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Abstract—This letter proposes a deep learning approach for non-destructively detecting concrete sub-surface boundaries
between corroded and non-corroded layers using ground penetrating radar (GPR). We utilised a finite difference time
domain technique to simulate GPR electromagnetic wave propagation on various concrete models mimicking corrosion
situations. Following that, a deep learning method based on convolutional neural networks was utilised to estimate the
bulk relative permittivity of the compound concrete structure, as well as a multilayer perceptron based method for clutter
removal through surface wave prediction. By estimating relative permittivity and removing clutter in GPR signals, the
proposed approach can reliably detect the sub-surface boundaries, which was demonstrated by the evaluation results.

Index Terms—Clutter removal, Concrete pipe corrosion, Convolutional neural network, Deep learning, Ground penetrating radar,
Infrastructure robotics, Infrastructure sensing, Multilayer perceptron, NDE, Relative permittivity, Smart sensing, Wastewater pipes.

I. INTRODUCTION

Globally, most civil infrastructure in old cities is ageing. Robots
are increasingly being used to inspect and renew them. Concrete
wastewater pipes are one kind of infrastructure where robots are
encouraged since human entry and inspection is too risky. Concrete
wastewater pipes age and get corroded [1], causing utilities to spend
millions on repairs and replacements [2].

Currently, predictive analytics models are used to indirectly predict
corrosion conditions based on multi-sensor monitoring [3]–[6]. This
technique, however, requires long-term monitoring of parameters
and does not provide a direct assessment of concrete corrosion;
furthermore, sensors may fail over time owing to unfavourable
environmental conditions [7]. Corrosion can be determined directly
by taking core samples [8] or through a drill resistance sensor [9].
But asset inspectors accomplish this manually, and measuring robots
have considerable issues related to stability, power requirements,
and remote operation. Furthermore, direct measurements cannot be
made when the pipe is too small for asset inspectors to enter and
inspect. Due to the limits of current technologies, we are working
on a non-destructive method for detecting corrosion.

In [10], we showed that Ground Penetrating Radar (GPR) is
capable of detecting sub-surface boundaries between corroded and
non-corroded concrete layers. When using GPR to estimate the depth
or thickness of a material, the relative permittivity, also known as
the dielectric constant, is crucial. One method of estimating relative
permittivity is hyperbola fitting, which is based on the shape of
the hyperbola generated in a GPR B-scan when a surface over a
metallic cylinder is scanned. However, this technique necessitates
the availability of a circular metallic object under the surface, which
must be apparent in the B-scan image, and there must be no air
gap between the sensor and the measuring surface. This is not the
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case in most test situations. Other methods for determining relative
permittivity include the reflection coefficient, refraction angles, and
the common mid-point theorem. They all need a clear reflection in
the B-scan image at a considerable depth below the surface [11].

Another issue with GPR scanning is the clutter in the received signal,
which may obscure valuable information. The direct antenna reflection
from the transmitter to the receiver (direct-coupling reflection), the
reflection of the top surface of the test object, and the ringing effect of
the radar signals all contribute to this clutter. Any relevant near-surface
reflections will be convoluted by direct coupling and surface wave
reflection, making GPR useless for obtaining information about near-
surface objects in a compound structure. For any particular antenna,
the direct coupling antenna reflection will have a constant waveform,
which may be readily eliminated by subtracting a previously collected
direct coupling A-scan from the test scan. However, eliminating the
surface reflection wave is non-trivial since it changes depending on
the surface characteristics. Background subtraction [10] is a popular
clutter reduction technique used in GPR testing. This technique
eliminates all repeated reflections in a given time frame, and its quality
is mostly determined by the sampling window’s width. Background
subtraction has the drawback of removing all repeated reflections
in a scan, which might include reflections from a material layer
or a lengthy fracture in a concrete structure at a consistent depth
under the surface. In previous studies [12]–[14], deep learning and
neural network based methods have been used to estimate GPR
traces using numerically modelled GPR antennas, provided that the
physical characteristics of the material under observation are known.

This letter proposes a deep learning approach for estimating the
bulk relative permittivity of the top layer of a compound material
and for filtering out (clutter removal) the direct-coupling (antenna
reflections) and the surface reflections from a GPR scan in order to
identify the concrete sub-surface boundaries. We have evaluated our
proposed method through Finite Difference Time Domain simulations
of GPR electromagnetic wave propagation data. The superiority of
this technique is that it retains all of the near-surface characteristics of
the scan and does not require the use of a surface coupled GPR sensor,
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Fig. 1: Simulation models. (a) The modelled GSSI 1.5��I antenna
[15], (b) Model 1, (c) Model 2, (d) Model 3.

which makes it more advantageous for in-pipe robotic inspections.

II. METHODOLOGY

A. Finite Difference Time Domain Simulation of GPR
Electromagnetic Wave Propagation

In this work, we use the open-source gprMax software [15]
to simulate electromagnetic wave propagation using a pre-built
numerical model of the GSSI 1.5��I GPR antenna, which is shown
in Fig. 1(a). This realistic Finite-Difference Time-Domain (FDTD)
method based 3D antenna model’s signals were validated with the
commercially available real GPR antenna [12]. The FDTD simulations
were done on three different models.

As shown in Fig. 1(b), Model 1 is made of a single piece of
concrete material with dimensions of 300<< × 250<< × 100<<,
and the GPR antenna is placed in the centre of the top side of
the structure. Scans were collected at heights ranging from 0<<
to 50<< above the top surface. A series of A-scans were acquired
for each model at intervals of 10<< as the antenna was moved
horizontally over the concrete surface. The target application for this
work is corrosion monitoring of sewer walls. In most situations, the
corrosion layer is soft, uneven, and mushy, presenting problems in
robotic sensing applications when the GPR antenna is in direct contact
with the surface; therefore, our approach is to maintain the GPR
antenna at a certain distance from the measuring surface during the
inspection procedure. As the GPR will be integrated with a floating
robot platform that moves erratically in response to wastewater flow
disturbances, it is non-trivial to maintain a stable distance between
the GPR antenna and the concrete surface. Therefore, we obtained
data at various heights in order to account for any possible change
in distances. This was done for relative permittivity (nA ) values of
the material ranging from 4 to 12 with 1-point intervals. Model 2 as
shown in Fig. 1(c) is made up of two layers, each with a different nA
value and depth of the first layer increasing from 5<< to 40<< with
5<< steps. The A-scans were obtained at varying heights identical
to Model 1 and the top layer’s nA value ranging from 4 to 12 between
each scan. The A-scans in model 2 contains the reflections from
the interface between two layers. Model 3 was developed similar
to Model 2, but it has embedded reinforcing bars (20<< diameter)
within the bottom layer, which is similar to a real concrete wastewater
pipe. The overall dimensions of Model 2 and Model 3 are similar
to Model 1. The nA values were chosen to reflect concrete nA ranges
from 4 (dry concrete) to 12 (fully saturated concrete) [16]. As training
labels, Model 1 collected surface reflection waveforms for various nA
values and heights, whereas Models 2 and 3 collected input features
for deep learning models.

For all the models, the environment was spatially discretized into
2<< cells in the x, y and z directions with a domain size of 640<< ×
148<< × 334<< surrounded by a Perfectly Matched Layer (PML)

(a) (b)

Fig. 2: Pre-processed GPR data. (a) The scaled binary image of an
A-scan, (b) The spectrogram image of an A-scan.

boundary region. The nA value of air and rebars in the simulation model
was fixed at 1. The conductivity of concrete, air and rebars was set to
0.042(/<, 0(/< and 1 × 107(/< respectively and the permeability
of concrete, air and rebars was set to 1, 1 and 100 respectively. The
3D simulations with the simulated antenna and concrete samples
were performed to mimic real-world wastewater concrete pipes.
During early testing, we performed all of the simulations with a
1<< resolution, after which we repeated all of the simulations
with a 2<< resolution. Both cases produced approximately similar
results; hence, we chose to continue with a 2<< resolution to keep
computational time minimum.

B. Pre-possessing of GPR Signals

Direct coupling and surface reflection waves are always present in
the initial part of an A-scan, which is followed by any sub-surface
reflections. Before performing any further pre-processing, the direct
coupling reflection was eliminated by removing a previously acquired
direct coupling antenna signal from all of the A-scans in the data set.
The simulation’s output A-scans contained 1558 data points with a
total time interval of 6=B. The first set of images were binary images
of each A-scan, which were created by plotting the signal and then
converting it to black and white images as shown in Fig. 2(a). The
spectrograms of each A-scan (Fig. 2(b)), which depict the spectrum
of the signal’s frequencies as they change over time, were the second
set of images. To decrease the computational burden during model
training and prediction, all of the images were resized to a 64 × 64
size. The output signal from the surface reflection prediction model
should closely correlate with the input A-scan, therefore, the input
A-scans were fed as a numerical array instead of images for surface
wave prediction. Before being fed into the model, the input A-scans
were down-sampled to 300 samples using decimation with an integer
factor.

C. Deep Learning Approach

In this study, we used two different deep learning techniques. The
first model uses a neural network architecture that is made up of two
convolutional neural network (ConvNet) branches, for estimating the
top layer’s nA . One ConvNet branch takes the A-scan binary image
as the input and the other takes the spectrogram image as the input.
The two branches are then concatenated producing fully connected
layers with Rectified Linear Unit (Relu) activation to form a multi-
input model. After feature extraction, the number of neurons in each
layer was determined heuristically. The output layer contains linear
activation estimates nA value. The deep learning model for estimating
nA is illustrated in Fig. 3.

The second model is for predicting the surface reflection waveform.
The predicted surface wave can be used to remove the surface
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Fig. 3: Relative permittivity estimation model. The numbers in the
blocks represent the number of neurons

reflections from a GPR scan without losing any useful near-surface
reflections of a scan. The surface reflection waveform prediction model
consists of two multilayer perceptron (MLP) branches. One of which
accepts the nA values as the input followed by two Relu activation
layers with 40 and 20 neurons respectively, while the other takes
the array of the pre-processed A-scan. The MLP branch accepting
the pre-processed A-scan signal begins with a Relu activation layer
with 600 neurons (twice the size of the input signal) followed by a
second Relu activation layer with 400 neurons. The two branches are
concatenated, forming 420 neurons, followed by a fully connected
layer with 400 neurons and linear activation at the output. The
output from this model is the predicted A-scan signal of the surface
reflection related to the input signal. The MLP branches consist of
fully connected input layers followed by hidden dense layers. The
ConvNet branches for image handling consist of convolution, relu
activation, batch normalisation, and max pooling layers. The deep
learning model for surface wave prediction is illustrated in Fig. 4.

Fig. 4: Surface wave prediction model. The numbers in the blocks
represent the number of neurons.

III. RESULTS

A. Relative Permittivity Estimation

Using data collected from the FDTD simulations, the nA estimation
deep learning model was assessed. Out of the 90,558 A-scans
collected, 80% of the data was used for training and 20% of the data
was used for testing. The test A-scan signals were first pre-processed
before being fed into the model. The model was evaluated using
18,110 randomly selected test data samples that were not involved
during the training process. The Adam optimizer with a learning rate
of 0.0001 was used to train this model with Mean Absolute Error
(MAE) as the loss function and a batch size of 32. The training was
done until the loss curve stopped improving. The estimated results
were plotted against the true nA values, which is illustrated in Fig.
5(a) that shows the effectiveness of the estimation. Fig. 5b shows
the frequency of occurrence of nA with respect to the absolute error
of prediction. Over 70% of the estimated results have an absolute
error of less than 0.25, and 99% of the predictions have an absolute
error of less than 1. The validation MAE was 0.19, which shows that
the accuracy of nA estimation is high for the proposed technique.

(a) (b)

Fig. 5: Relative permittivity estimation. (a) Estimated nA versus true
nAvalues and (b) Error frequency of occurrence.

Fig. 6: Comparison of the predicted surface wave with the test data.

B. Surface Wave Prediction

After estimating the nA of the test object’s top layer, we input this
estimated value, together with the original A-scan, into the surface
wave prediction model to obtain the A-scan of the surface reflection.
The model was trained using 72,448 data samples and evaluated
using 18,110 test data samples. The Adam optimizer with a learning
rate of 0.0001 was used to train this model with Mean Squared Error
(MSE) as the loss function and a batch size of 32. The training
was done until the loss curve stopped improving. The validation
MSE was 0.0013, which is quite low, indicating the accuracy of
the proposed model. Fig. 6 shows the comparison of the predicted
surface wave with the true surface wave for a few randomly selected
test data. Filtering out the direct coupling and the surface wave from
the original A-Scan of the test data results in an A-Scan signal with
clear reflections from only the sub-surface features and boundaries
in the test object.

C. Sub-surface Boundary Detection & Depth Estimation

The velocity (E) of GPR signals in the material can be determined
by E = 2

nA
using the estimated value of relative permittivity (nA ) and

the speed of light in a vacuum (2). The computed E can then be
used to calculate the depth (3) of a sub-surface boundary through
the equation 3 = E×)

2 , where ) is the two way travel time of the
boundary reflection, obtained using the filtered B-scan. A simulation
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Fig. 7: Evaluation of the concrete with sub-surface layers and a rebar.
(a) Simulator model to evaluate boundary and depth determination, (b)
Original B-Scan, (c) B-Scan filtered using conventional background
subtraction, and (d) B-Scan filtered using the proposed method.

was performed on a model resembling a concrete slab with one
reinforcing bar (rebar) and concrete corrosion on top represented by
two layers of different materials on the surface at a thickness of 20<<,
as illustrated in Fig. 7(a). A B-scan of the sample was generated by
collecting a series of A-scans at 2<< intervals with a fixed height of
5<< along the surface. The individual A-scans from the evaluation
model were fed into the two deep learning models to get the nA of
the top layer and the surface wave at every location of the scan.
The predicted surface reflection waveforms were subtracted from
each direct coupling removed A-scan of the scan data. The resulting
B-scan shown in Fig. 7(d), filtered using the proposed method, shows
reflections at the layer boundaries and shows no reflections in the area
above the rebar where no different material layers were present. In
contrast, the B-scan shown in Fig. 7(c), filtered using conventional
background subtraction, still shows the surface reflections in the
area above the rebar and the layer boundary reflections are partially
convoluted with the surface reflection.

IV. DISCUSSION

We are currently developing a robot for assessing corrosion
in wastewater pipelines using GPR scans. We intend to combine
simulated and real data from the pipes in the future to improve
the proposed deep learning framework for determining the corroded
concrete sub-surface boundary depths. The adoption of minimum
signal processing-based approaches such as in [17] was not an option
for measuring the concrete corrosion depths since the features in a
GPR signal depend not only on factors that correlate to the thickness
of corrosion but also on other factors, including surface conditions
and material composition of concrete, making it difficult to identify
a significant feature in a GPR signal to estimate the corrosion levels
using minimal signal processing techniques.

V. CONCLUSION AND FUTURE WORK

In this letter, we have presented a novel deep learning approach
to detect the concrete sub-surface boundaries by taking GPR non-
destructive measurements. This is achieved by utilising ConvNet and

MLP based deep learning techniques to estimate the bulk relative
permittivity of the top layer and the surface reflection of a concrete
structure. The proposed method allows GPR B-scan images to be
filtered to enhance the reflections from the low-range boundaries
present in the concrete that are usually convoluted by direct coupling
and surface reflection. We have evaluated the proposed deep learning
approach efficacy with the FDTD simulated GPR data, and the results
demonstrate the high accuracy of the proposed method. This work
will be extended by utilising a physical GPR antenna to gather real-
world A-scan signals, and the proposed method will be applied to
the obtained data to determine the depth of the corroded layer.
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