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Abstract

Biomedical literature contains a wealth of knowledge in the form of articles and
patents which are unstructured. Scientists find it hard to keep up to date with
the literature being published. To further research and avoid repetition published
literature must be reviewed. Structured knowledge bases allow easy access to
knowledge by avoiding manual searching and screening of a text document to find
important information. Knowledge base construction requires curation of literature
either manually or automatically. Manual curation of published literature for the
acquisition of knowledge is tedious, time-consuming, and expensive. Furthermore,
manual curation cannot keep up with rapidly growing literature which calls for
research in developing tools to automatically extract information from research
articles.

Existing information extraction approaches mainly focus on biomedical entities
such as genes, drugs, and diseases and biomedical relations such as drug-drug
interactions, protein-protein interactions, chemical-disease relations, and chemical-
protein relations. This thesis aims to identify entities and relations specific to
metabolites in publication abstracts. It includes identifying species, metabolites,
proteins and chemicals, and their relations, namely, ‘Metabolite of’, ‘Associated
With’, ‘Isolated From’ and ‘Binds With’.

Current approaches for biomedical information extraction rely on syntactic
rules, dictionary matching or domain-specific features. Crafting features heavily
relies on domain experts and hence the approaches are not extensible. These
approaches are highly specialized and often non-generalizable. Deep learning
methods on the other hand are capable of feature extraction. In this thesis,
deep learning methods are proposed for named entity recognition, named entity
normalization and relation extraction. These are the three fundamental tasks in
any information extraction pipeline. The extracted information then needs to be

logically organized for later use. To address this need, a knowledge graph has

xx1



xxii ABSTRACT

been constructed for storing and querying the extracted knowledge.

This thesis makes three contributions to knowledge: Deep Contextualized
Neural Embeddings for ChemNER, Bi-Encoders based learning to rank for en-
tity normalisation and Pre-trained transformers for ChEBI relation extraction.
Contribution 1 proposes and evaluates improved word representations for named
entity recognition using the Bi-LSTM-CRF network by including embeddings from
language models in its input representations. The proposed method is evaluated
on two abstract and two patent corpora and established state-of-the-art results
on the abstract corpora. Contribution 2 develops and evaluates a transformer-
based ranking method based on the BERT architecture for the named entity
normalization task for linking species to the NCBI taxonomy. Note that species
to NCBI taxonomy identifiers are linked by first generating candidates using
the information retrieval algorithm BM25 and then re-ranking based on encoder
representations from transformers. The proposed method has been evaluated
on S800 and LINNAEUS corpora and outperforms existing methods for species
normalization. Contribution 3 proposed and evaluated transformer-based models
for ChEBI relation extraction. A finetuning approach and a task-specific feature
extraction approach are proposed and both are compared. Empirical evidence

suggests that fine-tuning is a better approach when the target data is small.
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