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Abstract—This paper explores the problem of multi-view clus-
tering, which aims to promote clustering performance with multi-
view data. The majority of existing methods have problems with
parameter adjustment and high computational complexity. More-
over, in the past, there have been few works based on hierar-
chical clustering to learn the granular information of multiple
views. To overcome these limitations, we propose a simple but
efficient framework: Multi-view adjacency-Constrained Hierar-
chical Clustering (MCHC). Specifically, MCHC mainly consists of
three parts: including the Fusion Distance matrices with Extreme
Weights (FDEW); adjacency-Constrained Nearest Neighbor Clus-
tering (CNNC); and the internal evaluation Index based on Rawls’
Max-Min criterion (MMI). FDEW aims to learn a fusion distance
matrix set, which not only uses complementary information among
multiple views, but exploits the information from each single view.
CNNC is utilized to generate multiple partitions based on FDEW,
and MMI is designed for choosing the best one from the multiple
partitions. In addition, we propose a parameter-free version of
MCHC (MCHC-PF). Without any parameter selection, MCHC-PF
can give partitions at different granularity levels with a low time
complexity. Comprehensive experiments tested on eight real-world
datasets validate the superiority of the proposed methods compared
with the 13 current state-of-the-art methods.

Index Terms—Clustering, multi-view learning, parameter-free.

I. INTRODUCTION

MULTI-VIEW clustering has received a lot of attention
in recent years as an important learning paradigm in

artificial intelligence. Different from traditional clustering meth-
ods [1], multi-view clustering is exploited to process multi-view
data. Multi-view data means the data is collected from different
sources in diverse domains, or obtained from various feature col-
lectors [2]. For example, an image can be described by multiple
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heterogeneous features, such as scale-invariant feature transform
(SIFT) descriptors [3], GIST descriptors [4], local binary pat-
terns (LBP) [5], etc. Multiple compatible and complementary
features are combined in multi-view clustering algorithms to
improve clustering performance.

Most existing multi-view clustering methods are essentially
divided into three categories: a) multi-view spectral clustering
methods; b) multi-view subspace clustering methods; and c)
other multi-view clustering methods [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23].

By combining information from multiple graphs, multi-view
spectral clustering can learn latent cluster structures [24], [25],
[26]. Multi-view spectral clustering is based on learning an
intrinsic graph that contains information from multi-view data,
then using the spectral clustering approach on the learned graph
to generate clustering results [23]. For example, Zong et al.
introduced a weighted multi-view spectral clustering algorithm
based on the spectrum perturbation theory of spectral clustering
[21], which uses spectral perturbation to simulate the weights
of the views. To distinguish the clustering capacity differences
of different views, Nie et al. developed an adaptively weighted
Procrustes spectral clustering technique, where an indicator
matrix can be generated to improve the performance [14]. Tang et
al. presented the one-step multi-view spectral clustering, which
combines the spectral embedding and K-means into one step to
decrease the information loss and reduce the running time of the
total clustering procedure [22].

The main idea behind multi-view subspace clustering is to
learn a uniform subspace representation of many views [27].
Zheng et al., for example, introduced a multi-view constrained
bilinear factorization subspace clustering method that improves
clustering results by performing constrained bilinear factoriza-
tion on the low-rank representation of multiple views [28].
Zheng et al. presented a feature concatenation multi-view sub-
space clustering to explore the consensus information of multi-
view data by concatenating multi-view features into a joint
representation [29].

Furthermore, various other multi-view clustering algorithms
have recently been presented [8], [18], [30], [31]. For exam-
ple, by introducing a collaborative deep matrix decomposition
framework, the method proposed in [8] attempts to learn the
hidden representations from multi-view data. Xu et al. proposed
a deep autoencoder-based method to learn the embedded rep-
resentations, which take both consensus and complementary
information of multiple views into account [18].
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Yet despite the importance of multi-view clustering and the
plethora of existing algorithms in past decades, the most cur-
rent approaches suffer from the following two problems in
multi-view clustering: a) parameter adjustment, and b) excessive
computational cost. For most multi-view clustering, such as
multi-view spectral clustering [7], [11], [16], [21] and multi-
view subspace clustering [9], [28], [29], [30], parameter ad-
justment is critical to the final performance of the models. For
example, except for the target number of clusters, the weighted
multi-view spectral clustering algorithm proposed by Zong et
al. has two parameters that need to be set in order to assign an
optimal weight to each view [21]. The low-rank tensor-based
multi-view spectral clustering proposed by Chen et al. needs
to adjust v+2 parameters to get good performance, where v is
the number of views [32]. This means that if the data contains
four views, and each parameter needs to be adjusted 10 times,
the method needs to tune 106 parameter combinations to get
the final good result. The multi-view subspace clustering based
on the joint affinity graph presented by Tang et al. has two
regularization parameters to adjust to balance the weights of
each component in the objective function [33]. The constrained
bilinear factorization multi-view subspace clustering developed
by Zheng et al. has also two prior information-related parameters
to tune to obtain competitive performance [28]. Prior infor-
mation, such as noise level and label information, is needed
to guide the specific parameter selection procedure, which is
problematic for multi-view clustering. Furthermore, the com-
putational complexity of most existing multi-view clustering
algorithms is also high; for example, the time complexities of
both multi-view spectral clustering and multi-view subspace
clustering are O(n3), where n is the number of data samples.
Most multi-view clustering algorithms have either the above
two shortcomings, or one of them [2]. These two shortcomings
also greatly hinder the application of multi-view clustering in
practical scenarios.

On the other hand, from the perspective of basic clustering
principles, many previous multi-view clustering algorithms are
based on spectral clustering or subspace clustering, which have
some inherent limitations. For example, spectral clustering [34],
[35] suffers from the following three problems: a) the instability
of results caused by different initializations; b) the K value
required to construct adjacency matrix needs to be adjusted; and
c) it can only provide clustering results with a single granularity.
For subspace clustering [36], a) establishing the global density
threshold causes the method to perform poorly in detecting
clusters with varying densities; and b) setting regularization
parameters for the number of subspaces is time-consuming.
Few multi-view clustering algorithms are based on hierarchical
clustering [23]. Compared with spectral clustering and subspace
clustering, hierarchical clustering does not need extra hyper-
parameters, and a dendrogram can be generated to provide
clustering results with different granularity levels.

To the best of our knowledge, there are only two related works
on multi-view hierarchical clustering in the past. The multi-view
hierarchical clustering (MHC) [23] proposed by Zheng et al.
exploits the average cosine distance of multiple views and
a conventional nearest neighbor clustering [37] to obtain the

clustering results of multi-view datasets. MHC has two main
drawbacks, the first is that it only considers the weight of each
view equally. Obviously, MHC cannot capture best consensus
information well when different views are of different impor-
tance. The second is that it uses an existing nearest neighbor
clustering method [37] to get the results, which only considers
the neighbor relationship between samples and ignores the mani-
fold structure in the data, also resulting in poor clustering results.
Lin et al. proposed a contrastive multi-view hyperbolic hierar-
chical clustering method [38], which introduces the contrastive
representation learning into multi-view hierarchical clustering.
An obvious disadvantage of this approach is that there are five
parameters that need to be tuned for competitive performance.

The motivation of this paper is to propose a multi-view
hierarchical clustering method that does not require any pa-
rameter adjustment and can obtain competitive results in a
short time. Such a multi-view clustering algorithm has great
application potential in practical scenarios that require fast
response. To achieve this goal, in this paper we propose a
Multi-view adjacency-Constrained Hierarchical Clustering al-
gorithm (MCHC). MCHC consists of three main parts: including
the Fusion Distance matrices with Extreme Weights (FDEW);
adjacency-Constrained Nearest Neighbor Clustering (CNNC);
and the internal evaluation Index based on Rawls’ Max-Min
criterion [39] (MMI). FDEW aims to learn a fusion distance
matrix set, which not only uses complementary information
among multiple views, but exploits the information from each
single view. This is because sometimes a specific single view has
a better clustering-friendly representation than the complemen-
tary (or fusion) view [40]. CNNC obeys an intuitive rule that one
cluster and its nearest neighbor with higher mass (size) should be
grouped into the same cluster in the clustering process, which
not only considers the neighbor relationship between samples
but grasps the manifold structure in the data. CNNC generates
multiple partitions based on FDEW. MMI is exploited to choose
the best one from the multiple partitions. MCHC just needs to be
assigned a desired number of clusters, which can be estimated
based on the decision graph of CNNC. In addition, we propose
a parameter-free version of MCHC (MCHC-PF). Without any
parameter selection, MCHC-PF can give partitions at different
granularity levels. MCHC-PF has lower time complexity, which
is O(nlogn).

The followings are the main contributions of this paper:
� 1) Proposing a multi-view adjacency-constrained hier-

archical clustering (MCHC) algorithm that can obtain
promising clustering results;

� 2) Proposing a parameter-free MCHC algorithm with low
computational complexity;

� 3) Proposing the fusion distance matrices with extreme
weights, which not only uses complementary information
among multiple views, but exploits the information from
each single view;

� 4) Proposing a novel hierarchical clustering algo-
rithm: adjacency-constrained nearest neighbor clustering
(CNNC);

� 5) Proposing the internal evaluation index based on Rawls’
Max-Min criterion for selecting best partition;
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� 6) The proposed methods’ superiority is demonstrated by
experimental results on eight real-world datasets.

II. PROPOSED METHOD

Multi-view adjacency-Constrained Hierarchical Clustering
(MCHC) consists of three main components: including the
Fusion Distance matrices with Extreme Weights (FDEW);
adjacency-Constrained Nearest Neighbor Clustering (CNNC);
and the internal evaluation Index based on Rawls’ Max-Min
criterion (MMI).

A. Fusion Distance Matrices With Extreme Weights (FDEW)

When dealing with multi-view clustering problems, there are
two intuitive methods to fuse multi-view data. One is con-
catenating all the features of multiple views [41]. Obviously,
this method increases the dimensionality of fusion data, which
increases the computational complexity and may result in the
curse of dimensionality. The other method is to calculate an
average similarity matrix S̄ = 1

v

∑v
i = 1 S

(i) [42]. However,
this approach cannot represent best consensus information well
when different views are of different importance.

Previous research found a very interesting phenomenon:
sometimes the clustering results obtained by the best single view
are even better than that obtained by the consensus information
or complementary information of multiple views [40]. One of
the reasons for this is the existence of conflicting views in
multi-view data, making the learned consensus or complemen-
tary information poor [43]. Inspired by the phenomenon above,
we propose the fusion distance matrices with extreme weights
(FDEW). FDEW not only uses the complementary information
among multiple views, but also exploits the information from
each single view, which alleviates the poor impact of conflicting
views on the clustering results.

Given multi-view data {X(i)}vi = 1 collected from v views, for
i-th view, X(i) ∈ Rn×dimi , where n and dimi are the number of
data samples and the dimensionality of the i-th view respectively.

On the one hand, we regard the distance matrix D(i) (D(i) ∈
Rn×n) of each view as a fusion distance matrix with extreme
weights, that is

D(i) = 1×D(i) +
v∑

j=1,j �=i

0×D(j), (1)

On the other hand, we define a fusion distance matrix with
equal weights:

D∗ =
1

v

v∑
i = 1

D(i), (2)

D(i) assigns the weight of D(i) to 1, and assigns the weight
of the distance matrix of other views to 0. D∗ treats the distance
matrix of each view equally, and assigns the same weight to the
distance matrix of each view. D(i) only uses the information
from each single view, but D∗ exploits complementary infor-
mation among multiple views. Combine D(i) and D∗ to form
fusion distance matrices with extreme weights (FDEW), where
{FDEW (r)}v+1

r = 1 = {D(1), D(2), . . . , D(v), and D∗} .

When calculating the distance matrix D(i) of each view, we
exploit cosine distance. There are two main motivations for using
cosine metric: First, the cosine distance between two samples
on a specific view equals the cosine distance between them on
the latent representation [23]. Exploiting cosine metric directly
can omit the additional computational overhead of learning the
latent representation. Second, cosine metric captures semantic
similarity better than Euclidean distance [44].

For the cosine distance between any two samples x(i)
a , x

(i)
b in

the i-th view, it is defined as

d
(
x(i)
a , x

(i)
b

)
= 1− x

(i)
a

T
x
(i)
b√

x
(i)
a

T
x
(i)
a

√
x
(i)
b

T
x
(i)
b

. (3)

where d
(
x
(i)
a , x

(i)
b

)
∈ [0, 2].

Theorem 1. The cosine distance between x
(i)
a and x

(i)
b in the

i-th view is equivalent to the cosine distance between them on
the latent representation [23].

Next, we use a single-view clustering algorithm to get cluster
partitions based on distance matrices in FDEW.

B. Adjacency-Constrained Nearest Neighbor Clustering
(CNNC)

As the backbone of multi-view clustering, compared with
spectral clustering or subspace clustering, hierarchical clustering
does not need extra hyper-parameters and provides clustering
results with different granularity levels. Recently, nearest neigh-
bor clustering (NNC) has become a research focal point for
hierarchical clustering [37], [45], [46]. Compared with tradi-
tional hierarchical clustering, such as average-link or ward-link,
NNC has lower computational complexity (i.e., O(nlogn)) and
can achieve better clustering performance. Existing NNC ap-
proaches, however, are entirely based on the statistic of nearest
neighbor, i.e., the merging is done as long as the neighbor rela-
tionship is satisfied, which cannot capture the intrinsic manifolds
in data well. Samples from different classes may be also merged
in this fashion, lowering clustering accuracy. In this study, we
propose a parameter-free adjacency-constrained nearest neigh-
bor clustering (CNNC) algorithm, which exploits larger mass
clusters to direct the merging process. This constrained way
of merging captures the manifolds in data and prevents trivial
wrong merging in conventional NNC approaches. The difference
between the traditional NNC method and the proposed one is
shown in Fig. 1.

Given a single-view data X(i), initially, each sample is its
own cluster. Given the number of samples contained in a cluster
as the mass of the cluster, therefore, in the beginning, the mass
of each cluster equals 1. Then, the following rule is applied to
form connections between clusters:

ζj → ζNj , if mass (ζj) ≤ mass
(
ζNj

)
, (4)

where ζj denotes the j-th cluster, ζNj denotes the 1-nearest cluster
of ζj . Much research has been conducted to define the distance
between two clusters. Here, we simply measure the nearest
distance from any member of one cluster to any member of
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Fig. 1. A toy illustration of (a) Conventional NNC merging procedure and (b) the proposed CNNC algorithm. For simplification, we use dotted lines to represent
clusters (i.e., A, B, C, etc.), and rectangles or triangles to represent data samples. We can see that, in iteration1, the generated clusters from conventional NNC
and adjacency-constrained NNC are the same. Initially each sample is regarded as a cluster, and they all have the same mass (i.e., 1); i.e., they all satisfy the mass
requirement in (4), so if the neighbor relationship is satisfied, a connection can be generated between clusters. In iteration 2, for conventional NNC, cluster A,
cluster B, cluster C and cluster D are chosen to merge into one big cluster, E. because cluster A and cluster B are the nearest neighbor of each other, the nearest
neighbor of cluster C is cluster B, and the nearest neighbor of cluster D is cluster C. however, in the proposed CNNC, cluster C and cluster D are not chosen to merge
because mass(D)>mass(C). cluster A and cluster B, and cluster B and cluster C are both chosen to merge because mass(A)≤ mass(B) and mass(C)≤mass(B).

the other cluster as the distance between the two clusters, which
is similar to the single-linkage method.mass(ζj) represents the
mass of ζj (i.e, the number of samples ζj contains). Similarly,
mass(ζNj ) is the mass of ζNj . The symbol “→” denotes a
connection (i.e, merger) Cj between ζj and ζNj . This process
can be also defined in a graph G,

A
(
ζj , ζ

N
j

)
=

{
1, if mass (ζj) ≤ mass

(
ζNj

)
,

0, otherwise.
(5)

where A is the adjacency matrix of G. Then, new clusters can be
obtained by calculating the connected components of the adja-
cency matrix A. At this point, one iteration has been completed.
By repeating this merger process according to (4), all clusters
will eventually merge into one cluster and form a hierarchical
tree. Each layer of the hierarchical tree can be regarded as a
partition under a specific granularity.

Each connection (i.e., merger)Cj has two intuitive properties.
One of the properties is the product of the mass of the two clusters
it connects

Mj = mass (ζj)×mass
(
ζNj

)
, (6)

The other is the square of the distance between the two clusters
it connects

Sj = d2
(
ζj , ζ

N
j

)
. (7)

Plotting all the connections on a two-dimensional graph of
the two properties, called the decision graph. By observing the
decision graph and finding the connections with relatively large

Mj and Sj , remove these connections to get the final reasonable
partition.

CNNC is parameter-free. A reasonable partition can be ob-
tained through a certain layer (granularity) of the clustering tree,
or it can be obtained by observing the decision graph and remov-
ing the connections with relatively large Mj and Sj . However,
CNNC can also be assigned the desired number of clusters K.
After simply removing K-1 connections with relatively large
Mj × Sj , then we can get a partition containing K clusters. On
the other hand, in each iteration, CNNC only needs to find the
first neighbor of each cluster. The first neighbors can be found
effectively via fast approximate nearest neighbor methods, e.g.,
k-d tree. Therefore, the complexity of the algorithm can be
reduced to O(nlogn). Compared with traditional hierarchical
clustering algorithms, CNNC has a lower computational over-
head.

Exploiting CNNC to perform clustering based on each fusion
distance matrix in FDEW, then v+1 partitions P (r) can be ob-
tained, where {P (r)}v+1

r = 1 = {P (1), P (2), . . . , P (v), P (v+1)} .
So which partition is the best? This requires an evaluation index
to evaluate the clustering quality of each partition.

C. Internal Evaluation Index Based on Rawls’ Max-Min
Criterion (MMI)

In practice, the ground-truth labels are often not known in
advance [47]. Therefore, we cannot objectively judge which
partition from {P (r)}v+1

r = 1 is the best. A simple idea is to use
internal evaluation indices to evaluate each partition to find
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the best one, which is an unsupervised manner. Most of the
past internal evaluation indices need to know cluster centers of
partition [48]. However, CNNC does not output specific cluster
centers. Here we propose a new internal clustering evaluation
index based on distance matrix to select the best partition based
on Rawls’ max-min criterion [39], which is called Max-Min
Index (MMI). MMI is based on two existing theories, the first is
a common criterion in clustering internal evaluation indices: the
best partition has a relatively large inter-cluster distance and a
relatively small intra-cluster distance; the second is the Rawls’
max-min criterion in economics: the right decision is that which
maximizes the minimum outcome.

For a partition P (r), 1) we arbitrarily select two clusters, and
then arbitrarily select a sample from each cluster, and use the dis-
tance between the two samples as the inter-class distance; 2) We
again, choose a cluster arbitrarily, and use the average of the dis-
tance between any two samples in this cluster as the intra-class
distance. Based on 1) and 2), we first define an initial evaluation
index: ∀x(r)

a ∈ ∀ζ(r)k , ∀x(r)
b ∈ ∀ζ(r)l ; ∀x(r)

c , x
(r)
d ∈ ∀ζ(r)m ,

I(r) =
d
(
x
(r)
a , x

(r)
b

)
2∣∣∣ζ(r)

m

∣∣∣
(∣∣∣ζ(r)

m

∣∣∣−1
) ∑

d
(
x
(r)
c , x

(r)
d

) , (8)

The larger I(r),P (r) may have a larger inter-class distance and
a smaller intra-class distance, but it is not certain. This is because
we randomly select clusters and samples when calculating I(r),
which may not be representative. According to Rawls’ max-
min criterion, the right decision is that which maximizes the
minimum outcome. Inspired by the max-min criterion, we first
calculate the minimum value of I(r):

min
(
I(r)

)
= min

⎧⎪⎪⎨
⎪⎪⎩

d
(
x
(r)
a , x

(r)
b

)
2∣∣∣ζ(r)

m

∣∣∣
(∣∣∣ζ(r)

m

∣∣∣−1
) ∑

d
(
x
(r)
c , x

(r)
d

)
⎫⎪⎪⎬
⎪⎪⎭

=

min
k

min
l

min
x
(r)
a ∈ζ(r)

k ,x
(r)
b ∈ζ(r)

l

d
(
x
(r)
a , x

(r)
b

)

max
m

2∣∣∣ζ(r)
m

∣∣∣
(∣∣∣ζ(r)

m

∣∣∣−1
) ∑

x
(r)
c ,x

(r)
d ∈ζ(r)

m
d
(
x
(r)
c , x

(r)
d

) , (9)

Furthermore, we believe that P (r) that maximizes min(I(r))
is the best, that is

s = argmax
r

min
(
I(r)

)
=

argmax
r

min
k

min
l

min
x
(r)
a ∈ζ(r)

k ,x
(r)
b ∈ζ(r)

l

d
(
x
(r)
a , x

(r)
b

)

max
m

2∣∣∣ζ(r)
m

∣∣∣
(∣∣∣ζ(r)

m

∣∣∣−1
) ∑

x
(r)
c ,x

(r)
d ∈ζ(r)

m
d
(
x
(r)
c , x

(r)
d

) .

(10)

Therefore, we can finally determine thatP (s) is the best partition
by (10). Compared with other distance matrix-based internal
indices, the proposed MMI is more accurate in selecting the
best partition (see Table X). The method proposed in [49] can
be utilized to reduce the computational complexity of MMI.

D. Algorithm of MCHC and MCHC-PF

For Multi-view data {X(i)}vi = 1, we first calculate
{FDEW (r)}v+1

r = 1 according to (1)–(3). Then we use CNNC
to perform clustering based on each FDEW (r), and get
{P (r)}v+1

r = 1. Finally, we select the best partition P (s) in
{P (r)}v+1

r = 1 according to (8)–(10). Fig. 2 shows the simple
flowchart of MCHC, and Algorithm 1 shows the pseudo code of
MCHC.

In real life, the correct number of clusters is often not known
in advance. Therefore, we provide a parameter-free version
of MCHC (MCHC-PF). Algorithm 2 gives the pseudo code
of MCHC-PF. MCHC-PF does not require any parameters,
can provide several partitions at different granularity levels,
and draw a decision graph according to (6)–(7) for users to
estimate a reasonable number of clusters. On the other hand,
MCHC -PF only uses CNNC to perform clustering based on
the fusion distance matrix with equal weights D∗ from FDEW,
because merging multiple similarity (or dissimilarity) matrices
with equal weights is an intuitive and simple processing way for
multi-view data [23], [50], [51]. Moreover, we exploit k-d tree
to calculate the fusion distance matrix D∗ approximately, so it
has a shorter runtime than MCHC. Fig. 3 shows the decision
graph of MCHC-PF on the dataset UCI-digits (this data set will
be introduced in the experimental part). It can be clearly seen
that there are 9 connections (mergers) with larger Mj and Sj .
Remove them in the adjacency matrix, and we can get the correct
10 clusters, which matches the ground truth.

There are three main differences between MCHC and MCHC-
PF. First, MCHC not only uses complementary information
among multiple views, but exploits the information from each
single view. However, MCHC-PF only exploits the complemen-
tary information among multiple views. Second, MCHC uses
naive way to calculate distance matrix for each view, while
MCHC-PF uses k-d tree to approximate the calculation to obtain
a sparse distance matrix. Third, like most existing multi-view
clustering methods, MCHC needs to be set target number of
clusters. However, MCHC-PF does not need to set this parame-
ter. It provides multiple clustering results at different granularity
levels for users to choose according to specific scenarios.

E. Complexity Analysis

We first analyze the complexity of MCHC. According to
Algorithm 1, Steps 3–7 costs O(vn2), where v is the number
of views. When the distance matrix is known, the cost of CNNC
is O(n). Therefore, the cost of Steps 8–19 is O((v + 1)n).
Steps 20–23 costs O((v + 1)K2) for MMI calculation and best
partition finding, where K is the target number of clusters. In
summary, the total cost of MCHC is O(vn2) +O((v + 1)n) +
O((v + 1)K2), approximately O(n2). Compared to O(n3) of
most multi-view spectral clustering or subspace clustering meth-
ods, the complexity of MCHC is acceptable.

For MCHC-PF, we leverage the k-d tree to compute the sparse
distance matrix for each view, so Steps 3–6 costs O(vnlogn).
Because MCHC-PF only runs CNNC on the fusion distance
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Fig. 2. The flowchart of the proposed multi-view adjacency-constrained hierarchical clustering (MCHC). We take the dataset containing two views as an example.
First, we calculate the distance matrix of each view by (3) to get D1 and D2. Then we calculate D∗ by (2). D1, D2, and D∗ together form fusion distance matrices
with extreme weights (FDEW). Next, based on each distance matrix in FDEW, we exploit adjacency-constrained nearest neighbor clustering (CNNC) to obtain
three partitions (i.e., partition 1, partition 2, and partition 3). Finally, we choose the most reasonable partition (i.e., partition 2) based on MMI (i.e., (8)–(10)).

Fig. 3. Decision graph of MCHC-PF on UCI-digits dataset. The horizontal
axis represents the propertyMj of each connection in the CNNC, and the vertical
axis represents the property Sj of each connection. The nine connections in the
red circle have relatively large Mj and Sj . Remove them to leave 10 clusters,
which exactly matches the ground-truth.

matrix with equal weights D∗, the cost of Steps 7–16 is ap-
proximately O(n). Therefore, the total cost of MCHC-PF is
O(nlogn).

III. EXPERIMENTS AND RESULTS

In this part, we conduct several experiments to show the
superiority of MCHC and MCHC-PF.

A. Datasets Description

1) 100-leaves: There are 1600 samples in the 100-leaves
dataset (https://archive.ics.uci.edu/ml/datasets/One-
hundred+plant+species+leaves+data+set), divided into
100 categories. The original 100-leaves photos are also
different in size. There are three views which display
samples from several angles using shape descriptors, fine
scale margins, and texture histogram characteristics. The
full statistics of these datasets are shown in Table I.

2) UCI-digits: The UCI-digit dataset can be found in the UCI
repository (https://archive.ics.uci.edu/ml/index.php). The
digits (0–9) in this collection were extracted from Dutch

Algorithm 1: Algorithm of the Proposed MCHC.

1 Input: Multi-view data {X(i)}vi=1 and the target
number of clusters K.

2 Output: Best partition P (s).
3 for i=1:v do
4 Calculating distance matrix D(i) by Eq. (3).
5 end
6 Calculating D∗ by Eq. (2).
7 Combine D(i) and D∗ to get FDEW.
8 for r=1:v+1 do
9 Initializing adjacency matrix A.

10 Constructing cluster sets {ζj} (Initially, regard each
sample as a cluster).

11 while cluster sets {ζj} have more than two clusters do
12 Searching the nearest cluster of ζj with higher mass

according to FDEW (r).
13 Updating A by Eqs. (4)–(5) (Using two nearest samples

respectively from two clusters to represent these two
clusters).

14 Calculating Mj and Sj of Cj by Eqs. (6)–(7).
15 Updating cluster sets {ζj} based on A.
16 end
17 Updating A by removing K-1 Cj with largest Mj × Sj .
18 Getting partition P (r) based on A.
19 end
20 for r=1:v+1 do
21 Calculating min(I(r)) by Eqs. (8)–(9).
22 end
23 Finding best partition P (s) by Eq. (10).

utility maps in 2000 samples. Each class contains 200 sam-
ples, each of which is represented by six feature sets. We
employed three feature sets following [52]: 76 character
shape Fourier coefficients, 216 profile correlations, and 64
Karhunen- Loève coefficients.

3) COIL20: This dataset has 1440 grayscale photos of 20
different objects [53]. Each image is downscaled to 32 by
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Algorithm 2: Algorithm of the Proposed MCHC-PF.

1 Input: Multi-view data {X(i)}vi=1.
2 Output: partitions at different granularity levels {Rt}.
3 for i=1:v do
4 Calculating (sparse) distance matrix D(i) by Eq. (3).
5 end
6 Calculating D∗ by Eq. (2).
7 Initializing adjacency matrix A.
8 Constructing cluster sets {ζj} (Initially, regard each

sample as a cluster).
9 while cluster sets {ζj} have more than two clusters do

10 Searching the nearest cluster of ζj with higher mass
according to D∗.

11 Updating A by Eqs. (4)–(5) (Using two nearest samples
respectively from two clusters to represent these two
clusters).

12 Getting partition Rt at current granularity level based
on A.

13 Calculating Mj and Sj of Cj by Eqs. (6)–(7).
14 Updating cluster sets {ζj} based on A.
15 end
16 Plotting decision graph by Mj and Sj .

TABLE I
STATISTICS OF MULTI-VIEW DATASETS

32 pixels for the original features scenario. Three types of
features are extracted in the case of several hand-crafted
features: Intensity, LBP, and Gabor. The sizes of their
features are 1024, 3304 and 6750, respectively.

4) Handwritten: This consists of 2000 samples from 10
digits, ranging from 0 to 9. Each sample is represented
by two views, the first of which is a feature vector with
240 features derived from the average of pixels in 2×3
windows, and the second of which is a Fourier coefficient
vector with 76 features [54].

5) ORL: This is made up of 400 photos of 40 people’s faces.
Following [9], each image is down-sampled to 32 by 32
pixels for the original features scenario. Each image in the
handcrafted features scenario is represented by three types
of features (4096 Intensity, 3304 LBP and 6750 Gabor).

6) UMIST: This collection [55] contains 564 photos of
20 people (mixed race, gender, and appearance). Each
person is depicted in a variety of poses, from profile to
frontal perspectives. Each image has a resolution of about
220×220 pixels and a 256-bit greyscale. Following [56],
each image is represented by three heterogeneous feature

Fig. 4. Sample face images from the CMU-PIE database. MCHC achieves
100% accuracy on this dataset.

sets:30 isometric projection (ISO), 30 principal compo-
nent analysis (PCA), and 30 neighborhood preserving
embedding (NPE).

7) CMU-PIE: This dataset [57] contains 2856 frontal-face
photos of 68 persons, with 42 distinct illuminations for
each object. Each photograph was cropped to a size of
32×32 pixels. Three feature sets are used to express each
image: 30 ISO, 30 PCA, and 30 NPE. Fig. 4 shows some
sample face images from the CMU-PIE database.

8) COIL-100: This dataset [58] is a library of 7200 color
images representing 100 different types of objects. Each
image is 128×128 pixels in size. Each object has 72 dis-
tinct photos in various positions. Each image is expressed
using three feature sets: 30 ISO, 30 PCA, and 30 NPE.

B. Compared Algorithms

We compare MCHC and MCHC-PF with 13 state-of-the-
art multi-view clustering algorithms. They include: K-means;
Multi-view low-rank sparse subspace clustering (MLRSSC) [6];
Graph-based multi-view clustering (GMC) [15]; Unified graph
learning for multi-view clustering (UGLMC) [12]; Constrained
bilinear factorization multi-view subspace clustering (CBF-
MSC) [28]; View variation and view heredity for incomplete
multi-view clustering (V3H) [59]; Large-scale multi-view sub-
space clustering (LMVSC) [30]; Affinity aggregation for spec-
tral clustering (AASC) [7]; Multi-view clustering via adaptively
weighted Procrustes (AWP) [14]; Co-regularized multi-view
spectral clustering (CoReg) [11]; Multi-view consensus graph
clustering (MCGC) [60]; Robust multi-view spectral cluster-
ing (RMSC) [61]; and Weighted multi-view spectral clustering
(WMSC) [21]. Since the two multi-view hierarchical clustering
methods [23], [38] related to the proposed methods do not
provide open-source code, we don’t include them in the com-
parison for the sake of objectivity. We employed three widely
used external clustering validation indices to evaluate the perfor-
mance of clustering algorithms: Accuracy (ACC), Normalized
mutual information (NMI) [62], and F-score [63]. The best and
second-best clustering results are highlighted and underlined
respectively. For K-means, a single-view clustering algorithm,
we reported its best clustering results of multiple views. For other
multi-view clustering algorithms, the parameters are tuned as
suggested in the original papers to generate the best results. For
more details, please refer to the supplementary materials. All ex-
periments were conducted on a workstation with two 14-core In-
tel Xeon 6132 CPUs clocked at 2.6 GHz and 3.7GHz and 96GB
memory. Our code is available: https://github.com/brucejak/
Multi-View-Adjacency-Constrained-Hierarchical-Clustering.
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TABLE II
CLUSTERING RESULTS OF MCHC IN THE METRIC OF ACC

TABLE III
CLUSTERING RESULTS OF MCHC IN THE METRIC OF NMI

TABLE IV
CLUSTERING RESULTS OF MCHC IN THE METRIC OF F-Score

C. Experimental Results and Analysis

Tables II, III, and IV show the clustering results and Fig. 5
give the mean rankings for all multi-view clustering meth-
ods on all datasets. In essence, the proposed MCHC outper-
forms all other clustering methods. Whether compared with
single-view clustering algorithms or multi-view clustering algo-
rithms, MCHC shows unparalleled performance advantages. In

particular, for the metric ACC, the results of our MCHC are
about 4.7%, 4%, 25.9%,18.8% and 11.2% higher than the
second-best (except for MCHC-PF) clustering results on Hand-
written, ORL, UMIST, CMU-PIE and COIL100 dataset, respec-
tively. For the metric NMI, the results of our MCHC are about
4.6%, 3.9%, 8.9%,7.3% and 4.5% higher than the second-best
clustering results on Handwritten, ORL, UMIST, CMU-PIE and
COIL100 dataset, respectively. Finally, for the metric F-score,
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Fig. 5. Mean rankings for all multi-view clustering methods on all datasets.

TABLE V
CLUSTERING RESULTS OF MCHC-PF AT DIFFERENT GRANULARITY LEVELS.

#C MEANS THE GROUND-TRUTH NUMBER OF CLUSTERS, AND NC MEANS THE

NUMBER OF CLUSTERS

the results of our MCHC are about 6.9%, 6.9%, 6.2%, 28%,
21.9% and 14.2% higher than the second-best clustering re-
sults on COIL20, Handwritten, ORL, UMIST, CMU-PIE and
COIL100 dataset, respectively.

Unlike the other 14 multi-view clustering methods (including
MCHC) that require at least the ground-truth number of clusters
to be set, MCHC-PF can give natural partitions at different
granularity levels without any parameters. Table V shows the
number of clusters obtained at different granularity levels. For
most datasets, the clustering results obtained by MCHC-PF can
yield a relatively accurate number of clusters. The clustering
results of MCHC-PF in Tables II, III, and IV are based on
the number of clusters that are closest to the ground truth.
The clustering performance of MCHC-PF is worse than that of
MCHC, because MCHC-PF only considers the complementary
information (i.e., D∗) from multiple views, not the information
from each single view. However, as Fig. 5 shows, compared
with all other methods, MCHC-PF still achieves competitive
results. Particularly, on the five datasets (i.e., Handwritten, ORL,
UMIST, CMU-PIE and COIL100), in terms of the metric NMI,
the performance of MCHC-PF is better than that of other 13
state-of-the-art multi-view clustering algorithms.

From a theoretical point of view, the reasons why the per-
formance of most multi-view spectral or subspace clustering
methods is not competitive to MCHC are mainly due to the
following two aspects. First, the backbones of these methods are
spectral clustering or subspace clustering, which have inherent
limitations. For example, it is hard for spectral clustering to
accurately capture the intrinsic manifold structure in data when
constructing the k-nearest neighbor similarity graph. However,

TABLE VI
RUNTIME (IN SECONDS) COMPARISON WITH THREE BEST

COMPARED ALGORITHMS

CNNC in MCHC can catch it more accurately due to its con-
strained way of merging. Second, when conflicting views exist
in multi-view data, performing clustering on the information
from a specific single view may achieve better results than that
on the complementary information from multiple views [40],
[43]. Most compared methods only consider the complementary
information from multi-view data. However, MCHC not only
uses complementary information among multiple views but
exploits the information from each single view, achieving better
results.

D. Runtime

To show the effectiveness of our method, we compare the
runtime of the proposed MCHC and MCHC-PF to three best-
compared algorithms from the 13 state-of-the-art multi-view
clustering algorithms. The three best-compared algorithms in-
clude AWP, CoReg and V3H. According to Table VI, the pro-
posed MCHC-PF can produce clustering results in roughly 20
seconds for all datasets. The total runtime of MCHC-PF on all
datasets is the lowest, which is significantly lower than that
of CoReg, V3H, and MCHC. The total runtime of AWP is
close to that of MCHC-PF because it omits the computation
of eigenvalue decomposition when obtaining spectral embed-
ding [14]. While V3H performs the complete calculation and
optimization of spectral embedding, resulting in excessive com-
putational overhead. However, the clustering performance of
MCHC is better than that of all other clustering algorithms (see
Tables II–IV).

IV. ABLATION STUDY

A. Impact of Fusion Distance Matrices With Extreme Weights
(FDEW)

According to (1)–(3), FDEW not only uses the fusion distance
matrix with equal weights (i.e., D∗) containing complementary
information from multiple views, but exploits the distance matrix
D(i) of each view, which includes the information from each
single view. In this section, we explore the results of CNNC on
each distance matrix in FDEW to show the necessity of including
these two pieces of information. As Table VII shows, partitions
1–3 denotes the results of CNNC on the distance matrix D(i) of
each single view, and partition∗ means the results of CNNC on
the fusion distance matrix with equal weights (i.e., D∗). Here,
we exploit NMI to evaluate the performance of each partition.
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TABLE VII
THE RESULTS OF CNNC ON EACH DISTANCE MATRIX IN FDEW USING THE

METRIC OF NMI

The best and MMI-selected clustering results are highlighted
and underlined respectively. On the one hand, the best clustering
results are from partitions 1–3 on some datasets (e.g., COIL20
and ORL), or from partition∗ on some datasets (e.g., 100-leaves
and UCI-digits).

This phenomenon is consistent with the previous studies
[40]. One of the reasons for this is the existence of conflicting
views in the multi-view data [43], making the complementary
information of multiple views with lower discrimination for
classification than a specific single view information. Therefore,
it is necessary to consider both the information from each single
view and the complementary information from multiple views.
On the other hand, MMI can accurately select the best one from
several partitions.

B. Impact of Adjacency-Constrained Nearest Neighbor
Clustering (CNNC)

To show the superiority of CNNC in the proposed model,
on the one hand, we explore CNNC’s clustering perfor-
mance advantage by comparing it with other state-of-the-art
single-view hierarchical clustering methods or nearest neigh-
bor clustering (NNC) methods. Seven well-known hierar-
chical clustering methods are used including single-linkage,
complete-linkage, average-linkage, ward-linkage, centroid-
linkage, median-linkage, weighted-linkage. Three recent NNC
methods, GDL [64], SNNDPC [65] and Finch [37], are used
for comparison. It is worth mentioning that MHC, one of the
related works, uses the Finch method as a backbone to com-
plete multi-view hierarchical clustering [23]. For each of the
eight multi-view datasets described above, we concatenate all
the features of multiple views, and then perform CNNC and
other baselines directly on the concatenation. As Table VIII
shows, compared with other state-of-the-art single-view clus-
tering methods, CNNC achieves the best results on all datasets.

On the other hand, in the MCHC framework, we replace
CNNC with other hierarchical clustering or NNC methods,
and keep other components in the framework unchanged. The
generated new multi-view hierarchical clustering (MHC) meth-
ods are named as MHC-single, MHC-complete, MHC-average,
MHC-ward, MHC-centroid, MHC-median, MHC-weighted and
MHC-GDL, respectively. MHC-SNNDPC and MHC-Finch
have been removed, because SNNDPC and Finch need to know

the coordinates of data points, and the coordinates of data points
corresponding to D∗ are unknown. We perform these multi-
view hierarchical clustering methods on the eight multi-view
datasets. According to Table IX, MCHC still achieves the best
performance on all datasets.

From the above two experiments, CNNC has better perfor-
mance than previous NNC methods or hierarchical clustering
methods, whether processing single-view data or multi-view
data. This is because the constrained merging way of CNNC
can more accurately capture the manifold structure in the
data.

C. Impact of Internal Evaluation Index Based on Rawls’
Max-Min Criterion (MMI)

To show the validity of the Internal evaluation index based on
Rawls’ max-min criterion (MMI), we exploit four other distance
matrix-based internal indices, including Dunn Index (DI) [66],
Silhouette index (Sil) [67], Clustering Validation index based
on Nearest Neighbors (CVNN) [68] and Clustering Validity
index based on Density-involved Distance (CVDD) [69] to select
the best partition in the MCHC framework, and keep other
components in the framework unchanged. DI and Sil are two
classic internal validity indices, and CVNN and CVDD are the
recent ones. After that, the metric NMI is used to objectively
evaluate the selected partition based on the ground-truth labels.
According to Table X, the proposed MMI can select the best
partition on all datasets, whereas the other four distance matrix-
based internal indices cannot.

From a theoretical point of view, the other four distance
matrix-based internal indices all have some inherent flaws. For
example, DI exploits the distance between the two farthest
points in cluster as the intra-class distance, which is obviously
susceptible to outliers. Additionally, Sil does not adapt well to
non-spherical datasets, and CVDD is susceptible to changing
densities in clusters [68].

V. DISCUSSION

A. Theoretical Significance of the Combination of Three
Components in the Proposed MCHC

The proposed MCHC consists of three main components:
including FDEW, CNNC, and MMI. In this section, we will
explain why FDEW, CNNC, and MMI are combined into
MCHC, that is, the theoretical significance of the combina-
tion of these three components. First, this is determined by
the generalized paradigm of multi-view clustering. Almost all
multi-view clustering methods first learn complementary (or
consensus) information from multi-view data, and then use
a single-view clustering method for post-processing of the
complementary information. The proposed MCHC framework
follows this paradigm. Second, another significance for com-
bining these three components is to inherit their respective
advantages. For example, FDEW alleviates the poor impact
of conflicting views; CNNC can capture the manifolds in data
and improve clustering accuracy compared to traditional NNC
methods; MMI can select the best one from several partitions in
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TABLE VIII
PERFORMANCE COMPARISON FOR CNNC AND OTHER HIERARCHICAL CLUSTERING OR NNC METHODS, IN THE METRIC OF NMI

TABLE IX
PERFORMANCE COMPARISON WITH OTHER MULTI-VIEW HIERARCHICAL CLUSTERING METHODS, IN THE METRIC OF NMI. THE AUTHOR-PROVIDED CODE FOR

GDL BREAKS ON THE COIL100 DATASET

TABLE X
PERFORMANCE COMPARISON WITH OTHER DISTANCE MATRIX-BASED INTERNAL INDICES, IN THE METRIC OF NMI

an unsupervised manner, no additional manual intervention is
required.

B. New Thinking for Multi-View Clustering

Firstly, most previous multi-view clustering methods focus
on exploring the different importance of each view to learn an
optimal clustering-friendly representation. For example, multi-
view clustering methods based on graph learning exploit some
optimization techniques for joint modeling the consistency and
inconsistency of multiple views [12]. Unlike most previous
methods, the proposed MCHC only employs several linearly
combined distance matrices (i.e., FDEW) to express the consis-
tency or inconsistency of multiple views, reducing the compu-
tational overhead simultaneously. According to (1)–(3), FDEW
not only uses the fusion distance matrix with equal weights (i.e.,
D∗) containing the consistent information from multiple views,
but exploits the distance matrixD(i) of each view, reflecting dif-
ferent kinds of view-specific characteristics (i.e., inconsistency).

This approach is based on the viewpoint in [40]: sometimes
the utilization of multiple views may even deteriorate the final
performance, which is even worse than the performance of the
best single view.

Second, most existing multi-view clustering algorithms are
based on the existing backbone of spectral clustering or sub-
space clustering, ignoring the optimization of the cluster-
ing mechanism. Instead, this study pays more attention to
the optimization of the clustering mechanism (i.e., CNNC).
Even based on representations with extreme weights (i.e.,
FDEW), the proposed frameworks still achieve state-of-the-
art performance, which provides new thinking for multi-view
clustering.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a Multi-view adjacency-Constrained
Hierarchical Clustering (MCHC) and its parameter-free
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version (MCHC-PF). By introducing the fusion distance matri-
ces with extreme weights, adjacency-constrained nearest neigh-
bor clustering and the internal evaluation index based on Rawls’
Max-Min criterion, the promising clustering performance can
be obtained by MCHC. Furthermore, without any parameter
selection, MCHC-PF can provide partitions at different granu-
larity levels with a low time complexity. Extensive experiments
conducted on eight real-world datasets illustrate the superior
performance of the proposed methods.

Compared to the proposed MCHC-PF, MCHC has a higher
time complexity, i.e., O(n2). However, MCHC has better
clustering performance than MCHC-PF. In future work, we
will further combine MCHC with the bipartite graph the-
ory of ultra-scalable spectral clustering and ensemble clus-
tering [70], making MCHC more feasible for larger-scale
datasets.
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