
Some Thoughts on Designing Eye Movement Studies

for Novice Programmers
Raymond Lister

School of Computer Science
University of Technology, Sydney

Sydney NSW Australia
Raymond.Lister@gmail.com

ABSTRACT
I first describe my three-stage model of how novices understand
code. In the first stage, the novice cannot trace code. In the second
stage, the novice has mastered tracing, but, crucially, that is the only
skill they have mastered. It is only when novices reach the third
stage that they begin to reason about code in a more general,
abstract way. Most programming instructors mistakenly assume
that all students begin at the third stage. Having described the three-
stage model, I then explore implications of the model for the design
of eye movement studies. I also provide some pieces of code that
would make for interesting eye movement studies.

CCS CONCEPTS
Social and professional topics → Computing education

KEYWORDS
Novice programmers. Eye movement. Eye scanning.

ACM Reference format:
Raymond Lister. 2022. Some Thoughts on Designing Eye Movement
Studies for Novice Programmers. In Proceedings of the Tenth Workshop on
Eye Movement in Programming (EMIP 2022). ACM, New York, NY, USA,
8 pages.

1 INTRODUCTION
My twenty years of studying novice programmers has been driven
by one simple research question: What code-related skills precede
code writing? Here, I will not give a detailed account of how those
twenty years unfolded. Such an account can be found elsewhere [4,
5] and that account will in turn lead any interested readers to the
papers I wrote over those years.

In this paper, I will begin by summarizing the results from my
twenty years of research on novice programmers. I will then make
some suggestions on the design of eye movement studies of novice

programmers, based upon that research. Finally, I present some
pieces of code I have used in my research which I believe might
produce interesting results in an eye movement study.

2 TRACING CODE AND EXPLAINING CODE

2.1 Tracing Code
The Leeds Working Group collected data from over 600
introductory programming students, spread across 12 institutions in
7 countries [1]. The working group found that most students in the
participating institutions could not trace code reliably. That is,
given some code and either input data or initial values for the
variables, most students at the end of their first semester of learning
to program could not reliably manually execute (or “desk check”)
the code using pen and paper.

2.2 Explaining Code
Shortly after the Leeds Group, participants in the BRACElet project
set out to answer a question that followed obviously from the Leeds
Working Group study – apart from tracing, are there other
precursor skills to code writing? To address that question,
BRACElet introduced a new type of question, to explore if students
could read and understand code. Figure 1 provides an example of
such a question. This new type of question was called the “Explain
in Plain English” question. In retrospect, this was a poor choice of
name; “Explain in Plain Language” would have been better. In this
paper, I will use an even simpler name, “explanation question”.

 In plain English, explain what the following segment of Java
 codes does:

 bool bValid = true;

 for (int i = 0; i < iMAX-1; i++)
 {
 if (iNumbers[i] > iNumbers[i+1])
 bValid = false;
 }

Figure 1. The first explanation question studied in the
BRACElet project [2, 14].

__

Accepted Manuscript.

EMIP '22, May 2022 R. Lister

While it is not obvious in Figure 1, students were not being
asked to provide a line-by-line description of the code. Instead,
students were expected to provide a summary of the overall
computation performed by the code. For the code in Figure 1, a
suitable explanation would be something like “it checks to see if
the array is sorted”.

The first two papers published by BRACElet [2, 14] described
the results and conclusions from this first round of work by
BRACElet. One of the results was that students who gave a suitable
answer to the explanation question in Figure 1 tended to perform
better on a code writing task. In the conclusion of one of those first
two BRACElet papers [2], we speculated:

In our view, students who cannot read a short piece of
code and describe it … are not intellectually well
equipped to write similar code.

2.3 Tracing + Explaining  Writing
BRACElet participants then went on to empirically study the
relationship between tracing, explaining, and writing code. They
found that code tracing questions alone did not correlate well with
student scores on code writing, nor did explanation questions alone
correlate well with student scores on code writing. However, the
combination of student scores on code tracing and code explaining
did correlate well with code writing [6].

The graph in Figure 2 is from a subsequent study by the
BRACElet project, which confirmed the relationship between code
tracing, code explaining and code writing [13]. As shown in that
figure, a combination of student scores on tracing and explaining
tasks accounted for 66% of the variance in student scores on code
writing tasks. The two ovals in Figure 2 highlight that no student
who performed poorly on the combination of tracing and
explaining performed well on code writing, and no student who
performed well on the combination of tracing and explaining
performed poorly on code writing.

3. A THREE STAGE MODEL
Further work led me to propose a three-stage model of the
development of novice programmers [3]. In my early papers on the
three-stage model, I used names for each stage that were based on
neo-Piagetian theory – sensorimotor, preoperational and concrete
operational. However, I found those neo-Piagetian stage names
troubled many people, so I have since adopted new stage names,
used below, but the characteristics of each stage are unchanged
from my early papers that used the neo-Piagetian names.

3.1 Stage 1: Pre-Tracing
In the initial pre-tracing stage, novices cannot reliably trace code.
There are several reasons why novices can struggle to even trace
code. Perhaps the best-known reason is that novices at this stage
have misconceptions of how programs work. For example, a novice
might think that the assignment statement “x = y” entangles those
two variables so that any subsequent update to one variable also
updates the other variable. See appendix A of Juha Sorva's thesis
for a catalogue of over one hundred misconceptions [9].

Figure 2. A graph from Venables, Tan and Lister (2009). Some
details of the original graph, such as the axis scales, have been
omitted here, for simplicity.

When novices at the pre-tracing stage are required to write code,
they exhibit a haphazard approach, or they resort to Cargo Cult
Programming [15], or Voodoo Programming [18], where they copy
at least part of the solution from other sources, such as books or
websites, without truly understanding the code they copy. If the
problem given to such a novice is small, they may stumble their
way to a solution, or at least to a buggy partial solution, but have
no real understanding how the code works. Many experienced
teachers will have had the experience of asking a student why they
have placed a particular line of code in their program, which is often
a superfluous or bizarre line of code, and the student cannot offer a
reasonable explanation for why they have that line. Voodoo
Programming is an especially apt term, because for the pre-tracing
novice a line of code can be a mysterious, magic spell.

When a teacher sees a student trying to program this way, the
most common response is to tell the student to not copy code, and
to write code in a more principled way. However, to do so is to treat
the symptom, not the underlying problem. The student in the pre-
tracing stage is yet to learn to reason about code in a principled
way.

3.2 Stage 2: Tracing (inductive)
By the second stage, the tracing stage, the novice has a sufficiently
coherent and systematic understanding of code that the novice is
capable of reliably tracing code. However, and crucially, the tracing
stage novice often cannot abstract beyond the code itself. The only
way that a tracing stage programmer can reason about a piece of
code is by induction; that is, by tracing the code. When attempting
to explain what a piece of code does, the tracing stage programmer
(1) generates a set of initial variable values, (2) traces the code, and
then (3) attempts to infer the function of the code by comparing the
initial and final values.

Tracing stage novices tend to use that same inductive approach
when attempting to write and debug their own code, in a process
sometimes called “programming by permutation” [16], or “shotgun

Some Thoughts on Designing Eye Movement Studies EMIP '22, May 2022

debugging” [17]. That is, the tracing stage novice will often trace
their buggy code with specific values, and then make what is often
a myopic patch. That patch may “fix” the code for the specific
initial values just used in the trace, but the patch may not address
the general bug. Tracing stage novices may make a series of such
myopic patches, without abstracting to a general understanding of
the fundamental problem with their code

Perhaps the primary contribution of the three-stage model is the
explicit identification of the tracing stage. For teachers who are not
aware of the literature on code explanation, it can be difficult to
accept that some students who can trace code cannot also reason
about code in a more abstract way. Consider, for example, Thomas,
Ratcliffe, and Thomasson [11], who wrote the following after
trying to help their novices to make effective use of diagrams:

Providing ... what we considered to be helpful diagrams
did not significantly appear to improve their
understanding ... This was completely unexpected.
We thought that we were 'practically doing the question
for them'. [p. 253]

As with the previous stage, when a teacher sees a tracing stage
student trying to program this way, the most common response is
to tell the student to write code in a more principled way. Once
again, however, to do so is to treat the symptom, not the underlying
problem. The tracing stage student is not capable of writing code in
a more principled way.

In this paper, I will not describe the neo-Piagetian theory
underlying the three-stage model. Consequently, the reader may
doubt the existence of the tracing stage, or at least be skeptical that
a novice can remain in the tracing stage for a protracted period. For
more about the neo-Piagetian aspects of the three-stage model, see
earlier papers by me [3, 4, 5] and see the collection of papers in
Donna Teague’s thesis-by-publication [10] for case studies of
novices in the tracing stage.

3.3 Stage 3: Post-Tracing (deductive)
It is only at the third stage, the post-tracing stage, that a student
begins to reason about programs the same way as their teacher. That
is, post-tracing stage novices, like their teachers, begin to reason
about code deductively, by simply reading the code, and/or by
relating code to diagrammatic representations of operations on data
structures. This is the stage when a novice can explain code just by
reading it. It is also the stage where novices begin to show a
coherent, purposeful approach to writing code.

The principal factor underlying the decades-long tradition of
poor outcomes in the teaching of programming has been the false
assumption by teachers that novices begin at the third stage, or that
novices skip quickly from the pre-tracing stage to the post-tracing
stage. This false assumption leads teachers to talk about code in
abstract terms before their students are ready to understand code in
abstract terms.

3.4 Overlapping Waves
From the above description of the three stages, the reader might
incorrectly infer that novices progress through the stages in a
quantum-like way, working at one stage before suddenly making a

leap to the next stage. In this paper. I initially described the
development of the novice programmer as three distinct phases to
keep the introduction of these ideas simple, but the reality is more
complex, as novices exhibit an evolving mix of the three stages.
This concept of “overlapping waves” of stage progression is
illustrated in Figure 3.

Figure 3. The Concept of Overlapping Waves.

In the early period of learning to program, the novice transitions
progressively from pre-tracing to tracing as the novice steadily
eliminates misconceptions and becomes more systematic about
conducting a trace with pen and paper.

The progressive transition from tracing to post-tracing occurs as
the novice steadily acquires programming plans, often called
“schemas”. See chapter 4 of Sorva’s thesis for a review of schemas
in a programming context [9]. A novice programmer who is
primarily at the tracing stage has not acquired many programming
schemas, so such a novice relies heavily on their tracing skill to
reason about code. As the novice acquires more schemas, the
novice relies more on those schemas to reason about code, and less
on tracing. When the novice becomes primarily reliant on reasoning
via schemas, and only occasionally resorts to tracing, the novice
has reached the post-tracing stage.

4. SOME THOUGHTS ON EYE MOVEMENTS
I now present some thoughts on the implications of my three-stage
model for eye movement studies of novices answering code
explanation questions. Central to my thinking is the belief that the
most interesting novice to study with eye movement data is the
novice in transition from the tracing stage to the post-tracing stage.

4.1 Pre-test for Code Tracing Ability
I doubt that studying eye movement data will reveal anything new
about the misconceptions of the pre-tracing novice. I therefore
suggest a short test of tracing skill to screen-out pre-tracing novices
from an eye movement study.

An exception to this suggestion might be the case where your
interest is in developing a tutoring system that can use eye
movements to assess the current developmental stage of a novice,
but I suspect having novices trace simple pieces of code is a more
direct and effective means of detecting the pre-tracing novice.

EMIP '22, May 2022 R. Lister

4.2 Explicitly Test Code Writing
The goal is to have novices learn to write code. Consequently,
studies of explanation questions should try to connect eye
movement data to code writing ability. It has been common practice
to characterize novices by how much programming experience they
have (e.g., number of weeks of learning to program). These are
noisy proxies for estimating code writing ability. I think we need to
test novices more directly and precisely on their code writing
ability, by giving them one or more specific code writing tasks.

4.3 Study Multiple Explanation Questions
I think a comprehensive eye movement study with explanation
problems needs to present each novice with several explanation
problems of varying difficulty.

4.4 Ignore Explanations Derived by Induction
The novices who are in transition from the tracing stage to the post-
tracing stage will attempt to answer some of the explanation
questions by deduction (i.e., simply reading the code) and some
questions by induction (i.e., by tracing). I am skeptical that eye
movement data is useful when a novice answers a question by
induction, since such a novice will (1) systematically look at lines
of code in the order the lines are executed, and (2) will avert their
eyes from the code for much of the time, to record changing
variable values on paper.

One option is to simply forbid the participating novices from
resorting to tracing. I think that option is problematic as it will lead
to guessing and there is probably little value in the eye movement
data of a novice who has guessed.

Another option is to allow novices to trace if they wish (without
communicating any discouragement to them), but then discard their
eye movement data for that question and focus on the eye
movement data for each novice on each explanation question where
the novice has answered by deduction.

I know that participants can be hard to recruit, and eye
movement data is expensive to acquire, so researchers conducting
an eye movement study will be reluctant to accept my
recommendation and discard any eye movement data. However, if
the novice of interest to you is the same type of novice of interest
to me – the novice in transition from the tracing stage to the post-
tracing stage – then eye movement data from other types of novices
adulterates the data from the interesting novices.

While I find most interesting the novice in transition from the
tracing stage to the post-tracing stage, it is legitimate to study less
advanced novices. Perhaps my recommendation can be framed
neutrally, as follows – either (1) be explicit about the type of novice
you want to study, and screen out other types of novices, or (2)
collect data from all types of novices but analyze separately the data
for each type of novice.

4.4 What to Compare?
Figure 4 shows some options for comparing the eye movement data
from novices on a specific explanation question. In that figure, it is
not clear what it means for a novice to have answered a “low” or
“high” number of explanation questions correctly by deduction. I
leave it to anyone who conducts an eye movement study to

disambiguate “low” and “high” for themselves. In Figure 4, the
comparison of most interest to me are the novices who fall into the
top right quadrant or the bottom right quadrant. That is, of most
interest to me are the novices who answered most of the full set of
explanation questions correctly, by deduction, but who split into
those who answered a specific question correctly (bottom right
quadrant) and those who did not answer correctly (top right
quadrant). Also of interest to me are the novices who fall into the
bottom left quadrant or the bottom right quadrant; that is, novices
who answered a specific question correctly, but who split into those
who scored high on the full set of explanation questions and those
who did not.

Figure 4. Options for Comparing Novices.

Recall that, earlier in this paper, I advocated testing all the
participating novices on one or more specific code writing tasks. It
would also be interesting to compare the eye movement data of
novices who split into those who scored high on the writing tasks
and those who did not.

4.4 Have the Novice Think Aloud
Donna Teague’s thesis [10] is full of interesting insights elicited by
having students think aloud [12] as they solved programming
problems, including explanation questions. I think it would be
interesting to link eye movement data with what novices were
saying as they worked on an explanation question.

4.4 Cast Your Net Wide
Prior to collecting eye movement data, I suggest trialling potential
explanation questions on many novices, then collecting eye
movement data just for those explanation questions on which
novices gave interesting or surprising answers. Some interesting
and/or surprising explanation questions have already been
identified in the published literature.

5. SOME EXPLANATION QUESTIONS
The explanation questions presented below elicited interesting
and/or surprising results from a set of twelve explanation questions
studied by Pelchen and Lister [8]. These explanation questions
were given to a class of several hundred students as part of an exam
at the end of their first semester of learning to program. The code
of all questions was Java, but the questions can easily be translated
into many other languages.

Some Thoughts on Designing Eye Movement Studies EMIP '22, May 2022

5.1 Sum All the (Positive) Values in an Array
The code for two explanation questions is shown in Figure 5. In
one of the explanation questions, all the code in Figure 5 is used,
and a suitable explanation for that code is “it sums all the positive
numbers in the array”. I shall refer to that question as “PosSum”.
In the other explanation question, the shaded line of code in Figure
5 is omitted (i.e., the line beginning if) and a suitable explanation
for that code is “it sums all the numbers in the array”. I shall refer
to that question as “Sum”.

Figure 5: The Code for Question “PosSum”, which sums all
Positive Values in an Array (i.e., including the shaded line)

and Question “Sum”, which Sums all Values in an Array (i.e.,
without the shaded line).

The PosSum question was first used by Murphy et al. [7]. Those
authors reported a surprising feature of their novices’ answers:

... a common mistake was to respond that the code
summed all the elements of the array. In making that
mistake, students ignored the if statement within the loop
– to do so is an egregious error.

Pelchen and Lister found that some of their students made that
same “egregious” error. Pelchen and Lister asked their students to
explain both the PosSum code and also the Sum version. For the
Sum version, 83% of their students answered correctly. However,
only 70% of all the students answered PosSum correctly. Among
the students who account for that 13% difference, most answered
that PosSum summed all the values in the array.

If a student provides a correct answer for Sum and the same
answer again for PosSum, then the student is certainly not taking
into account the one line of code that differs between Sum and
PosSum. But why would such a student ignore that single line of
code? Eventually, after much pondering, I realized there was a flaw
in my thinking – could it be that such a student ignored (or at least
paid little attention to) more than just that one line of code? I was
then led to the following conjecture: such a student pays most
attention to just two lines of code, which occur in both Sum and
PosSum. One of the lines is the print statement, which establishes
that it is the value in z that is outputted. The other is the line in the
loop body where z is updated. That conjecture leads me to offer the
following question for an eye movement study:

• Research Question: Among students who answer question
Sum correctly, are there eye movement differences between
those students who answer PosSum correctly and students
who answered incorrectly that PosSum sums all values?

If it proves to be the case that some students are correctly
answering Sum while paying little attention to most of the code,
then Sum is a less valid question than PosSum for establishing that
a student truly understands the code.

When collecting eye movement data for this research question,
I offer two minor recommendations on method: (1) Do not ask Sum
and PosSum consecutively, and (2) perhaps do not use the variable
names x and z in both questions.

5.2 Counts Identical Values in Two Arrays
Figure 6 shows code where a correct explanation for that code is
something like “it counts the numbers of values that occur in both
arrays”. A note similar to that at the top of Figure 6 was provided
to students.

Pelchen and Lister reported that 54% of students answered this
question correctly. That approximately half the students answered
this question correctly was a surprise to me, as this was the longest
piece of code presented to the students, and one of the most difficult
algorithms. On reflection, however, it is my conjecture that students
probably only had to carefully read the lines in Figure 6 that are
shaded. Given the use of a variable named count and the
outputting of that variable’s value at the end of the code, a student
could easily infer that the purpose of the code was to count
something. In addition, the variable count is incremented at only
one place in the code, immediately after the if condition that tests
whether an element in one array is equal to an element in the other
array. This conjecture leads me to the following research question:

• Research Question: Among students who answer this
question correctly, how much of the code do they actually look
at closely?

This is not a clear research question; I leave it to the reader to
quantify “look at closely” in terms of eye movement data.

When I wrote this explanation question, I elected to use a
meaningful variable name, count. Some readers might prefer to
instead use a meaningless variable name. Also, I elected to run the
scan of the arrays “backwards”, from high index values to low
index values. Doing so is probably unnecessary and readers might
prefer to rewrite the code to scan in the conventional direction.

If it proves to be the case that some students are correctly
answering this question while paying little attention to most of the
code, then this is not an explanation question where a correct
answer establishes with confidence that a student truly understands
the code. However, there are two ways of modifying this code that

int z = 0;

for (int i=0 ; i<x.length ; ++i) {

 if (x[i] > 0)

 z = z + x[i];

}

System.out.println(z);

EMIP '22, May 2022 R. Lister

Figure 6: Code that Counts Identical Values in Two Sorted
Arrays. Arrows indicate possible changes for harder

questions.

might lead to a better explanation question. One modification
would be to move the increment of count from its current location
to the body of the second if condition. In Figure 6, this movement
of the increment of count is indicated by the upper of the two
arrows. The code would then count the number of values that occur
in one of the arrays but not in the other array. The other possibility
is to modify the code even further, adding a second increment of
count which is executed when none of the if conditions are true
(i.e., it is added to the final else block). In Figure 6, this copying
of the increment of count is indicated by the lower arrow. With
that modification, the code then counts the number of values that
occur in array x1 but not in x2, or in x2 but not in x1. As either
of those modified forms of the code are, I suspect, more difficult
than the original code, my intuition is to retain the meaningful
variable name, count and run the array scans in the conventional
“forward” direction.

5.3 Prints the Largest of Three Values
Figure 7 shows code for a question where a suitable explanation for
the code is “it prints the largest value stored in the three variables
a, b and c”. Pelchen and Lister reported that 78% of their students
answered this question correctly, making it the easiest question of
the twelve explanation questions they presented to students.

Figure 7: Code that Prints the Largest of Three Values.

What makes this an interesting question for an eye movement
study is that Thomas Pelchen (private communication) noticed that
some students provided a strange incorrect answer; an answer like,
“It prints out the largest value stored in the four variables a, b, c
and d” – but the code does not have a fourth variable called d!

 My conjecture is that the students who gave this strange answer
did not read all the code. Instead, after reading the first 3 to 5 lines
of code, they correctly guessed that the code was finding the
maximum value, but in their subsequent quick scan of the rest of
the code, they counted a total of four output statements and thus
incorrectly inferred that the code contained four variables. This
conjecture leads me to the following research question:

• Research Question: Are there eye movement differences
between the students who only mention variables a, b and c
in a correct answer, and students who mention the phantom
variable d?

In the past, when I have presented the code in Figure 7 at

seminars and conferences, it has sometimes been put to me that the
code shown in Figure 8 is a better way to code how the largest of
the three values can be found. Even if that is true, it doesn’t alter
the point that some students have trouble correctly explaining the
code in Figure 7. It might be interesting to conduct a study where
students have to explain the code in both Figure 7 and Figure 8. If
anyone does such a study, I recommend that the code from one of
these figures is not presented to a novice immediately after the other
piece of code is presented.

Note: In the code below, x1 and x2 are arrays of any
length, the elements in each array are sorted in ascending
order (i.e., from smallest to largest), and no number occurs
more than once in the same array.

int i1 = x1.length-1;
int i2 = x2.length-1;

int count = 0;

while ((i1 >= 0) && (i2 >= 0))
{

if (x1[i1] == x2[i2])
{
 ++count;

 --i1;
 --i2; (move)
}
else
if (x1[i1] < x2[i2])
{
 --i2;
}
else (copy)
{
 --i1;
}

}

System.out.println(count);

if (a < b) {
 if (b < c)
 System.out.println(c);
 else
 System.out.println(b);
}
else {
 if (a < c)
 System.out.println(c);
 else
 System.out.println(a);
}

Some Thoughts on Designing Eye Movement Studies EMIP '22, May 2022

Figure 8: Alternate Code for Printing the Largest of Three
Values.

5.4 Searching for a Value in an Array
Figure 9 shows code for a question where a minimally suitable
explanation for the code is “It searches the array for the value in
variable x”. The interesting aspect of this question is that students
can provide answers satisfying several criteria:

• The code searches the array for the value in x. (80%) An
answer like this is the minimally acceptable answer.

• Returns the position of the search value in x. (70%)
• Returns -1 if the search value is not found. (54%)
• Returns the last position if the search value occurs more than

once. (24%)

In the above list, each percentage in parentheses is the
percentage of students who satisfied that criterion in the Pelchen
and Lister study.

Figure 9: Code that Searches for a Value in an Array.

Given that student answers can satisfy differing criteria, I am
led to offer the following research question:

• Research Question: Do students who provide answers
satisfying differing criteria have different eye movements than
the students who just give the minimal answer?

When data is collected, I suspect there will only be minor
differences in eye movements. Perhaps the students who provide a
minimally acceptable answer will attend less to the first three lines
of code and focus instead on the body of the for loop and the
return statement. But for the students who provide more
elaborate answers, I suspect the differences between them are less

in the movement of their eyes and more in the movement of their
"mind's eye" (i.e., their thinking). This conjecture by me about what
may or may not be seen in eye movement data illustrates a more
general issue with eye movement data – it only tells us what the
student looked at; not what the student was thinking while they
looked. The most definite result eye movement data can possibly
ever give is what a student did NOT look at, and therefore could
not possibly have thought about.

5.5 Checking If an Array is Sorted
Recall the explanation question from Figure 1. A minimally correct
explanation for that code is “It checks if the array is sorted”.
Pelchen and Lister reported that 59% of their students answered this
question correctly.

This code is worthy of an eye movement study because of its
place in the literature on code explanation questions. It was the first
such question studied [2, 14] and it is probably the most often
studied code explanation question.

As with the previous explanation question, I think the issue here
is whether the differences between students who get this question
right or wrong will be differences in the eye movements or
differences in the movement of the mind’s eye. However, perhaps
novices who get this question right will spend more time looking at
the line commencing with if.

6. CONCLUSION
An exam paper is like a Turing test – we ask the students some
questions and then evaluate whether any genuine thought lies
behind the answers. However, the data from both Turing tests and
programming exams can be ambiguous. In some of the code
explanation questions presented in this paper, we have seen how a
novice might correctly guess what the code does without having a
genuine understanding of the code. Asking students to think-aloud
as they read and write code has elicited some insight into how
novices understand programs and program-writing, but much about
the novice programmer remains a mystery. Eye movement studies
have the potential to throw further light on the enigma that is the
novice programmer.

I hope the insights from my 20 years of research are useful to
those who in the future will collect and study the eye movement
data of novice programmers. I look forward to reading the results
from those future eye movement studies, especially for the
explanation questions I have included in this paper.

ACKNOWLEDGMENTS
I thank Teresa Busjahn for her comments on a draft of this paper (but all
mistakes are mine). I thank my many collaborators who, over the years,
studied with me code tracing and code explanation. I especially thank Tony
Clear and Donna Kingsbury (formerly Donna Teague). I suspect it was John
Hamer who suggested the code used in the first explanation question and if
that suspicion is right, I thank him for his intuition. I also thank my partner,
Ilona Box, for her support, her patience, her ideas, and her companionship.
Finally, I thank Connie, Sam and Lulu, for their love and their patience, if
not their understanding.

if (x < y) {
 t = y
else
 t = x

if (t < z) {
 t = z

System.out.println(t);

int q (int data[], int x) {

int z = -1;

for (int i=0; i < data.length; i++)
{
 if(data[i] == x)
 z = i;
}
return z;

EMIP '22, May 2022 R. Lister

REFERENCES
[1] Raymond Lister, Elizabeth S. Adams, Sue C. Fitzgerald, William Fone, John

Hamer, Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate E
Sanders, Otto Seppälä, Beth Simon, Lynda A Thomas (2004). A Multi-National
Study of Reading and Tracing Skills in Novice Programmers. SIGSCE Bulletin,
36(4), 119-150. https://dl.acm.org/doi/10.1145/1041624.1041673

[2] Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L. Whalley, Christine
Prasad (2006) Not seeing the forest for the trees: novice programmers and the
SOLO taxonomy. ACM SIGCSE Bulletin 38 (3), 118-122.
https://dl.acm.org/doi/10.1145/1140124.1140157

[3] Raymond Lister (2011). Concrete and Other Neo-Piagetian Forms of Reasoning
in the Novice Programmer. Thirteenth Australasian Computer Education
Conference, Perth. https://dl.acm.org/doi/10.5555/2459936.2459938

[4] Raymond Lister (2016) Toward a Developmental Epistemology of Computer
Programming. Keynote paper/address at Workshop in Primary and Secondary
Computing Education (WiPSCE), Münster, Germany, 13 - 15 Oct 2016. pp. 5-16.
https://doi.org/10.1145/2978249.2978251

[5] Raymond Lister (2020) On the cognitive development of the novice programmer:
and the development of a computing education researcher. Keynote
paper/address at the 9th Computer Science Education Research Conference
(CSERC '20). pp. 1–15. https://doi.org/10.1145/3442481.3442498

[6] Mike Lopez, Jacqueline L. Whalley, Phil Robbins, Raymond Lister (2008)
Relationships between reading, tracing and writing skills in introductory
programming. Fourth International Workshop on Computing Education
Research (Sydney, Australia, September 6 - 7). ICER '08. ACM, New York, NY,
101-112. https://dl.acm.org/doi/10.1145/1404520.1404531

[7] Laurie Murphy, Sue Fitzgerald, Raymond Lister, and Renée McCauley. (2012).
Ability to 'explain in plain english' linked to proficiency in computer-based
programming. In Proceedings of the ninth annual international conference on
computing education research (ICER '12). ACM, New York, NY, USA, 111-118.
http://doi.acm.org/10.1145/2361276.2361299

[8] Thomas Pelchen and Raymond Lister. 2019. On the Frequency of Words Used in
Answers to Explain in Plain English Questions by Novice Programmers. In
Proceedings of the Twenty-First Australasian Computing Education Conference
(ACE '19). Association for Computing Machinery, New York, NY, USA, 11–20.
DOI:https://doi.org/10.1145/3286960.3286962

[9] Juha Sorva. 2012. Visual program simulation in introductory programming
education. (Doctoral dissertation). Aalto University, Espoo, Finland. ISBN
(printed) 978-952-60-4625-9. https://aaltodoc.aalto.fi/handle/123456789/3534

[10] Donna Teague. 2015. Neo-Piagetian Theory and the Novice Programmer. Ph.D
Thesis. Queensland University of Technology.
http://eprints.qut.edu.au/86690/1/Donna_Teague_Thesis.pdf

[11] Lynda Thomas, Mark Ratcliffe, Benjy Thomasson. 2004 Scaffolding with object
diagrams in first year programming classes: some unexpected results. SIGCSE
Bull. 36, 1, pp 250-254. http://doi.acm.org/10.1145/1028174.971390

[12] Maarten W. van Someren, Yvonne F. Barnard, and Jacobijn A.C. Sandberg
(1994). The Think Aloud Method: A Practical Guide to Modelling Cognitive
Processes. Academic Press.

[13] Anne Venables, Grace Tan, Raymond Lister. 2009. A Closer Look at Tracing,
Explaining and Code Writing Skills in the Novice Programmer. International
Computing Education Research Workshop (ICER), Berkeley, California, August
10-11, 117-128. http://doi.acm.org/10.1145/1584322.1584336

[14] Jacqueline L. Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil
Robbins Phil, P K Ajith Kumar, Christine Prasad. 2006. An Australasian study of
reading and comprehension skills in novice programmers, using the bloom and
SOLO taxonomies. Proceedings of the 8th Australasian Conference on
Computing Education, 243–252.
https://dl.acm.org/doi/pdf/10.5555/1151869.1151901

[15] Wikipedia. 2022. Cargo cult programming.
https://en.wikipedia.org/wiki/Cargo_cult_programming [Accessed March 2022].

[16] Wikipedia. 2022. Programming by permutation.
 https://en.wikipedia.org/wiki/Programming_by_permutation [Accessed March
2022].

[17] Wikipedia. 2022. Shotgun debugging.
https://en.wikipedia.org/wiki/Shotgun_debugging [Accessed March 2022].

[18] Wikipedia. 2022. Voodoo programming.
https://en.wikipedia.org/wiki/Voodoo_programming [Accessed March 2022].

https://dl.acm.org/doi/10.1145/1041624.1041673
https://dl.acm.org/doi/10.1145/1140124.1140157
https://dl.acm.org/doi/10.5555/2459936.2459938
https://doi.org/10.1145/2978249.2978251
https://doi.org/10.1145/3442481.3442498
https://dl.acm.org/doi/10.1145/1404520.1404531
https://aaltodoc.aalto.fi/handle/123456789/3534
http://eprints.qut.edu.au/86690/1/Donna_Teague_Thesis.pdf
http://doi.acm.org/10.1145/1028174.971390
http://doi.acm.org/10.1145/1584322.1584336
https://dl.acm.org/doi/pdf/10.5555/1151869.1151901
https://en.wikipedia.org/wiki/Cargo_cult_programming
https://en.wikipedia.org/wiki/Programming_by_permutation
https://en.wikipedia.org/wiki/Shotgun_debugging
https://en.wikipedia.org/wiki/Voodoo_programming

