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Abstract. With the rapid deployment of graph neural networks (GNNs)
based techniques in a wide range of applications such as link prediction,
community detection, and node classification, the explainability of GNNs
becomes an indispensable component for predictive and trustworthy de-
cision making. To achieve this goal, some recent works focus on design-
ing explainable GNN models such as GNNExplainer, PGExplainer, and
Gem. These GNN explainers have shown remarkable performance in ex-
plaining the predictive results from GNNs. Despite their success, the
robustness of these explainers is less explored in terms of the vulnerabili-
ties of GNN explainers. Graph perturbations, such as adversarial attacks,
can lead to inaccurate explanations and consequently cause catastrophes.
Thus, in this paper, we take the first step and strive to explore the ro-
bustness of GNN explainers. To be specific, we first define two adver-
sarial attack scenarios—aggressive adversary and conservative adversary
to contaminate graph structures. We then investigate the impacts of the
poisoned graphs on the explainability of three prevalent GNN explain-
ers with three standard evaluation metrics: Fidelity+, Fidelity−, and
Sparsity. We conduct experiments on synthetic and real-world datasets
and focus on two popular graph mining tasks: node classification and
graph classification. Our empirical results suggest that GNN explain-
ers are generally not robust to the adversarial attacks caused by graph
structural noises.

Keywords: Graph Neural Networks · GNN Explainers · Adversarial
Attacks · Robustness.

1 Introduction

Generally, a computation graph G can be represented as G = (V ,A,X), where
V is the node set, A ∈ {0, 1} denotes the adjacency matrix that Aij = 1
if there is an edge between node i and node j , otherwise Aij = 0, and X
indicates the feature matrix of the graph G. It is an ideal data structure for
a variety of real-world datasets, such as chemical compounds [3], social circles
[21], and road networks [15]. Graph neural networks (GNNs) [26, 33, 29, 5], with
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the resurgence of deep learning, have become a powerful tool to model these
graph datasets and achieved impressive performance. However, a GNN model
is typically very complicated and how it makes predictions are unclear; while
unboxing the working mechanism of a GNN model is crucial in many practical
applications (e.g., criminal associations predicting [24], traffic forecasting [11],
and medical diagnosis [1, 23]).

Recently, several explainers [30, 20, 19] have been proposed to tackle the prob-
lem of explaining GNN models. These attempts can be categorized into local
and global explainers according to their interpretation scales. In particular, if
the method only provides an explanation for a specific instance, it is a local ex-
plainer. In contrast, if the method explains the whole model, then it is a global
explainer. Alternatively, GNN explainers can also be classified as either trans-
ductive or inductive explainers based on their capacity to generalize to extra
unexplained nodes. We investigate a flurry of recent GNN explainers and de-
cide to use the three most representative GNN explainers—GNNExplainer [30],
PGExplainer [20], and Gem [19]—in our experiments. GNNExplainer is chal-
lenging to be applied in inductive settings as its explanations are limited to a
single instance, and it merely provides local explanations; while a trained PG-
Explainer, which constructs global explanations and Gem, which generates both
local and global explanations, can be used in inductive scenarios to infer expla-
nations for unexplained instances without the need of retraining the explanation
models. Table 1 summarizes the characteristics of these methods.

Table 1. The characteristics of GNN explainers.

GNNExplainer PGExplainer Gem

Interpretation
Scale

local explainer
local & global
explainer

local & global
explainer

Transduction
/Induction

transductive explainer inductive explainer inductive explainer

Applications
node classification node classification node classification
graph classification graph classification graph classification
link prediction

On the other hand, robustness is also an important topic in the community
of deep learning and has gained significant attention over the years. Recently,
there have been a large number of research studies focusing on the robustness
of image classification, including adversarial robustness [27] and non-adversarial
robustness [10, 16]. In addition, researchers have started to explore the robustness
of GNN models in recent years, having gained several crucial observations and
insights [34, 2]. Nevertheless, the robustness of GNN explainers is still under
exploration. While in the real world, graph datasets are never ideal and often
contaminated by various nuisance factors, such as noises in node features and/or
graph structures. Therefore, one natural question one might ask: are current
GNN explainers robust against these nuisance factors?
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To answer this question, we in this paper take the first step to examine the
robustness of GNN explainers. To be specific, we explore two adversary scenarios
to contaminate graph datasets:

– Aggressive adversary. We introduce noises to graph structures without con-
sidering the characteristics of nodes–whether it is an important node or a
redundant node. To be more specific, we may pollute any nodes to have
edges with others regardless of the impact on the GNN models.

– Conservative adversary. In contrast to aggressive adversary, we introduce
noises to graph datasets in a more cautious way such that we hope the
injected noises would not affect the GNN model itself. To achieve this goal,
we have to take the characteristics of the graph dataset itself into account
(e.g., whether the node is an important node or an unimportant node). We
then only alter the graph structure by adding edges among unimportant
nodes. By doing so, the underlying essential subgraph, which determines the
prediction of GNN models, is untouched.

We first use the aforementioned adversary scenarios to contaminate the graph
datasets. We then use these generated noisy graph datasets to evaluate the
robustness of the GNN explainers. For the baseline, we refer to the performance
of the GNN explainers on original (clean) graph datasets. Thus, we track and
compare the difference in the performance of GNN explainers between original
and polluted graph datasets. Our contributions can be summarized as followings:

– For the sake of comprehensive evaluations, we propose to generate noisy
graph data under two scenarios—aggressive adversary and conservative ad-
versary.

– We empirically investigate the robustness of GNN explainers against these
perturbations through two different applications, including node classifica-
tion and graph classification.

– We find that GNN explainers, in general, are not robust to these perturba-
tions, implying that robustness is another essential factor one should take
into account when evaluating GNN explainers.

2 Related Work

2.1 GNNs and the Robustness of GNNs

Graph neural networks (GNNs) have shown their effectiveness and obtained
state-of-the-art performance on many different graph tasks, such as node classi-
fication, graph classification, and link prediction. Since graph data widely exist
in different real-world applications, such as social networks [25], chemistry [8],
and biology [6], GNNs are becoming increasingly important and useful. Despite
their great performance, GNNs share the same drawback as other deep learn-
ing models; that is, they are usually treated as black-boxes and lack human-
intelligible explanations. Without understanding and verifying the inner working
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mechanisms, GNNs cannot be fully trusted, which prevents their use in critical
applications pertaining to fairness, privacy, and safety [4].

On the other hand, the robustness evaluation for GNNs has received a great
deal of attention recently. In recent years, some adversarial attacks and back-
door attacks against GNNs have been proposed [28, 34, 9, 7]. Specially, Yang et
al. [28] propose a transferable trigger to launch a backdoor attack against differ-
ent GNNs. Zügner et al. [34] propose an efficient algorithm NETTACK exploiting
incremental computations. They concentrate on adversarial perturbations that
target the node’s characteristics and the graph structure, taking into account
the interdependencies between instances. In addition, they ensure that the per-
turbations are undetectable by keeping essential data features. Ghorbani et al.
[9] demonstrate how to generate adversarial perturbations that produce percep-
tively indistinguishable inputs that are assigned the same predicted label, yet
have very different interpretations. They prove that systematic perturbations
can result in drastically different interpretations without modifying the label.
Fox and Rajamanickam [7] investigate that GNNs are not robust to structural
noise. They focus on inserting the addition of random edges as noise in the
node classification without distinguishing important and unimportant nodes. In
contrast, we focus on injecting conservative structure noise into unimportant
nodes/subgraphs. Overall, in our research, we propose to infuse aggressive and
conservative structure noise individually into graph data in order to examine the
robustness of GNN explainers.

2.2 GNN Explainers

GNNs incorporate both graph structure, and feature information, which results
in complex non-linear models, rendering explaining its prediction remain a chal-
lenging task. Besides, model explanations could bring a lot of benefits to users
(e.g., improving safety and promoting fairness). Thus, some popular works have
emerged in recent years focusing on the explanation of GNN models by leverag-
ing the properties of graph features and structures. We here briefly review three
different GNN explainers: GNNExplainer, PGExplainer, and Gem.

GNNExplainer [30] is a seminal method in the field of explaining GNN mod-
els. It provides local explanations for GNNs by identifying the most relevant
features and subgraphs, which are essential in the prediction of a GNN. PG-
Explainer [20] introduces explanations for GNNs with the use of a probabilis-
tic graph. It provides model-level explanations for each instance and possesses
strong generalizability. Gem [19] is able to provide both local and global ex-
planations and it is also operated in an inductive setting. Thus, it can explain
GNN models without retraining. Particularly, it adopts a parameterized graph
auto-encoder with Graph Convolutional Network(GCN) [14] layers to generate
explanations.
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3 Method

We in this paper examine the robustness of GNN explainers under two adversary
scenarios—aggressive adversary and conservative adversary. In this section, we
provide the details of our method. Particularly, we first introduce how we inject
noises into graph data and construct noisy graph data (see Section 3.1), and we
then depict our evaluation flow (see Section 3.2).

3.1 Adversary Generation

Without loss of generality, we consider generating aggressive and conservative
adversaries in a graph classification task. For a graph Gi = (Vi,Ai,Xi) with
label Li, we have the prediction f(Gi) of a GNN model, and the explanation
E(f(Gi),Gi) from a GNN explainer.

Fig. 1. The instance of generating aggressive structure noise. The orange nodes denote
important nodes, while the rest means unimportant nodes in the graph. In this scenario,
we do not take the node property into account, and we randomly select nodes.

Aggressive adversary generation. The aggressive adversary disregards the role
of nodes and radically incorporates structure noises into nodes without consider-
ing their impacts on the GNN models. For a particular graph Gi, we randomly
choose ε = {10%, 30%, 50%, 80%} nodes from the set Vi, then generate edges
among these selected nodes by using random graph generation model with gen-
erating edges probability 0.1, meaning that the number of edges is equal to 10%
of the number of selected nodes. Figure 1 shows a toy example of aggressive ad-
versary generation. After generating aggressive structure noises, we obtain a new

noisy graph Ĝi = (Vi, Âi,Xi) with label Li, and further obtain the GNN predic-

tion f(Ĝi) on this new noisy graph as well as its the explanation E(f(Ĝi), Ĝi).
As we have aggressively changed the structure of the graph, the probability of

f(Ĝi) is expected to be lower, implying that the aggressive structure noises also
affect the performance of the GNN models. Furthermore, predictions of the GNN
model are another input to GNN explainers, which is another factor to influence
explanations of GNN explainers.
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Conservative adversary generation. The conservative adversary selectively ap-
pends structure noise into unimportant nodes. Particularly, in conservative ad-
versary, we build a structure noise which would not alter the prediction of GNN
models. For a particular graph Gi, we obtain the unimportant nodes set Ni with
the similar ratio of ε = {10%, 30%, 50%, 80%} we used in the setting of aggres-
sive adversary. Then, we use the random graph generation model to generate
edges among Ni with the generating edges probability 0.1. Similarly, Figure 2
shows a toy example of conservative adversary generation. After developing con-
servative structure noise, we get a noisy graph G

′

i = (Vi,A
′

i,Xi) with label Li.

Therefore, we are able to obtain the GNN prediction f(G
′

i) and the explanation

E(f(G
′

i),G
′

i). In conservative adversary, since the significant subgraph that de-
termines the prediction of GNN models is unmodified, there is a high possibility
that f(G

′

i) would make the correct predictions. Thus, the prediction of GNN
as a parameter in GNN explainers inputs keeps stable and unchanged. There-
fore, one should expect that the GNN explainers would be more robust against
conservative adversaries than aggressive adversaries.

Fig. 2. The instance of generating conservative structure noise. The orange nodes de-
note important nodes, while the rest are unimportant nodes in the graph. We only
select unimportant nodes.

3.2 Robustness Evaluation Framework

For a GNN model, GNN explainers are used to unveil why the GNN model makes
its predictions. Thus, it is intriguing to explore whether these explanations really
make sense, especially when the graph data is not clean and polluted by noises,
which is often the case in real-world datasets. The contamination can occur in
many ways such as during the process of data collection, the defects of sensors,
data transmission through the network, and many others. In this paper, we insert
noises into the original clean graph data to examine whether the explanation of
GNN explainers would be affected.

Specifically, in our experiments, we target to investigate the robustness of the
GNN explainer to structure noises. We introduce two types of structure noises
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to graph datasets, of which the detailed information can be found in Section 3.1.
After obtaining the noisy graph dataset, we feed it into a pre-trained GNN
that is trained by the original clean graph dataset and get its corresponding
predictions. Then a GNN explainer conducts its explanations, and we obtain its
explanation performance and further conduct comparisons with the explanations
on the original graph dataset. The pipeline of our robustness evaluation method
is shown in Figure 3. We further show an example of our experimental flow under
the conservative adversary in Figure 4.

Fig. 3. In this diagram, different lines denote distinct flows. The black lines denote the
initial flow that generates explanations for the original dataset. The green lines denote
flow that generates noisy graph data from the original graph data as well as its expla-
nations. Finally, we can compare “noisy” explanations with “original” explanations.

Furthermore, we use accuracy to quantitatively measure the influence of
structure noises on the GNN model. We assume that the performance of the
GNN model would rarely be affected if the prediction accuracy on the noisy
graph dataset is roughly the same as the accuracy on the original clean graph
dataset. We further assume that if the GNN model itself is not confused by
the injected noises, then the GNN explainers would yield similar explanations
between original clean graph data and noisy graph data.

Fig. 4. The instance of generating explanation for noisy graph with conservative ad-
versary. The orange nodes denote important nodes, while the rest means unimportant
nodes in the graph. The orange nodes and edges are expected to be as an explanation
from GNN explainers. However, after injecting structure noise which is highlighted
in red colour, the GNN explainers can not get the true important subgraph, which
demonstrates that the GNN explainers are not robust to structure noises.
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4 Experiments

In this section, we conduct experiments to inspect the robustness of GNN ex-
plainers against structure noises. We first describe the details of the implemen-
tation, datasets, and metrics we used in Section 4.1. After that, we present and
analyze the experimental results for aggressive adversary scenario and conser-
vative adversary scenario in Section 4.2 and Section 4.3, respectively.

4.1 Implementation Details, Datasets, and Metrics

Implementation details. In this paper, we choose GCN as the classification clas-
sifier. For GNN explainers, we choose GNNExplainer [30], PGExplainer[20], and
Gem [19]. In order to obtain the pre-trained GCN models, we split the datasets
into percentages of 80/10/10 as the training, validation, and test set, respec-
tively. We follow the experimental settings in Gem [19]. Specifically, we first
train the GCN model based on the BA-Shapes dataset, Tree-Cycles dataset,
and Mutagenicity dataset, respectively. We choose Adam [13] as the optimizer.
After that, we utilize the pre-trained GCN models and the explainers to obtain
the explanations for both the original clean graph datasets and the noisy graph
datasets. Furthermore, by analyzing the experiment settings and results in [19],
we note that explainers obtain different levels of accuracy when selecting differ-
ent top-important edges as explaining edges. Therefore, one should choose an
appropriate number of top important edges when evaluating explainers. In our
paper, we select the top 6 edges for synthetic datasets (BA-Shapes and Tree-
Cycles) and the top 15 edges for the Mutagenicity dataset.

Datasets. We focus on two widely used node classification datasets, including
BA-Shapes and Tree-Cycles [18, 31], and one graph classification dataset, Muta-
genicity [12]. Statistics of these datasets are shown in Table 2. For BA-Shapes
and Tree-Cycles datasets, the nodes which define a motif structure, such as a
house or cycle, are considered important nodes. For Mutagenicity datasets, Car-
bon rings with chemical groupsNH2 orNO2 are known to be mutagenic. Carbon
rings however exist in both mutagen and nonmutagenic graphs, which are not
discriminative. Thus, we simply treat carbon rings as the shared base graphs
and NH2, NO2 as important subgraphs for the mutagen graphs.

Table 2. Dataset information.

Node Classification Graph Classification

BA-Shapes Tree-Cycles Mutagenicity

# of Graphs 1 1 4,337
# of Edges 4110 1950 266,894
# of Nodes 700 871 131,488
# of Labels 4 2 2
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In addition, explainers—GNNExplainer, PGExplainer, and Gem—can obtain
higher accuracy when used to explain only important nodes or subgraphs. While
in our experiments, we may alter the nodes as well as the subgraph structures.
Thus, we have to explain all nodes or subgraphs (important or unimportant),
which may lead to suboptimal accuracy. However, this is not a major issue for
us as our goal in this paper is to compare the performance change of GNN
explainers on graph datasets before and after adding noises.

Noisy datasets. Following the noise generation pipeline described in Section 3,
we inject aggressive and conservative structure noises into these graph datasets
to generate aggressive and conservative noisy datasets, respectively. For conser-
vative structure noisy datasets, we only inject noises into unimportant nodes to
minimize the affection of structure noise on GNN prediction. By doing so, we
attempt to maintain GNN predictions on conservative structure noise datasets.

Metrics. Good metrics should evaluate whether the explanations are faithful to
the model. After comparing the characteristic of each quantitative metric [17,
32], we chose Fidelity+ [31], Fidelity− [31], and Sparsity [22] as our evalua-
tion metrics. The Fidelity+ metric indicates the difference in predicted prob-
ability between the original predictions and the new prediction after removing
important input features. In contrast, the metric Fidelity− represents prediction
changes by keeping important input features and removing unimportant struc-
tures. Besides, Sparsity measures the fraction of features selected as important
by explanation methods. The Fidelity+, Fidelity−, and Sparsity can be defined
as:

Fidelity+ =
1

N

N∑
i=1

(f(Gi)yi
− f(G1−mi

i )yi
), (1)

Fidelity− =
1

N

N∑
i=1

(f(Gi)yi − f(Gmi
i )yi), (2)

Sparsity =
1

N

N∑
i=1

(1− |si|
|Si|total

), (3)

where N is the total number of samples, and yi is the class label. f(Gi)yi and
f(G1−mi

i )yi are the prediction probabilities of yi when using the original graph
Gi and the occluded graph G1−mi

i , which is gained by occluding important fea-
tures found by explainers from the original graph. Thus, a higher Fidelity+ (↑)
is desired. f(Gmi

i )yi
is the prediction probabilities of yi when using the explana-

tion graph Gmi
i , which is obtained by important structures found by explainable

methods. Thus a lower Fidelity− (↓) is desired. Furthermore, the |Si|total rep-
resents the total number of features (e.g., nodes, nodes features, or edges) in the
original graph model, while |si| is the size of important features/nodes found
by the explainable methods and it is a subset of |Si|. Note that higher sparsity
values indicate that explanations are sparser and likely to capture only the most
essential input information. Hence, a higher Sparsity (↑) is desired.
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4.2 Vulnerable to Aggressive Adversary

To measure the robustness of GNN explainers against aggressive structure noises,
we estimate the differences in performance of GNN explainers between original
and aggressive noisy datasets. We first obtain the explanation performance of
each explainer on original clean graph datasets, which serves as our baseline.
We then obtain the corresponding explanation performance of each explainer on
noisy graph datasets with the aggressive adversary. For reference, we also report
the GCN accuracy.

Fig. 5. The results of aggressive adversary in terms of Fidelity+, Fidelity−, and
Sparsity on BA-Shapes, Tree-Cycles, and Mutagenicity.

GNN explainers are not robust to the aggressive adversary. Figure 5 shows the
results of the robustness of GNN explainers against aggressive noise. One can
observe that: 1) As the noise level increases, all explanation performance metrics
including Fidelity+, Fidelity−, and Sparsity consistently become worse, imply-
ing that aggressive noises do have negative impacts on the GNN explainers; 2)
The accuracy of GCN keeps decreasing as the noise level increases, implying that
the aggressively injected noises also affect the performance of GCN itself, which
is consistent with the findings in [7, 34]; 3) The findings mentioned above are
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consistent across different datasets and different tasks, suggesting the generality
of our findings.

4.3 Vulnerable to Conservative Adversary

Now, we start to explore how conservative adversary affects the GNN explain-
ers. We follow the exact pipeline in Section 4.2 and expect that we here inject
noises in a more cautious way. We believe this conservative adversary would
yield negligible impacts on the GCN itself while it may still negatively affect the
explanation quality of GNN explainers (see Section 3 for more details).

Fig. 6. The results of conservative adversary in terms of Fidelity+, Fidelity−, and
Sparsity on BA-Shapes, Tree-Cycles, and Mutagenicity.

GNN explainers are not robust to the conservative adversary. Figure 6 shows the
experimental results for the setting of the conservative adversary. As expected,
the accuracy of the GNN is quite stable and does not change much even when
the noise level increases, implying that the noises injected in this way do not
alter the essential structures of graph datasets. However, in terms of Fidelity+,
Fidelity−, and Sparsity, we see a similar trend as the aggressive adversary



12 Y. Li et al.

( Section 4.2), which further demonstrates the fragility of GNN explainers to
graph noises.

5 Conclusion

In this paper, we attempt to identify the robustness issue of GNN explainers.
We propose two types of structure noises—aggressive adversary and conservative
adversary—to construct noisy graphs. We evaluate three recent representative
GNN explainers including GNNExplainer, PGExplainer, and Gem, which vary
in terms of interpretation scales and generality. We conduct experiments on two
different tasks—node classification with BA-Shapes and Tree-Cycles datasets
and graph classification with Mutagenicity dataset. Through experiments, we
find that the current GNN explainers are fragile to adversarial attacks as the
quality of their explanations is significantly decreased across different severity of
noises. Our findings suggest that robustness is a practical issue one should take
into account when developing and deploying GNN explainers in real-world ap-
plications. In our future work, we will develop algorithms and models to improve
the robustness of GNN explainers against these adversaries.
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