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Abstract—Sensors help robots perceive their environment and
localize themselves. Determining a robot’s location requires
a range of sensing systems. Depending on accuracy criteria
and navigation conditions, robot localization sensors can differ.
Common sensors for robot localization include encoders, GPS,
cameras, LIDARs, and IMUs. Traditional sensors are not capable
enough in changing environments and uneven terrain. In this
paper, we propose a method based on deep learning to use
the subsurface features obtained through a Ground Penetrating
Radar (GPR) to estimate the odometry of a robot. This proposed
method does not rely on visual features or the distance gathered
from wheel encoders. The proposed approach was evaluated on
a publicly available dataset, and the evaluation results show that
the proposed method can be used for robot localization without
the need for odometry from wheel encoders.

Index Terms—Robot Sensing, Robot Perception, Robot Lo-
calization, Robot Learning, Ground Penetrating Radar, Pipe
Robotics, Infrastructure Robotics, CMU-GPR Dataset.

I. INTRODUCTION

Ground penetrating radar (GPR) is widely utilized in a vari-
ety of subsurface inspection applications, including assessment
of the lunar surface [1], underground utilities [2], roads [3],
pavements [4], detection of land mines [5], as well as concrete
structures [6]. GPR signals are frequently interpreted as B-
scan images (also known as brightness scan images). A person
manually inspects such B-Scan images to identify signatures
that correspond to specific objects that are located below the
surface of the scanned location [7]. As the GPR is capable
of capturing features below the surface, they are less likely to
change over time as a result of external factors, in contrast to
other conventional robotic sensors. Therefore, GPR features
have the potential to be a great form of information that can
be utilised in autonomous robots for localization over a longer
period of time.

Some robot localization applications cannot employ stan-
dard sensors, but they do need accurate 1D odometry. The
1D odometry measures the robot’s distance from its starting
location. Underground pipe robots are an example [8]. In this
circumstance, it is crucial to know the robot’s longitudinal
position to determine where to begin the pipe examination and
to locate defects. Attaching pipe robots to floating platforms
prevents them from employing wheel encoders. Other robots
can employ wheel encoders, however, uneven terrain could

cause the wheels to slip, resulting in erroneous odometry
measurements. Researchers have been experimenting with
RFID sensors in settings that demand precise 1D odometry
[9], [10]. However, RFID sensors must be placed in advance
to employ these approaches.

There have been studies on using GPR to help navigate a
ground vehicle in areas where GPS, wheel encoders, LIDARs,
or cameras are insufficient or not viable [11], [12]. However, to
accurately navigate using the GPR features, the environment
had to be explored and mapped with the assistance of GPS
beforehand. It was reported in [13] regarding another real-
time GPR-based localization that uses factor graphs. However,
this method still requires wheel encoder distance and IMU
orientation information.

Research has been done to develop deep learning techniques
that can estimate the odometry of a robot using images
captured by RGB cameras without the need for wheel encoders
[14], [15]. These methods identify motion between successive
images by making use of the characteristics present in the
images. For these methods to accurately estimate the robot’s
position, significant features must be present in the images.
However, there are some environments that do not have any
visible features or have features that are always changing, such
as the interior of pipes or large bare land with a very low object
density in the surrounding area.

In this paper, we present a method that uses GPR features to
determine the 1D odometry of a robot in an environment that
possesses changes in visual features and lacks GPS reception.
The proposed method does not require the distance infor-
mation that is typically obtained from a wheel encoder. The
key contributions include: (a) Development of a deep learning
framework that estimates the 1D odometry of the robot to
be used in localization applications. This model leverages
Convolutional Neural Networks (CNN) for feature extraction
from GPR B-scan images and Long Short Term Memory
(LSTM) networks for 1D odometry estimation; (b) Evaluation
of the proposed method through a publicly available dataset;
and (c) Demonstrated that the proposed method does not rely
on wheel encoder accuracy; just travel direction was acquired,
not distance. Wheel slip or drift doesn’t impact results.
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Fig. 1: The architecture of the proposed deep learning framework for robot localization is based on GPR subsurface features.

II. METHODOLOGY

A. GPR Operation and Pre-processing of GPR Data

GPR transmits radar pulses through the ground surface
and receives reflections from subsurface dielectric material
changes. The difference in the relative permittivities of two
materials controls the reflection amplitude. Combining GPR
amplitude scans (A-scans) creates B-scan images, which show
GPR electromagnetic wave echoes. Subsurface objects con-
tribute to scanned reflections. These traits can be regarded as
data signatures that show up in the B-scan images in locations
corresponding to those characteristics. The GPR sensor will
shift these signatures across the image as the sensor moves.
We can determine the robot’s movements by analysing these
signatures in a B-scan image. The rate of change of B-scan
image features depends on the robot’s speed, which can be
used to calculate the robot’s distance between two B-scan
images. The GPR sends and receives electromagnetic waves
constantly, unrelated to sensor movement. When the antenna
is moved along the ground surface for a distance of X , a
set of A-scans denoted as Ai (1 ≤ i ≤ n) will be gathered
corresponding to the sampling frequency of the GPR antenna.
Each of these A-scans will have the same length m and can
be denoted as a vector of size 1 ×m. In this work, each B-
scan was produced by combining a set of 200 A-scans to form
a matrix of size m x k, where k = 200. Given that B-scans
are denoted as Bi (1 ≤ i ≤ n), each B-scan is made up of
A-scans as Bi = [Ai, Ai+1, Ai+2, ..., Ak+(i−1)].

When the robot reverses direction, the A-scan data in the
B-scan images will be inverted. Hence, knowing the robot’s
direction is necessary. This is achieved by monitoring the tick
rate of the encoder. Positive rates imply movement forwards;
negative rates reverse. Since we only consider the tick rate
and not the number of ticks, accurate wheel encoders are not
necessary, and encoder flaws due to wheel slip will not impact
the final odometry. The sensor’s near-surface objects create
a strong reflection in the B-scan image, hiding underlying
reflections. Hence, raw B-scan images do not show subsurface
features clearly. Producing B-scan images that have improved
subsurface features can be accomplished through the appli-

cation of a variety of signal filtering strategies [7]. In this
work, we used a Dewow filter to remove very low-frequency
noise, a bandpass filter to remove high-frequency noise, and a
background subtraction filter to remove the repetitive constant
reflections. The background subtraction was done by calculat-
ing the sum of the A-scan signal vectors (Ai) and dividing
by the number of A-scans (k) to obtain the mean A-scan
vector for each B-scan, which was then subtracted from the
B-scan matrix (B) to obtain the background-subtracted B-scan
matrix (Bbr). This is expressed as Bbr = B − [ 1k

∑k
i=1 Ai].

The processed B-scans are cropped and resized into images of
size 128×128 to reduce the computational load during model
training. The B-scan images are then combined to build pairs
of consecutive B-scan images, which has a difference of 2 A-
scans between them. Each pair is called a subsequence denoted
as Si (1 ≤ i ≤ n) and can be expressed as Si = [Bi, Bi+2].
For feature extraction using 2D convolutional neural networks,
we concatenate each pair of B-scans to an image with 6
channels, resulting in an input data shape of 128× 128× 6.

B. Deep Learning Framework for Robot Localization

To extract the features in the B-scan images that correlate
to the reflections created owing to the subsurface objects, a
deep learning strategy that consisted of Convolutional Neural
Networks (CNN) was applied. Following the 2D convolutional
layers in the proposed CNN are the batch normalisation, max
pooling, and dropout layers. Since the distance travelled by the
robot at any point in time is dependent on its previous position,
this becomes a sequence learning problem. As a result, a
recurrent neural network (RNN) was required to calculate the
distance travelled across the sequence of B-scan images fed
into the model. Traditional RNN networks have vanishing or
ballooning gradients during training [16]. This occurs when
long-term dependencies are learned and grow exponentially
more than their short-term counterparts. In order to predict the
1D odometry of the robot in this study, we used Long-Short-
Term Memory (LSTM) networks for the regression component
of the deep learning architecture. LSTMs can learn long-term
dependencies and solve the vanishing gradients issue [17]. The
CNN layers that are utilised for feature recognition need to
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Fig. 2: Filtered images show the displacement in the sub-
surface features more prominently than the unfiltered images
between subsequent B-scans. The green dotted box shows the
displacement of a feature between the 100th and 110th B-scan
of sequence 0. (a) Unfiltered 100th B-scan image, (b) Filtered
100th B-scan image, (c) Unfiltered 110th B-scan image, and
(d) Filtered 110th B-scan image.

be wrapped in time-distributed layers as this is a recurrent
network. This will apply a CNN layer to every temporal B-
scan image provided as an input. Following the CNN layers
comes the flatten layer, which takes the multi-dimensional
output from the feature extraction and turns it into a single
dimension, making the data less likely to overfit. Following
the two LSTM layers, which each have 1000 neurons, we
added a time-distributed dense layer at the output with one
neuron. Figure 1 presents the entire model architecture of the
proposed deep learning framework.

III. RESULTS

The proposed deep learning framework was evaluated using
a publicly available dataset (CMU-GPR Dataset) collected
using a manually pulled experimental rig [18]. This rig consists
of a Noggin 500 GPR, YUMO quadrature encoder with 1024
PPR, XSENS MTI-30 9-axis Inertial Measurement Unit, and
an Intel RealSense D435. A Leica TS15 total station was also
used to obtain the 2D ground truth location. The data from all
of the sensors was time-synchronized. Multiple datasets were
collected on a factory floor, a basement, and a parking garage.
For this work, we used 11 datasets denoted as Sequence 0
to Sequence 10, where Sequences 0 to 6 were scans on a
parking garage floor, and 7 to 10 were scans on a basement
floor. The data was preprocessed by breaking it down into
sub-sequences and filtering using the methods explained in
Section II-A. The effects of filtering and how it enhances the
B-scan images, enabling the displacement of the subsurface
features between subsequent B-scans to be clearly observed,
are illustrated in Figure 2. As this dataset was acquired indoors
on a flat surface, the platform wheels did not slip, making the
encoder data nearly identical to the ground truth. In most real-
world robotic applications, wheel encoders accrue errors when
the robot goes long distances, and the wheel loses contact,
causing erroneous readings. We included stochastic odometry
drift to emulate a realistic wheel encoder. Figure 3 shows
a solid black line for altered wheel encoder odometry. The
training and test data were selected in such a way as to provide
a good balance between the scans from the parking garage and
basement floor used for training and validation. The sequences
used for training were 0, 2, 5, 4, 6, 8 and 10, while the
sequences used for validation were 1, 3, 7 and 9. The deep
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Fig. 3: Comparison of different odometry methods.

learning model was trained using the Adam optimizer, and
a learning rate of 0.0001. The loss function used to monitor
the training progress was the mean squared error (MSE), and
the training was done in batches of 100 subsequences until
the MSE was not further reduced. After the training process,
each validation dataset was tested using the trained model.
The average batch MSE of each test sequence was calculated
to be 0.266, 0.403, 0.115, and 0.143 for sequences 1, 3, 7,
and 9, respectively. The predicted odometry results using the
proposed deep learning model are plotted against the ground
truth and wheel encoder odometry for each test dataset. These
results are shown in Figure 3. In all five test trajectories, the
odometry was predicted reasonably well and was close to the
actual odometry obtained using the wheel encoders. In all five
test trajectories, the odometry estimated using the proposed
method was closer to the ground truth than the altered wheel
encoder data, which had wheel slip artificially introduced to
mimic a realistic wheel encoding system of a robot. Therefore,
the proposed method does not rely on wheel encoder accuracy;
just travel direction was acquired, not distance. Wheel slip or
drift doesn’t impact results while using GPR.

IV. CONCLUSION AND FUTURE WORK

This paper proposes a deep learning framework for robot lo-
calization based on GPR subsurface features. Evaluations were
done using an open-source dataset. The results demonstrate
the proposed approach can localize a robot without encoder
odometry. The proposed approach is unaffected by wheel slip
in uneven terrain because it doesn’t use encoder distance
information. Future research will include 3D localization using
GPR to determine the robot’s 3D position and loop closure to
improve localization accuracy. It can also be used to localize
robots in pipe environments, as in [19], [20].
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