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Abstract 

The extensive usage of conventional internal combustion engine vehicles (ICEVs) 

is responsible for a large amount of greenhouse gas emissions. However, the battery 

electric vehicle can not substitute for the traditional vehicle due to its limited energy 

storage ability. To moderate this issue, the extended range electric vehicle (EREV) 

provides a solution by providing a satisfactory driving range and lower production 

cost than battery electric vehicle (BEV). An EREV is characterized by having an 

auxiliary power unit (APU) to provide electric power to the traction motor and the 

energy storage system, and its battery pack can meet a majority of pure-electric 

driving needs. To distinguish from the other vehicle structures, the potential of the 

EREV platform should be further studied/presented on a full scale, and novel 

control strategies can be designed to improve the power performance of the vehicle. 

In this thesis, a research on the development process of an extended range logistics 

vehicle is conducted in the automobile theory and vehicle control points of view. 

The research priority of the study consists of three parts: the background review 

and the vehicle structure design, the consumption and cost analysis and the 

innovation on its control strategy.  

First of all, a comprehensive background investigation and literature review are 

conducted and discussed. The investigation systematically introduces the current 

developments of EREV in terms of the powertrain structure, energy management 

and vehicle performance, while the two key focus areas of the auxiliary power are 

the unit (APU) charging control and hybrid energy storage system (HESS) power 

management. A case analysis on a typical EREV is presented along with a general 



 

manufacturing cost analysis for different types of vehicles, showing the EREV as 

one of the cheapest options for long term usage.  

Secondly, an extended range mathematical platform for a logistics van is proposed. 

Suitable configurations for the sizing of the APU, ESS and the traction motor are 

selected for a standardized mid-size van. This study presents a thorough energy 

consumption and Total cost of ownership (TCO) analysis for an Extended range 

logistics van (ERLV). Both EREV and BEV mathematical models are constructed 

and compared, and their dynamic long-term battery degradation comparison is 

conducted. Dynamic programming (DP) algorithm is adopted in the energy 

management strategy optimization, and the global result reveals the optimal energy 

consumption of the EREV. Comparative results demonstrate that the ERLV has a 

relatively long drive distance, slower battery aging trend and cheaper TCO (6.6%) 

when compared to the BELV. 

Thirdly, a novel auxiliary power unit (APU) charging strategy with multi-object 

optimization is proposed on the ERLV platform to achieve high fuel conversion 

efficiency while maintaining battery charging health. The state-of-the-art algorithm, 

Soft Actor-Critic (SAC) is applied to perform a better exploration of the possible 

APU behaviour, and its performance is further verified by the results of the Deep 

Deterministic Policy Gradient (DDPG) algorithm and DP. Three targets are selected 

as the RL rewards for optimization: the engine fuel rate, SOC charging trajectory, 

and the battery charging rate (C-rate). The comparative results show that the SAC 

had a 36% faster convergence speed than DDPG while providing a smoother and 

more stable action space. The fuel consumption with SAC also outplays DDPG by 

around 3%, which achieves almost 90% of the global optimization result. The 



 

successful deployment of the SAC algorithm as an EMS indicates its standout 

ability in dealing with wide-range actions and states with high randomness, 

revealing the practical potential compared with the existing RL strategies. 
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Chapter 1 Introduction 

1.1 Background and significance 

Transportation remains one of the big carbon emitters internationally, contributing 

worldwide to the production of greenhouse gases. Carbon dioxide (CO2) and other 

by-products like carbon monoxide (CO) are generated during fossil fuel burning [1]. 

According to the investigation in Figure 2.1, the extensive usage of conventional 

internal combustion engine vehicles (ICEVs) is responsible for more than 50% of 

the large amount of CO2 emissions in 2020. To address and moderate this issue, 

electric vehicles have grown in popularity as alternatives. Powertrain electrification 

enables the use of more efficient driveline technologies, such as electric machines, 

and the capability to improve the fuel economy of more traditional technologies, 

such as combustion engines, manufacturers are allowed to apply clean and 

renewable energies in vehicle powertrains with reduced or zero tailpipe emissions 

[2]. However, limits to energy storage technologies result in BEV not being able to 

provide a satisfactory driving range to consumers [3]. The popularization of BEV 

is mainly restricted by battery storage capacity, availability of charging 

infrastructure, battery charging speed and the EMS design rationality. To provide a 

comparable range to ICEVs, a BEV will have a significantly larger battery than any 

form of HEV. To overcome these limitations, HEV was designed as the transition 

product to BEV with an effective combination of combustion engine and electric 

motor. HEV can be further divided into three categories based on power-split 

methods between motor and engine: series, parallel and series-parallel (also referred 

to as complex hybrids). A series HEV acquires drive torque only from its motor, 
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and its ICE/generator combination converts fuel to electrical energy which is then 

captured and stored in the battery. This type of structure has the highest power 

conversion efficiency but usually requires a larger energy storage system (ESS) in 

comparison to other HEVs. Parallel HEV is capable of receiving drive torque from 

both engine and motor, but it needs a power splitting transmission to couple the two 

power plants. This structure relies less on the motor and ESS and consequently has 

a smaller ESS than series HEV, although the engine may work in poor efficiency 

conditions during normal operations. Series-parallel HEV inherits the advantages 

of both series and parallel. However, its complex structure inevitably raises the 

manufacturing cost.  

 

Figure 1.1 Estimation of the emission distribution to 2070 [4]. 

In order to maintain the driveability of the fuel-based vehicle and embrace the 

potential of the electric vehicles, the solution for the above matters is to bring the 

extended range electric vehicle (EREV) into mass production. However, the lack 

of structural improvement and design experience needs more frontier research to 

support. Model simulations and hardware tests should be conducted to test the 

performance of the EREV platform. This thesis includes a complete theoretical 

study of an EREV with respect to the energy management strategy (EMS) design. 
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The power flow distribution, powertrain efficiency, component degradation and 

total cost of ownership (TCO) of the vehicle are carefully studied and compared.  

Novel control algorithms are presented and installed in the EMS, and the test results 

can be helpful resources for the future development of the green energy industry. 

1.2 Research objectives and innovations 

The objectives and main contributions of this thesis are:  

1. A classification and literature review for the EREV energy management is done 

to inspire readers. 

2. An extended range system is designed and implemented on a standardized 

logistics vehicle model to achieve a longer driving distance and downsize the 

battery pack.  

3. A comprehensive case analysis in terms of the EREV TCO is conducted to study 

the economic benefits and fuel potential.  

4. Design of a global optimization method using dynamic programming to search 

for a balance between the optimal fuel consumption and transient battery SOC 

variation.  

5. Conducting a battery degradation-battery loss simulation for long term usage 

with the power flow impacts of the APU and motor. 

6. The state-of-the-art Reinforcement learning algorithm SAC and the mainstream 

DDPG algorithm are implemented with the model in MATLAB/Simulink 

environment to be trained in a variety of conditions. 

7. Multi-target optimization for the Reinforcement learning environment is set, with 

the goal of achieving a balance between optimal fuel consumption, good APU 

charging speed to the battery and low damage to the battery.  
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8.The fuel consumption and economic benefit of the RL-based EMS is compared 

with the DP results to show its outstanding performance. A further case study shows 

the control improvements against the active-duty logistics vehicle in the market. 

1.3 Presentation of this thesis  

Chapter 1. The overview of the project, objectives and contributions of the thesis 

are introduced. 

Chapter 2. An in-depth background introduction and powertrain design of the 

EREV are given in this chapter. The introduction and classification of the EREV 

energy management design are discussed in detail, and the related literature review 

is written from the perspectives of APU charging control and HESS power 

management. A case analysis is conducted on an EREV model, and an overall cost 

comparison for the common market vehicle types is shared.  

Chapter 3. The mathematical model of an extended range logistics van (ERLV) is 

introduced. The detailed vehicle body model, auxiliary power unit (APU) model, 

motor model, and battery model are all included. 

Chapter 4. An investigation of energy potential and battery degradation for an 

ERLV is conducted. The dynamic programming using the Bellman equation is 

deployed for the energy management optimization to find out the optimal fuel 

consumption of the extended range system whilst the battery charging is limited to 

a safe level. Secondly, the TCO of the target vehicle is analysed with the battery 

degradation predicted. 

Chapter 5. This chapter shares an idea of achieve fast charging control of the vehicle 

battery using the APU. The study examines a multi-target energy management 

strategy using two Reinforcement learning algorithms to interact with the ERLV 
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model. Battery charging protection is considered as one of the key factor in the 

optimization. Improvements are made to the latest RL algorithm to further boost 

the performance of the APU and slow down the ESS degradation.  

Chapter 6. A case study is conducted on an ERLV equipped with specially designed 

engines with a Scotch Yoke mechanism. Two engine prototypes with different 

capacities are tested with two charging strategies for feasibility analysis to explore 

the economic benefit.  

1.4 Statement of COVID-19 impact on the research 

The research projects have been impacted by the COVID-19 pandemic. Some of 

the co-operational Lab tests were not available.  
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Chapter 2 Literature review 

2.1 Introduction 

This chapter systematically describes the background and reviews the structure of 

EREV using the existing studies and references. The modern control strategies are 

classified based on their logical pattern, and the knowledge of the APU charging 

control strategy and HESS power management are discussed in detail. Furthermore, 

a case analysis of the EMS performance based on a commercially available model 

is also conducted. 

2.2 System Design of Extended Range Electric Vehicle 

The simplified topologic construction of an EREV can be illustrated using Figure 

2.1. Thanks to the on-board chargeable battery pack, the EREV can meet a majority 

of pure-electric driving needs. It is also supported by a secondary onboard auxiliary 

power unit (APU) to recharge the battery. The wheels of an EREV are completely 

driven by its electric motor. The APU usually consists of a fuel combustion engine 

with paired generator (also known as an integrated starter generator, ISG), but 

recent studies pointed out that it can also be a fuel cell system that uses hydrogen 

(H2) to generate electricity [5-8]. In comparison with the series plug-in hybrid 

electric vehicle (PHEV), EREV has higher degree of electrification with mature 

APU-ESS sizing and well-balanced control strategy design [9]. For instance, some 

new types of APU are also studied. Bou Nader et al. designed a gas turbine system 

based on energy theory [10]. Unlike some other types of hybrid vehicles in [11-13], 

the drive torque of EREV is directly provided by traction motor(s), and its engine 

only works for fuel-to-electricity conversion in effective operating conditions. The 
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engine output shift is connected with the ISG, and the energy flow is converted 

from chemical energy to mechanical torque and finally turns into electricity. 

Compared with other types of hybrid vehicles, EREV can support a certain distance 

of all-electric driving, and its onboard APU will supply power if the battery state of 

charge (SOC) drops to a certain threshold or the vehicle is in high power demand. 

Series Plug-in hybrid electric vehicle (PHEV) can be considered a kind of EREV at

a certain level [14, 15]. However, functionality such as engine configuration, 

charging logic of the ESS, powertrain design and relative battery size may vary [16-

23]. Variants of different vehicle powertrains are tabulated in Table 2.1.

DifferentialISG

(H)ESS

AC/DC

DC/ACDC/DC

Drive 
Motor

Wheel

Wheel

APU

Preq

Pess

PAPU

Mechanical Connection
Electrical Connection

Engine

Figure 2.1 Powerflow overview of an engine-based EREV [24].

Table 2.1 Alternative vehicle configurations and comparison.

Model Range Engine
Efficiency Performance Powertrain

complexity
Electric 
Motor(s) Transmission Battery 

size
ICEV ++ + ++ + 0 1 -
BEV + - ++ + 1 0 +++
Parallel ++ ++ + ++ 1 1 +
Series ++ ++ + + 2 0 ++
Series-
Parallel ++ ++ + +++ 2 1 +

PHEV ++ ++ + ++ 2 1 ++
EREV ++ +++ ++ + 2 0 ++

In recent years, EREV has been regarded as one of the key platforms in the electric 

vehicle industry [25, 26]. Car manufacturers have pushed the EREV into 

applications, and products like Chevrolet Volt, BMW i3 REx, and Nissan e-Power 
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have received wide attention [27, 28]. The range extended van Ford Transit hybrid 

gives a solid solution to the logistics city driving, and it has a downsized engine 

with better fuel economy than its ICEV version [29]. A wide variety of research has 

been carried out with the aim of raising vehicle energy efficiency and performance 

through a combination of configuration studies, energy management and optimal 

control. Research found that the size and capacity selection for EREV energy 

storage system greatly influences energy management strategy [30]. Engine 

selection can affect how much energy the battery will conserve, and different 

driving patterns may also have an impact on the selection of the battery capacity. 

The energy management development for the EREV should be able to efficiently 

manage the transient power distribution and balance the capacity and performance 

for each component. On that account, designing an energy management strategy is 

critical and challenging; a programmer should balance the trade-offs between 

dynamics performance, fuel consumption, conversion efficiency and thermal aspect 

[31-33].  

Some of the latest studies on EREV energy management and APU charging control 

optimization [34-38] have made great contributions to the field. Although these up-

to-date methodologies may have acceptable efficiencies and innovative logic, there 

are still plenty of potential and unknown problems to be dug into through the 

application of these emerging technologies. To illustrate this, some researchers 

noticed that it was difficult to balance the energy distribution using rule-based 

solutions when the control system is facing different driving patterns; and there may 

be observable errors and unpredictable flaws, such as high computational load or 

use of unfitted data, when optimization-based solutions are applied to energy 
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management strategies [21, 39-41]. There are few references that can clearly solve 

or improve on these problems.  

2.3 Basic operation pattern of EREV 

As shown in Figure 2.2, an EREV works in two modes: Charge-depleting (CD) and 

Charge-sustaining (CS). Different from other HEVs, EREV can work like a BEV 

in CD mode. In this mode, the vehicle operation power comes from its (H)ESS, 

namely the combination of battery and supercapacitor (SC) packs. The ICE is 

turned off in this mode. Usually, CD mode will be selected when the (H)ESS 

maintains a high SOC or the vehicle only operates with a low power requirement. 

Conversely, as the SOC drops down to a certain threshold or power demand 

increases, the engine will usually start up to compensate for the lacking power. In 

this case, the electric energy from APU can power the ESS and traction motor 

through power converters. Moreover, studies show that the power management of 

HESS has a considerable influence on the APU charging control and power flow 

distribution [42-45]. To introduce the APU control strategy and HESS power 

management, the concepts of APU and HESS are presented in the following 

sections.  

 
Figure 2.2 A CD-CS mode switching sample of an EREV. 
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2.3.1 Auxiliary power unit  

The selection of an APU for EREV is determined by the vehicle design objective 

[46, 47]. Choosing a compatible type of engine and the ISG is rather important 

because an inappropriate component may increase the cost, reduce the efficiency of 

the system and even cause unsolvable failures.  

Selecting the engine for an EREV is different from selecting for a conventional 

vehicle. Engine for a traditional vehicle usually requires wide-range dynamic 

performance and larger displacement, but it has a high fuel consumption to ensure 

sufficient power across the whole speed range [25]. However, the engine selection 

for APU is a different story. The number of engine pistons and displacement can be 

reduced with the degree of vehicle electrification [46]. Because the range extender 

is designated to provide pure electric power, smaller engines with fewer cylinders 

can be specially designed for EREV [48, 49]. A smaller displacement engine uses 

fewer materials and electric parts, which means it has a lower manufacturing and 

design cost than the engines for traditional vehicles [25]. In addition, as the engine 

does not have to run in a wide speed range, the engine for EREV can be set to 

operate in a high-efficiency area, and the noise and vibration can be further reduced. 

For instance, SYTECH ltd has designed a series of downsizing boxer engines based 

on the Scotch yoke mechanism for APU use [50]. The prototype is shown in Figure 

2.3, while the engine is optimized to work in fixed operation points for low fuel 

consumption. In addition, the noise and vibration problems caused by clutch and 

transmission can be greatly suppressed, and the traditional transmission is no longer 

a compulsory part of the EREV powertrain [51, 52].  
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Figure 2.3 Downsize engine equipped with a Scotch yoke (a) Engine outer shell; 

(b) Scotch yoke mechanism.

The engine type for APU is no longer limited to the Otto cycle. The outdated 2-

Stroke engine and rotary engine are now brought back to life because of their 

favourable operating features. In [48], a single-cylinder two-stroke gasoline engine 

is specially designed for electric power generation. Meanwhile, Mazda announced 

its new EREV project, which may adopt a redesigned rotary engine as the range 

extender [53]. The boxer engine can also be considered a perfect candidate for its 

rotary stability and reliability. 

2.4 Hybrid energy storage system constitution

As a multi-energy-source vehicle, EREV requires a flexible energy storage system 

to handle and utilize the fluctuant electric power. The lifespan of an ESS depends 

on battery throughput and its working temperature, and its condition can deteriorate

in cold temperature operation [54]. To mitigate the battery stress, SC can be

installed to cope with the severe environment and extensive current loading. Thanks 

to the high power density and the charge efficiency of the SC, the APU output may 

have a lower negative impact on the battery state of health (SOH). 
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Figure 2.4 Samples of an ESS and a HESS: (a) ESS, (b) HESS [24]. 

Two basic configurations are available for electric energy storage, and their samples 

are shown in Figure 2.4. First, the baseline ESS is a battery only storage system as 

the most straightforward configuration. HESS has been developed to compensate 

for high peak discharge and improve battery lifespan. These combine SC and 

battery using buck/boost converters to maintain voltage stability between the 

battery and SC [39]. The characteristic of battery and SC are introduced as follows. 

2.4.1 Battery 

EREV uses a rechargeable battery pack as its electric energy storage. Its battery cell 

should have a high energy density (Wh/kg). Besides, the recharge life and charge 

efficiency should be taken into consideration as well. There are two major kinds of 

suitable batteries for modern electric vehicles: nickel-metal hydride (NiMH) and 

Lithium-Ion (Li-Ion) batteries. NiMH battery has a long lifespan of up to 2500 

recharge times of 80% depth of charge [55], and it is now very affordable in the 

market. However, with the demand for vehicle mileage, most automotive 

companies adopt Li-Ion batteries in spite of the higher price cost. Li-Ion battery has 

the highest energy density and the best efficiency among all types of batteries [56], 

but rigid charging control is essential. There are two basic methods to charge a Li-

Ion battery: constant voltage charging and constant current charging. When the 
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SOC reaches a certain threshold, the charging method should change from constant 

current to constant voltage to avoid overcharge and damage to the battery. In 

addition, the battery pack is constructed with a large number of individual battery 

cells, which makes it difficult to measure, calculate and balance the SOC of the 

whole set. The battery SOC can be calculated using this simplified formula [14]:  

𝑆𝑂𝐶̇ =
𝑈𝑜𝑐 −√𝑈𝑜𝑐2 − 4𝑅𝑟𝑃𝑏𝑎𝑡𝑡

2𝑄𝑏𝑎𝑡𝑅𝑡𝑚𝑙
 (2.1) 

where Qbat is the nominal battery capacity, Rr is the battery internal resistance, Pbatt 

is the battery terminal power and Uoc stands for the open-circuit voltage [14]. The 

Li-ion battery SOC estimation technics can help to prevent the battery from 

overcharging and over-discharging.  

2.4.2  Supercapacitor (SC) 

When installing a large capacity battery pack on EVs, the cost and weight will 

increase significantly. However, if the battery pack size is reduced, the battery 

recharge rate will be increased noticeably and exacerbate the battery decrement. In 

addition, the lifespan of the battery will decrease quickly during high current 

loading. To overcome these drawbacks, SC can be the secondary power storage unit 

and installed in combination with the battery. The SC, as shown in Figure 2.5, has 

a much higher power density and a significantly longer lifespan than a Li-ion 

battery [44, 57]. The first application of SC in automotive powertrain was on a 

Mazda model in the late 1990s, and it was used to store recovered regenerative 

braking power for acceleration [58]. The charge of an SC is stored on its electrodes 

and there are no redox chemical reactions, which allows it to have a higher power 

density than battery [59]. In addition, it has lower internal resistance that guarantees 
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a higher efficiency than the battery as well. These special characteristics make SC 

the perfect choice for fast charging and fast discharging [60]. Regenerative braking 

sometimes provides a heavy current to ESS that may damage the battery [61]; 

installing an SC can avoid this battery damage [60]. The energy calculation 

equation of an SC can be described as: 

 𝐸 =
1

2
𝐶(𝑉2

2 − 𝑉1
2) (2.2) 

where E is the total usable electric energy, C is the capacity, V2 is the charged 

terminal voltage, and V1 represents the cut-off voltage. We can observe that the 

total electric energy of an SC is directly related to its terminal voltage.  

 

Figure 2.5 Appearance of an SC pack [62]. 

Pieces of literature have presented different methods to estimate the supercapacitor 

SOC. For instance, Song et al. [63] regarded the SOC of the SC as a linear relation 

with the SC open circuit voltage Vsc, and they estimated the SOC by Eq. (3):  

𝑆𝑂𝐶𝑆𝐶 =
𝑉𝑆𝐶
𝑉2

(2.3) 

  The operational range of the SOC is assumed in the range [0.5 - 1] because 75% 

of the usable SC energy E is discharged when the SOC drops to 0.5 [63]. On the 
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other hand, Li et al. [64] used the current integral equation approach to real-time 

estimate the SC SOC: 

𝑆𝑂𝐶𝑆𝐶(𝑡1) = 𝑆𝑂𝐶𝑆𝐶(𝑡0) −
1

𝐸
∫ 𝐼𝑠𝑐(𝑡)
𝑡1

𝑡0

𝑑𝑡 (2.4) 

where Isc is the real-time current from the SC. This method has a higher requirement 

for the current sensor in field tests as the current varies rapidly [39].  

2.5 Energy management classification 

Specific control strategies should be customized to utilize the energy better and 

expand the ESS lifespan [65]. Therefore, EMS is employed to extend battery 

lifespan, raise fuel conversion efficiency and balance energy distribution [17]. The 

concept of EMS can be traced back to the 19 century, and it was defined as ‘a plant 

design interrelated with power conversion components and the unique 

characteristics of ESS’ [66]. Companies such as Bosch, Denso and BYD have 

applied their EMSs to their electric models [60, 67-69]. Energy management for 

EREV consists of three main aspects: APU charging control strategy, dynamic 

power management of ESS and safety detection. In this section, the APU charging 

control strategy and HESS power management will be mainly introduced and 

discussed.  

Modern energy management control strategies can be systematically classified into 

two categories: rule-based strategy and optimization-based strategy. Their 

relationships are arranged in the following dendrogram. 
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Figure 2.6 Classification of energy management strategies. 

Table 2.2 Classification of energy management control strategies. 

Rule-based Strategy Optimization Strategy AI Strategy Literature 
Close loop control 
Fuzzy logic 
Forward chaining  
Look-up table 
 

Dynamic programming 
Genetic algorithm 
Model predictive control 
Pontryagin’s minimum principle 

DQN 
DDPG 
A3C 
TD3 
SAC 

[70], [41, 71-73] 
[74, 75], [76-78], 
[37], [79-81] 
[82], [14, 83, 84]  
[85]  

 

Some samples for EMS are displayed in Table 2.2. Most rule-based energy 

management methods have an efficiency superiority when applied to a real-time 

electric vehicle powertrain [31]. This kind of rule is developed on the basis of 

intuition, human expertise, experimental results and mathematical models [86]. 

Generally, several datasets are collected and sent to the rule-based controller, and 

the controller will give out a preset output to the controlled objects [87]. This preset 

output can be a levelling or a weight value to minimise the control error between 

the desired and actual values. On/off strategy, geometric control, closed-loop 

control and fuzzy logic control can be considered rule-based methods [88]. 

Optimization is a process of mathematical evaluation to search for the best fitting 

solution for one or more specified objects [89]. These solutions can make the best 

of object performance in the exploration phase when selecting advisable variables 

[90]. When looking at the introduced EMS methods above, we can observe those 

defects which still need improvements. An optimization strategy is performed using 
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a specific mathematical calculation or dynamic function to minimize loss and 

unwanted fluctuation [69, 91-94]. These are generally computationally intensive 

and are performed offline with known data. In recent years, some optimization 

methods can be operated in real-time or through online computing, depending on 

their model complexity [91, 95]. For instance, scholars adopted Pontryagin’s 

minimum principle for energy management optimization because it has a short 

computation time [96-98]. Methods like dynamic programming (DP) and genetic 

algorithm (GA) have higher potential and performance for EMS optimization and 

model predictive control (MPC), but they are rather complex and may need further 

research for implementation [5, 99]. These advanced training technologies can 

surely raise the efficiency of energy management and let the strategy itself adapt to 

the operating environment; however, some systematic study directions should be 

set by discipline leaders from a development perspective. In addition, some 

optimization methods cannot be deployed as a real-time method because they may 

rely on previous data, but these methods can be used as valid benchmarks to 

evaluate the control performance of other EMS strategies.  

The AI-based EMS has attracted great attention in the past three years. The deep 

learning (neural network, NN) [78, 100], reinforcement learning [101-103] methods 

are the two main classifications of the AI-based EMS. Deep learning utilizes NN to 

train eigenvalue from the data, and the nodes in NN layers are arranged and given 

weights to the connections between them. In contrast, the RL agent works as an 

independent controller to interfere with the environment, and it makes decisions 

based on trial and adjusts itself through reward feedback. The AI EMS is known 

for requiring a pre-training process for the algorithm to understand the controlled 
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target and environment. After training, the AI EMS can be implied in real-time with 

a low computational load, and it is capable of handling complex control signals and 

data inputs. Scholars also discovered the potential of combining DL with RL to 

produce Deep Reinforcement learning (DRL) [104]. DRL inherits the merits from 

DL and RL, for instance, it holds the ability to maximize reward goals in episodes; 

and handle wide action space and states with the help of NN. The leap performance 

of the DRL was proved by defeating human experts in numerous Atari games, and 

is currently in commercial use for the e-sports game DOTA2 [105]. It is now testing 

against real-world environments that may have numerous possible actions and state 

inputs. In the automobile industry, DRL has unlimited potential in vehicle EMS 

design by feeding it with unlimited data. Thanks to the emerging vehicle-to-

everything (V2X) technique, the training data for the DRL EMS can be gathered 

from anywhere, while the online cloud server easily handles the computational load 

for the RL pre-training. Since 2013, DRL algorithms such as DQN, DDPG, PPO, 

TD3 and SAC have been developed to improve the training quality and 

performance of the agent. Some early DRL algorithms utilize the Q-value to update 

the agent policy, which can cause instability during some training; for the model-

free algorithm, the sampling efficiency is also worrying. Improvements are made 

to amend these issues. For instance, the experience replay solution is applied to 

increase the sampling efficiency, as it utilizes the previous data from the training 

by repeatedly selecting a random mini-batch for the policy improvement; the adding 

of the target networks helps supervise and stabilize the agent during training; the 

soft update for the target networks uses partially update with factor 𝜑 to prevent the 
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agent from sudden performance drop. External noise and maximum entropy 

techniques are also used to improve the exploration of the agent.  

In the following section, two types of strategy orientations are introduced in detail. 

It is also worth mentioning that the energy management strategies for different 

components in the powertrain may restrict and influence each other. APU charging 

control strategy and HESS power management are crucial to EREV, and they work 

as the upper and lower layer of the EREV energy management [71].  

2.6 APU Charging control strategy 

According to the simulation and experimental results [49, 106-109], the highest 

efficiency of the ICE and Proton Exchange Membrane (PEM) fuel cell are around 

41% and 66%, respectively. The efficiency of an engine-based APU varies with the 

engine speed and the output torque [110], while the efficiency of a fuel cell unit is 

mainly affected by its working temperature and fuel purity [111]. Considering the 

incomplete fuel-cell technology and the shortage of hydrogen production, adopting 

an engine as the range extender is currently more desirable for most EREVs. More 

importantly, different charging strategies should be applied on the basis of the 

above APU behaviours. APU charging control strategy can be classified into two 

types: the power demand following strategy and the optimal range strategy.  

2.6.1 Power following strategy 

The power following strategy usually operates based on the vehicle power demand, 

and it amends the APU electric output to supply most of the vehicle power 

requirements. During vehicle operation, the APU will supply most of the electric 

power to the drive motor, which means we do not need a large HESS for backup 

power. The simplified diagram of the power following strategy is shown in Figure 
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2.7. The Fuel cell (FC) extended range electric vehicles commonly adopt this type 

of strategy because of the flexible fuel cell discharge characteristic [112-115]. 

However, when it comes to combustion engine based APU, it requires an engine 

with a wide high-efficiency operation range [34, 116]. Moreover, due to the faster 

transient response of a drive motor than that of an engine, HESS should compensate 

for the transient power lack between APU output and actual power demand [34, 

117]. The SC in HESS can suit perfectly for supporting transient power error in 

most cases.  

 
Figure 2.7 Logic diagram of a power following strategy example [24]. 

Before setting up the power following strategy, the power supply capacity of APU 

and HESS should be measured and optimized to ensure the designed system meets 

the actual power requirements of the vehicle [82]. Moreover, the essential 

requirement for this strategy is to achieve a faster control convergent speed, or the 

execution delay of the control strategy will cause considerable power compensation 

from the HESS.  

Scholars have designed control strategies to follow power demand based on 

particular testing platforms. A fuel cell hybrid vehicle installed with HESS has 

applied fuzzy logic control to amend APU output power based on HESS SOC and 

driving need [118]. Accordingly, Barelli et al. applied a 12-hour real-world driving 

cycle for a fuel cell bus HESS sizing in order to have a more stabilized power 
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requirement estimation; the result proved that a compact fuel cell APU could 

provide most of the power for driving whilst the battery SOC maintains a high level 

[115]. Meanwhile, Simoes et al. also chose FLC for their Power following APU 

charging strategy [74]. Conversely, they decided to focus on selecting the best 

operating power range (approximately 65 - 180kW) of the fuel cell, in which the 

FC efficiency can be higher than 43% [74]. Nevertheless, when adopting a 

combustion engine and ISG as the APU, the fuel consumption may change 

significantly due to the variable engine operations. Zhang et al. designed a slot-PM-

assisted generator that can be applied with a combustion engine under varying 

duties; the simulation results showed that the power density of this generator could 

double when compared to those of DC-excited structure [119]. Wang et al. 

described a new concept of EREV called Through-The-Road (TTR), and they 

adopted an online drive cycle/power predictions for the energy management design 

[120]. In this platform, the APU followed the total power demand and its output 

torque was kept within a high-fuel-efficiency boundary [120]. For the improvement 

of the traditional power following strategy, Yan et al. have introduced a fuel cell 

hybrid electric tram using a modified power following APU charging strategy [72]. 

The strategy is an online strategy that works on the basis of minimizing energy 

consumption and guarding the end-state SOC. Hardware in the loop (HIL) test 

showed that the hydrogen consumption is 8.99% lower than that using the 

traditional power following method [72]. In addition, Li. et al. applied different 

strategies using DP and pseudo-spectral optimal control to decide the power 

distributions of APU and battery during the CS stage [34]. Energy efficiency 
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improvement was also conducted in [6, 121], from which an engine ideal economy 

curve was selected for the APU to provide the required power to the powertrain.  

2.6.2 Optimal range strategy 

The optimal range strategy has the ability to maintain high APU fuel efficiency. 

Every engine has its optimal operating range where energy conversion efficiency is 

comparably high. Therefore, this strategy sets the engine to operate in some fixed 

optimized points or an operating range at all times. For instance, the APU in [122] 

operates in three operation points with high energy efficiency. Once the APU is 

turned on, the redundant power will be used to charge the ESS. An example logic 

diagram of this strategy is described in Figure 2.8. 

 
Figure 2.8 Basic logic diagram of an optimal range strategy [24]. 

Before choosing the appropriate engine operation range, a series of calculations 

should be carried out to determine the transient power requirement and the battery 

condition. The optimal range strategy is a nonlinear charging strategy and has a 

limited engine operation range. Compared with the power following approach, 
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there are more external data for optimal range strategy to utilize, such as motor 

power demand, battery SOC, current driver driving pattern, charging efficiency, etc. 

[6, 12, 123]. These data can give an overview to EMS and help the strategy to make 

decisions. 

There are numerous methods of setting and choosing APU operation points, and 

scholars use experimental data and optimization algorithms to deduce their unique 

parameters [32, 124-126]. A fuzzy logic charging strategy is proposed in [67] after 

setting up a full Simulink vehicle model, and a HIL simulation is carried out to 

verify its potential. In [127], Lee has conducted a charging efficiency comparison 

among different generator operating points by using real-world driving cycle data, 

proving a charging strategy can effectively make good use of the energy by 

adopting better APU operation points. Chen et al. designed a power charging 

strategy that mainly focused on extending battery life and avoiding fuel energy 

losses [121]. The strategy adopted dynamic programming (DP) to extract driving 

pattern data. Another similar strategy focused on minimizing the fuel consumption 

of an extended range electric bus [128]. In [89], trajectory optimization was 

deployed to find optimal APU operation curves, and the engine emission was also 

considered for evaluation.  

In recent years, scholars have introduced machine learning and mathematical 

optimization methods in designing optimal range strategies. These methods are 

better at discretising diverse data and handling complex systems in comparison with 

the rule-based methods. For instance, machine learning methods can adapt the 

system to an uncertain operating environment. In [129], a genetic algorithm was 

utilized for training test data from a diesel engine, and it aimed to raise engine 
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efficiency by optimizing injection timing. Zhao et al. investigated the efficiency of 

a 3-cylinder Atkinson engine and introduced an artificial neural network to the APU 

charging strategy [78]. The results showed that the optimized operation points of 

the engine could reach a high efficiency of 40.2% [78]. In reference [83], a neural 

network controller was designed to train data from two inputs: the battery SOC and 

distance to gas stations. Stefano et al. [77] applied stochastic model predictive 

control to identify the driver behaviour, and the engine-battery power ratio changes 

according to the driving style and traffic condition. Moreover, another optimal 

range strategy is proposed using DP and PSOC algorithms [34], and in this case, 

the actual power demand is selected as its analysed object. 

2.6.3 Comparison of the two strategies  

Generally speaking, the two APU charging strategies have their own pros and 

cons, which are categorized in Table 2.3. The power following strategy and optimal 

range strategy have their own unique pros and cons. The power following strategy 

allows EREV to have a smaller size ESS because its battery is mainly used for 

compensating the power error between APU output and vehicle required power. On 

the contrary, the optimal range strategy allows EREV to install a more compact 

engine, and the APU can be determined to turn off/on based on the ESS condition. 

In general, the selection of the two APU charging strategies can be made depending 

on the vehicle platform and travel requirements. The current research status of these 

strategies may assist in developing new methods in APU charging control area and 

constructing real-time HIL experiments. 
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Table 2.3 Introduction of the two APU charging classifications. 

Category Power following method Optimal range method 
Characteristics The output power of the APU will go 

after the required power from the 
vehicle. APU will stay operating in 
most cases. [34] 

The APU works in a certain fixed stage 
or an optimized dynamic range to 
maintain a higher energy conversion 
efficiency. APU may not always start if 
the SOC is high enough. [6, 12, 123] 

Requirement ESS should compensate the power 
deviation caused by engine delay. 
[34] 

Detailed strategy should be designed to 
consider vehicle operation and ESS 
sizing[17].  

Advantage Relying less on battery, less charging 
loss of battery. The size of ESS can 
also be reduced. 

Favourable fuel utilization; smaller 
engines can be selected. The engine 
can operate in low vibration conditions 
[65]. 

Disadvantage Low energy conversion during some 
high-duty operations.  

A higher requirement for thermal 
management due to frequent battery 
charging.  

2.7 Dynamic power management for HESS 

A well-designed HESS will significantly raise the energy utilizing ability of multi-

power-source vehicles like EREV. For most electric vehicles, the cycle life of the 

Li-ion battery and its output ability determine its driving practicability. The battery 

usually works as the main power supplier for the EREV powertrain, but a sudden 

peak discharging or charging may do great harm to the battery lifespan [130, 131]. 

The battery’s peak current range to the motor of a 2003 Honda insight was 

approximately 50A to 70A [44, 132], and with the fast development of electric 

motor technology, Li-ion battery may not be able to follow up the motor’s high 

transient power requirement nowadays [133]. Installing SC as the secondary power 

storage component can help to settle this issue, and it also allows us to install a drive 

motor whose peak power requirement is higher than the actual battery output 

capability. The advantages of battery and SC can be well utilized while avoiding 

the disadvantages in virtue of a well-designed power management. Simulations 

show an 8.7% further energy consumption can be reduced in some driving cycles 
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by applying SC to ESS [134]. In Figure 2.9, some widely adopted topology 

structures of HESS are shown where the battery pack and SC are connected in 

parallel to the power converter [63, 67, 130, 135, 136]. However, in [42], the battery 

and SC can be connected in series to minimize cost and space.  

 

 

Figure 2.9 Wide-adopted topology structures of HESS. 

The location to employ the bidirectional DC/DC converter significantly impacts the 

operating characteristics of HESS. For instance, as with the last two topologies 

shown in Figure 2.9, a DC/DC is connected in series with the battery/SC. The 

general advantage of these topologies is to minimize the component cost and mass. 

When the DC/DC is in series with the SC, we are allowed to make good use of the 

SC in a wide voltage range and vice versa (for DC/DC in series with the battery). 

Furthermore, two DC/DCs can be installed in series with each of the two 

components for higher power performance; however, this may also result in cost 

rising and make the system more complex. 
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In most cases, when the vehicle is driving at its peak performance, the engine or 

fuel cell will start and output power in conjunction with HESS. The available drive 

power of an EREV can be described as: 

𝑃𝑣𝑒ℎ = 𝑃𝐴𝑃𝑈+𝑃𝑏𝑎𝑡+𝑃𝑠𝑐 (2.5) 

where Pveh is the total consumed power of the vehicle, PAPU is the output power 

from APU, Pbat and Psc are the charging or discharging power of battery and SC, 

respectively.  

It can be observed from the equation that the power output of these three 

components is highly complementary, which means their sizing selections have to 

be dynamic and should consider their performance, power density and invested cost 

(including component price and average fuel consumption). Furthermore, the power 

output of the APU should also depend on the general power requirements of the 

vehicle, especially when the APU is adopting the power following strategy. Studies 

have been put forward by taking all factors above into consideration [63, 67, 133, 

137]. For instance, Raga et al. presented a comparative analysis of several HESS 

architectures on a fuel cell hybrid vehicle [137]. According to their analysis data, 

using SC is highly recommended when the vehicle is in great power need [137]. 

Additionally, the impact of heavy current output from a battery can be sharply 

mitigated with the help of SC and APU employment [67]. 

However, introducing secondary energy storage to EREV may also lead to many 

application difficulties. For instance, the sizing of Li-ion battery, SC and even APU 

should be optimized and the APU charging strategy will have to be redesigned [43]. 

Furthermore, the degree of hybridization between APU and HESS has to be re-

examined in order to achieve greater balance. The fundamental system-level 
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requirements of HESS should be figured out before breaking down to a component 

level. A synthesis of mainstream HESS architectures and their power management 

is conducted in [137]. It was summarized in this article that there are three system-

level goals for designing a HESS power management: a) avoid excessive 

charging/discharging of battery to extend its lifespan; b) to make good use of the 

SC fast charging/ discharging ability; c) to better sizing of the HESS to reduce 

weight and cost. Hence, we can categorize the dynamic power management design 

as solving a multi-objective optimization problem.  

To confront this optimization problem, a general understanding of the HESS 

operating condition is essential. Calculations and experimental exercises should be 

performed afterwards, and an elementary framework for HESS can be constructed 

based on the vehicle powertrain requirements. The optimization contents, such as 

HESS sizing and charging control, are discussed in the following subsections. 

2.7.1 Sizing design 

The aim of the HESS sizing design is to raise the overall energy economy whilst 

minimizing the HESS cost and mass [43] [138]. Previous researches saw driving 

range demand, APU capability and chassis parameters as the main factors for HESS 

sizing, but the sizing design should also consider the influence of actual vehicle 

energy consumption [139]. Generally speaking, HESS sizing for EREVs must 

satisfy the energy requirement for an adequate pure-electric driving range [140]. In 

addition, it should also focus on extending the battery lifetime, which means the 

design has to take full advantage of an SC [67, 141]. However, the adoption of SC 

is delicate due to its high cost and low energy density. Its capacity should be 

sufficient to at least absorb the amount of energy from one complete regenerative 
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braking [61]. To illustrate, our multi-objective component sizing procedure is 

introduced. Some variables such as average weight, cost, space and maximum 

power output were first picked as future optimization objects. After that, we defined 

a price limitation range, and a feasible Pareto optimization is applied on it to select 

the best member from the candidate pool [130]. The selected members are applied 

to a prototype platform and compared with two other methods, while a parameter 

called Hybridized Cost Ratio (HCR) is presented to describe the cost ratio of HESS 

parts that helps find potential options [130]. A simplified flowchart of possible 

HESS design options screening is shown in Figure 2.10.  

 
Figure 2.10 Flowchart of Possible HESS design options identification [24]. 

Other studies have chosen some different optimizing objects. For instance, 

Boundaries of power and mass for the proposed structures are defined considering 

the APU power output, and its SC is used to absorb the remaining power from APU 
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when the battery pack cannot withstand the high current [137]. Another concept 

called ‘degree of hybridization’ (DOH) was put forward in [133] which can be 

described as: 

𝐷𝑂𝐻 =
𝑃𝑟𝑒𝑞 − 𝑃𝐴𝑃𝑈

𝑃𝑟𝑒𝑞
 (2.6) 

where 𝑃𝑟𝑒𝑞 stands for the total power demand from vehicle 𝑃𝐴𝑃𝑈 is the output power 

from APU. In this study, DOH was used as the main optimal object to decide the 

charging/discharging limitation of HESS, and it also signified the cost when putting 

up the EREV platform [133]. Subsequently, parameters of different components 

were calculated based on DOH, and a fitting check was conducted to see if these 

sizing parameters could satisfy the overall requirements of weight, power and cost 

[133]. A similar sizing solution based on weight reduction is proposed in [138] 

using the Ragone methodology. Sadounl et al. considered the charging rate of 

batteries as the main condition when using a pre-set battery capacity [142]. In [143], 

a dynamic calculation was proposed to estimate the battery SOC and employed a 

metaheuristic algorithm to determine how large the battery pack should be. 

However, instead of considering the combined influences of vehicle battery health 

management and heavy charging, the only optimal target of this paper was to 

minimize the total cost of the battery cell [143]. The strategy was then improved in 

[144] that both the battery health and total cost of the HESS were considered as the 

optimization goals using dynamic programming. Additionally, that reference [145] 

proved the SC average power output in driving simulation has a great influence on 

determining SC capacity. Tongzhen et al. compared three different sizing 

topologies on regenerative braking for hybrid vehicle powertrains, and they had 

discussed some other suitable application fields for these sizing topologies [146].  
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2.7.2 Power distribution control of HESS 

For HESS, it is hard to define the power distribution to the battery and SC because 

of their diverse electric characteristics. Recent studies have demonstrated that SC 

can provide high instantaneous peak power which is several times greater than the 

Li-ion battery [58, 147, 148]. Greater energy efficiency for HESS can be achieved 

by lowering the battery current under a certain value [148]. Furthermore, 

considering the different charging characteristics of the Li-ion battery and SC, new 

energy management methods should be deployed. According to the three system-

level goals for designing a HESS power management (mentioned in Section 4.2), 

utilizing the fast charging/discharging ability of SC to avoid battery from excessive 

usage is the key.  

To achieve this goal, scholars are trying to provide solutions using advanced rule-

based charging strategies. In the early stage, the discharging power simply came 

from the battery set while SC compensates [149, 150]. In most studies, the current 

and voltage of the battery set were monitored and restrained to reduce the impact 

on battery degradation [132, 148, 151], but some of the studies did not build up a 

battery degradation model to study the impact of battery SOH. Yang et al. [152] 

pointed out that battery SOH should be considered as the evaluation indicator for 

the HESS power management arrangement. SOH is the indicator for the remaining 

charge acceptance of the battery, and the cumulation of the battery loss Qloss will 

result in the decline of SOH. An empirical formula-based Arrhenius degradation 

model based on Ah throughput calculation can be used to calculate the Qloss with 

the following equation [153]: 

                                               𝑄𝑙𝑜𝑠𝑠 = 𝐴 ∙ 𝑒
−(
𝐸𝑎𝑐𝑡−𝐵∙𝐶𝑟𝑎𝑡𝑒

𝑅∙𝑇𝐵𝑎𝑡
)
 (𝐴ℎ)

𝑍                      (2.7)  
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where Qloss is the capacity loss of the battery, A is the pre-exponential factor, Crate 

is the battery discharge rate, R is the Molar gas constant (8.314J/mol/K-1) and TBat 

is the battery absolute temperature. Ah is the Ah-throughput and Z is the time factor. 

Eact and B represent the activation energy and correction factor of the discharge rate, 

respectively.  

An experiment data for LiFePO4 battery cell were shared in [144, 153]. The authors 

used the least square fit method to calibrate the parameters, where A is 0.0032 and 

Z is 0.824: 

                                    𝑄𝑙𝑜𝑠𝑠(𝑡) ≈ 0.0032 ∙ 𝑒
−(
15162−1516∙𝐶𝑟𝑎𝑡𝑒

𝑅∙𝑇𝐵𝑎𝑡
)
 (𝐴ℎ)

0.824               (2.8) 

The battery SOH can be achieved by the cumulative formula: 

                                              𝑆𝑂𝐻(𝑡) = 1 −∑𝑄𝑙𝑜𝑠𝑠(𝑡)

𝑡

𝑡=0

, ∈ [0,1]                         (2.9)  

The estimated SOH plays a critical role in extending the HESS lifespan. The 

optimal power management strategy should adopt battery degradation status as one 

of the input states or constraints for long term accuracy. For instance, Hu et al. [81] 

designed an MDP control considering the degradation of the FC and battery, where 

the SOH is used as one of the main constraints for calculating the minimum 

operation cost.  

On the other hand, the battery SOC also has an influence on HESS power 

management, for example, on deciding the charging logic of the battery and SC 

[42]. Lukic et al. [154] suggested that the SC should be charged first until it reaches 

full capacity, because the SC can guarantee high discharge efficiency and large 

currents for future driving loads. Other studies supported that the battery and SC 

should be charged simultaneously to avoid providing high current directly to the 
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battery [155, 156], while the SOC of SC should be maintained at an appropriate 

level so that there is sufficient capacity to absorb/release instant power [157, 158].  

These early utilizations of HESS power management were mostly rule-based that 

could not fully adapt to the rapid power variation of HESS [159]. The cooperation 

of APU and HESS was overlooked as well, which made it hard to decide how the 

APU should work for the best outcome [158]. More importantly, a comprehensive 

and great range of human expertise is needed when adopting control expert systems 

like fuzzy logic [67]. He et al. [67] constructed a fuzzy-based power management 

with a power adjustment module considering velocity as the main input. The 

authors pointed out that the voltage of the SC should be comparative low during 

high vehicle velocity, so as to make room for absorbing regenerative braking power. 

In [160], an all-sided ruled-based strategy is constructed for a multi-mode HESS 

platform. The strategy paid close attention to the voltage of the SC and battery so 

that a decent charge efficiency was achieved. However, the authors had to design 

and adjust nine complicated operation modes to make this happen.  

To improve the develop efficiency and feasibility, the first optimization method 

was introduced to the automotive field in the early 2000s using neural networks 

[45]. This method was used to acquire a higher energy efficiency of the EMS for 

further drive range. Later on, a weighted method and a no-preference method were 

applied to optimize the power distribution of HESS and balance its efficiency [76]. 

The simulation and bench test proved the real-time control ability and wide 

applicability of these two methods [76]. Nguyen et al. proposed a new real-time 

EMS based on Pontryagin’s minimum principle (PMP) method, and has compared 

it with strategies like filtering, λ-control and DP [97]. HIL experiments had also 
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been conducted and proven the PMP method has a higher ability to minimize the 

battery aging problem than traditional rule-based methods [97]. In [42], a power 

split control was installed on an HEV, and the power distribution to battery and SC 

was decided by a specific ratio. This ratio was calculated using meta-heuristics 

method and it aimed to extend the lifespan of the battery. It appears that these 

optimization methods are continuing to gain interest with academia and they are 

slowly becoming the mainstream strategy for HESS. However, according to [161], 

the control performance from [42] may get worse when the input predictive data 

change significantly, and the system efficiency will remain low during the 

adjustment delay. Therefore, Song et al. [159] improved the traditional MDP 

method with the consideration of simultaneous current injection to improve the 

identification accuracy of the HESS state signals. In addition, Choi et al. [161] 

developed a real-time optimization method considering transient load dynamics and 

SC voltage variation. Their method is designed to minimize both battery power 

magnitude and power loss. At the same time, the MDP algorithms mentioned above 

need on-board HIL verification and vehicle road experiment to test their ability to 

converge with real-world road uncertainty.  

2.7.3 Existed problems and future trends 

Some noticeable problems should be pointed out and solved from the studies above. 

For instance, the coordination control of APU and RBS is rarely brought up. When 

APU and RBS are both operating, this abrupt power from them should be handled 

and absorbed by the HESS. However, the combined current will be excessive, 

which may threaten the lifespan of the HESS. A proper strategy toward this problem 

should be discussed in the future. Secondly, tests on HESS thermal effects should 
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be included for HESS power management. Studies show the operating temperature 

of SC will also affect the efficiency as a large amount of heat can be generated 

under heavy cycles [162, 163]. The battery operating temperature will also affect 

the battery efficiency, and more seriously, the battery health [148]. As a result, a 

battery degradation model is required to study their correlation, and the SOH of a 

battery-only model needs to be compared with the battery-SC model during long 

term usage [164, 165]. 

For future study, because a functional HESS power management needs multiple 

input signals to operate, machine learning methods can be utilized for continuous 

improvement. For instance, reinforcement algorithms like DPG, DDPG and PPO 

have gained wide attention [166, 167], and the continuously signals from HESS can 

guarantee the data acquisition for training. 

2.8 A case analysis of a specific EREV 

A case analysis is conducted in this section to extend the overview depth of the 

EREV structure. Chevrolet Volt is selected in this case as it is one of the most 

representative EREVs that first came out to the market for over a decade. Its concept 

prototype, see Figure 2.11, was first unveiled in 2007. 

 

Figure 2.11 The concept model of the Chevrolet Volt [168]. 
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The first-generation Chevrolet Volt was installed with a 16-kWh battery pack, an 

APU with a 63kW engine and a 55kW ISG that guaranteed a maximum travel 

distance of 620 km [169-171]. The second generation has a slightly larger battery 

pack, a new coupling planetary gear and a more compact power coupling system, 

which extends the travel distance to 680 km [171]. The traction motor can produce 

111 kW of power and it can operate in a pure-electric mode [172].  

2.8.1 Validation and on-road testing  

Governments and agencies have put forward various kinds of on-road testing for 

the Chevrolet Volt to identify the potential and applicability of this EREV model. 

The testing subjects are the travel range and energy consumption. The maximum 

pure electric drive range of the Chevrolet Volt is close to 55 km [169], which 

concerns how the energy management strategy will bring the APU to use for longer 

travel distance. In 2013, Idaho National Laboratory had conducted a thorough 

driving and charging investigation for 923 test targets that travelled a total distance 

of 7.6 million km [170]. The average travel distance of the studied group is driven 

65.5 km per day and charged 1.46 times per day. Accordingly, if we assume the 

Chevrolet Volt leaves the carport with a fully charged battery, it has the potential 

to drive 73% of the average distance in EV mode.  

When the battery soc of the Chevrolet Volt drops below 0.17, the APU is turned on 

for extend-range mode [110]. For the default APU charging strategy, the Chevrolet 

Volt will acquire its power mainly from the APU, and the remaining energy will be 

used to charge the battery to a higher level [173]. For the second generation of the 

Chevrolet Volt, a new extended-range mode is available thanks to the new planetary 

system. The planetary connects the engine and the ISG to increase the powertrain 



Chapter 2 Literature review 

37 
 
 

power output. Model validation in [110] showed that the engine would only be cut 

off fuel when the vehicle speed exceeds 65 km, and the purpose was to avoid high 

energy-consuming for restarting the engine and raise it to a higher speed. The result 

also showed the engine only operated from 25 to 35 kW during the experiment.  

Operating temperature is a crucial aspect that affects the energy efficiency 

of the EREV [174, 175]. Some recent studies conducted road tests at low 

temperatures to study the impact on the Chevrolet Volt. In [174], the Chevrolet 

Volt was tested in Idaho state for the cold climate effect, and the engineers found 

out the APU was forced to operate in any circumstance when the ambient 

temperature was lower than -2.8 ºC, regarding the battery SOC condition. They also 

found out that the vehicle climate control system was turned on to raise the 

cabin temperature, which caused the fuel consumption to drop to 47 

mpg (5L/100km) when the average temperature was -26.1ºC. The study from 

Environment Canada [175] mentioned that the consumed energy used to heat the 

cabin in winter is significantly higher than colling down the cabin in summer. 

According to the CD on-road results, heating the cabin consumed 4.3 kW at 1.6 ºC, 

and it only consumed 1.4 kW at 36 ºC in another driving cycle. In addition, the 

pure-electric distance was studied with both the APU and the cabin conditioning 

turned off. The energy-distance data in seasons is shared in Figure 2.12 [175]. 

Results showed that the minimum distance at -5 ºC is 41 km, which was radically 

shorter than the maximum distance of 103 km at 27 ºC.  
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Figure 2.12 Average travel distance and Wh/km in different seasons. 

2.8.2 Energy management studies applied on Chevrolet Volt 

Gonder et al. [173] from the national renewable energy laboratory of the United 

States and General Motors designed a model to predict the fuel/electricity 

consumption rate of the Chevrolet Volt using the real-world driving profile. Micro 

trip characteristic data such as average speed, acceleration were calculated and used 

to estimate the energy use. The authors also carried out a green routing analysis to 

search for the most energy-efficient route from a large number of available route 

options. A fuel-optimal APU charging strategy for the Chevrolet Volt was tested 

against the default charging strategy. Its result has shown that 25% of the fuel 

consumption was reduced over 35 km [173]. In Ref. [176], a HIL test was 

conducted with the Chevrolet Volt model to verify the robustness of the controller. 

The result demonstrated the effectiveness of both the controller and the 

mathematical model. Liu et al [170] applied a reinforcement learning algorithm to 

the Chevrolet Volt model. The proposed Heuristic Planning method utilized the 

Dyna-H algorithm to search for the optimal fuel saving under the vehicle powertrain 
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framework. The result showed an overall advantage compared with Q learning and 

Dyna, and indicated a potential to apply in real-time simulation.  

2.9 Economic, Fuel Cost and performance trade-off 

2.9.1 Parts prices comparison 

To better understand performance/economic trade-off, a general price comparison 

of EREV components is included while satisfying the optimization goals. Basic 

parameters, characteristics and energy consumption of Li-ion battery, SC and fuel 

cell power unit are summarized and compared in Table 2.4. 

Li-ion battery is now the most suited energy storage for electric vehicles because 

of its energy and power sufficiency [177]. As shown in Figure 2.13, the market 

price of Li-ion battery was $1500/kWh in 2007, over $1000/kWh in 2010 and went 

down quickly to $176/kWh by 2018 [178, 179]. Pouch cell battery pack is widely 

employed for commercial use by car companies from the United States, Europe, 

China and Japan. In addition, 18650 and 21700 are the two iconic types of 

cylindrical battery cells used by Tesla, Inc, and they are usually installed into 

battery packs in series and in parallel. The market price of a single 18650 battery 

cell is between 5-8 US dollars.  

Table 2.4 General price and performance comparison of energy sources. 
Energy 
Component 

Power density 
(W/kg) 

Specific Energy 
(Wh/kg) 

Lifespan 
(cycles) 

Efficiency 
(%) 

Market Price 
(US $/kW) 

Market Price  
(US $/kWh) Literatures 

Li-ion  1000-3000 180-300 2000  85-95 100-150 176 [54, 143, 179] 
SC  10,000-14,000 4.1-6.0 1M  >95  33.5-44.6 6000 [57, 60, 140, 180] 
PEMFC 1000-1600  - 2500-5000hrs  45-66 40-53 - [64, 108, 109, 181, 182] 
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Figure 2.13 The average market price growth of Li-ion battery cells [179]. 

The SC characteristic is different from that of a battery. It has an extreme power 

density of 10-14 kW/kg [140, 180], but its low energy storage ability and its 

comparatively high price make it infeasible as the sole source of energy storage. 

However, because of the fleeting raw material market value, the past cost analyses 

for various HESS constructions are slowly outdated [135, 137, 178, 183]. As shown 

in Table 2.5, the lowest per-kilowatt price in 2018 is $33.5/kW, which is much 

cheaper than its price in the early twenty-first century. Therefore, although it is still 

expensive compared to the Li-ion batteries, it is now more affordable to combine a 

small size SC with the battery pack to protect battery SOH [57, 184].  

Table 2.5 TCO comparison of market competitors (US $). 

 

2.9.2  Comparison of vehicle total cost of ownership  

In order to evaluate the general vehicle expense, a concept called total cost of 

ownership (TCO) is presented in [196]. TCO includes the retail vehicle price and 

Vehicle Type Retail Price Maintenance cost Fuel cost  TCO Literature 
ICEV(Audi A4) 36,000 12,287.6 13,719.9 62007.5 [186, 187, 189, 195] 
BEV (Tesla Model 3) 46,000 4,038.9 5,523.8 55,562.7 [130] [76, 190] 
EREV (BMW i3) 48,300 3,936.3 9,387.9 61,624.2 [191, 192] 
FCEV(Toyota Mirai) 58,365 6,988.9 32,793.1 98,147 [5, 109, 193, 194] 
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operating cost. Conventional vehicle, BEV, EREV and fuel cell models are selected 

for TCO comparison. Four specific vehicle models are chosen from the U.S. market, 

and they are presupposed with a total travel distance of 250,000 km [197, 198]. 

Their investment, maintenance, and fuel (electricity) costs are listed in Table. 3.4.  

Gasoline, diesel and hydrogen are considered the primary fuels for EREV. 

According to the market, the average U.S. retail price of gasoline in 2019 is 

approximately 2.76 USD per gallon (around 0.966 USD/kg) [187, 188], whilst the 

price of hydrogen is 13.99 dollars per kg [199]. In addition, the lifespan of a fuel 

cell (2500-5000hrs) is much shorter than that of an engine [64, 181], showing its 

structure and technical design need to be improved for more extended commercial 

use. 

From Table. 3.4, we can observe that Tesla Model 3 has the lowest TCO thanks to 

its low maintenance cost and pure electric consumption. It is also worth mentioning 

that the TCO of the BMW i3 is lower than the Audi A4, although its retail price is 

34% higher on the contrary. In addition, the TCO for Toyota Mirai is significantly 

above average because of the high hydrogen price. The Hydrogen price is expected 

to go down in the near future, while Toyota in the United States offers 

complimentary hydrogen for three years. The EREV fuel cost can be even lower if 

the car itself is frequently used for short-distance drives and is charged properly 

during night time. In conclusion, EREV is the compromise option between ICEV 

and BEV, and it is perfectly suitable for all ranges of driving. The comparatively 

low maintenance cost and higher drive range give it a high potential to compete for 

a bigger market share.  
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2.10 Chapter summary 

This chapter has provided a brief introduction of EREV structure, and summarized 

various APU charging strategies. Furthermore, the power management for HESS is 

also introduced as a relatively new area of study which can work in perfect unison 

with the APU charging control strategy. After that, a case analysis of the Chevrolet 

Volt is proposed to study its on-road performance and energy management 

development. Last, a characteristics and costs analysis of energy components and a 

comparison of vehicle general TCO costs are provided to evoke readers.  
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Chapter 3 Vehicle modelling design 

3.1 Introduction 

To test the feasibility and potential of the extended range structure, a detailed mid-

size logistics van (ERLV) model is constructed in this chapter. The detailed 

mathematical model covers all powertrain components and strategy design in 

MATLAB/Simulink. The vehicle simulation analysis and strategy tests in the 

following chapters are conducted using this RELV model. The energy loss of the 

powertrain and battery aging prediction are also considered to achieve higher 

energy conversion accuracy. The requirements for the vehicle model are 

summarized as follows:  

a. High energy conversion efficiency between the main components. 

b. Sufficient constant-torque value and range from the traction motor for urban 

cycles with a favourable dynamic response. 

c. Cargo/Curb weight higher than 0.5. 

d. Pure electric drive ability over 30 km with maximum load. 

e. Practicable on its emission improvement. 

f. Ability to perform regenerative braking. 

g. Compact sizing of the components. 

h. Cost-effective. 

3.2 Vehicle parameter 

The powertrain of an extended range electric van mainly consists of an APU, an 

energy storage system (ESS), a drive motor and converters. The engine rotational 

speed of an EREV is no longer coupled with the vehicle velocity, because in most 
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cases, it only connects to an integrated starter generator (ISG) instead of the wheels. 

This advantage will have positive impacts on fuel economy and emission 

improvement [89]. The simplified ERLV topology is shown in Figure 3.1 [33]. 

 
Figure 3.1 ERLV architecture. 

Table 3.1 Parameters of the extended range logistics van. 

 

 

 

 

 

 

 

 

There are two fundamental operation modes for the ERLV model: charge depleting 

(CD) and charge sustaining (CS). In CD mode, the ERLV will operate as a pure EV. 

The ESS will provide all the necessary power most of the time when the APU is 

turned off. However, in some aggressive driving situations, the APU may turn on 

to provide extra power to the motor. In addition, as the battery SOC keeps declining 

Symbol Van parameters (Unit) Value 
mk Vehicle mass (kg) 1800 
mc Gross weight (kg) 3000 
R Tire radius (m) 0.31 
Cd Aerodynamic drag coefficient 0. 45 
Cr Rolling resistance coefficient 0.02 
A Vehicle frontal area (m2) 3.32 
Ppeak_Mot Peak power of drive motor (kW) 125 
Peng Peak engine power (kW) 72 
Cbat Battery pack capacity (kWh) 30 
Vbat Battery pack terminal voltage (V) 433 
Cft Fuel tank capacity (L) 40 
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to a certain level in CD mode, the APU will become operational. In this stage (CS), 

the APU keeps providing power to the wheel and charging the ESS, until the battery 

SOC climb up to a preset value.  

3.3 Driving cycle 

In consideration of the study object (logistics van), two driving cycles are employed 

in this study: CLTC-C and WLTC (class 3b). CLTC-C is an up-to-date China 

driving cycle for light-duty commercial vehicles. The characteristics of the electric 

vehicle are considered during its construction stage, which makes its speed and 

acceleration data more suitable and reliable than other comprehensive driving 

cycles. On the other hand, the WLTC is known as a worldwide driving cycle that 

aims to replace the NEDC, and its practicability covers all types of electric vehicles. 

The logistics van in this study is classified as a class 3b vehicle. In Figure 3.2 (a) 

and (b), both cycles are plotted with their speed data. The top speed of CLTC is 92 

km/h and 40.8% of the speed data are in the low-medium speed range, while the 

top speed of WLTC is 97.4 km/h in its high phase.  
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Figure 3.2 Speed profiles of (a) CLTC-C and (b) WLTC (class 3b) 

The patterns of some representative driving cycles are listed and compared in Table 

3.2 with the total distance, average speed, maximum speed and peak acceleration 

calculated. The acceleration pattern of NEDC is illogical, while its high-speed 

phase is not suitable for most logistics vans. Judging by the speed patterns from the 

table, WLTC is more aggressive than CLTC hence it has a higher performance 

requirement for vehicle testing.  

Table 3.2 Patterns of the representative driving cycles 
Driving cycle Distance (km) Avr. Speed 

(km/h) 
Max. Speed 
(km/h) 

Peak Acc 
(m/s2) 

CLTC-C 16.43 32.87 92 1.36 
NEDC 11.01 33.6 120 1.04 
FTP75 17.77 34.1 91 1.47 
WLTC (3b) 15.01 37 97.4 1.75 
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3.4 Vehicle dynamics 

The primary resistances of a running vehicle are air resistance, grade resistance and 

rolling resistance of the wheel. Therefore, the mathematical model of vehicle 

powertrain dynamics can be expressed by:  

𝑇𝑣 = (𝐹𝑤 − 𝐹𝑎𝑒𝑟𝑜 − 𝐹𝑔 − 𝐹𝑟𝑙)𝑅 (3.1) 

where Tv represents the drive torque for the vehicle to accelerate, R respresents the 

wheel radius; 𝐹𝑤, 𝐹𝑎𝑒𝑟𝑜 , 𝐹𝑔, 𝐹𝑟𝑙  are on-wheel traction force, aerodynamic drag 

resistance, gradient resistance and wheel rolling resistance, respectively.  

The equations to calculate the vehicle resistances are: 

𝐹𝑎𝑒𝑟𝑜 =
1

2
𝜌𝐶𝑑𝐴𝑣

2 (3.2) 

𝐹𝑔 = 𝑚𝑐 g sin 𝜃 (3.3) 

𝐹𝑟𝑙 = 𝑚𝑐𝑔𝐶𝑟  cos 𝜃 (3.4) 

where mc is the vehicle combined mass, and 𝜌, 𝐶𝑑 , A, g, 𝜃, 𝐶𝑟  are air density, 

aerodynamic drag coefficient, vehicle frontal area, gravitational acceleration, 

incline angle and rolling resistance coefficient, respectively.  

3.5 Auxiliary power unit 

In the ERLV structure, the engine operation can be further optimized as it is 

decoupled from the wheel. In Figure 3.3, a 1.5 L turbocharged diesel engine (75 

kW) is employed, and its lowest fuel rate is lower than 212g/kWh. The control 

strategy uses the DP algorithm to search for the best steps to maintain a high 

conversion efficiency based on this engine fuel consumption characteristic map. 

The power relation between the APU and the engine can be described as: 

𝑃𝐴𝑃𝑈 = 𝑃𝑒𝑛𝑔 ∗ 𝜂𝐼𝑆𝐺(𝑛𝐼𝑆𝐺 , 𝑇𝐼𝑆𝐺) (3.5) 
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where 𝜂𝐼𝑆𝐺  is the ISG efficiency and 𝑛𝐼𝑆𝐺 , 𝑇𝐼𝑆𝐺  represent the transient rotational 

speed and the load torque of the ISG. 

 
Figure 3.3 The engine efficiency map. 

3.6 Traction motor  

A permanent magnet synchronous motor (PMSM) is known for its compactness 

and high torque density, making it an excellent option for electric vehicles. Unlike 

induction motors, the permanent magnet inside the PMSM rotor generates a steady 

magnetic field by itself. By doing so, the PMSM has lower rotor inertia, a faster 

dynamic response, less generated heat, and most importantly, it provides higher 

torque density. As shown in Figure 3.4, motor UQM Powerphase 125 is selected 

for the Simulink model construction using its experiment data. The rated 

configuration is shared in Table 3.3. 
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Figure 3.4 Traction motor and its controller [200]. 

Table 3.3 Configuration of the PMSM motor. 

 

The power consumption can be calculated based on the equations as follows: 

𝑃𝑚𝑜𝑡 =
𝑇𝑚𝑜𝑡𝑛𝑚𝑜𝑡
9550

/𝜂𝑚𝑜𝑡(𝑛𝑚𝑜𝑡 , 𝑇𝑚𝑜𝑡) (3.6) 

𝑃𝑚𝑜𝑡 + 𝑃𝑎𝑐𝑐 = 𝑃𝐴𝑃𝑈 ± 𝑃𝑏𝑎𝑡 (3.7) 

where 𝑇𝑚𝑜𝑡 , 𝑛𝑚𝑜𝑡 , 𝜂𝑚𝑜𝑡  represent the torque, rotate speed and efficiency of the 

motor, while 𝑃𝑚𝑜𝑡  𝑃𝑎𝑐𝑐 , 𝑃𝑏𝑎𝑡 , are the power of motor, accessories, battery, 

respectively. The drive motor efficiency map is plotted in Figure 3.5. It can be 

observed that APU can be used to charge the battery and supply required power at 

the same time. Moreover, it can work along with the battery to provide the peak 

power output to the vehicle.  

Motor parameters Value Unit 
Highest efficiency 94 % 
Peak torque of drive motor 300 Nm 
Peak power of drive motor  125 kW 
Rotational speed limit 10000 rpm 
Operating voltage range 300-425 VDC 
Power density 3.05 kW/kg 
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Figure 3.5 Efficiency map of the drive motor. 

3.7 Battery equivalent model 

The equivalent circuit model (ECM) for a lithium-ion battery is constructed with 

the consideration of battery loss. The battery ECM can be used to estimate battery 

operating conditions, improve the modelling accuracy and estimate the battery SOC 

[14, 201]. The battery ECM is shown in Figure 3.6. The battery model is constructed 

using  Equation 3.8 and 3.9 to estimate the battery SOC: 

                                                   3.8   

                                                                                  3.9  

where Uoc stands for the open-circuit voltage, Qbat is the total battery capacity, Rbat, 

Pbat and Ibat are the internal resistance, transient power output and the current of the 

battery, respectively.  
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The battery cell temperature is assumed to maintain at 30℃ during the simulation. 

The open-circuit voltage and the internal resistance variation under different SOC 

are demonstrated based on experimental data in Figure 3.7.  

 
Figure 3.6 Simplified battery ECM diagram. 

 

  
Figure 3.7 The electrical characteristics of a single battery cell. 
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3.8 Chapter summary 

To simulate the energy consumption and performance of the platform, the 

mathematical model has been constructed and introduced in this chapter. The 

vehicle dynamics model calculates the driving resistance and internal force from 

the driver’s command, and the power requirement goes to the main components like 

battery, APU and traction motor. The battery, motor and engine conversion 

efficiency are all taken into consideration. 
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Chapter 4 Investigation of energy potential and 

TCO for an ERLV  

4.1 Introduction  

During the last two decades, the logistics business has greatly expanded with the 

impact of the global economy and e-commerce growth. The concept of the  

sustainable business model has become popular, and future logistics transportation 

is advised to reduce carbon emissions by increasing the usage of electric logistics 

vehicles [202]. 

The total social logistics costs in China reached CNY 11.1 trillion in 2016, making 

China the largest logistics market in the world [203, 204]. In contrast to this, the 

increasing demand for logistics transportation leads to the massive discharge of air 

pollutants [205]. Some cities in Northern China suffer from the harmful haze with 

the risk of causing lung cancer [206]. Electric vehicles (EVs) can change the way 

how logistics businesses work. For instance, the ERLV and the BELV have on-

board battery packs that can acquire electricity from the power grid and support 

pure-electric drive in the urban area. They are perfectly suitable for logistics 

dispatching from distribution centres to depots, and especially, offering a solution 

to complete the ‘last mile’ problem to customers. Thanks to the pure-electric driving 

range and improved powertrains, electric vehicles can significantly reduce 

emissions in urban areas, and even save courier companies a fortune on vehicle fuel 

and electricity consumption [46, 61]. 

The popularization of battery electric vehicles is mainly restricted by battery storage 

capacity, availability of charging infrastructure, battery charging speed, battery 
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health, and the BMS design rationality [2, 39]. A battery electric vehicle has to 

install a considerably larger battery than any form of the hybrid vehicle to provide 

a comparable driving range [60]. Using a large size battery may significantly 

increase the acquisition cost for urban logistics, which means the BELV is forced 

to charge frequently and reduce the overall transport efficiency. Therefore, the 

ERLV is proposed as the transition product to BELV with an effective combination 

of combustion engine and electric motor. It is perfect for logistics use: a logistics 

van requires higher drive power to carry cargo and lower running cost, and its 

chassis layout has sufficient space for the ERLV powertrain. In addition, the ERLV 

can run in pure electric mode in a decent travel distance, which guarantees 

minimized cost for short-range urban delivery. 

The extended range system has been applied to many types of vehicles. The results 

from various studies proved that a small size APU could supply sufficient power 

for vehicle operation and reduce driver range anxiety [15, 207, 208]. Van 

manufacturers like Ford and LEVC announced their ERLVs to gain extra driving 

range with the help of a range extender [29, 209]. Studies by scholars proved that a 

proper APU control strategy is essential to optimize fuel consumption [36, 89, 210]. 

In [210], the authors compared the consumption of pure EV mode and range extend 

mode, and introduced an APU on/off control strategy that focused on the 

minimization of the purchase cost and fuel cost. In [89], trajectory optimization was 

adopted for a multi-point APU control strategy considering the engine emission 

issues. In the interest of simulation accuracy, dynamic programming (DP) is widely 

recognized as a promising algorithm to find the optimal fuel consumption of APU. 

In [83], the DP algorithm is constructed as a benchmark to compare a Neural 
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network control strategy, considering the vehicle remaining SOC and the distance 

to charging stations. However, its training driving cycle is NEDC which is no longer 

suitable for electric vehicles. An adaptive energy management strategy using 

driving pattern recognition is proposed in [71], using the results from DP as the 

reference. DP has the ability to search for the optimal control strategy, but its 

performance may differ when facing diverse traffic patterns [211]. 

Therefore, traffic pattern directly influences energy consumption and how the 

strategy operates, where scholars generated several driving cycles and classified 

them to train the strategy parameters [128, 207]. Recent studies prove that 

numerous optimization algorithms relying on the forgone driving cycle are 

dependable and effective [77, 83]. New and suitable driving cycles should be 

employed for the accuracy of the energy management study. 

This chapter aims to present a thorough energy consumption and Total cost of 

ownership (TCO) analysis for an extended range electric van to show its energy 

potential. Both mathematical models of the ERLV and BELV are constructed and 

compared, and they adopt the same logistics van body configuration for a more 

accurate analysis. Their long-term battery degradation comparison is studied for the 

first time. Dynamic programming is adopted in the energy management strategy for 

energy consumption optimization, and the result reveals the optimal energy 

consumption for the extended range system on the logistics vehicle. Comparative 

results demonstrate that the ERLV has a relatively long drive distance, slower 

battery aging trend and cheaper TCO (6.6%) when compared to the BELV.  
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4.2 Optimization logic implementation 

The global optimal control strategy is generally obtained by combining 

optimization methods and optimal control theory [6, 32]. As the key algorithm, the 

DP algorithm is a mathematical solution for system optimization. It breaks the 

complex system down into finite sub-systems recursively and searches for the 

optimal solutions of each sub-system. The merit of DP is to save computational 

load by storing the results of the sub-systems as arrays or in tables. In this case, the 

processor can simply read the store result to avoid recalculating when coming 

across the same pattern. The relationship between each connected sub-system can 

be described using the Bellman equation, and the calculated value can be traced 

back through the optimal path.  

The state variable of the path is correlated with known conditions such as the control 

variable u(t) and previous state variable x(t): 

𝑥(𝑡) = 𝑎(𝑥(𝑡), 𝑢(𝑡), 𝑡) (4.1) 

while the theory of DP is to minimize the cost function J given with the trajectory 

τ*:  

𝑚𝑖𝑛 𝐽 = ∑ 𝑗(𝑥(𝜏), 𝑢(𝜏), 𝜏)

ℎ−1

𝜏=𝑡

+ 𝜏ℎ(𝑥(𝜏)) (4.2) 

where the actions in each state are defined that 𝑢(𝜏)={u0, . . . , uh−1}.  

4.3 Global optimization algorithm 

In recent years, the DP algorithm based on Bellman theory has been widely applied 

to evaluate the theoretical optimal performance of the hybrid electric system. In this 
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chapter, it is used to calculate the fuel economy potential of the proposed ERLV 

platform under the given driving cycles. 

In this test, the initial input for the ERLV platform is the speed-time driving cycle. 

The platform will conduct the accelerating-cruising-braking test to simulate the 

real-world operation. The energy saving ability of the ERLV can then be tested with 

the applied algorithm. According to the basic principle of DP, the giving driving 

cycle is first divided into N states, and each state represents a sub-system of the DP 

process. It contains an array of all selectable gridding SOC nodes. Then, the fuel 

consumption can be gathered during the state transition, and the optimal energy 

calculation can be performed through multi-stage decision-making. This global 

optimization process can be classified as the outer loop and inner loop. As seen in 

Figure 4.1, the outer loop is designed to search for searching optimal battery SOC 

trajectory of the ERLV. As the power demand from the driving cycle is already 

calculated through vehicle dynamics calculation, the SOC trajectory reflects a 

positive correlation with the APU power output. In the meantime, the key to decide 

the optimal SOC trajectory lies in the inner loop, where the APU is being optimized 

for fuel consumption improvement. The optimal engine point with the lowest fuel 

rate can be extracted from its constant power curve in the engine BSFC map, and 

later be stored in the DP database for future use. The double-loop DP framework 

improves the efficiency of the conventional DP method by constraining the search 

range of the battery SOC, and simplifies the two search processes into one.  
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Figure 4.1 Double-loop DP flow diagram for the ERLV model. 

The forward optimization process for the optimal SOC path can be applied after the 

completion of the reverse calculation. The objective function is as follows: 

𝑚𝑖𝑛 𝐽 = ∑ 𝑓𝑢𝑒𝑙(𝑥(𝑡), 𝑢(𝑡))

𝑡=𝑡𝑁

𝑡=0

+ 𝐿𝑏 (4.3) 

where J is the cost function, 𝑓𝑢𝑒𝑙(𝑥(𝑡), 𝑢(𝑡)) is the fuel consumption of each step 

calculated from the state variable 𝑥(𝑡) and control variable 𝑢(𝑡). 

With the aim of evaluating the APU fuel consumption of the ERLV, the initial and 

final value of the battery SOC is defined as 80% to ensure all power consumed 

during the cycle is converted from fuel. Penalty term Lb is added in the objective 

function to restrict the difference between initial and final SOC.  

𝐿𝑏 = 𝛽(𝑆𝑂𝐶𝑡𝑁 − 𝑆𝑂𝐶𝑡0)
2 (4.4) 
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where 𝛽 is the penalty coefficient, 𝑆𝑂𝐶𝑡0  is the initial SOC and 𝑆𝑂𝐶𝑡𝑁 is the final 

SOC. This concept is also illustrated using Figure 4.2, showing the logic-tree 

searching pattern of DP. For SOC(t) (except the final state), they are followed by 

plenty of possible next states SOCn(t+1) that meet the battery discharge restriction. 

 
Figure 4.2 Outer layer of the DP process (possible SOC nodes search). 

The time scale of the driving cycle is set to be 0.2 s for a better searching 

performance. The discharge rate of the battery is restricted below 6C for its state of 

health (SOH) protection. Therefore, the battery SOC will not fluctuate drastically 

during the optimization process, which means its value is constrained to only 

transfer to its adjacent values. Finally, the optimized fuel cost of the engine can be 

determined after the SOC variation pattern of a specific time step is found [34]. The 

accumulated fuel consumption results and the power distribution pattern are further 

used for energy management comparison and TCO analysis. 

4.4 Battery degradation prediction 

The battery state of health is a vital factor in evaluating the vehicle reliability [212]. 

The battery degradation models for the ERLV and BELV are constructed to test 

whether the battery needs to be replaced through the vehicle estimated lifespan. The 
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battery aging test is performed on the WLTC-3b driving cycle until the total mileage 

reaches 250,000 km [197, 198]. Generally, the battery temperature and the 

discharge rate have great influences on battery health [213]. Therefore, the battery 

discharge rate is included as one of the input variables in the model. In order to 

simulate the dynamic battery degradation with accuracy, the battery loss Qloss can 

be estimated with a calibrated empirical formula-based Arrhenius equation 

according to reference [214]. It uses the Ah throughput and battery C-rate as the 

key variates: 

 𝑄𝑙𝑜𝑠𝑠 = 𝐴 ∙ 𝑒
−(
𝐸𝑎𝑐𝑡−𝐵∙𝐶𝑟𝑎𝑡𝑒

𝑅∙𝑇𝐵𝑎𝑡
)
 (𝐴ℎ)

𝑍 (4.5) 

where Qloss is the capacity loss of the lithium-ion battery, A is the pre-exponential 

factor, Crate is the battery discharge rate, R is the Molar gas constant (8.314J/mol/K-

1), Ah is the Ah-throughput and Z is the time factor. The battery absolute 

temperature TBat is 308.2 K. Eact and B represent the activation energy and 

correction factor of the discharge rate, respectively. The single-step Ah-throughput 

can be defined as: 

   ∆ 𝐴ℎ =
1

3600
∫ |𝐼𝐵𝑎𝑡|
𝑡+1

𝑡

𝑑𝑡 (4.6) 

The battery of BELV in the aging test is discharged from 100% to 0% in WLTC 

driving cycle, and it is then assumed to be recharged to full capacity from the power 

grid. On the other hand, the ERLV works in a CD-CS pattern that runs 47 km in 

pure-electric mode, and the rest will run in sustain mode. The result from the DP 

shows the battery in the CS mode has 55% less Ah throughput than the CD mode, 

which indicates the APU operation in CD mode can slow down the battery 

degradation. The battery capacity Qloss of the BELV and ERLV for a single WLTC 
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cycle is shown in Figure 4.3. The figure shows that the battery degradation in the 

CD mode is faster in ERLV than in BELV due to the smaller battery pack in ERLV. 

However, as the CS mode supports most of the driving range, it has a mitigating 

degradation curve which means a longer battery lifespan can be achieved. From the 

final mileage aging test, the battery SOH of the BELV went down with the 

accumulation of Qloss. It gradually dropped below 0.8 when it reached 74% of the 

total distance (185,200 km), revealing a battery replacement is recommended [215]. 

On the contrary, the battery of the ERLV remains relatively steady and decreases 

to 0.8 with a total distance of 243,400 km, which is sufficiently close to the target 

mileage. The London EV Company Ltd. provided a battery warranty on its ERLV 

model VN5 (31 kWh battery) for up to 240,000 km [209], which is similar to this 

ERLV degradation result. It is worth mentioning that the impact of the ambient 

temperature is not considered in this battery aging test, which may negatively affect 

the ERLV battery lifespan due to the cold start at a low temperature. However, this 

will not happen to ERLV because the APU can be turned on to warm up its battery 

pack and vehicle cabin [174]. With the battery aging result, the TCO of the two 

models can be estimated. 

 
Figure 4.3  The battery capacity loss accumulation of (a) BELV and (b) ERLV in 

WLTC-3B 
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4.5 Simulation results 

To analyse the APU and ESS power distribution, the power demands of the studied 

model should be calculated in the first place. The motor power demands of the van 

on CLTC-C and WLTC (class 3b) are shown in Figure 4.4 (a) and (b). As seen in 

the figures, WLTC has a higher power demand than CLTC, and this may lead to 

higher energy consumption. 

 

   



Chapter 4 Investigation of energy potential and TCO for an ERLV 

63 
 
 

Figure 4.4 Power demands on (a) CLTC and (b)WLTC 

 

 

4.5.1 Consumption comparison 

After obtaining the primary power demand data, the engine of the APU is designed 

to operate within its optimal range for maximizing fuel conversion efficiency. To 

avoid frequent startup, the engine will only be turned on when the APU power 

demand exceeds 10 kW. After that, the engine condition is determined by its power 

requirement, and the DP algorithm makes sure it is running in the best fuel 

efficiency area. The engine optimization results are shown in Figure 4.5, where the 

red asterisks represent the actual engine operation points. It can be observed that 

most of the asterisks are located in low fuel consumption areas, verifying the 

rationality of the DP algorithm. In addition, there is no asterisk above the highest 

equivalent power line, proving the 75 kW engine can satisfy the power demand of 

the studied van. 
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Figure 4.5 Engine operation points of CLTC (top) and WLTC 

The power variation of the engine and battery are shown in Figure 4.6. It can be 

observed that the engine supplies power to the drive motor and battery. The 

regenerative braking system also takes part and handles 25% of the brake 

requirement to recharge the battery [216]. In some cases, when there is a high 

required power from the vehicle, the battery may supply power along with the 

engine as compensation.  
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Figure 4.6 Results of engine and battery power from DP optimization 

The SOC variations and accumulated fuel consumption for the two driving cycles 

are given in Figure 4.7 (a) and (b). For a more accurate assessment of the engine 

performance, both the starting and the ending values of the battery SOC are set as 

0.8. The SOC variation range in CLTC is around 77.5% to 80%, while the range in 

WLTC is 75.5% to 80%. As for the fuel consumption, the WLTC has a more 

fluctuating line than CLTC, reaching a diesel consumption of 0.64 litres with 15 

km travelled.  
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Figure 4.7 Variation of the battery SOC and fuel consumption. 

A BELV mathematical model with a 60 kWh Li-ion battery is constructed as a 

comparison to evaluate the economic efficiency and operation cost of the ERLV 

model. The simulation results of both ERLV and BELV are listed in Table 4.1. The 

results share an expected energy consumption and driving range for these two types 

of vehicles with cargo fully loaded. The diesel consumption per 100 km of ERLV 

is only 3.81 and 4.13 litres more than that of the BELV for CLTC and WLTC, 
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respectively, after conversion to electrical equivalent consumption was completed. 

Independent data of the driving range are collected from production vehicles with 

similar specifications to validate the simulation result in this study. For the BELV, 

the Mercedes eVito has a 41 kWh battery that claims a 150 km driving range in 

WLTC (gross weight, 3,200 kg) [217]. For ERLV, the new Ford Transit Custom is 

estimated to have over 500 km driving range in NEDC [29], while the LEVC VN5 

claims a 490 km driving range with a 31 kWh battery and a 1.5 L petrol engine in 

WLTC [209]. 

 Table 4.1 Diesel consumption and driving rage comparison 

* 37.6 kWh of electrical energy is equivalent to the energy of 1 gallon (3.785 litres) of Diesel [36]. 
 

4.5.2 The total cost of ownership analysis 

TCO analysis is essential to further demonstrate the practical potential of ERLV 

and BELV in the logistics market [30, 196]. TCO includes the vehicle purchase 

costs and operating costs, which can be used to evaluate the economic benefits of 

the new technology to the potential user in the decision-making process. In this case, 

it helps to compare the fuel economy of different logistics vans for the companies 

that make a profit from providing carriage service [218, 219]. The vehicle lifetime 

consumptions of the two targeting vehicles were calculated using the TCO equation: 

𝐶𝑇𝐶𝑂 = 𝐶𝑝 +∑ (𝐶𝑚 + 𝐶𝑓 + 𝐶𝑟)
𝐷𝑖𝑠

(4.7) 

where 𝐶𝑇𝐶𝑂 is the overall TCO, 𝐶𝑝 is the purchase cost of the vehicle, 𝐶𝑚, 𝐶𝑓, 𝐶𝑟 

are the maintenance cost, fuel cost and the part replacement cost, respectively. 

Type Driving Cycle Diesel Consumption 
(Equivalent) 

Consumption 
L/100km 

Drive Range 
(km) 

ERLV CLTC-C 1.26L 7.68 572.9 
WLTC-3b 1.28L 8.46 519.3 

BELV CLTC-C 6.31kWh (0.63L) 3.87 156.3 
WLTC-3b 6.46kWh (0.65L) 4.33 139.4 
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However, due to the Covid-19 pandemic and Russia-Saudi Arabia Oil Price War in 

March 2020, the fuel price in 2020 fluctuated widely that the diesel price varied 

from $3.07 per gallon to $2.37 per gallon lowest [188]. A sensitivity analysis of the 

diesel price is carried out for TCO calculation. On the contrary, the commercial 

electricity price remained relatively steady from $0.1023/kWh to $0.1107/kWh, 

and thus, an average price of $0.1065/kWh is selected [220]. The specific costs of 

TCO of the three van models are listed in Table 4.2 [178, 196, 221]. 

The TCO growth results of the three van models with the highest/lowest diesel price 

are plotted in Figure 4.8 (a)-(b). The purchase cost of the ERLV and BELV models 

is higher than the internal combustion logistics van (ICLV) on account of the 

additional expenditure for battery and electromagnetic devices [222, 223]. The 

operating cost consists of maintenance cost and overall fuel/electricity cost. For the 

maintenance cost, all models are expected to have their wheels and brake pads 

changed every 50,000 km [224, 225], while the engine maintenance is performed 

every 10,000/15,000 km for ICLV/ERLV [226, 227]. As for the fuel/electricity cost, 

two TCO growth trends are generated for the ERLV and ICLV from the fuel price 

sensitivity analysis. The highest estimated fuel cost of ICLV may increase by 22.8% 

of the lowest at $23,481; however, the ERLV only has a minor increment of the 

fuel/electricity cost toward the maximum of $16,583 thanks to its high APU fuel 

efficiency and the friendly grid electricity price. On the other side, the BELV has 

the lowest maintenance and electricity cost among all three models, but its battery 

is expected to be recharged over 1700 times in 250,000 km. Considering the battery 

aging simulation result and the real-world impact, a battery replacement for EREV 

is necessary [228]. The battery replacement will cost approximately $10,560 
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according to the average Li-ion battery market price ($176/kWh) in 2019 [54, 143, 

179], which means the BELV will have the highest TCO when the fuel price is 

around $2.37 per gallon.  

 
Figure 4.8 TCO growth comparisons with the highest (a) and lowest (b) diesel 

prices. 

Table 4.2 Predicted data of TCO and energy consumption(US $). 

 

The fuel price fluctuation shows two interesting outcomes of the TCO between 

ICLV, ERLV and BELV. As mentioned above, the BELV in Figure 4.8 (b) has the 

highest TCO due to the high battery price. The other outcome in Figure 4.8 (a) with 

the highest diesel price identifies the ICLV as the most costly model for the logistics 

Vehicle Type Purchase cost  Maintenance 
Battery 
replacement 

Fuel&Elec cost TCO 

ICLV 43,000 11,500 - 23,481~30,416 77,981~84,916 
BELV  54,000 6,500 10,560 11,458 82,518 
ERLV 51,000 9,500 0 13,064~16,583 73,564~77,083 
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market. The overall fuel cost of ICLV accounts for 35.8% of its TCO and causes a 

huge emission burden on the urban environment. In comparison, the energy costs 

of the BELV and ERLV are only 13.9% and 21.5%,  respectively.  

Considering the current logistics transportation requirement, the most suitable 

vehicle from above should at least satisfy both the expend and driving range 

requirement [216, 221]. The ICLV remains an acceptable option with its mature 

technology and low selling price. In terms of the ERLV and ICLV, there may be 

potential government policies and marketing promotions to boost their 

popularization. The ERLV has the lowest TCO and longest travel distance that 

makes it perfect for commercial use covering all travel distances. With an 

appropriate EMS and sizing of the APU and battery, the ERLV can inherit the 

advantages of the BEV and ICV with a pure-electric drive function and refuelling 

convenience. The BELV appeals to have the lowest maintenance and energy cost, 

but its battery capacity degradation will have a significant impact on the travel 

distance per charge in the long term [67, 211], not to mention the high battery 

replacement cost under heavy cycles. The battery price is expected to go down in 

the future, and new battery development may make BELV more competitive in the 

logistics market [219]. 

4.6 Chapter summary 

This chapter has presented a thorough energy consumption and TCO analysis for 

an extended range electric van for short and long-term logistics tasks. The global 

optimization considers the joint power management of the APU and battery by 

locating the optimal SOC nodes in each state. The corresponding best engine fuel 

point under the designated battery SOC variation stage is collected, and the SOC 



Chapter 4 Investigation of energy potential and TCO for an ERLV 

71 
 
 

variation path with the lowest fuel cost through the whole driving cycle is picked 

as the optimal global solution. The TCO analysis comparing the three types of 

logistics vans is conducted as an indication for the commercial customer. Because 

the cost factor - fuel price is fluctuant and unpredictable, a sensitivity analysis is 

conducted to improve prediction accuracy.  

The simulation results prove that the extended range system has the practical and 

economical advantage to apply on logistics vehicles. The successful deployment of 

the global optimization strategy keeps the engine operating in the high-efficiency 

range, with the engine conversion rate lower than 220g/kWh in 85% of the 

operating time. The optimized average fuel consumption of CLTC and WLTC 

reach 7.68 litres and 8.46 litres every 100 km, respectively. The following TCO 

study demonstrates that ERLV can provide a much longer driving range than BEV 

without spending too much money from the long-term perspective. The TCO of 

ERLV (WLTC cycle) is estimated from $73,564 to $77,083, which is the lowest 

among all three models.  
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Chapter 5 Muti-target energy management 

strategy of the ERLV  

5.1 Introduction 

Modern strategies such as model predictive control (MPC) and dynamic 

programming (DP) have limited practical potential because they are subject to the 

pre-known environment information and noise interference. Therefore, those 

control strategies may not be applied to real-time EMS for the target vehicle. 

The RL-based algorithm, however, do not need to assume or gather any future 

knowledge of the environment state. In fact, it only requires datasets from the past 

knowledge, which fundamentally avoid the error of predicting the future states of 

the process [229]. RL algorithm also reduces the computational load in operation 

once the training is done [103]. It is known to work in the form of the Markov 

decision process, because its strong demand to understand the variation and 

relationship between states and states. The fundamental principle of the RL 

algorithm is to let its agent to learn an optimal, or to approximate optimal policy 

which can maximum the accumulated reward. 

Since 2018, early energy management studies have applied some fundamental RL 

algorithms to the energy management study, and the Q-Learning based algorithm 

was the first attempt on electric vehicles fuel optimization. In Ref. [230], a speedy 

Q learning algorithm to control the engine throttle to improve fuel economy on a 

hybrid tracked vehicle. Han et al. conducted a study on using an improved double 

deep Q learning algorithm to reduce the impact of over-optimistic estimation on 

value function [73]. However, the Q-Learning based algorithms can only output 
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discrete action space, which is not suitable for vehicle control considering its high-

dimensional action space. The Actor-Critic (AC) based algorithms are then 

introduced in which two neural networks are deployed for the value and policy 

networks. It quickly became the mainstream algorithm as it surpassed the Q-

learning based algorithm in all aspects. For instance, the Deep Deterministic Policy 

Gradient (DDPG) algorithm is the most representative AC based algorithm 

enabling continuous action space [231]. Studies have proved that DDPG provided 

the energy management system with desired real-time control ability [232-234].  

Nevertheless, the algorithms from the current studies still have unsolved issues. The 

DDPG can be very sensitive and unstable when interacting with a complex 

environment. As a deterministic policy, its exploration only relies on the noise 

added to the output action. However, studies found out that the AC based algorithms 

may get stuck into a bad solution due to pool exploration in the early stage [235, 

236]. The training speed and stability are essential for the EMS; hence the current 

algorithm design needs to be improved for practicality. As a wide action space may 

result in training instability, the RL-based EMS studies above have to draw an 

engine optimal fuel line to limit the engine operation pattern. More importantly, the 

studies only constrain the battery SOC level and ignore the battery health condition, 

which may result in severe battery degradation in long term.  

To solve these issues, this project adopts a novel AC based stochastic algorithm 

with maximum entropy on the APU power flow management. The algorithm is 

called Soft Actor-Critic (SAC) with a framework of dual critic networks and 

experience replay ability [85]. The policy maximizes a trade-off between the 

expected reward and entropy to achieve random action, which efficiently increases 
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the exploration in early training. The stochastic AC structure with off-policy 

updates provides the algorithm with stability and the ability to handle complicated 

tasks. Thanks to these, improvements can be made to the RL-based EMS. 

Compared with the existing studies, the optimization target in this work is not only 

limited to the fuel efficiency; the first attempt of battery charging protection in RL-

based strategy is carried out by limiting the battery charging rate (C-rate) under 

different SOC. An improvement of the agent action space is made by introducing 

both engine power and speed to achieve a more linear control performance. 

Furthermore, to resolve the lack of exploration with the vehicle environment duing 

the training process, a local reset function is activated to randomize the initial 

battery SOC and selection of the driving cycle.  

5.2 The EMS Design and requirement 

The RL deployment mainly consists of three parts: environment construction, 

reward settings and agent programming. During each state of the training process, 

the agent gives out control action to the targeted system, and the system will interact 

with the environment and proceed to the next state according to the Markov 

decision process (MDP). An MDP, as shown in Figure 5.1, is a sequential decision-

making process in which the action will influence not only the immediate state but 

also the future states and rewards. (s, as, pa, ra) are the four elements in the MDP. 

Element s represents the state conditions of the environment; in this study, it can 

contain the operating signals and data of the vehicle body. Element as is the action 

space generated from the RL agent. In each state, the agent will have one or more 

possible actions to pick. However, the chances of picking different actions in a 

certain state are not always the same. The pa stands for the probability for the agent 
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to pick the corresponding action a. After selecting the action, an immediate reward 

ra and new state observation s' from the environment will be fed back to the agent. 

The agent will keep improving the probability of the possible actions which 

generates better rewards ra to maximize the accumulated rewards in each episode. 

The simplified flowchart of the RL interaction is also illustrated in Figure 5.2.  

 
Figure 5.1 A Markov decision process diagram.  

 
Figure 5.2 Closed-loop control in RL environment.  

The RL-based ERLV platform is constructed using the Matlab 2021a version and 

its Simulink/Stateflow modules. The ERLV model contains an RL agent, vehicle 

environment and signal processing module. The upper structure is shown in Figure 

5.3. The RL agent is responsible for handing out the control signals of the APU to 



Chapter 5 Muti-target energy management strategy of the ERLV 

76 
 
 

the vehicle environment; in this study, the two control signals are the APU output 

power and the corresponding engine speed. After receiving the control signals, the 

vehicle environment will operate according to the action space. The signals are 

transformed to the mathematical model where engine efficiency, fuel consumption 

and the ISG efficiency are being considered. After that, the generated electric power 

is calculated and distributed to the wheel and battery. When all simulations are 

cleared, the signal processing model will receive data from the vehicle components. 

These signals will then be treated and transferred into state reward and fed them 

back to the RL agent along with the vehicle state information. By repeating so, the 

RL agent will partially update its action pattern when a higher reward occurs. 

 

 
Figure 5.3 The Simulink framework of the RL-based ERLV model. 
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Figure 5.4 The framework of the vehicle model. 

The vehicle environment model includes the models of driving cycle, driver, 

vehicle body, traction motor, ESS and the APU. Its framework in Matlab/Simulink 

is shown in Figure 5.4. The initial input to the environment are the driving cycles. 

The driver model has a tuned PI controller to compare the error between the current 

vehicle velocity with the desired velocity. It outputs a signal range of [-1, 1] for the 

accelerator pedal and the brake pedal to keep the vehicle up with the cycle targeting 

speed. The ERLV model will thereby work as a forward simulation under the 

control of the RL agent and the driver model.  

5.2.1 Vehicle modelling for RL training 

The Simulink models of the main vehicle components are explained in this section. 

The mathematical and physical calculations are demonstrated.  
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From the driver model in Figure 5.5, the velocity error with the driving cycle is 

being adjusted with the PI controller; and after becoming a dimensionless value, it 

can be transformed into the pedal signal. After that, it is handed out as the command 

signal for the traction motor model.  

 
Figure 5.5 Driver model. 

The driver control signal is split into throttle and brake inputs. As shown in Figure 

5.6, the traction motor controller outputs torque according to the pedal movements. 

A constraint function relying on the Torque-Power curve map in Figure 3.5 is 

designed to maintain the motor torque under its limitation. The detailed energy 

efficiency of the motor is considered to calculate the real-time energy consumption 

and recycled braking energy for the EMS. 
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Figure 5.6 Traction motor model.  

Figure 5.7 shares the simulation for vehicle body dynamics. It calculates the vehicle 

power consumption and its driving resistance. The logistics vehicle resistances 

during operation can be broken down into three forces, which are rolling resistance, 

aerodynamic drag resistance and grading resistance. The grading resistance is 

waived as the driving cycles are assumed to run on a gradeless surface. Real-time 

velocity of the vehicle is used to calculate the body Aerodynamic drag. After that, 

the model can acquire the vertical resultant force combining the wheel force from 

the traction motor. The operational power demand of the whole vehicle is sent to 

the APU and the ESS model to handle. 

 
Figure 5.7 Vehicle body dynamics. 
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Figure 5.8 Battery model design. 

A detailed EMS model (Figure 5.8) is designed using equivalent circuit model 

(ECM)  experimental data from a lithium-ion battery. Battery ECM can be used to 

estimate battery operating conditions, improve the modelling accuracy and estimate 

the battery SOC. It considers the internal battery loss which can show how the 

battery cell responds to throughput in different usage scenarios. As the instant 

voltage of the battery pack can be predicted according to its current SOC and cell 

thermo conditions, the required power from the battery can be converted into 

current. After that, the battery pack throughput, the impact of the internal resistance 

according to SOC level and its temperature variation can be calculated.  The 

transient battery discharge rate (C-rate) is provided to the RL reward calculation. 

As shown in Figure 5.9, the APU model consists of the engine and an ISG. The RL 

agent provides the APU model with two control signals which are the required APU 

power and the corresponding engine speed. Consequently, the transient engine 

operation point can be confirmed, and the corresponding engine torque output, fuel 

rate and consumption are looked up according to the engine BSFC map. In the 

meantime, the ISG, which connects mechanically with the engine output shaft, has 

the same rotational speed as the engine. The generating efficiency is then acquired 
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and used for the EMS power flow simulation.  Finally, all fuel rate, consumption 

and generated electric power are sent to the signal processing modal for reward 

calculation and fuel consumption analysis. 

 
Figure 5.9 APU model. 

To guarantee simulation precision, the Simulink models are subject to strict 

constraints. The dynamic limitation of the traction motor can be expressed by: 

{

−𝜔𝑚𝑖𝑛 ≤ 𝜔𝑚𝑜𝑡 ≤ 𝜔𝑚𝑎𝑥;

−𝑃𝑚𝑜𝑡_𝑚𝑖𝑛 ≤ 𝑃𝑚𝑜𝑡
𝑚𝑜𝑑𝑒 ≤ 𝑃𝑚𝑜𝑡_𝑚𝑎𝑥;

−𝑇(𝜔)𝑚𝑖𝑛 ≤ 𝑇(𝜔) ≤ 𝑇(𝜔)max;

(5.1) 

while 

𝑚𝑜𝑑𝑒 = {

1, 𝑃𝑚𝑜𝑡
𝑚𝑜𝑑𝑒 = 𝑇𝑚𝑜𝑡𝜔𝑚𝑜𝑡/(9550 ∗ 𝜂);

0, 𝑃𝑚𝑜𝑡
𝑚𝑜𝑑𝑒 = 0;                                       

−1, 𝑃𝑚𝑜𝑡
𝑚𝑜𝑑𝑒 = 𝑇𝑚𝑜𝑡𝜔𝑚𝑜𝑡𝜂/9550           

(5.2) 

where mode stands for the traction motor operating mode, Pmot, Tmot, 𝜔𝑚𝑜𝑡, 𝜂 are 

the motor power, torque, rotational speed, efficiency, respectively.  

Then, the following constraints of the battery are:  

{
 
 

 
 𝑆𝑂𝐶𝑡𝑒𝑚

𝑎𝑣𝑙 =
(𝑆𝑂𝐶𝑡𝑒𝑚

𝑎𝑏𝑠 − 𝑆𝑂𝐶𝑎𝑏𝑠_𝑚𝑖𝑛)

(𝑆𝑂𝐶𝑎𝑏𝑠_𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑎𝑏𝑠_𝑚𝑖𝑛)
;

𝑆𝑂𝐶𝑎𝑏𝑠_𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑎𝑏𝑠
𝑇𝑒𝑚 ≤ 𝑆𝑂𝐶𝑎𝑏𝑠_𝑚𝑎𝑥;

𝑇𝑒𝑚𝑚𝑖𝑛 ≤ 𝑇𝑒𝑚𝑏𝑎𝑡 ≤ 𝑇𝑒𝑚𝑚𝑎𝑥

(5.3) 
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where 𝑆𝑂𝐶𝑡𝑒𝑚𝑎𝑣𝑙  stands for the energy level to the available capacity, and 𝑆𝑂𝐶𝑡𝑒𝑚𝑎𝑏𝑠  

stands for the energy level of the absolute battery capacity. 𝑇𝑒𝑚𝑏𝑎𝑡 is the battery 

cell temperature.  

The APU (engine and the ISG) is subject to:  

{

𝜔𝑖𝑑𝑙𝑒 ≤ 𝜔𝑒𝑛𝑔 ≤ 𝜔𝑚𝑎𝑥;

0 ≤ 𝑃𝑒𝑛𝑔 ≤ 𝑃𝐼𝑆𝐺/𝜂𝐼𝑆𝐺;

𝑇𝑖𝑑𝑙𝑒_𝑙𝑜𝑎𝑑 ≤ 𝑇(𝜔)𝑒𝑛𝑔 ≤ 𝑇(𝜔)max;

(5.4) 

In here, the desiel engine RPM boundary is from 1200 to 3300, 1200 is the idle 

RPM. 

5.3 Multi-target optimization and environment 

A comprehensive observation of the state is required for the agent to have a clearer 

view of the environment [237]. The observation vector is listed in Eqation 5.5: 

𝑆𝑡𝑎𝑡𝑒 = {𝑣, 𝑎𝑣, 𝑆𝑂𝐶, 𝑃𝑟𝑒𝑞 , 𝐶𝑟𝑎𝑡𝑒}       (5.5) 

which are the vehicle velocity, acceleration, battery SOC, vehicle power demand 

and battery discharge rate, respectively. The velocity, acceleration and power 

demand reflect the motion status of the vehicle, while the SOC and Crate reveal the 

vehicle power management condition.  

For ERLV charging strategy, the controlled object is the APU itself. The RL agent 

is programmed to output action to control the APU performance. From the existed 

studies [101, 104, 234], discrete values of engine power adjustment were commonly 

selected as their only action for the RL agent. These studies also selected an engine 

optimal operation curve based on specialist experience. However, when the engine 

follows the operation curve, both engine torque and speed will increase at the same 

time, which may be hard to achieve in real-world operations. An improvement is 
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proposed in this study by adopting continuous multi-actions in the action space. 

Both the engine power 𝑃𝑒𝑛𝑔 and the engine speed 𝑛𝑒𝑛𝑔 are selected as the 

continuous actions so that the APU can be controlled with high stability: 

𝐴𝑐𝑡𝑖𝑜𝑛 = {𝑃𝑒𝑛𝑔,  𝑛𝑒𝑛𝑔}          (5.6) 

with the ranges of: 

  𝑃𝑒𝑛𝑔 → [3, 72] (𝑘𝑊), 𝑛𝑒𝑛𝑔 → [1200, 3300](𝑟/𝑚𝑖𝑛)                    

where the engine power range is from 3 kW to 72 kW, and its operating speed is 

from 1200 to 3300 r/min. The engine is no longer required to follow a fixed 

operation curve and it is allowed to explore more possible operation points under 

different engine speeds; and more exploration for the agent will lead to better fuel 

efficiency [238]. 

The multi-objective reward function of the RL platform consists of three elements, 

fuel consumption, SOC constraint and battery charge constraint.  

For fuel consumption, the target is to maintain a high engine efficiency during the 

CS period; hence the instant fuel conversion rate (g/kWh) is selected as one of the 

reward variables. The SOC constraint adopts the square of the value difference 

between the state SOC and the desired SOC.  

To take battery charging protection into consideration, a battery C-rate limitation is 

employed as one of the RL reward factors to extend the battery lifespan. This 

battery capacity fading factor 𝐾deg  reflects the percentage of battery degraded 

capacity 𝑄𝑙𝑜𝑠𝑠 and initial capacity 𝑄𝑖𝑛𝑡 using the following equation: 

𝐾𝑑𝑒𝑔 =
𝑄𝑖𝑛𝑡 −𝑄𝑑𝑒𝑔

𝑄𝑖𝑛𝑡
           (5.7) 
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According to the empirical model from [239], the battery capacity degradation degree 

varies significantly with different SOC and C-rates. The variation of the capacity fading 

factor is shown in Figure 5.10. 

 
Figure 5.10 The capacity fading factor with different SOC and C-rates. 

Now, combining the above elements, the immediate reward calculation can be 

defined as:   

𝑅𝑒𝑤𝑎𝑟𝑑 = − {𝛼 ∙ 𝐹𝑟𝑎𝑡𝑒(𝑡) + 𝛽 ∙ [𝑆𝑂𝐶(𝑡) − 𝑆𝑂𝐶𝑟𝑒𝑓]
2
+ 𝜑 ∙ 𝐶𝑟𝑎𝑡𝑒 ∙ 𝐾𝑑𝑒𝑔(𝑆𝑂𝐶𝑡 , 𝐶𝑟𝑎𝑡𝑒)}        (5.8) 

where 𝛼, 𝛽, 𝜑 are the weights, 𝐹𝑟𝑎𝑡𝑒(𝑡) is the instant fuel conversion rate (minus 

baseline), 𝑆𝑂𝐶(𝑡) , 𝑆𝑂𝐶𝑟𝑒𝑓  are the battery SOC in state (t) and target SOC, 

respectively. The corresponding Simulink signal route can be seen in Figure 5.11.  

 
Figure 5.11 The reward calculation. 
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5.4 Reinforcement learning algorithm 

The over-all goal of a reinforcement learning algorithm is to learn an optimal or 

nearly-optimal policy which can maximize the accumulated reward from the 

interacted environment. In other words, an optimal objective function 𝜋∗  is the 

training target that represents the RL policy and responses to the every state signal 

from the environment. The agent thrives to find a balance between the exploration 

and exploitation in each training episodes.  

In order to solve the high-dimensional problem with the state, the latest RL 

algorithms have combined Deep learning to improve their ability to input/output 

large data. This kind of improved RL algorithms is called Deep reinforcement 

learning. The artificial Neural network is utilized to transfer the input into labelled 

datasets, and in this case, it processes the vehicle states and rewards through a series 

of fully-connected layers and activation layers to generate an estimated value for 

the agent. It replaces the traditional Q-table used in Q learning.  

A more matured RL structure called Actor-Critic (AC) is also utilized in this study. 

It combines the advantages of the Policy gradient and the function approximation. 

Compared with traditional actor updates of the policy gradient methods, the actor 

of Actor-Critic methods can be updated more efficiently by steps. A fundamental 

structure of AC is illustrated in Figure 5.12. It consists of two parts that are 

parameterized with neural networks: Actor and Critic. The Critic is used to estimate 

the value function of the algorithm, and it can assist the policy to learn with more 

accurate results. The estimated value function can be the Q value and the V value, 

but in an algorithm like the improved SAC, only the Q value function is estimated 

to lower the computational load. The Actor network, on the other hand, is used as 
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the policy distribution for the agent action space.  It samples agent control signal(s) 

a’ from policy πө(a’|s’) to interact with the environment. After getting the reward 

feedback, the Critic parameter is used to update the policy parameter from the Actor 

network can be updated with the suggestion from the Critic. 

 
Figure 5.12 Structure of the Actor-Critic algorithm. 

In the following study, two DRL algorithms using actor-critic structure are selected 

for the ERLV EMS, and their control results are tested and compared. The first 

DRL algorithm is called Deep Deterministic Policy Gradient (DDPG), which is one 

of the most representative and popular algorithms in the RL study. It is a 

deterministic algorithm combining the technologies from Deterministic Policy 

Gradient (DPG) and DQN (Deep Q Network), such as the ability to output 

continuous action spaces and high sampling efficiency with the experience replay 

buffer. The other algorithm is called Soft Actor-Critic (SAC) that achieves state-of-

the-art performance. Unlike DDPG, it is a stochastic algorithm with off-policy 

learning. The improvements are made by adding entropy to the value function for 

better exploration; a clipped double-Q trick and target policy smoothing function 

guarantee the stability of the value estimation. These techniques from SAC are 
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especially suitable for vehicle EMS with wide action space and great uncertainty. 

The theoretical introduction and mathematical derivation of the two DRL 

algorithms are introduced in detail.  

5.4.1 DDPG algorithm  

DDPG is the iconic deterministic DRL algorithm with an actor-critic structure that 

supports continuous action spaces.  DDPG is based on the previous algorithm DPG 

proposed in 2014 [240], and its action in each state is determined by 

                                                           𝑎t = 𝜇(𝑠𝑡|ѳ𝜇; )                                                  (5.9)  

where 𝑎t is the action taken by the agent, function 𝜇 is the current optimal policy, 

𝑠𝑡 and ѳ𝜇 stand for the environment state and parameter of 𝜇.  

In order to improve the sampling efficiency and handle more complicated state 

observations, techniques from DQN such as experience replay buffer and target Q 

network are combined with DPG. There are four networks in the form of DDPG:  

Critic network , Actor network 𝜇
∂
 and the two target networks  , 𝜇

∂
. 

The operation pattern of the DDPG algorithm is demonstrated in Figure 5.13.  
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Figure 5.13 System diagram of the DDPG-based EMS. 

During the agent training process, the Actor network ∂ generates a determined 

action space according to the current state. However, there is hardly any exploration 

for the agent to search for any better action in this state. To solve this issue, DDPG 

adds noise to the determined action to increase randomness. The type of noise can 

be Uhlenbeck-Ornstein noise, Gaussian noise or other uncorrelated random noises. 

It is also worth mentioning that the noise is only utilized during the training stage, 

only determined action from the Actor network 𝜇
∂

 is adopted during agent 

evaluation and testing.  

The traditional Q value function can be deduced using Bellman equation after 

knowing the next action at state st:  

                            𝑄( ) [𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑄(𝑠𝑡+1,𝜇(𝑎𝑡+1))]                         (5.10)  

where r is the state reward of 𝑠𝑡  when taking action 𝑎𝑡 . However, the Q value 

estimation in DDPG is operated on the Q neural network 𝑄𝜃 which is similar to the 

DQN algorithm, and it is being trained using the experience replay technique. An 

objective function yi in Equation 5.11 needs to be maximized to achieve the highest 

expectation of the Q value.  

                                       𝑦𝑖 𝑟𝑖 + 𝛾𝑄̅(𝑠𝑖+1, 𝜇̅(𝑠𝑖+1|𝜃̅ )|𝜃̅𝑄)                                 (5.11)  

where i is the states sequence of the sampled minibatch and the 𝜃̅𝑄 , 𝜃̅  are the 

weights of the two target networks. Using the target network for estimation can help 

stabilize the Critic learning process. 

To maximize yi, a loss function for the Critic can be defined using the error of its 

squared mean: 
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                                     𝐽(Q) =
1

𝑁
∑(𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖|𝜃𝑄))

2

𝑖

                               (5.12) 

In the meantime, the Loss function of the Actor network can be described as: 

                                         𝐽(𝜇) = −
1

𝑁
∑𝑄(𝑠𝑖, 𝑎𝑖|𝜃𝑄)

𝑖

                                       (5.13) 

Because the data is sampled from the replay buffer, the expectation of the policy 

can be seen as an un-biased estimation, and the Actor network can be updated by 

performing gradient of 𝜃𝜇 on the performance objective:  

𝛻𝜃𝜇𝐽𝛽(𝜇) ≈ −
1

𝑁
∑(𝛻𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)∙ 𝛻𝜃𝜇𝜇𝜃(𝑠|𝜃𝜇)𝑠=𝑠𝑖

)

𝑖

         (5.14) 

where 𝛽  represents the distribution function parameter, and the Q function is 

decomposed into the action gradient times the policy gradient by applying the chain 

rule. 

The online Critic and Actor networks are self-updated in each gradient step using 

their learning rate, with the purpose of minimizing the loss function and policy 

gradient. The learning rate value is commonly selected from 0.1 to 10-5 for 

favourable training performance [241]. A small learning rate will bring higher 

training stability, but it may also lead to a longer training time. 

After that, the two target networks are updated using the soft update method to 

stabilize the training parameters. The soft updates are performed using:  

            𝜃̅𝑄 ← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃̅𝑄       

                                                         𝜃̅ ← 𝜏𝜃 + (1 − 𝜏)𝜃̅                                        (5.15)
 

where τ is the smoothing factor, and the target values are constrained to change 

slowly according to the online values. This method significantly improves the 

stability of the training for unstable problems. The simplified algorithm of DDPG 

is listed in Table 5.1 with the hyperparameters shared in Table 5.2.  
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Table 5.1 DDPG Algorithm. 

Algorithm 1 DDPG algorithm 
Input: 𝜃𝑄, 𝜃  

Initialize target network weights 𝜃̅𝑄 ← 𝜃𝑄, 𝜃̅ ← 𝜃 , 
Initialize replay buffer pool  𝐷 ← ∅ 

for each iteration do 
        Initialize random noise N adding to action 
        Acquire initial observation s0 

for each sample step do 
Sample action 𝑎𝑡 = 𝜇(𝑠𝑡|ѳ𝜇) + 𝑁𝑡 from the policy with noise 
Store the generated environment transition (st, at, r, st+1) in pool D 
Sample random minibatch with N steps from pool D, 𝑁  
Calculate the target Q-function of the sampled minibatch: 𝑦

𝑖
𝑟𝑖 +

𝛾𝑄 𝑠𝑖+1, 𝜇 𝑠𝑖+1|𝜃 |𝜃𝑄  

Update Critic 𝜃𝑄  by minimizing the loss  𝐽(Q) = 1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃𝑄))

2

𝑖  
Update Actor 𝜃  with policy gradient method: 

  𝛻𝜃𝜇𝐽𝛽(𝜇) ≈ −
1

𝑁
∑ (𝛻𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)∙ 𝛻𝜃𝜇𝜇𝜃(𝑠|𝜃𝜇)𝑠=𝑠𝑖

)𝑖  

Update target networks:      𝜃̅𝑄 ← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃̅𝑄 
     𝜃̅ ← 𝜏𝜃 + (1 − 𝜏)𝜃̅  

        end for 
end for 

 

Table 5.2 Hyperparameters of the DDPG agent. 

 

5.4.2 SAC algorithm  

SAC algorithm is a model-free off-policy stochastic algorithm that can be used with 

continuous action spaces. Entropy is added to the expected return to increase 

stochasticity. It integrated the clipped double-Q trick and Soft Q function, which 

was proved to achieve a more stable estimation of the critic function [242]. The 

overall framework of the SAC-based EMS is present in Figure 5.14.  

parameters  Value parameters  Value 
Critic learn-rate 1×10-3 Target smooth factor 1×10-3 
Actor learn-rate 1×10-4 Discount factor γ 0.95 
Mini-batch size 128 Sample time (s) 1 
Experience buffer length 1×106 Explore noise 0.1 
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Figure 5.14 System diagram of the SAC-based EMS. 

The aim of reinforcement learning is to learn a policy π  that maximizes the 

objective in the training episode. The SAC algorithm improves the traditional 

objective function by adding an entropy factor with the expected reward, which 

forces the agent to operate randomly. Its objective function can be described as: 

                         𝜋∗ = 𝑎𝑟𝑔max
𝜋

∑𝐸(𝑠𝑡,𝑎𝑡)~ρπ

𝐾

𝑡=0

[𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛼𝐻(π(. |𝑠𝑡))]                      (5.16)  

where the ρπ is marginals of the state-action distribution, 𝐻(π(. |𝑠𝑡)) is the entropy 

objective regarding the policy, and 𝛼 is the entropy temperature coefficient. 

For the continuous domain of the algorithm, the SAC soft policy iteration should 

be conducted using approximations for the soft Q-value evaluation and 

improvement. The Q-function 𝑄𝜃(𝑠𝑡, 𝑎𝑡)  and policy π∂(. |𝑠𝑡)  are approximated 

using two different neural networks. In addition, the automating adjustment of the 

temperature coefficient 𝛼 from Ref. [236] is employed in this paper. This method 

improves the stability of the SAC training by varying 𝛼 over the training process, 
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so the improved SAC algorithm only needs to optimize the Q-value function and 

the policy with the gradient descent method.  

The policy evaluation is conducted using the soft Q-function. The soft Bellman 

residual can be calculated by 

5.17  

where D represents the distribution of the sampled replay buffer. The parameter 𝜃̅ 

is acquired using the exponential moving average of the Soft Q-function [243], 

while 𝑉𝜃̅(𝑠𝑡+1) can be replaced and iterated using Equation 5.18 

                    𝑉𝜃̅(𝑠𝑡) = 𝐸𝑎𝑡~π[𝑄𝜃̅(𝑠𝑡, 𝑎𝑡) − 𝛼 log π(𝑎𝑡|𝑠𝑡)]                                   (5.18)  

where the action at is sampled from the policy. In here, the double-Q network 

framework is used to avoid overestimation that the minimum Q-function is selected 

for the gradient calculation.  

The policy improvement is performed after evaluation with the help of the Q-value 

function. The exponential of a new soft Q-function is used during the policy 

improvement in the Kullback-Leibler (KL) divergence. The KL divergence 

measures the distance between the soft Q-function and π∂(. |𝑠𝑡), and the policy 

update approximation can be conducted by minimizing 

                            𝐽π(∂) = 𝐷KL

[
 
 
 
 

π∂(. |𝑠𝑡)||

𝑒𝑥𝑝 (
1
𝛼 (𝑄θ

(𝑠𝑡 , . ))

𝑍(𝑠𝑡)

]
 
 
 
 

                                     (5.19) 

with deformation calculation 

 𝐽π(∂) = 𝐸𝑠𝑡~𝐷,𝑎𝑡~π∂ [log π∂(𝑎𝑡|𝑠𝑡) −
1

𝛼
(𝑄θ(𝑠𝑡, 𝑎𝑡) + log 𝑍(𝑠𝑡)]                   (5.20) 
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where the partition function 𝑍(𝑠𝑡) is a constant that can be ignored during the 

gradient step. The reparameterization trick is applied to the policy neural network, 

and the action of the policy can be described as 

                                                   𝑎t = 𝑦∂(𝜔𝑡; 𝑠𝑡)                                                          (5.21)

Where 𝜔𝑡  is the noise variable. In this case, the neural network of the policy 

converts the state input to an action of a Gaussian distribution with mean and 

standard deviation. 

By combining Equation 5.20 and 5.21, the final target function of the policy can be 

described 

              5.22  

Finally, the SAC policy estimation and improvement can be performed using 

Equation 5.17 and 5.22 in each gradient step. The simplified coding of the SAC 

algorithm is described in Table 5.3. 
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Table 5.3 SAC Algorithm. 

Algorithm 2 Soft Actor-Critic with Auto-tuned Entropy Weight 
Input: 𝜃𝑎, 𝜃𝑏, 𝜕 

Initialize target network weights 𝜃̅𝑎 ← 𝜃𝑎, 𝜃̅𝑏 ← 𝜃𝑏, 
Initialize replay buffer pool  𝐷 ← ∅ 

for each iteration do 
for each sample step do 

Sample action from the policy  
Sample environment transition  
Store sampled transition (st, at, r, st+1) in pool D 

end for 
for each gradient step do 

Update Q-function  
Update Policy 𝜕 ← 𝜕 − 𝜑π∇̂𝜕𝐽π(𝜕) 
Entropy self-adjustment 𝛼 ← 𝛼 − 𝜑∇̂𝛼𝐽(𝛼) 
Update target network  

        end for 
end for 

The neural network frameworks for SAC are demonstrated in Figure 5.15, where 

the number of nodes in the fully connected layers decreases from 256 to 128. After 

multiple trial improvements on the algorithm and the NN, the hyperparameters for 

the SAC agent are chosen and shared in Table 5.4 to achieve a fast and stabilized 

performance. A single driving cycle simulation is set as a training episode until the 

rising battery SOC exceeds the charge-sustain threshold.  

 
Figure 5.15 Architecture of the neural networks. 



Chapter 5 Muti-target energy management strategy of the ERLV 

95 
 
 

Table 5.4 Hyperparameters of the SAC agent. 

 

5.5 Pre-training process 

According to the environment design and pre-set hyperparameters of the SAC agent, 

the RL training process was conducted. The total RL training episode was set as 

500 with 1800 steps in each episode. At the beginning of each episode, a local reset 

function is activated to randomize the initial battery SOC and input driving cycle to 

encourage agent exploration. The WLTC-3b or CLTC-C are the two random 

driving cycles, and the initial battery SOC is randomized within the range [0.1, 0.4]. 

For agent performance comparison, a DDPG agent was also trained with the same 

default values. In addition, the DP global optimization for the ERLV was also 

carried out, which is used as the benchmark to compare with the results from the 

two RL agents. 

A converged accumulated reward suggests that the RL agent may be ready to 

deploy. In Figure 5.16, the visualized convergence performances of the SAC and 

DDPG algorithms are demonstrated. Both of the RL algorithms successfully 

converged within 500 episodes, but their convergence pattern diverse differently. 

The convergence points of SAC and DDPG were at approximately 240 and 380 

episodes, proving the fast performance of SAC. For a closer look, the accumulated 

reward variation of the SAC quickly verged to a stable range since the beginning of 

the training, while the DDPG spent quite an effort to settle. It can be explained that 

parameters  Value parameters  Value 
Critic learn-rate 3×10-4 Target smooth factor 1×10-3 
Actor learn-rate 3×10-4 Discount factor γ 0.95 
Entropy learn-rate 3×10-4 Sample time (s) 1 
Target entropy -2 Mini-batch size 128 
Initial entropy weight 0.5 Experience buffer length 1×106 
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the DDPG needs more training episode to learn because of its poor exploration 

ability and instability [244]. On the contrary, the SAC algorithm improves these 

imperfections by adding policy uncertainty using the maximum entropy method, 

and the clipped double-Q trick on the soft value function mitigated the impact from 

over-estimation. These allow the agent to grope for the action-reward patterns in a 

short time. 

Apart from the convergence speed, there is also a difference in the convergence 

quality. DDPG has the tendency to converge to a bad or non-optimal solution due 

to hyperparameter sensitivity; and as a deterministic policy, its exploration 

performance is limited by adding random noise to the action. SAC, as a stochastic 

policy, can guarantee more exploration of the environment. In this study, the 

convergence quality can be revealed by their episode reward after convergence. The 

SAC episode reward range was [-318, -733] while the DDPG was [-643, -950], 

suggesting the SAC agent has a better control quality on the ERLV charging 

management.  

 
Figure 5.16 The reward convergence performance of SAC and DDPG. 
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5.5.1 Agent implementation 

Once the qualified agents are selected, they can be used to interact with the 

environment for real-time performance testing. To begin with, the rationality of the 

APU control signal should be checked because the engine power output and 

rotational speed should not be fluctuating. For example, a comparison of the SAC 

agent control signals before and after convergence is shared in Figure 5.17. 

Different from the converged SAC result, the engine output power and speed from 

the early phase SAC agent (on the left) are unstable and disordered. Although the 

episode reward is not high, the control signal of this early agent is not exercisable 

on any engine.  

 
Figure 5.17 The engine operation samples of the premature/trained SAC agent. 

The trained SAC agent was tested in Simulink on a Windows PC. The simulating 

time is approximately 6 seconds for CLTC-C (30 mins), which means the SAC 

agent only needs 1/300 second to process the signal and make decision in real time 

with an Intel I7-8750H processor (6 cores, Turbo up to 4.1 GHz).   
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5.6 Result analysis 

After the RL training process, the converged SAC agent is examined and the power 

flow results of the APU and battery are shown in Figure 5.18. The engine is kept 

operational during the CS mode, supplying power to both the traction motor and 

battery. For high power demand, the battery may also work as the secondary power 

source to assist the APU in the CS mode. The two figures also show a negative 

correlation between the engine power and battery SOC; the engine power value 

starts from around 60 kW and it gradually drops to around 40 kW. This indicates 

the SAC agent is trying to quickly recharge the battery at a low SOC level as it does 

less harm to the battery health.  

 

 
Figure 5.18 The power output of the engine and battery with the SAC agent. 

After that, the conditions of the SOC trajectory, battery C-rate and fuel consumption 

are assessed as the quality factors of the agent performance. In Figure 5.19, the SOC 

trajectories of the SAC and DDPG agents during two driving cycles are plotted 
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against their DP results. It can be observed that both RL agents satisfied the 

essential requirement in the CS operation, while the SAC algorithm charges the 

battery more quickly to a high SOC in a short time. It is also worth mentioning that 

the SOC trajectories under the SAC agent’s control are steeper than that of DDPG 

at low SOC conditions. The reason for that can be revealed by the battery C-rate in 

the performance tests in Figure 5.20.  The battery C-rate trend using the SAC agent 

is more aggressive than that of DDPG at a low SOC level, showing a faster charging 

speed of the battery. As the battery SOC gradually goes up, the C-rate of SAC 

effectively reduces to alleviate battery degradation. From the above, the SAC agent 

outperforms DDPG by providing faster charging ability and battery protection.  
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Figure 5.19 The battery SOC trajectories. 
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Figure 5.20 The transient battery C-rate comparisons. 

The average fuel conversion rates of the SAC, DDPG and DP in WLTC are 212.9 

g/kWh, 215.3 g/kWh and 212.1 g/kWh, respectively. The engine working points of 

SAC and DDPG are shared in Figure 5.21 for demonstration. It can be observed 

that most of the working points are located in the engine optimal fuel consumption 

areas. However, the operation points of DDPG tend to gather at the low engine 

speed area with larger fuel rates, which leads to higher fuel consumption. The 

specific fuel consumption results are shared in Table 5.5. According to the data, 

SAC has a 3% improvement in fuel efficiency compared with DDPG, and it 

achieves 95.1% and 94% of its optimal DP performance. Further analysis of 
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estimated fuel consumption and energy cost is shared in Table 5.6. In this case, the 

algorithm robustness is retested under some unfamiliar typical driving cycles. The 

ERLV is expected to drive 200 km per day in the analysis. The 2021 average diesel 

price is approximately $11.92 per litre, while the electricity price is $0.115 per kWh 

[188]. The electricity cost is the expense of Grid-to-Vehicle charging during night 

time, by which the battery is recharged from terminal SOC to full. According to the 

test, the average fuel consumption in 200 km using SAC and DDPG are roughly 

12.82 L and 13.21, which achieves around a 3% saving on the fuel cost.  
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Figure 5.21 Engine operation points using different algorithms. 
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Table 5.5 Results of the fuel consumption and SOC variation. 

 

In summary, the EMS strategy itself should be robust and stable enough to interfere 

with the complex powertrain and road environment for real-world applications. The 

simulation result proves SAC a practicable solution by outrunning DDPG with 

faster convergence speed and higher stability to random conditions. 

Table 5.6 Fuel consumption and energy cost comparison when reaching 200 km. 

5.7 Chapter summary 

This chapter has proposed a self-learning APU charging control strategy for an 

ERLV using a state-of-the-art RL algorithm. The Soft Actor-Critic method with 

maximum entropy function is employed to maximize a trade-off between reward 

and exploration. It outputs continuous control signals of the optimized engine 

power and rotational speed, which is more suitable for real-world application 

compared with the optimal brake specific fuel consumption (BSFC) curve methods. 

Agent  Driving 
Cycle 

Terminal 
SOC 

RL Fuel 
Consumed (L) 

DP Fuel 
Consumed (L) 

DP 
Benchmark 

SAC CLTC 0.7 5.26 5 95.1% 
WLTC 0.606 4.37 4.11 94% 

DDPG CLTC 0.655 4.88 4.52 92.5% 
WLTC 0.567 4.09 3.72 90.9% 

Driving 
cycle  

Algorithm Fuel cons. 
(L) 

Terminal 
SOC 

Fuel cost 
(US $) 

Elec. cost 
(US $) 

WLTC SAC 12.42 0.45 148.05 1.94 
 DDPG 13.49 0.55 160.8 1.58 
CLTC SAC 11.42 0.42 136.13 2.04 
 DDPG 12.30 0.5 146.62 1.76 
FTP75 SAC 13.62 0.48 162.35 1.83 
 DDPG 12.89 0.35 153.65 2.29 
NEDC SAC 11.6 0.43 138.27 2.01 
 DDPG 12.53 0.52 149.36 1.69 
UDDS SAC 15.07 0.57 179.63 1.51 
 DDPG 14.86 0.5 177.13 1.76 
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For the RL environment setting, the battery charging protection with C-rate 

limitation is deployed for the fir1st time in the RL training process to extend the 

battery lifespan. A reset function for the initial environment states is enabled to 

increase RL training randomness. The DDPG and DP algorithms are also put to use 

as benchmarks to compare with the performance of the proposed SAC agent.  

The simulation results show a successful deployment of the RL algorithms and the 

construction of the RL environment. According to the training outcomes, the SAC 

algorithm quickly converged with a 36% efficiency boost compared with DDPG. 

For performance testing, SAC efficiently controls the APU to charge the battery 

and raised the SOC from 20% to 70% and 60% in WLTC and CLTC, with a diesel 

consumption of 5.26 and 4.37 litres in half an hour. For control performance 

comparison, SAC is proved to have a better fuel efficiency than DDPG according 

to the fuel map and fuel consumption results. The SAC fuel benchmarking 

percentage of the DP results are 95.1% and 94% in CLTC and WLTC, which are 

respectively 2.6% and 3.1% higher than DDPG. The charging results also show that 

the SAC achieves 9.9% and 10.6% faster charging speed than DDPG while having 

a comparable performance of the C-rate protection. The overall performance of 

SAC indicates itself as a preferable option for real-world applications.  
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Chapter 6 A case study of an ERLV with a scotch 

yoke boxer engine  

6.1 Introduction   

During the revolution of Fuel-to-electric transformation, the internal combustion 

engine (ICE) plays a backbone role during the midterm stage. The onboard ICE 

provides a stable power output that can be transformed to electricity for the ESS 

traction motor. To further squeeze the potential of the EREV powertrain, vehicle 

manufacturers and scholars have made efforts to improve and redesign specialised 

ICE models for HEV. Studies starting from the 21st century have proposed 

technologies and concepts such as the low-temperature combustion (LTC) engine, 

alternative fuel, modularized and lightweight engine, new expansion cycle, etc. The 

LTC technique can increase fuel efficiency and reduce NOx and PM emissions, but 

it will result in raising the amount of CO and HC. For alternative fuel applications, 

hydrogen, biodiesel, ethanol, and compressed natural gas are the popular substitutes 

for fossil fuels [25]. Alternative fuels have environment-friendly emissions that will 

not put public health at risk. However, it faces storage and transportation difficulties 

that makes itself unavailable to mass customers; it also has comparatively low 

energy efficiency, and the specialized engine and conversion components have poor 

durability. Meanwhile, the development of the modularized and lightweight engine 

has gained wide attention in recent years.  Engines with the Atkinson cycle and 

Miller cycle have better fuel efficiency by adjusting the compression-expansion 

ratio from the Otto cycle [49]. Toyota has widely adopted this technique on Prius 

and Lexus CT200h by delaying the closing of the intake valve, while Volkswagen 
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and some other western manufacturers design their engines to close the valve earlier 

than the Otto cycle.  

Moreover, unconventional engines with other mechanisms have been reconsidered 

for EREV use. Mazda announced a redesigned Wankel rotary engine especially 

inside an APU. The model Demio EV can extend its drive range to over 400 km in 

2013 [245]. Mazda also claimed they are undergoing a project of using alternative 

fuels such as hydrogen and gas for the rotary engine.  

In this chapter, a newly developed downsize engine prototype using a Scotch yoke 

mechanism is being tested for vehicle feasibility analysis. The Scotch Yoke 

mechanism allows the engine piston to travel in a linear motion with minimal side 

force. This advantage gives the piston a smoother vibration performance during the 

combustion cycle. From the piston motion comparison shown in Figure 6.1, the 

Scotch Yoke engine prototype from SYTECH does not have the unbalanced force 

applied on the connecting rod from the crankshaft rotary motion, which 

significantly mitigates the piston aging rate and engine vibration [246]. In addition, 

the prototype achieves lightweight by sparing the traditional crankshaft and 

removing the flywheel.  

 
Figure 6.1 Piston motion comparison of (a) conventional; (b) Scotch Yoke. 
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6.2 Vehicle platform and modelling  

In this chapter, the powertrain calibration and engine selection process of the ERLV 

is conducted. Two Scotch Yoke engine prototypes S208 and S415, as shown in 

Figure 6.2, are considered for future APU use. The two engines share a similar 

mechanism, but S208 is 800cc with two cylinders and S415 has doubled the size 

with four cylinders. They share a similar optimal fuel rate among 228-230 g/kWh  

with Ron92 fuel, and their specifications are shared in Table 6.1. The fuel rate can 

be further improved by applying the techniques such as turbocharging, exhaust gas 

recirculation, variable valve timing and direct injection. 

 
Figure 6.2 Scotch Yoke engine prototypes of (a) S415; and (b) S208. 

Table 6.1 Specifications of the engine prototypes. 

 

The simulation is for the sizing and applicability of the two engines for logistics 

transportation. The analysis of the proposed prototypes targets their engine fuel 

consumption performance and battery sustaining/recharging efficiency. The two 

Engine Specs. S208 S415 
Rated Power  30 kW @4500 rpm 60 kW @4500 rpm 
Dry weight 39 kg 75 kg 
Volume power 37.5 kW/Litre 41.2 kW/Litre 
Min BSFC 230 g/kWh @3020 rpm 229 g/kWh @2950 rpm 
Emission level China 6b China 6b 
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main procedures are deciding the engine operating points and deploying their 

charging strategies. These procedures are introduced in the following subsections. 

6.2.1 Engine operating point selection 

In the ERLV structure, the engine operation can be further optimized as it is 

decoupled from the wheel. The optimal range charging strategy is selected for the 

APU to maintain a low fuel consumption based on its fuel consumption 

characteristic map [24], and the engine can be kept on and operate in its sweet areas. 

The merit of doing this is that a light and down-size engine can be installed for full-

time operation. This is a distinct advantage for logistics vehicles to squeeze out 

more space and weight.  

First of all, the possible operating points of the two engines should be listed as 

selections. As the Scotch Yoke engines have a wide sweet range of fuel efficiency, 

two core operating points can be decided: the optimal fuel point that has the best 

fuel efficiency, and the optimal power point that has the highest and stabilized 

volume power (kW/L) ratio. From the studies from the previous chapters, the 

average range of the ERLV power demand is in the range of 30 kW to 50 kW 

according to the standardized driving cycles. 

As shown in the partial BSFC map in Figure 6.3, the 30 kW rated power of the S208 

engine satisfied the entry-level power demand of the ERLV, and its optimal power 

point is at around 4500 rpm with a 255g/kWh fuel rate. Thanks to the simplified 

Scotch yoke mechanism, S208 can maintain this high-power output for long term 

usage. On the other hand, S415 has doubled the engine capacity, which brings 

higher manufacturing costs, greater weight and internal space occupation. Its 

optimal fuel point lies in the RPM of 2950 with a 229g/kWh fuel rate, providing 
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around 45 kW power output. The two operating points aim at different optimization 

aspects; they are being further tested in the following subsection with the APU 

charging strategy applied. 

 
Figure 6.3 The partial BSFC map of the engine. 

6.2.2 APU charging strategy design 

In order to extend the lifespan of the slider block and bearing, the two Scotch Yoke 

engines are controlled to operate under the optimal range strategy to avoid any 

aggressive changes in operating conditions. Under the optimal range strategy 

framework, two detailed charging strategies are being tested using each engine 

prototype. The first charging strategy is called the CD-CS strategy. This strategy 

monitors the real-time SOC level and makes mode-switch decisions based on it. If 

the battery SOC is higher than 60%, the vehicle is set in CD mode with the APU 

turned off. Once the SOC drops below 40%, the vehicle will shift to CS mode for 

the APU to charge the battery and feed the traction motor. As the SOC slowly rises, 

the strategy will shift back to CD after the battery capacity reaches 60%. A 

simplified diagram of the strategy is illustrated in Figure 6.4.  
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The other deployed strategy is the sustaining strategy. Some famous EREVs adopt 

a similar strategy to achieve to simplify the control complexity, for example, the 

BMW i3 RE. This strategy normally utilizes the APU to charge the battery at a 

comparatively low SOC level. Unlike the CD-CS mode, the sustaining strategy only 

tries to maintain the minimum battery SOC level (or just slightly raise the SOC 

level to store some temporary energy). It is typically used to compensate for the 

limited pure-electric drive range, and sometimes the equipped engine has a weak 

power output that can not fully support the traction motor power requirement. On 

the contrary, a lower budget for the APU can decrease the vehicle weight and 

occupied space.  

 
Figure 6.4 Operating logic of the CD-CS strategy. 

The simulations deployment and results for the two engines using the two specific 

strategies are shared and discussed in the next section. 

6.3 Performance and energy potential comparison 

The power consumption of the ERLV consists of the driving consumption and the 

electrical appliance consumption. It can be calculated using the vehicle dynamics 

model and the equivalent electrical model. Figure 6.5 shares the transient power 

variation of the ERLV in WLTC and CLTC driving cycles. 



Chapter 6 A case study of an ERLV with a scotch yoke boxer engine 

112 
 
 

 

 

Figure 6.5 Transient power variation of the vehicle (a) WLTC; (b) CLTC 

From the energy consumption simulation of the ERLV, four comparative groups 

are tested for each Scotch Yoke engine prototype. The simulation considers the 

power flow of the APU and battery output, the internal resistance of the battery and 

its SOC estimation, the motor efficiency and the proposed APU charging strategies.  

The WLTC-3b and CLTC-C for light commercial vehicles are imported as the 

looped inputs for the simulations for a total driving distance of 200 km. The CS-

CD strategy sets its SOC range from 30% to 50%, in which the APU is operative to 

raise the battery SOC. On the other hand, the Sustaining strategy maintains the 

battery SOC in a small range when the SOC drops down to 40% from the pure-

electric drive mode. It turns the APU on until approximately 1 kWh of the electric 

energy is charged to the battery. The below figures shared the SOC trajectories from 

the engine on-board simulation with the two strategies, and the orange shades stand 

for the operation of the APU. 
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Figure 6.6 demonstrates the patterns of the CS-CD and sustaining strategies 

operating using the 800cc S208 engine. According to the trajectory, the S208 engine 

satisfies the power demand for all strategies when it is operating with its rated power 

(30 kW, 4500rpm, 248 g/kWh). It can also be observed that the power demand from 

the CLTC is more mitigated compared with WLTC, causing a longer time for the 

engine to raise the battery SOC level. According to Table 6.2, the power demand 

from the CLTC is more mitigated than WLTC, as the battery provides a longer 

pure-electric drive range with APU remains off. In the meantime, the engine 

ignition frequency and operating duration in WLTC are longer than in CLTC, 

resulting in higher average fuel consumption of 10.2L per 100 km.  

 

 
Figure 6.6 SOC variation pattern (S208 engine) using the (a) CD-CS strategy; (b) 

sustaining strategy.  

Conversely, the S415 prototype has almost double the size of the S208, but it 

provides a higher output power with better fuel efficiency. Its optimal operating 

point outputs 45 kW with a fuel rate of 229 g/kWh, which is 50% higher than that 

of S208. This extra 15 kW gives the vehicle a faster-charging ability and better fuel 

economy. When comparing Figure 6.6 (b) and Figure 6.7 (b), however, it seems 

that faster charging will cause a higher starting frequency when using the sustaining 

strategy. Although studies have proved that frequent starting of the engine will not 
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do extra damage to modern engines [247], it may cause noise and vibration and 

bring an unpleasant driving experience to the driver. Therefore, the CS-CD strategy 

is more suitable for the S415 model than the Sustaining strategy when taking NVH 

into consideration. 

 

  
Figure 6.7 SOC variation pattern (S415 engine) using the (a) CD-CS strategy; (b) 

sustaining strategy.  

Table 6.2 S208 energy consumption of the CS-CD&Sustaining strategy under 

different driving cycles.  

 

Table 6.3 S415 energy consumption of the CS-CD&Sustaining strategy.  

 

Driving 
Cycle Strategy SOC Range Engine on (%) 

Consumption 
(L&kWh) 

RE mode Cons. 
L/100 km 

WLTP-3b 
(200 km) 

CS-CD 30% to 50% 24.0% 14.0+19.8 10.2 

Sustaining 40% 25.5% 14.9+17.0 10.3 

CLTC-C 
(200 km) 

CS-CD 30% to 50% 13.6% 8.4+19.9 7.9 

Sustaining 40% 15% 15.1+16.9 7.9 

Driving 
Cycle 

Strategy SOC Range Engine on (%) 
Consumption 

(L&kWh) 
RE mode Cons. 

L/100 km 

WLTP-3b 
(200 km) 

CS-CD 30% to 50% 17.4% 14.0+17.2 9.6 

Sustaining 40% 17.3% 13.9+17.3 9.6 

CLTC-C 
(200 km) 

CS-CD 30% to 50% 9.7% 8.3+18.4 7.4 

Sustaining 40% 10.2% 8.7+17.0 7.7 
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Figure 6.8 Specification comparison of the engine prototypes. 

Figure 6.8 shows the comparison of the two engines regarding their efficiency, fuel 

rate, weight, etc. The first thing to notice is the significantly reduced engine 

operating time ratio. A higher power output allows S415 to remain shut down for 

at least 82.6% of the time, and a better fuel conversion rate brings an extra 6.8% on 

the fuel-saving during extend-range mode compared with S208. By comparing 

Table 6.2 and 6.3, the fuel consumption results suggest the Sustaining strategy is 

the better match for S415 to reduce starting frequency. On the contrary, the S208 

has a satisfying fuel efficiency when running with its rated power; the 39 kg weight 

and small size make it an excellent selection for those commercial vehicles installed 

with a large battery pack. In general, both engine models satisfy the design criterion 

of the target ERLV, and vehicle manufacturers can make their own decision on the 

selection based on their needs. Compared to the traditional logistics van that needs 

to install a 2-litre engine to fulfill the power requirement, the ERLV with the 

downsize boxer engine can save approximately 40%-60% of the space and 35%-

50% of the component weight. 
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6.4 Chapter summary 

This chapter represents a comparative consumption analysis for an ERLV with a 

Scotch Yoke engine. This down-size Scotch Yoke boxer engine is selected as the 

ranger extender inside the vehicle APU. An analysis is conducted to excavate fuel 

consumption and feasibility based on the two different engine prototypes. 

According to the results, the two engine prototypes show some unique features in 

the performance, energy potential and operating pattern. The results are 

summarized below. 

1. A higher power output allows S415 to remain shut down for at least 82.6% of 

the time, and a better fuel conversion rate brings an extra 6.8% on the fuel-

saving during extend-range mode compared with S208. 

2. Both engine models satisfy the design criterion of the target ERLV, and vehicle 

manufacturers can make their own decision on the selection based on their 

needs. 
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Chapter 7 Conclusions and future works 

7.1 Thesis conclusions 

This thesis has proposed a complete energy management study for the extended 

range electric vehicle, which reveals the application potential of this platform from 

the angles of performance and economic efficiency. The modern control algorithms 

are deployed and tested successfully as the EMS to achieve favourable energy 

efficiency.  

The main work and contributions of this thesis can be summarized as follows: 

1. A detailed background introduction on the EREV and its structure design is 

shared. The functions of key components such as the APU, battery, supercapacitor 

and traction motor are discussed.  

It is worthwhile to systemically summarize the states estimation techniques in the 

hope of providing some inspiration for EMS practitioners.  

2. A classification of the EREV energy management study is conducted in terms of 

two main aspects: APU charging control strategy and HESS power management. A 

wide-range literature review on the two areas is presented to establish familiarity 

with and understanding of current research while looking for existing gaps or 

drawbacks. A case analysis is also conducted based on an EREV model to share its 

market performance, and the economic potential of the EREV platform (including 

material cost and TCO) is compared against other types of vehicles.  

3. Before designing and testing any EMS for the EREV, detailed models of the 

vehicle body and powertrain should be constructed to improve its applicability. The 

Battery model can be used to estimate battery SOC, capacity, cell temperature and 
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SOH; the APU model consists of transient Fuel-to-Watt conversion rate from the 

BSFC map.  

4. The energy consumption and total cost of ownership analysis are conducted on a 

specific logistics van model. The analysis focuses on searching for the optimal 

energy economy of the APU and battery for short driving cycles and long term 

usage. A global optimization strategy using the DP algorithm is developed to search 

for optimal APU operation points while the battery charging rate is limited within 

6C.  Minimum fuel consumption is guaranteed to show the fuel potential of this 

vehicle platform. In addition, a battery degradation simulation is performed to study 

the long term usage over the whole vehicle lifespan. The final TCO results can 

guide the prosumers on selecting the cost&eco-friendly logistics vehicle for future 

industry.  

5. Further research is established on the basics of the last chapter using the same 

mathematical model of the ERLV. Different from the previous DP algorithm, this 

approach introduced the RL algorithms to achieve real-time control ability with 

continuous action space outputs. The state-of-the-art algorithm, SAC, is adopted 

with a multi-target learning framework to achieve the balance of fuel consumption, 

maintaining battery SOC level and battery SOH. The maximum entropy method 

helps the model seek better APU operation points with faster speed and wider 

exploration. The control performance of the algorithm beats DDPG with a 3% 

average boost in fuel consumption.  

6. An ERLV equipped with the novel scoke yoke engine mechanism is studied, 

considering the energy potential and applicability. Two engine prototypes with 

different engine capacities are being compared with two unique APU charging 
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strategies. Results show that the 1.6 L engine prototype remained shut down at 82.6% 

of the time for over 200 km; an extra 6.8% of the fuel was saved thanks to holding 

the engine at its optimal fuel point. In general, both of the Scotch Yoke engines 

achieve high fuel efficiency with a lightweight design compared with the traditional 

engine, demonstrating great potential to spare more internal space and TCO 

spending for practical application. 

7.2 Future research 

In light of the favourable fuel efficiency and TCO comparison, the ERLV structure 

can be considered one of the possible options for the logistics market. [71] Future 

research topics based on what this thesis has explored are suggested as follows: 

1. Engine emission simulation can be added to the system, and it can be used as one 

of the multi-targets to optimize the emission level. Multi-condition optimization for 

engine emission control is also worth studying, to distinguish the APU performance 

based on the operating area (rural, urban or special areas). 

2. HIL and rapid prototyping tests of the EREV platform can be conducted to test 

the average fuel consumption and engine stability. The reliability of the RL-based 

strategies is expected to be verified in road tests with real-world conditions. 

3. The control strategies can be redesigned for the Fuel-cell EREV platform, as the 

characteristics of the fuel-cell system vary considerably from those of combustion 

engines. 

4. Combine the RL strategies with the developing autonomous driving technology 

through internal Ethernet to the onboard signal processing switch and controllers. 
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5. Deploy more advanced control strategies on the regenerative braking system and 

multi-speed transmission to improve the overall energy efficiency, and employ the 

proposed strategies to power-split or any improved hybrid vehicle type. 

6. The future APU control strategy can be extended utilizing the V2X technologies. 

For instance, the estimated travel distance, number of the nearby petrol/charging 

stations, traffic conditions and driver behaviour perception can be integrated as 

inputs of the EMS. The above actions will bring operational flexibility to the future 

strategy. 

7. The range extended system can be further installed on heavy vehicles, long-duty 

transport vehicles, agricultural vehicles and even motor-drive boats/ferries to 

improve their energy efficiency and exhaust emission. 
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