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A Novel UHF-RFID Dual Antenna Signals Combined with Gaussian
Process and Particle Filter for In-pipe Robot Localization

Amal Gunatilake , Sarath Kodagoda , and Karthick Thiyagarajan

Abstract— Condition assessment of underground infrastruc-
tures such as pipe networks is crucial for aging cities around
the globe. Recent development of robotic technologies facilitated
application of them in condition assessment of pipe networks.
However, there is still a gap for accurate localization technology
in pipes due to complexity of the environment. In this letter, we
propose a novel ultra-high frequency radio frequency identifi-
cation (UHF-RFID) technology dual antenna system combined
with Gaussian process and Particle filter algorithms to achieve
millimeter level localization accuracy. The system is capable of
achieving millimeter level accuracy over 50m of length without
an apparent estimation drift. The results were validated through
experiments conducted using an extracted water pipe section.

Index Terms— Automation Technologies for Smart Cities;
Robotics and Automation in Construction; Robotics in Haz-
ardous Fields; Field Robotics; Infrastructure Robotics; Local-
ization;

I. INTRODUCTION

P IPELINES transporting drinking water from treatment
facilities or wells to customer’s taps are found in mil-

lions of kilometers of length throughout the world. Overtime,
the pipes can degrade due to a combination of factors such
as pipe material, size, age, water quality, surrounding soil
conditions and pressure zones [1]. Regular inspections are
proven to be effective in early detection and intervention
[2]. Majority of the water mains are small in size (less than
600mm diameter), where human entry is not possible, and
for larger pipes, entering them is a health and safety risk.
Therefore, water utilities use a variety of robotic technolo-
gies [3]–[8] to detect degraded regions. Once discovered,
expensive pipe replacements are generally carried out (in
Australia, it ranges from $400/m for small pipes to $4000/m
for large pipes [9]). Application of lining technologies as
a cost effective renewal method is often utilized. However,
they themselves require monitoring over long periods of time
for deterioration. Monitoring defect evolution requires an
accurate in-pipe localization method, which is addressed in
this paper due to the requirement of defect correspondence
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in multiple deployments and estimating accurate longitudinal
defect sizing.

In-pipe robot localization through wheel odometry is in-
accurate due to wheel slips associated with water puddles
and build ups, and inherent drifts [2]. Dead reckoning
techniques based on inertial measurement units (IMUs) that
employ magnetometers have limitations due to surrounding
metallic structures, and use of accelerometers/gyroscopes is
challenging due to lack of agility, inherent drifts and sensor
biases [10]. The length of the deployed tether is commonly
used for in-pipe robot localization as reported in [11] while
[12] attempts to integrate IMU data with tether cable encoder
data for in-pipe localization. These technologies can provide
approximate robot localization, which can be reasonable
for many applications. However, they fail to achieve the
accuracy required for the application focused in this paper.
The GPS does not work in in-pipe environments due to lack
of visibility of satellites. Use of visual odometry techniques
utilizing stereo cameras [13], monocular cameras [14], RGB-
D sensors combined with machine learning algorithms [15]
and monocular fish-eye cameras [16] for in-pipe robot local-
ization have also been reported in the literature. However,
in the context of liner applied pipes, there are very limited
discernible features. Further, the application of liners alters
the visual features. Ultrasound sensor based localizers [17]
reported limited applications in metallic pipes.

Therefore, researchers are exploring alternative sensing
modalities such as UHF-RFID, which has further advan-
tages of measuring temperature and humidity conditions
[18]–[21]. The technology is targeted at new or newly

renewed pipes. Even large water utilities such as Sydney
Water Corporation’s annual renewal length is limited to a
2km distance. Tag installation can be selectively done, for
example in crucial and difficult to access areas (middle of
a city). Therefore, it is feasible to install UHF-RFID tags
(as part of the liners or as tags embedded in new pipes) in
identified crucial assets to monitor performance. Generally,
renewed assets can last for 20 years and these tags are
expected to last longer. The pipe infrastructure deterioration
rate is very slow and hence inspections are generally less
frequent.

RFID localization has been explored by many researchers
in achieving indoor localization [22]–[26] and outdoor local-
ization [27]–[30] with promising accuracy. However, these
methods are not readily transferable into metallic pipes as
they have unique challenges due to RFID signal behaviors
[9], [31] causing multiple signal peaks.

In our previous work, we reported the use of a single UHF-
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RFID antenna coupled with a Gaussian Process combined
with a particle filter approach to achieve up to 15cm of accu-
racy [9]. However, the defect evolution monitoring requires
a millimeter level of accuracy, and hence, the need for our
further research work. Use of RFID dual antenna systems
to improve localization accuracy for indoor and outdoor
applications has been previously reported [24], [29], [30].
Therefore, in this letter, an attempt was made to achieve bet-
ter localization accuracy by integrating a dual antenna system
with a Gaussian Process and Particle filter based algorithm
with an improved measurement model and improved signal
processing. Further, the letter illustrates in-depth technical
attributes of our work with extended experiments carried out
to validate the results. The main contributions reported in
this letter are:

1) Firstly, in-pipe localization problem was formulated as
a particle filter combined with a Gaussian process (GP)
using the UHF-RFID dual antenna system.

2) Secondly, use of a dual antenna system with both RSSI
and phase data improved localization to millimeter
level accuracy when compared with that of a single
antenna system which had centimeter level accuracy.

3) Thirdly, experiments carried out on an extracted buried
water pipe with a robot integrated dual UHF-RFID
antenna system show the effectiveness of the proposed
localization technology.

The remainder of this letter is structured as follows:
Section II presents the development of an in-pipe robot
system. Section III formulates the problem. In Section IV,
we present the experimental results, while in Section V, we
summarize the key outcomes and future work.

II. IN-PIPE ROBOT SYSTEM DEVELOPMENT

Robotic development can be explained through the hard-
ware and system architecture as shown in Fig. 1.

A. Hardware

Dual UHF-RFID antennas were mounted on the robot
as shown in Fig. 1a. Both receivers were 915MHz general
purpose panel RF antennas in the 902MHz to 928MHz range
with 5.5dBi gains. An industry standard infrared laser dis-
tance sensor with 80m range at 1mm accuracy has been used
as the localization ground truth. For comparison purposes,
a standard wheel encoder with 2400 pulses per revolution
has been used. Jetson Nano Developer kit board with Quad-
core ARM 1.43 GHz CPU, 4 GB 64-bit LPDDR4 RAM
was used as the central processing unit. The robotic crawler
shown in Fig. 1a is 200mm wide, and 300mm tall with a
height extendable platform, which can be deployed in most
underground water pipelines above 0.3m in diameter. Based
on our previous research work [9], "Tag A" type UHF-RFID
tags were used and deployed inside the side surface of the
pipe aligned longitudinally to the pipe axis as shown in Fig.
2.

B. Software

We utilized the Robotic Operating System (ROS) frame-
work, with individual components being implemented as
ROS nodes. Figure 1b describes the nodes and their interac-
tions with reference to multi-hardware and software systems.

III. PARTICLE FILTER BASED IN-PIPE ROBOT
LOCALIZATION

Use of particle filters for UHF-RFID based localization
is not uncommon due to its capability of handling complex
observation models [29], [32]–[35]. Particle filter can also be
combined with Gaussian process to improve non-liner mod-
eling process [36], [37]. Let xt be the robot’s location at time
t and zt related to both RSSI and phase signal measurements
received at time t. The process and observation models can
be defined as follows:

xt = g(xt−1, ωt) (1)
zt = h(xt, vt) (2)

where g and h are known functions. Recursive form with
sequential estimates of distribution states at time t − 1 can
be expressed as below.

p(xt|z1:t) ∝ p(zt|xt)

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1

(3)
where, p(xt|xt−1) and p(zt|xt) are probability distributions,
and ωt ∈ Rdu and vt ∈ Rdv denote white-noise independent
of each other. To filter the sequential estimates of distribution
at time t − 1, N number of particles are generated and
distributed along the pipe section in the form of Xt−1 ={
x
(n)
t−1|w

(n)
t−1

}N

n=1
, where w

(n)
t−1 are the weights generated for

the particles. The distribution can be approximated as in (4).

p(xt−1|z1:t−1) ≈
N∑

n=1

w
(n)
t−1δ

(
xt−1 − x

(n)
t−1

)
(4)

where δ() is the Dirac delta function. Therefore, (3) can be
written as follows.

p(xt|z1:t) ∝ p(zt|xt)

N∑
n=1

w
(n)
t−1 p

(
xt|x(n)

t−1

)
(5)

Phase data is noisier than RSSI data which is handled
by introducing appropriate weights. For a given particle,
assuming that the RSSI and phase data are uncorrelated,
weight (w) is generated as,

w = mean

([∣∣∣∣[z∗gz∗h
]
−
[
zg
zh

]∣∣∣∣+ [ξ0
]]

×
[
c 0
0 (1− c)

])
(6)

where zg is the predicted RSSI measurement from the GP
model formulation in Section III-B that maps to the particle;
zh is the raw phase signal measurement from the model that
maps to the particle; z∗g and z∗h are the RSSI and phase
measurements received from the robot at a particular time;
ξ is the uncertainty that is derived from the GP; and c is a
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(a) (b)

Fig. 1: In-pipe robot system. (a) Robot integrated with two UHF-RFID reader antennas, and (b) System architecture.

normalization parameter capturing the different noise levels
of RSSI and phase values.

The GP models are learned for each UHF-RFID tag from
each antenna, the resulting predictions can lean towards over-
confident estimates. To prevent such a phenomenon, the
likelihood model is smoothed using (7):

p(zt[1:n]|xt) =

(
n∏

i=1

p(zt[i]|xt)

)γ

(7)

where γ is the smoothing coefficient lies between 0 and 1.

A. Particle Re-sampling

Let St−1 =
{{

x
(n)
t−1, w

(n)
t−1

}
, zt

}
be the state at (t − 1)

that contains a set of particles and weights. zt are the
measurements sensed by the robot at time t. The following
procedure is iteratively executed for i = 1, 2, ...n, where
St = ∅ is the new set and γ is the normalization factor for
weights:

• Sample index î from discrete distribution given by wt−1.
• Sample xi

t from p(xt|xt−1) using xî
t−1

• Reweight wi
t = p

(
zt|xi

t

)
• Update factor γ = γ + wi

t

• Update new states St = St ∪
{
xi
t, w

i
t

}
• Normalise weights wi

t =
wi

t

γ
for i = 1, 2, ...n

The steps in the particles have been calculated based on the
robot’s travel speed given by the central controlling system
(based on the tether encoder).

B. Gaussian Process Based Measurement Model

Function–space view modeling was used to
derive the GP, as described in [38]. Let S =
{(x1, y1), (x2, y2), ..., (xi, yi), ..., (xn, yn)} be the set
of noisy RSSI training data samples, where xi is the robot

position and yi is the corresponding RSSI value received
by the robot. The prediction model relating to the robot’s
location and the RSSI measurement can be learned in the
form of a function f as in (8):

yi = f(xi) + ϵ (8)

where ϵ is the zero mean Gaussian noise with a known σ2
n

variance. Since the robot is moving along the axis of the
pipeline, all input values xi and target yi values can be
aggregated into vectors x and y respectively.

The GP enables correlation of the RSSI signal strength
function values at different data points where the covariance
of f(xp) and f(xq) values depends on the robot location
input values of xp and xq . This relationship can be learned
in the form of a kernel k(xp, xq) to generate the training data
model. The squared exponential kernel is selected to learn
the non-linear regression problem, which is defined as,

k(xp, xq) = σ2
f exp

{
− 1

2β2
|xp − xq|2

}
(9)

where β and σ2
f are hyper-parameters. Covariance of the

GP is defined as,

cov(yp, yq) = k(xp, xq) + σ2
nδpq (10)

where δpq is either one or zero depending on p = q,
and σ2

n is the observation noise. For all robot locations, x
corresponding co-variance function of the observations y can
be defined as,

cov(y) = K+ σ2
nI (11)

K[p, q] = k(xp, xq) (12)

where K is the covariance matrix for all data inputs x.
Let x∗ be an arbitrary robot location, where the RSSI

signal strength needs to be estimated based on the function
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value f(x∗) from training data x and y. The posterior
distribution µx∗ and the associated uncertainty σ2

x∗
can be

calculated as in (13) and (14):

µx∗ = kT
∗
(
K + σ2

nI
)−1

y (13)

σ2
x∗

= k(x∗, x∗)− kT
∗
(
K + σ2

nI
)−1

k∗ (14)

where k∗ is a covariance vector from the matrix K for
corresponding input values. Further, hyper-parameters are
estimated by minimizing negative log marginal likelihood,

log p(y|x, θ) =

−1

2
yT
(
K + σ2

nI
)−1

y − 1

2
log |K + σ2

nI| −
1

2
log 2π

(15)

where θ =
{
σ2
n, β, σ

2
f

}
.

IV. EXPERIMENTS & RESULTS

This section presents a discussion on data collection,
analysis and performance.

A. In-pipe Robotic Data Collection and Processing
The use of tethered heavy crawler robots in pipelines with

curves and bends is discouraged since the tether tends to
tangle or rip. In fact, most water pipe inspections of medium-
sized pipe (diameters of 300mm to 900mm) inspections
are carried out over shorter lengths (less than 500m) and
are relatively straight. Manhole to manhole deployments are
common in medium-sized (900mm - 1500mm diameter) non-
traversable sewage lines ranging from 100 − 300 meters
and they are mostly straight pipe sections that simplified
the localisation problem. However, this technique may be
updated using an IMU sensor and/or prior knowledge of
network designs to deal with changes in orientation in pipe
settings with probable bends.

The robot equipped with dual UHF-RFID antennas (Fig.
2) was deployed in 5m long, 0.6m diameter cast iron cement
lined water pipe extracted from the Sydney Water pipe
network. The robot was deployed 10 times inside the 5m
pipe, and in each deployment we attached new UHF-RFID
tags (in total of 50 different tags were used) that mimic
approximately a 50-meter-long RFID pipe scan. It is an
approximation that we used due to the COVID restrictions
preventing us from using a longer pipe section to carry
out the experiments. The laser distance measurement unit
provided an accurate location of the robot (ground truth).

Learning a general GP model based on a single RIFD was
not successful due to significant variability of the intra-tag
data. Learning a general GP sensor model using all the UHF-
RFID tags was also inaccurate due to various concatenated
errors. Figure 5 shows the distance aligned RFID data which
seems scattered without showing a significant pattern making
it nontrivial to learn a model. This can be due to several
reasons including the effects of tag placements and the
pipe environment. In the current research, each RSSI signal
generated from different UHF-RFID tags from the different
antennas (Fig. 3) was trained with a separate GP model.
Figure 4 shows part of the training data of one antenna with
six tags.

Fig. 2: Robot inside a pipe.

Fig. 3: Training data sample.

Fig. 4: Gaussian kernel training for each UHF-RFID tag
signal.

Fig. 5: Single Gaussian kernel training for all received UHF-
RFID tags.
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Fig. 6: Single antenna performance vs double antenna per-
formance comparison.

Fig. 7: RSSI and Phase data measurement model perfor-
mance evaluation.

B. Number of antennas and signals

In this section, we investigated the effects of introducing
the dual antenna system. We found that the addition of
the dual antenna system contributes to a 20-fold location
accuracy improvement when compared with a single antenna
system, as shown in Fig. 6. Incorporation of phase data with
RSSI data contributes to 10-fold improvement of the robot
localization accuracy when comparing with RSSI data alone
as shown in Fig. 7.

C. RFID tag distribution

In this section, we present the robot localization errors
associated with tag distribution as sparsity is preferred due
to economical reasons. As shown in Fig. 8, the smaller
the inter tag distance, higher the localization accuracy. Inter
tag distance of 1m resulted in millimeter level localization
accuracy. Spacing of 2m, 3m gives rise to larger errors
(0.016m and 0.049m mean errors respectively). Therefore,
the utilities can choose the tag distribution based on the
accuracy requirements.

D. Number of particles and their distribution

In general, an increase in the number of particles con-
tributes to better localization accuracy, however, with an
increased computational burden (see Fig. 9). With the avail-
able limited on-board computing capability, it was decided

Fig. 8: Tag distribution performance comparison.

Fig. 9: Number of particles performance comparison.

that 300 particles as a reasonable compromise between the
localization accuracy and computational time.

Fig. 10 shows different particle distributions and related
performances. Spreading the particles within the whole pipe
section delayed the convergence. Therefore, knowing the
approximate start location, the particles were distributed
locally to improve the convergence speed.

E. Performance Comparison with other Localization Meth-
ods

Using all the above discussed improvements, a final mean
localization accuracy of 0.0018m was achieved with 0.0016
standard deviation. The Root Mean Square Error (RMSE) is
shown in Fig. 11. Figure 12 shows the whiskers plot for 20
sets of trials performed with 0.06m of white Gaussian noise
for the robot motion. The uncertainty variations along the

Fig. 10: Particle distribution performance comparison.
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Fig. 11: Particle filter performance. Mean error: 0.0018m

Fig. 12: Whisker plot of 20 sets of trials with 0.06m of white
Gaussian noise for the robot motion.

pipe in general are attributed to the quality of the UHF-RFID
tag, tag orientation, tag placement, pipe local conditions and
robot’s agile movement.

Table I shows the result comparisons of different lo-
calization methods for 50m travel distance. Although the
accuracy of the encoder is reasonable for some water industry
applications, error drifts significantly causing larger errors in
longer deployments. The nearest UHF-RFID tag localization
method used for outdoor and indoor localization produces
approximately 3m of mean error due to signal reflections
inside the metallic pipe. On the contrary, the proposed UHF-
RFID localization methods produce higher accuracy and
consistency along the pipe for longer distances, making them
very effective for the application.

Localization
method

Error
RMSE (m)

Error
Std dev (m)

Error
Max (m)

Encoder (error
accumulates
with distance)

0.404 0.413 0.817

Nearest tag
localization
without GP or PF

3.165 2.045 5.21

Single antenna
localization 0.015 0.007 0.022

Dual antenna
RSSI signal only 0.006 0.012 0.02

Dual antenna
RSSI + Phase
localization

0.0018 0.0005 0.0023

TABLE I: Localization methods performance comparisons
for 50m of pipe length.

Fig. 13: Laser profile localization tests - RFID vs Encoder.

Figure 13 shows the end of the 50m long run, 3D laser
profile alignments with the ground truth, encoder, and UHF-
RFID localization. As seen in the image, a mark on the
pipe crown was used to measure localization misalignment.
It can be seen that the encoder-odometry-based laser profile
is 0.817m behind the ground truth laser profile. The UHF-
RFID-localized laser profile has been perfectly aligned with
the ground truth laser profile, giving 1mm of accuracy. This
demonstrates the effectiveness of the proposed localization
approach for accurately aligning defects in laser profiles to
monitor their evolution.

V. CONCLUSION & FUTURE WORK

In this letter, we presented the development of a robotic
system that uses UHF-RFID signals to localize itself inside
underground pipeline infrastructure. The system is equipped
with two antennas and uses a Gaussian process combined
particle filter algorithm for accurate robot localization. The
accuracy of the robot localization has been further enhanced
by integrating RSSI and Phase shift data together in the
particle filter measurement model. The system was validated
in Sydney Water’s extracted drinking water pipe. The results
show that the proposed system is capable of localizing the
robot inside a pipeline with millimeter level accuracy, sig-
nificantly outperforming other methods. Finally, the solution
was evaluated using the reconstructed pipe laser profile data
showing the effectiveness of the methodology. In future, we
plan to address the inherent behavior of tags once embedded
in cement near metallic surfaces [39] and related localization
effects. Further, we plan to conduct experiments in longer
pipe sections in different pipe environments to study the
RFID tag signal repeatability behaviors and possibility of
developing a generalized GP model for improving the de-
ployment effectiveness.
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