/06/15/. 

[12] I. Veza, M.F. Roslan, M.F. Muhamad Said, Z. Abdul Latiff, M.A. Abas, Cetane index 
prediction of ABE-diesel blends using empirical and artificial neural network 
models, Energy Sources, Part A Recovery, Util. Environ. Eff. (2020) 1–18. 

[13] X. Qian, S. Lee, A.-m. Soto, G. Chen, Regression model to predict the higher heating 
value of poultry waste from proximate analysis, Resources 7 (3) (2018) 39. 

[14] S.H. Samadi, B. Ghobadian, M. Nosrati, Prediction of higher heating value of 
biomass materials based on proximate analysis using gradient boosted regression 
trees method, Energy Sources, Part A Recovery, Util. Environ. Eff. (2019) 1–10. 

[15] H.L. Choi, S.I. Sudiarto, A. Renggaman, Prediction of livestock manure and mixture 
higher heating value based on fundamental analysis, Fuel 116 (2014) 772–780. 

[16] A. Callejón-Ferre, B. Velázquez-Martí, J. López-Martínez, F. Manzano-Agugliaro, 
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