
“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

Multi-layer Reverse Engineering System for
Vehicular Controller Area Network Messages

Xiaojie Lina, Baihe Maa, Xu Wanga, Ying Hea, Ren Ping Liua and Wei Nib

aSchool of Electrical and Data Engineering, University of Technology Sydney, Sydney, Australia
{Xiaojie.Lin-2, Baihe.Ma-1}@student.uts.edu.au, {Xu.Wang-1, Ying.He, RenPing.Liu}@uts.edu.au

bData61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, Australia
Wei.Ni@data61.csiro.au

Abstract—The undisclosed Controller Area Network (CAN)
decoding specification is important to the in-vehicle network
(IVN) research for both industry and academia. Researchers have
developed several CAN reverse engineering systems to predict
signal boundaries and labels in order to map out CAN signal
decoding specifications. Existing works mainly use one parameter
(i.e., bit flip rate) to determine CAN signals boundary, which
results in biased slicing and labelling of CAN signals. In this
paper, we propose a multi-layer CAN reverse engineering system
to cluster signal boundary at byte-level and label sliced CAN
signal blocks at bit-level. The proposed system avoids biased
signal slicing and labelling by introducing multiple parameters
in signal classification, while existing works only use the bit
flip rate and the number of unique value. The feasibility and
adaptability of the proposed system is assessed by deploying it
into a web application as a functionality module. We evaluate the
proposed system with CAN messages from real cars. Compared
with existing reverse engineering models, the proposed system
introduces multi-layer signal processing to avoid over-slicing and
over-labelling problem.

Index Terms—Reverse Engineering, Controller Area Network,
In-vehicle Network, In-vehicle Sensor Security

I. INTRODUCTION

Automotive industry experiences the technological evo-
lution and the wave of autonomous vehicles. Cutting-edge
technologies such as the Advanced Driver Assistance System
have been introduced to modern vehicles. Modern vehicles
have become complex with the increasing number of sensors
and Electronic Control Units (ECU). A large amount of data
are generated and transmitted internally on the In-vehicle
Network (IVN). The IVN can be regarded as a collaborative
system, where sensors and ECU of IVN cooperate with each
other. The legacy in-vehicle communication system is exposed
to cybersecurity risks as a result. Controller Area Network
(CAN) was originally developed by Bosch in the 1980s [1].
It is widely used as the communication bus protocol for the
body control and powertrain sub-systems in IVN [2], [3]. The
adversary can easily sniff the broadcast CAN messages via
access points such as the On-board Diagnostics (OBD) port
and the wireless Tire Pressure Monitoring System (TPMS).
Koscher et al. manually reverse engineered the CAN messages
and gained full control over the Body Control Module (BCM)
functions of the test vehicle [4]. The security problem in IVN

has drawn researchers’ attentions due to the weak security
guarantee of CAN.

Many researchers propose CAN Intrusion Detection System
(IDS) solutions. The existing works encounter obstacles in
generating practical datasets for the performance evaluation
[5]. The generated dataset is biased without the correct CAN
decoding specification. The CAN decoding specification is
described by the CAN Database Container (DBC) file. The
DBC files vary in different vehicle models and makers [6].
The Original Equipment Manufacturers (OEMs) keep DBC
files secret as an important intellectual property. The CAN
DBC file is different per OEM and per vehicle model. This
motivates the CAN reverse engineering research to determine
the CAN decoding specification.

In this paper, we propose a multi-layer system (i.e., bit and
byte layer) to automatically reverse engineer the CAN mes-
sages. The contributions are threefold. Firstly, the proposed
system considers both the byte-level and bit-level features
of the CAN messages in signal segmentation. Secondly, the
proposed system introduces multiple parameters in signal
slicing and labelling. Thirdly, the system can be integrated as a
functionality module to generate labels with a web application.

We evaluate the proposed system with real CAN messages
from cars. The evaluation results show that the multi-layer
reverse engineering design generate more signal labelling
blocks than only one layer system design. We also compared
the proposed system with another reverse engineering model
named READ [7]. Compared with READ, the proposed sys-
tem uses multiple parameters which can avoid CAN signal
over-slicing.

The rest of the paper is organised as follows: Section II dis-
cusses the related works and Section III describes the proposed
multi-layer reverse engineering system for CAN messages, in-
cluding the CAN signal segmentation and labelling. Section IV
evaluates the proposed system, and Section V concludes the
paper.

II. RELATED WORK

The CAN message is unauthenticated and encrypted due to
its lightweight design. These features make CAN vulnerable to
IVN attacks such as frame sniffing, frame injection, and replay
attack [8]. The intuitive way of reverse-engineering CAN

messages is to manually infer functions of certain CAN iden-
tifier (CAN ID) by observing the consecutive CAN messages.
To improve efficiency and accuracy, several automatic CAN
reverse engineering systems have been proposed in recent
years.

Automatic reverse engineering system is first developed in
[9]. The authors calculated the maximum number of distinct
values for all possible bit field assembles. In [7], Marchetti and
Stabili used the bit-flip rate to calculate CAN signal boundary
and labels. This is the first work that evaluates the system
with the real CAN messages collected from different cars.
This is also the first work that uses DBC files to validate the
system. In [10], Pesé et al. used the bit flip rate in the CAN
reverse engineering system, named LibreCAN. The LibreCAN
extracts signals and translates the kinematic body-related data.
The authors evaluated LibreCAN on real CAN data from cars
and trucks.

Additional data resources and parameters for labelling CAN
signals are explored. In [10], Pesé et al. collected the motion
sensor data from a smartphone and the OBD-II data to classify
signals. In [11], Kang et al. leveraged the OBD-II diagnostic
data as additional reference to label signal blocks. Hoog
et al. used the Artificial Neural Network to integrate prior
knowledge of various vehicles and to produce more references
[12]. The authors used the Pearson Correlation Coefficient
and the FastDTW [13] to measure the correlation between
the CAN signals and the artificial references. The mixed
characteristics of different vehicles degrade the performance
of the FastDTW. Wen et al. proposed a novel approach to
use the car companion mobile apps commands as additional
reference in [14]. However, most of the identified commands
relate to the OBD-II diagnostic commands and miss the CAN
specification details. In [15], Verma et al. took the open-source
DBC files from the OpenDBC repository1 as the ground truth
of system evaluation.

The existing works have limitations as follows. Firstly, the
existing works use a single parameter to slice the signal bound-
ary. The bit flip rate or the maximum number of distinct values
is used in past works. Secondly, limited labelling resources
lead to small amount of identified signals. The translation
of signals to vehicle functions mainly depends on the OBD-
II diagnostic messages. Finally, most of the existing works
overlook the evaluation of system feasibility and adaptability.

III. PROPOSED SYSTEM

In this paper, we propose a new reverse engineering system
which utilizes multiple parameters to slice and label CAN
signals. Our system introduces multiple parameters to reduce
error rate. We determine byte-level clusters to avoid over-
slicing at bit-level, while existing models only process at
bit-level. The output of our reverse engineering system is
the predicted CAN decoding specification with sliced and
labelled CAN signals. The architecture of the proposed reverse
engineering system is shown in Fig. 1.

1openDBC

Fig. 1. Proposed reverse engineering system.

The proposed system is a multi-layer system with break-
down reverse engineering tasks. There are two steps in the
proposed system.

1. Data collection and pre-processing: CAN messages logs
of the target vehicle is collected and separated by CAN
ID.

2. Signal slicing and labelling: The CAN signals are
identified and labelled as Unused, Counter, Checksum,
Switch, Constant or Dynamic. The separate CAN ID sub-
logs are analysed at byte-level and bit-level.

The predefined labels summarize all categories of CAN sig-
nals. Unused signals stand for vacant bits that never changes;
Counter signals represent the bits as incrementing counters
or rolling counters of CAN frame; Checksum signals mean
the cyclic redundancy check (CRC) of CAN messages; Switch
signals indicate state signals with limited values (e.g., 1 for
door open and 0 for door close); Constant signals imply those
signals with unchanged values but not Unused bits; Dynamic
signals represent kinematic values which changes linearly with
motion (e.g., engine speed and vehicle speed).

Compared with the existing works, we introduce byte-
level processing and multiple parameters (such as, xxxxx) in
the proposed system to improve the labelling accuracy and
coverage.

A. Data Collection and Pre-processing

The log of raw CAN packets contains messages of different
CAN IDs with the data field in hex format. The proposed
system firstly extracts different CAN IDs from the collected
log. Then, the proposed system produces sub-logs for each
CAN ID.

The active functions of the target vehicle are triggered to
collect CAN message logs that contain comprehensive signals.
The CAN log recorded by the PCAN software. The default
format of the CAN log is shown in Fig. 2. The CAN log

Fig. 2. Sample CAN log recorded by the PCAN software.

Fig. 3. Data payload sample of the converted sub-log.

contains timestamp, CAN ID, frame type, CAN Bus channel,
length of the data field and the value of each byte in hex
format.

The pre-processing processor produces sub-logs of different
CAN IDs from collected CAN logs. For each CAN ID, the pre-
processing processor produces two sub-logs with the bit-level
data field in binary format and decimal format, respectively.
A sample of the converting result is shown in Fig.3.

B. Signal Slicing and Labelling

This step aims to slice and label signal blocks at the byte-
level for initialling the signal delimiter. We observed DBC
files from the OpenDBC repository and identified that most of
CAN signals only occupy one or two bytes. Thus, we assume
that signals representing different vehicle functions do not
share byte with others. The proposed CAN reverse engineering
system uses multiple parameters as given in Table I.

The labelling processors analyse the sub-logs MC and mC

at the byte-level and bit-level, respectively. MC and mC

include all CAN messages of the CAN ID C in the collected

TABLE I
PARAMETERS DENOTATION

Notation Description

Bi/bk Byte flip rate of Bytei/Bit flip rate of Bitk

Vi/vmn Distinct byte/bit value set of Bytei/Bitmn

Ui/umn Distinct byte value rate of Bytei/Bitmn

Pi/pmn Byte-level/Bit-level value differences set of Bytei/Bitmn

Ai/ak/amn Average byte/bit/bit value of Bytei/Bitk/Bitmn

MC /mC Sub-log whose data payload is decimal/binary format for
each byte/bit

Θi/θmn Byte-level/bit-level labelling parameter of Bytei/Bitmn

G/g Byte-level/Bit-level labelling function of signals

TC The number of CAN messages of the sub-log MC or mC

β/ϕ Byte/Bit flip rate function

Algorithm 1: Byte-level labelling algorithm
Input : sub-log MC , sub-log messages amount TC

Output: byteLabels, byteMagnitude,
byteDistinctV alue,
byteSignalDifferences

1 while Bytei in CAN Frame Data Field of MC do
2 Compute the average value Ai of Bytei;
3 Compute the byte flip rate Bi of Bytei;
4 Append the distinct value of Bytei into

byteDistinctV alue[i];
5 Append the value differences of Bytei into

byteSignalDifferences[i];
6 Compute the distinct byte value rate Ui;
7 Compute the byteMagnitude[i]← Θi = Bi × Ui;
8 Label Bytei and make

byteLabels[i]← G(Θi, Ai);
9 end

logs. MC has the data payload in decimal format for each byte
while that of mC is in binary format for each bit. Algorithm 1
and Algorithm 2 describe the byte-level and bit-level labelling.
The byte-level labelling occurs before the bit-level labelling to
mitigate the decision error due to the same bit flip rate.

1) Byte-level: CAN frame uses 11 bits (or 29 bits) of
arbitration field to represent CAN identifier and uses 64 bits
(i.e., 8 bytes) of data field to store transmitted data. Bytei is
the i-th byte in the data field of the CAN frame, 1 ≤ i ≤ 8.
Bi denotes the byte flip rate of the Bytei with the sub-log
MC as in (1). Note that 0 ≤ Bi ≤ 1. There are TC rows
of CAN messages in the sub-log MC . MC and mC have the
same amount of CAN messages. Byteij is the decimal format
Bytei of the j-th message in the sub-log MC , 1 ≤ j ≤ TC .
β is the byte flip rate function and can be given by (2). β
produces the value as 0 when Bytei in adjacent messages are
the same.

Bi =

∑TC−1
j=1 β(MC , i, j)

TC − 1
. (1)

β(MC , i, j) =

{
0 if Bytei(j+1) = Byteij ;

1 if Bytei(j+1) ̸= Byteij .
(2)

The proposed system uses multiple parameters, including
the average byte value Ai, the distinct byte value set Vi, the
distinct byte value rate Ui, and the byte-level value differences
set Pi of Bytei. The system traversals Bytei of each CAN
message in the sub-log MC and calculates the average value of
Bytei as Ai. The distinct values of Bytei are put into Vi. (3)
defines the distinct byte value rate Ui of Bytei in MC , where
|Vi| is the number of values in Vi. The proposed system also
calculates the difference of Bytei between adjacent messages
in MC and put the difference of Bytei into Pi. Pi indicates
the value changing rule for the Counter and Checksum signals.

Fig. 4. Endianness decision from the value change.

Ui =
|Vi|
TC

, 1 ≤ |Vi| ≤ TC . (3)

The proposed system defines the labelling parameter Θi to
determine the byte-level label of Bytei as in (4). Θi uses the
byte flip rate Bi and the distinct byte value rate Ui of Bytei
to maximise the dissimilarity of different labels. It is worth
noting that 0 ≤ Θi ≤ 1.

Θi = Bi × Ui. (4)

A threshold ε of Θi is used for distinguishing different
signals labelling. However, it is difficult to differentiate the
Unused and Constant signals since the two signals have the
same value of Θi as 0. The proposed system uses the average
byte value Ai of Bytei to solve this problem. (5) describes
Ai. Ai of the Unused signal equals zero, which discerns the
Unused and Constant signals.

Ai =

∑TC

j=1 Byteij

TC
. (5)

The byte-level labelling function G of the proposed system
is given by (6). ε is set to determine labels. The ε0, ε1 and ε2
are the decision bounds among the Switch, Counter, Checksum
and Dynamic signals.

G(Θi, Ai) =

Unused if Θi = 0 and Ai = 0;

Constant if Θi = 0 and Ai ̸= 0;

Switch if 0 < Θi ≤ ε0;

Counter if ε0 < Θi ≤ ε1;

Checksum if ε1 < Θi ≤ ε2;

Dynamic if ε2 < Θi ≤ 1.

(6)

Byte-level labelling function G ends up assigning labels to
each byte of the analysed CAN ID C. The labels produced
from G is used for debugging purpose by comparing with the
assigned labels from bit-level labelling function g.

The endianness is reverse-engineered when the signals
occupy more than one byte. The left byte position reaches
the 0xFF before the right byte position for the big-endian as
shown in Fig. 4. The endinness of byte-level blocks determines
the way to caculate the value of bit-level parameters.

Algorithm 2: Bit-level labelling algorithm
Input : sub-log mC , sub-log messages amount TC ,

ByteLabels, ByteMagnitude
Output: bitLabels, bitDistinctV alue,

bitSignalDifferences
1 while Bitk in the Byte-level signal block of mC do
2 Compute the bit flip rate bk;
3 Compute the average bit value ak;
4 end
5 Split the bit-level signal blocks by removing Unused

bits;
6 foreach Bitmn ∈ the bit-level signal blocks do
7 Compute the average value amn;
8 Append the distinct value of Bitmn into

bitDistinctV alue[mn];
9 Append the value differences of Bitmn into

bitSignalDifferences[mn];
10 Compute the distinct bit value rate umn;
11 Compute the bit-level labelling magnitude θmn;
12 Label Bitmn and make

bitLabels[mn]← g(θmn, amn)
13 end

2) Bit-level: Bitk is the k-th bit position of the analysed
byte Bytei or bytes, 1 ≤ k ≤ 64. The system firstly calculates
the bit flip rate bk for each Bitk. (7) and (8) describes the bit
flip rate bk and the the bit flip rate function ϕ, respectively.
The k denotes the the k-th bit position Bitk of the analysed
byte or bytes. The j denotes the the j-th CAN message of the
sub-log mC , 1 ≤ j ≤ TC .

bk =

∑TC−1
j=1 ϕ(mC , k, j)

TC − 1
. (7)

ϕ(mC , k, j) = Bitk(j+1) ⊕Bitkj . (8)

The bit-level labelling processor truncates the byte-level
signal block into multiple bit-level blocks Bitmn by removing
the Unused bits. The Unused bits are easily identified with
both the bk and the average bit value ak equal 0. The average
bit value ak of Bitk is shown in (9). The average bit value
amn of Bitmn is described in (10).

ak =

∑TC

j=1 Bitkj

TC
. (9)

amn =

∑n
k=m ak

n−m+ 1
, m ≤ n. (10)

Given the signal blocks, the proposed system further defines
more parameters. The distinct values of Bitmn make up the
distinct bit value set vmn. The block takes up only one bit
if m equals n. The associated endianness from the byte-level
labelling processor is considered to convert the value of the
block signal from binary into decimal format. |vmn| is the

number of values in vmn. (11) defines the distinct bit value
rate umn of the signal block Bitmn.

umn =
|vmn|
TC

, 1 ≤ |vmn| ≤ TC . (11)

pmn contains all the differences of Bitmn between adjacent
messages in mC . vmn and pmn indicate the DBC file specifi-
cation of each bit-level signal block such as the min and max
value. vmn and pmn are the same as the Vi and Pi if only the
Unused signal block or one signal block except the Unused
signals locates within the analysed byte or bytes.

The bit-level labelling parameter θmn of the signal block
Bitmn is denoted in (12). Note that ∃θmn ∝ Θi,∀Bitmn ∈
Bytei. The bit-level labelling function g uses θmn to associate
the minimised signal block with the new label as in (13).

θmn =

∑n
k=m bk

n−m+ 1
× umn, m ≤ n. (12)

g(θmn, amn) =

Unused if θmn = 0 and amn = 0;

Constant if θmn = 0 and amn ̸= 0;

Switch if 0 < θmn ≤ ϵ0;

Counter if ϵ0 < θmn ≤ ϵ1;

Checksum if ϵ1 < θmn ≤ ϵ2;

Dynamic if ϵ2 < θmn ≤ 1.
(13)

IV. EXPERIMENT

A. Experiment environment setting

The experiment was performed on a 2006 petrol vehicle
with PEAK PCAN-USB Pro and a Macchina P1 board as
shown in Fig. 5. The PEAK PCAN-USB Pro can listen and
log CAN messages on CAN Bus. Customised python scripts
run on Macchina P1 board to log CAN messages as well.
The P1 board can further be the station for web application
to analyse CAN message streaming.

The CAN Bus Y Splitter Cable is connected to OBD-II
port of the test vehicle for accessing CAN Bus with multiple
devices. Then, we connect the PCAN-USB Pro and P1 to the
other end of Y cable as demonstrated in Fig. 6. We use PCAN-
View from PEAK-System to work with PCAN-USB Pro for
sniffing and logging CAN messages. We use PEAK Converter
to convert the original .trc format of CAN log into the .csv
format file. Laptop’s memory and processor are 8GB and i5-
7200U CPU@2.50Ghz, respectively.

We conduct the experiment in a vacant road at midnight
to fully trigger all vehicle functions (e.g., acceleration and
changing lanes) to and to avoid accident. The collected CAN
logs are further input into a python script version of the
proposed reverse engineering system to slice and label CAN
signals.

Fig. 5. Data collection experiment setup on test vehicle.

Fig. 6. PEAK PCAN-USB Pro and Macchina P1 board.

B. Experiment results

We summarise the experiment results on the test vehicle in
Table II. The experiment CAN log is 100000 entries long with
26 CAN IDs. The proposed system split the log by CAN ID
and analysed each CAN ID’s sub-logs at byte-level and bit-
level for slicing and labelling signals. The multi-layer design
of reverse engineering produces more labels, from 156 signal
labelling blocks at byte-level to 299 blocks at bit-level.

We simulate the reverse engineering model of READ [7]
and compare the proposed system with READ. We noticed
that our system is restricted by multiple parameters for slicing
Dynamic signal but READ largely leverage the bit flip rate
which tends to over-labelling Dynamic signal. For example,
most significant bits of a big-endian Dynamic signal owns
bigger bit-flip rate. Our system considers both the bit flip
rate and unique value rate of signal blocks to avoid over-

TABLE II
EXPERIMENT RESULTS AND COMPARISION

Tested System (layer) Number of
CAN ID

Number of Signal
Labeling Blocks

Byte-level of proposed system 26 156
Bit-level of proposed system 26 299

READ 26 322

Fig. 7. Reverse engineering system integrated as module into a web
application with experiment on CAN log from a 2019 petrol vehicle.

slicing a two byte long Dynamic signal but READ tends
to further truncate Dynamic signal. Compared with READ,
our proposed system reduces error labelling rate and achieves
higher accuracy with less labels. The proposed system can
be utilized in real-world in-vehicle scenarios due to the low
computational consumption and low data collection overhead.
The experiments also prove that the proposed system has high
scalability to be further deployed in more complex scenarios.

C. System feasibility and adaptability

To feed the demand from our industry partner, we further
evaluated the feasibility and adaptability of our reverse en-
gineering system. We integrated the proposed system with a
web application which is a vehicle penetration platform from
our industry partner. The labelling outcomes at bit-level is
shown in Fig. 7 where the uppercase D refers to byte position
and lowercase b stands for bit position. The test CAN log
is collected from a 2019 petrol vehicle. It costs at most 10
minutes to generate the labelling outcomes by using over 1
million entries of test CAN log. The running time decreases
with smaller size of CAN logs. The experiment shows the
proposed reverse engineering system can be easily added as
module to other application or platform, which benefits the
IVN security stakeholders.

V. CONCLUSIONS

In this paper, we proposed a multi-layer reverse engineering
system to analyze CAN messages at both byte-level and bit-
level. By further slicing signal blocks and labelling at bit-
level under the sliced byte-level signal blocks, the proposed
system outperforms other work in terms of the amount of
predicted labels. The proposed reverse engineering system
is feasibility and adaptability that can be added into other
platform or application as a module. By using the proposed
system, IVN security researchers and industry engineers can
obtain a predicted decoding specification for CAN frame.

In future work, we plan to improve the proposed system by
introducing advanced matching algorithm to associate more
descriptive labels with signal blocks with reference from OBD-
II diagnostic messages. In this paper, we only evaluate the
proposed reverse engineering system on limited cars due to

restrictions of COVID-19 lockdown. Thus, we plan to evaluate
the proposed system with more vehicle variables (i.e., the
amount, models and makers of cars) in the future. We also
plan to improve the computation complexity of the proposed
system to deal with huge amount of CAN logs.

ACKNOWLEDGMENT

We thank our industry partner for providing access to test
vehicles. We thank Thanh Phuoc Nguyen and Jacob Pace
for helping with technical issues and experimental evaluation.
This work is funded in part by the University of Technology
Sydney, in part by the Insurance Australia Group (IAG), and
in part by the iMOVE CRC under Grant 5-028. This work is
also supported by the Cooperative Research Centres program,
an Australian Government initiative.

REFERENCES

[1] G. Leen and D. Heffernan, “Expanding automotive electronic systems,”
Computer, vol. 35, no. 1, pp. 88–93, 2002.

[2] M. K. Ishak and F. K. Khan, “Unique message authentication security
approach based controller area network (can) for anti-lock braking
system (abs) in vehicle network,” Procedia Computer Science, vol. 160,
pp. 93–100, 2019.

[3] W. Zeng, M. A. Khalid, and S. Chowdhury, “In-vehicle networks
outlook: Achievements and challenges,” IEEE Communications Surveys
& Tutorials, vol. 18, no. 3, pp. 1552–1571, 2016.

[4] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham et al., “Experimental
security analysis of a modern automobile,” in The Ethics of Information
Technologies. Routledge, 2020, pp. 119–134.

[5] W. Wu, R. Li, G. Xie, J. An, Y. Bai, J. Zhou, and K. Li, “A survey
of intrusion detection for in-vehicle networks,” IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 3, pp. 919–933, 2019.

[6] C. Young, J. Svoboda, and J. Zambreno, “Towards reverse engineering
controller area network messages using machine learning,” in 2020 IEEE
6th World Forum on Internet of Things (WF-IoT). IEEE, 2020, pp. 1–6.

[7] M. Marchetti and D. Stabili, “Read: Reverse engineering of automotive
data frames,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 4, pp. 1083–1097, 2018.

[8] J. Liu, S. Zhang, W. Sun, and Y. Shi, “In-vehicle network attacks
and countermeasures: Challenges and future directions,” IEEE Network,
vol. 31, no. 5, pp. 50–58, 2017.

[9] M. Markovitz and A. Wool, “Field classification, modeling and anomaly
detection in unknown can bus networks,” Vehicular Communications,
vol. 9, pp. 43–52, 2017.

[10] M. D. Pesé, T. Stacer, C. A. Campos, E. Newberry, D. Chen, and K. G.
Shin, “Librecan: Automated can message translator,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 2283–2300.

[11] T. U. Kang, H. M. Song, S. Jeong, and H. K. Kim, “Automated
reverse engineering and attack for can using obd-ii,” in 2018 IEEE 88th
Vehicular Technology Conference (VTC-Fall). IEEE, 2018, pp. 1–7.

[12] J. de Hoog, T. Bogaerts, W. Casteels, S. Mercelis, and P. Hellinckx,
“Online reverse engineering of can data,” Internet of Things, vol. 11, p.
100232, 2020.

[13] S. Salvador and P. Chan, “Toward accurate dynamic time warping in
linear time and space,” Intelligent Data Analysis, vol. 11, no. 5, pp.
561–580, 2007.

[14] H. Wen, Q. Zhao, Q. A. Chen, and Z. Lin, “Automated cross-platform
reverse engineering of can bus commands from mobile apps,” in
Proceedings 2020 Network and Distributed System Security Symposium
(NDSS’20), 2020.

[15] M. E. Verma, R. A. Bridges, J. J. Sosnowski, S. C. Hollifield, and
M. D. Iannacone, “Can-d: A modular four-step pipeline for com-
prehensively decoding controller area network data,” arXiv preprint
arXiv:2006.05993, 2020.

	Clipboard Data(1)
	CSCWD_2022_paper_227

