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Abstract— Water utilities across the globe are concerned with the
inspection and replacement of buried metallic water pipes due
to corrosion-related structural damages. Internal pipe linings are
commonly used as a renewal method to improve structural strength
as they are regarded to be a less expensive alternative to costly and
time-consuming pipe replacements. However, linings are also prone
to failure as well. Therefore, water authorities regularly monitor
lining performance, where defect evolution over a long period of
time is an important parameter to note. It requires an accurate
in-pipe robot localization technology. In this article, we propose
a novel method for in-pipe robot localization and tag mapping
that uses battery-free UHF-RFID sensor wireless signals. It utilizes
a signal mapping approach in combination with a tailored pose-
graph simultaneous localization and mapping algorithm. Evalua-
tion results of a field-extracted pipe sample from Sydney Water’s
distribution network show the proposed approach is capable of
localizing the robot within 2.5cm accuracy in a 50m equivalent pipe
with an unknown UHF-RFID distribution. The proposed approach
outperformed other reported similar work in the literature.

Index Terms— Sensor applications, battery-free sensors, infrastruc-
ture sensing, UHF-RFID sensors, pipe sensing, pipe robotics, infrastructure robotics, robot localization, robot perception,
field robotics, SLAM.

I. INTRODUCTION

Many cities around the world experience greater inci-
dences of water and wastewater pipe leaks and breaks,
both of which cause significant economic, social, and en-
vironmental damage [1]–[3]. This is exacerbated by ageing
assets and hence timely monitoring of them is essential
for identifying faults and determining the most effective
ways of renewal [4]. CIPP (Cured in Place Pipe) [5] or
spray techniques [6] are widely utilized in the "lining"
process, which is a popular form of renewal. Despite the
fact that a variety of robotic technologies are available for
the condition assessment of host pipes [7], [8], they do not
provide critical information about the quality of the liners
and their long-term performance. Common defects of liners
are folds, bulges, wrinkles, dimples, thickness variations,
etc. [9]–[12]. Post-application condition assessment of liners
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improves the confidence in the application whereas long-
term monitoring can identify defects that can potentially
lead to pipe failures. Currently, it is accomplished through
the use of CCTV technology, either based on subjective
visual analysis or through the experience of an operator.

Laser profiling and ultrasound technology are two exam-
ples of emerging technologies that can be used to monitor
the quality of water pipe linings. The improved solution
for laser profiling that we proposed in our previous work
[12], [13] has the capability of taking measurements with
millimeter-level accuracy. When it comes to reconstruction
in the radial direction, the solution is effective and efficient.
However, it has limitations as a result of longitudinal errors
accumulating over time and distance when encoder-based
localization is employed. This is particularly unacceptable
in the context of long-term defect monitoring, where it is
necessary to correlate a specific defect across multiple de-
ployments occurring at different time intervals. Flying and
floating robots are not meant for encoder-based localiza-
tion. Due to the inherent visual feature changes caused by
the application of liners, emerging corrosion patches, and
possible alien buildups, popular outdoor localization meth-
ods such as visual SLAM become infeasible in underground
pipeline infrastructure. This necessitates the development
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of an alternative and more efficient contact-less localization
method.

There are many different wireless technologies and al-
gorithms are being researched for use in indoor and out-
door environments [14]–[19]. The use of radio-frequency
identification (RFID) localization technology has produced
reasonable localization results for indoor and outdoor en-
vironments [20]–[25]. Therefore, we attempted to use RFID
in in-pipe environments. They also have other benefits,
such as cost-effectiveness and the ability to measure var-
ious environmental conditions inside pipelines, such as
temperature, moisture, and acidity levels, by embedding
them as liner embedded sensing technologies [26]–[28].
Temperature is a good proxy for liner curing, moisture can
indicate leaks, and acidity level is a corrosion indication.
As a versatile sensor, RFID has numerous advantages in in-
pipe applications. Unfortunately, there hasn’t been much
research on subsurface pipeline robot localization utilizing
RFID sensors as of yet. This could be owing to the appli-
cation’s intrinsic complexities. Unlike RFID localization in
outdoor or indoor applications, the highest peak of signal
intensity is not always referring to the most likely location
of the RFID tag [29], [30]. The pipe surface behaves like
a waveguide causing the signal inside to bounce leading
to various peaks and ripple effects in the signal strength
[31], [32]. Furthermore, commercial off-the-shelf (COTS)
RFID readers offer erratic measurements, only capable of
accurately localizing the RFID tag within a square meter
area [33], making the process difficult and unique.

The Gaussian process combined particle filter local-
ization methodology using UHF-RFID signals has been
proposed in our previous research [31], [32], [34], and it
takes advantage of both Received Signal Strength Indica-
tor (RSSI) and Phase data values to improve accuracy. It
works well with known RFID distribution maps (RFID tag
locations are known), and it has millimetre-level accuracy
when using known RFID distribution maps. In practice,
however, the premise of the availability of an accurate RFID
distribution map, to begin with, is less practical than it
appears in theory. As a result, we present in this study an
RFID localization system that employs a signal mapping
approach in combination with a customized simultaneous
localization and mapping algorithm which does not require
the RFID distribution map to be known as a priory. The
main contributions of this paper are briefly elucidated as
follows:

1) Development of an in-pipe robotic prototype for si-
multaneous localization and mapping with a custom
measurement model using dual-antenna UHF-RFID
RSSI signal cross-correlation.

2) The system can be deployed from any location within
a pipe to travel in either direction while building
RFID tags location maps and localizing the robot
simultaneously with approximately 2.5 cm accuracy.

3) The system works independently without the aid
of any other odometry system and requires only a
training data set acquired in a laboratory pipe sample.
It does not require any specific field calibration.

4) Demonstration of the superiority of the proposed
localization by comparing it with industry standards
and relevant localization approaches reported in the
literature.

The rest of this article is structured as follows: Section
II formulates the SLAM problem, while Section III formu-
lates the pose graph optimization and UHF-RFID signal
mapping. Section IV describes the RSSI cross-correlation
matching and Section V presents the experimental results.
Section VI concludes the article by summarizing the key
outcomes while briefing the intended future work.

II. SIMULTANEOUS LOCALIZATION AND MAPPING

The conventional Pose-Graph optimization problem
solver [35]–[37] has been used to localize the robot inside
the pipeline with respect to the UHF-RFID measurements
received from the sensor model. The motion model of the
robot’s movement along the pipe can be defined as in (1):

xr
t = g

(
ut , xr

t−1

)+ωt (1)

where xr
t is the one dimensional position of the robot along

the axis of the pipeline at time instance t , ut is the input
given to the robot at time instance t , g is a nonlinear
function for state transitions, and ωt is random Gaussian
distributed noise where ωt ∼ N (0,Rt ).

Following that, the UHF-RFID (landmark) measurement
model of the robot can be defined as in (2):

zi
t = h

(
xr

t , xi
)
+υt (2)

where zi
t is the UHF-RFID measurement from the UHF-

RFID tag landmark i at the time t , xi is the UHF-RFID RSSI
measurement of the landmark i , h is a nonlinear measure-
ment model, and υt is random Gaussian distributed noise
for measurement where υt ∼ N (0,Qt ). The robot only senses
UHF-RFID tags that are closer to the robot. Therefore, for
some time indices t , there can be no measurements.

The conventional pose-graph optimization problem [35]
cost function can be defined as in (3):

J = xr T
0 Ω0x0

+
τ∑
t

(
xr

t − g
(
ut , xr

t−1

))T R−1
t

(
xr

t − g
(
ut , xr

t−1

))
+

τ∑
t

I∑
i

(
zi

t −h
(
xr

t , xi
))T

Q−1
t

(
zi

t −h
(
xr

t , xi
))

(3)

where x0 is the initial state of the robot, R−1
t is the

covariance of motion noise and Q−1
t is the covariance

of measurement noise. Signal cross-correlation is used to
estimate the distance from the robot to an RFID tag.
The uncertainty values returned from the signal cross-
correlation mapping are used as the covariance of Q.
Motion model-related uncertainty was tuned based on the
performance. Ω−1

0 is an information matrix. In this matrix,
the off-diagonal elements are all zero other than between
any two consecutive robot poses or any element between a
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map feature and a robot pose, if a map feature was observed
by the robot at that time instant. Entries relating to pair
of features are zero. τ is the number of time steps for the
robot, and I is the number of features. The defined problem
in (3) can be solved as an optimization problem using (4).

x∗ = ar g mi n
x

J (x) (4)

where x is given as

x =
[

xr
0:τ

x0:I

]
(5)

Using numerical methods, this optimization problem has
been solved iteratively to compute the gradient.

III. POSE GRAPH OPTIMIZATION WITH RFID SIGNAL
MAPPING

The robot trajectory path estimations and the UHF-
RFID sensor (landmark) location estimations need to be
simultaneously optimized. Therefore, UHF-RFID RSSI signal
measurements need to be incorporated into the optimiza-
tion problem. This has been achieved by incorporating the
RSSI signal st into the pose-graph optimization problem in
equation (3) with an additional cost function φ that denotes
the inconsistency of the signal measurements along the
pipe traverse. The updated equation is defined as in (6):

J = xr T
0 Ω0x0

+
τ∑
t

(
xr

t − g
(
ut , xr

t−1

))T R−1
t

(
xr

t − g
(
ut , xr

t−1

))
+

τ∑
t

I∑
i

(
zi

t −h
(
xr

t , xi
))T

Q−1
t

(
zi

t −h
(
xr

t , xi
))

+
τ∑
t
φ

(
t ,xr

0:τ,s0:τ
)T P−1

t φ
(
t ,xr

0:τ,s0:τ
)

(6)

where xr
0:τ is the robot positions along the pipe, s0:τ is the

RFID signal measurements along the pipe, and Pt is the
covariance of the measurement model noise. Function φ

can be defined as in (7):

φ
(
t ,xr

0:τ,s0:τ
)= y

(
t ,xr

0:τ,s0:τ
)− f

(
t ,xr

0:τ,s0:τ
)

(7)

where y is a function that calculates the distance between
matching points of the signal s, and f is a function that
calculates the distance between matching points in the
estimations of x.

IV. RSSI SIGNAL CROSS-CORRELATION MATCHING

Let
[

xr
p1,sp1

]
be the training data collected from the

robot at the initial deployment in the lab pipe environment,

and
[

xr
p2,sp2

]
be the data received from the robot during

the localization task. Before performing cross-correlation,
the equal number of comparison data points are generated
with data interpolation. Let the new sets of points be[

xr
q1,sq1

]
,
[

xr
q2,sq2

]
where

[
xr

1,s1
]

and
[
xr

2,s2
]

be the subsets
of points. the normalized cross-correlation coefficient γ

between the two sets of data can be calculated using (8).

γ=
∑

x
(
s1(x)− s1

)(
s2(x)− s2

)√∑
x
(
s1(x)− s1

)2 ∑
x
(
s2(x)− s2

)2
(8)

For each window, when the signals are aligned properly,
the difference (Euclidean distance) between the signals is
calculated using (9) as a confidence η parameter for later
use in the optimization.

η= 1∑
x (s1(x)−s2(x))2 (9)

The final confidence parameter ϵ is calculated using the
results of both (8) and (9) as in (10).

ϵ= ((1+γ)η)2 (10)

where best matching poses can be filtered by setting a
threshold value to the calculated ϵ. The corresponding
poses that represent the filters s1 and s2 are added to the
cost function (7) where measured distance and expected
distance given by (11) and (12).

yt = 0 (11)

ft = x̃r
1 − x̃r

2 (12)

where x̃r
1 and x̃r

2 are the corresponding poses when s1 and
s2 signals are matching signals. The signal mapping process
depends on the many numbers of poses in xr

0:T , which can
be a heavy computational cost. Therefore, the signal noise
covariance Pt has been used as inversely proportional to
(γ×η), so that stronger matches effectively weight the cost
function in (3).

V. EXPERIMENTS & RESULTS

A. Development of an In-pipe Robotic Prototype for
SLAM

The developed in-pipe robotic system and two-layer
system architecture utilized are shown in Fig. 1 and Fig.
2.

1) Hardware Developments: The RFID unit mounted on
top of the robot has been built using commercially available
off-the-shelf (COTS) components. Thingmagic M6e Micro-
LTE UHF 2 port RFID reader module with embedded
developer kit has been used to implement the proposed
system. Two 915MHz General Purpose Panel RF Antennas
in the 902MHz to 928MHz range with 5.5dBi gain were used
as the receiver antennas. The two antennas are directed
in the travel direction of the robot. It can be analogously
similar to a stereo camera system. UHF-RFID Tag type
A and B discussed in [31] has been used to conduct
experiments. An industry standard infrared laser distance
sensor with 80m range, and 1mm accuracy has been used as
the robot’s location ground truth. When the robot is moving
forward, the distance to the object is decreasing and hence
the laser-based distance to the object. Even though laser
localization is quite accurate, in order to perform laser-
based localization, the pipe needs to be straight, so that the
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Fig. 1: An in-pipe mobile robot integrated with two UHF-
RFID reader antenna.

laser pointer can be focused from the robot to an object at
the end of the pipe during the whole journey. Underground
pipelines are not perfectly straight, and the robot can
have pan and tilt movements causing the laser pointer to
incident on pipe surfaces rather than the end of the pipe
object causing localization errors. Although the laser system
is cheap, it is not practical to use it as a general localization
method in this application. In our experiments, the laser
localization is used only for a shorter pipe length to create
the measurement model and finally compare the accuracy
of localization by using it as the ground truth. In order to
compare the performance with the standard wheel encoder-
based odometry, a calibrated, industry-standard 2400 pulses
per revolution rotary encoder has been used to record the
odometry by attaching it to the robot wheel. The Jetson
Nano Developer kit board with a Quad-core ARM 1.43 GHz
CPU, and 4 GB 64-bit LPDDR4 RAM was used as the central
processing unit to run the implemented system. The whole
hardware system was assembled inside an enclosure and
mounted on the robotic platform, miniPIRO as shown in
Fig. 1.

2) Software Developments: The software components
were implemented with the Robot Operating System (ROS)
framework to gain the flexibility to modularize each com-
ponent and to gain cross-language software support. Each
individual component has been implemented as ROS node
to communicate with each other effectively. UHF-RFID-
related components are implemented in Python as they
are supported by the open source Python Mercury API
library. To gain more structure and flexibility to implement
the algorithms, the core integration has been implemented
as C++ components. The laser distance sensor that tracks
the odometry of the robot has been implemented with
Arduino components. As the diagram elaborates, the UHF-
RFID component receives the RSSI and Phase data signals
from the robot and publishes the data to the receiving

Fig. 2: In-pipe robot system architecture.

components. In the training phase, the location mapper will
combine the data with robot odometry data that is received
from the laser data publisher node. The collected data will
be stored as measurement data maps for later use in signal
mapping. In the localization phase, the data received from
the robot is mapped with the measurement model using
the signal correlation algorithm. Based on the generated
confidence value, the probabilities of robot location and tag
locations are calculated within the SLAM algorithm for each
UHF-RFID tag signal. Finally, using these calculated values,
the highest probability of the robot localization and UHF-
RFID tag locations are published to the location publisher
node, which is displayed in RVIZ like location visualizer
systems.

B. Data collection, Data Modeling and Signal Mapping

Tethered heavy crawler robots are not preferred to be
deployed in pipes with corners and bends as they tend
to tangle or tear the tether. In practice, most of the water
pipe inspections of medium-sized pipes (300mm − 900mm
diameter pipes) are carried out over shorter distances (less
than 500m) and they are reasonably straight. In medium-
sized non-traversable sewer pipes (900mm - 1500mm diam-
eter), manhole to manhole deployments is generally carried
out, ranging from 100 − 300 meters. In Sydney, they are
generally straight pipe sections, which led us to simplify
the localization problem. However, in pipe environments
with possible bends, this system can be modified with an
IMU sensor and/or prior knowledge of network drawings
to deal with the changes in orientation.

Data for training the measurement model was collected
by placing UHF-RFID tags in the middle of the side wall of 5
meters long, 600-millimeter diameter pipe section. Accord-
ing to our previous studies [32] all tags perform similarly,
and RFID tags did not interfere with each other. The closer
the RFIDs were packed, the more the measurements were
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Fig. 3: Testbed setup for data collection and in-pipe robot
localization validation.

Fig. 4: First 10 segments of the measurement model. RSSI
(dB) for each UHF-RFID sensor tag is plotted against the
robot travel distance (m).

received. Having more measurements in the training model
will help with the accuracy, however, it is costlier and time-
consuming. Therefore, it should be a compromise between
the required accuracy and time/cost. Next, we run the robot
from one end to the other end, collecting the RSSI signal
patterns for each tag along the pipe that maps to the robot’s
location to generate the measurement model. The robot’s
accurate location (ground truth) was determined using the
laser distance measurement unit. For the test data, the
robot was deployed 10 times inside the 5m pipe placing
previously measured UHF-RFID tags approximately 1 meter
apart from each other, and in each deployment, we attached
new sets of tags (in a total of 50 different tags were used)
that mimics approximately a 50m long UHF-RFID pipe scan
(Fig. 3). RSSI data relating to the first 10 UHF-RFID tags is
shown in Fig. 4.

The robot is deployed in the pipe section, where the
UHF-RFID locations are unknown. Fig. 5 shows an example
result of the RSSI signal mapping for a given UHF-RFID
tag and for a given antenna. The top graph shows the
measurement model signal that maps the laser distance
reading to the signal pattern. The middle graph contains
the received signal data (note the x-axis scale differences)
that needs to be aligned with the measurement model
to estimate the travel distance. The bottommost graph
shows the results of mapping the received signal to the
measurement model signal, which leads to correlating the
data points with distance values.

C. In-pipe Robot Localization and UHF-RFID Mapping
Robot localization accuracy calculated based on laser

system is shown in Fig. 6. Fig. 7 shows the mean error graph

Fig. 5: Signal cross-correlation mapping between the mea-
surement signal and the received signal.

Fig. 6: In-pipe robot SLAM performance (robot speed at
0.1m/s). The comparison of the SLAM location with respect
to the groundtruth location.

where it has an initial slightly poor performance. It is due
to a lack of received UHF-RFID signal data points, however,
it improved significantly within the first 3 meters. This can
be alleviated by adding several RFIDs at the beginning of
the pipe section.

It is to be noted that the currently used hardware can only
receive data at an approximate 50Hz rate. Therefore, the
density and the quality of the received signal data depend
on the robot’s speed. Higher robot speeds lead to larger
errors as shown in Fig. 8. Fig. 9 shows the UHF-RFID signals
received from the two antennas while travelling inside the
pipelines.

D. Performance Evaluation
Performance of the proposed algorithm was compared

with industry standard, commonly used encoder odometry
based robot localization (OD) and also with the Gaussian
process combined particle filter based two antenna model
localization method (GPPF2) we have proposed in our
preliminary research work [31], [32].

As in Fig. 10, the GPPF2 shows higher accuracy, however
it requires the exact locations of the RFID tags to be
known. The proposed SLAM approach managed to achieve
a slightly lower accuracy without any knowledge of the RFID
tag distribution.
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Fig. 7: The Whiskers plot graph consists of 20 sets of trials
with random movement noise.

Fig. 8: In-pipe SLAM performance at different speeds of the
robot.

Fig. 9: UHF-RFID sensor tag signal mapping results at 7.5m.

Fig. 10: Particle filter vs. SLAM performance comparison.

Fig. 11: Particle filter vs. SLAM performance vs. encoder
odometry comparison.

Fig. 12: Laser profile localization evaluation - UHF-RFID
vs. Encoder.

Fig. 11 shows the comparison between the proposed
SLAM, GPPF2 and OD. It shows error caused by the ac-
cumulated drift of the odometry based localization.

Fig. 12 shows the end results of a 50m pipe deployment.
A physical mark on the crown of the pipe has been used
to correlate the localization errors. It is clearly seen that
the OD localization is 0.817 meters away from the ground
truth. The GPPF2 with known RFID locations perfectly
aligned with the ground truth with an insignificant (0.001m)
deviation. The proposed SLAM localization aligns within
0.021m. Therefore, the most practically effective solution is
the proposed UHF-RFID SLAM.

Table I summarizes the comparison results. The local-
ization methods proposed in this journal show competitive
accuracy compared with results for other methods reported
in the literature. Two typical conventional localization
methods [18], [19] show around 31cm and 27cm accuracy;
two methods employing two UHF-RFID antennas in recent
studies [20], [21] for outdoor and indoor localization show
around 50cm and 6cm accuracy; and an in-pipe localiza-
tion method proposed by [28] shows approximately 25cm
accuracy. The UHF-RFID SLAM proposed in this journal
exhibits superior accuracy of 2.5cm inside pipelines.

VI. CONCLUSION AND FUTURE WORK

This article presents the development of battery-free
UHF-RFID sensors based SLAM for in-pipe robotic local-
ization.
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Method

Position
error
Mean
(mm)

Position
error

Std. dev.
(mm)

A sparse RFID tag
distribution method in [19]

271 113

Motion-continuity property
of the differential-driving
mobile robot method in [18]

310 139

Bayesian filter
and a variable power RFID
model proposed in [20]

500 200

Localization combining
phase difference of double
antennas proposed in [21]

59 36

Localization approach using
IMU, gyro, and the leak
sensors proposed in [28]

250 Not Given

Encoder based method 833 214
Proposed GP based PF
method in [34]

1.8 1.62

Proposed SLAM method 23.3 3.8

TABLE I: Performance comparison with existing localiza-
tion methods.

A mobile robotic prototype which is capable of navigating
in pipes with diameters ranging from 450mm to 650mm was
developed. A signal cross-correlation mapping technique in
combination with a customized simultaneous localization
and mapping algorithm was developed to estimate the
location of the robot. It was tested up to a 50m long
pipeline using a sample pipe taken from the Sydney water
underground pipe network.

The findings demonstrated that the proposed approach
is capable of localizing the robot with an accuracy of
approximately 2.5cm while using UHF-RFID tag locations
that are unknown. The effect of robot traverse speed on
localization accuracy was investigated using a series of
experiments. According to the experimental findings, faster
speeds result in more errors since the number of data points
received is reduced as a consequence. One way to improve
the accuracy is to deploy RFIDs at shorter intervals

Larger pipelines like the ones reported in this study
are generally consisting of straight line sections. Hence
the localization is mostly one-dimensional and accurate
enough for the application. Pipes are made of metallic
cast iron and act as a Faraday cage, hence Electromagnetic
interference to RFID signals is negligible.

The initial cost estimate for a robotic system with an
RFID dual antenna system costs $1250. For the RFID tags,
it costs approximately $4 per meter. The encoder-based
systems require neither the antenna cost which is $100
each nor the RFID tags cost, while it cannot produce the
accuracy required for the application. Cost may be a factor
to consider in making decisions about using the system.
However, considering the millions of dollar budget allocated

for condition assessment of pipes, this is a reasonable cost-
effective solution. When compared with current literature
and the most extensively used industry standard, encoder-
based localization strategy, the proposed method outper-
formed in terms of accuracy.

In the future, we intend to test the technology in longer
pipe sections under a variety of environmental circum-
stances when COVID constraints have been lifted. The re-
search may be further developed in order to produce a more
generalized signal model for enhancing the deployment ef-
ficacy of UHF-RFID tags by studying the signal repeatability
characteristics of the UHF-RFID tags themselves.
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