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Abstract

Biomedical literature contains a wealth of knowledge in the form of articles and

patents which are unstructured. Scientists find it hard to keep up to date with

the literature being published. To further research and avoid repetition published

literature must be reviewed. Structured knowledge bases allow easy access to

knowledge by avoiding manual searching and screening of a text document to find

important information. Knowledge base construction requires curation of literature

either manually or automatically. Manual curation of published literature for the

acquisition of knowledge is tedious, time-consuming, and expensive. Furthermore,

manual curation cannot keep up with rapidly growing literature which calls for

research in developing tools to automatically extract information from research

articles.

Existing information extraction approaches mainly focus on biomedical entities

such as genes, drugs, and diseases and biomedical relations such as drug-drug

interactions, protein-protein interactions, chemical-disease relations, and chemical-

protein relations. This thesis aims to identify entities and relations specific to

metabolites in publication abstracts. It includes identifying species, metabolites,

proteins and chemicals, and their relations, namely, ‘Metabolite of’, ‘Associated

With’, ‘Isolated From’ and ‘Binds With’.

Current approaches for biomedical information extraction rely on syntactic

rules, dictionary matching or domain-specific features. Crafting features heavily

relies on domain experts and hence the approaches are not extensible. These

approaches are highly specialized and often non-generalizable. Deep learning

methods on the other hand are capable of feature extraction. In this thesis,

deep learning methods are proposed for named entity recognition, named entity

normalization and relation extraction. These are the three fundamental tasks in

any information extraction pipeline. The extracted information then needs to be

logically organized for later use. To address this need, a knowledge graph has
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been constructed for storing and querying the extracted knowledge.

This thesis makes three contributions to knowledge: Deep Contextualized

Neural Embeddings for ChemNER, Bi-Encoders based learning to rank for en-

tity normalisation and Pre-trained transformers for ChEBI relation extraction.

Contribution 1 proposes and evaluates improved word representations for named

entity recognition using the Bi-LSTM-CRF network by including embeddings from

language models in its input representations. The proposed method is evaluated

on two abstract and two patent corpora and established state-of-the-art results

on the abstract corpora. Contribution 2 develops and evaluates a transformer-

based ranking method based on the BERT architecture for the named entity

normalization task for linking species to the NCBI taxonomy. Note that species

to NCBI taxonomy identifiers are linked by first generating candidates using

the information retrieval algorithm BM25 and then re-ranking based on encoder

representations from transformers. The proposed method has been evaluated

on S800 and LINNAEUS corpora and outperforms existing methods for species

normalization. Contribution 3 proposed and evaluated transformer-based models

for ChEBI relation extraction. A finetuning approach and a task-specific feature

extraction approach are proposed and both are compared. Empirical evidence

suggests that fine-tuning is a better approach when the target data is small.
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