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Abstract: The boundaries of tracking and sensing solutions are continuously being pushed. A 1

stimulation in this field over recent years is exploiting the properties of millimeter wave (mmWave) 2

radar to achieve simultaneous tracking and sensing of multiple objects. This paper aims to provide a 3

critical analysis of the current literature surrounding multi-object tracking and sensing with short- 4

range mmWave radar. There is significant literature available regarding single-object tracking using 5

mmWave radar, demonstrating the maturity of single-object tracking systems. However, innovative 6

research and advancements are also needed in the field of mmWave radar multi-object tracking, 7

specifically with respect to uniquely identifying multiple target tracks across an interrupted field of 8

view. In this article, we aim to provide an overview of the latest progress in multi-target tracking. In 9

particular, an attempt to phrase the problem space is made by firstly defining a typical multi-object 10

tracking architecture. We then highlight the areas for potential advancements. These areas include 11

sensor fusion, micro-Doppler feature analysis, specialized and generalized activity recognition, gait, 12

tagging and shape profile. Potential multi-object tracking advancements are reviewed and compared 13

with respect to adaptability, performance, accuracy and specificity. Although the majority of the 14

literature reviewed has a focus on human targets, most of the methodologies can be applied to targets 15

consisting of different profiles and characteristics to that of humans. Lastly, future research directions 16

are also discussed to shed light on research opportunities and potential approaches in the open 17

research areas. 18

Keywords: mmWave, tracking, sensing, multi-object, micro-Doppler, sensor fusion, activity recogni- 19

tion 20

1. Introduction 21

Millimeter wave (mmWave) radars have been widely studied over recent years for 22

multi-object tracking and sensing. The potential and motivation for mmWave radars in 23

this field is primarily driven by the micro-Doppler information that can be extrapolated. 24

Micro-Doppler generally refers to the Doppler information generated by movements of 25

individual parts of a particular target [1]. The micro-Doppler features can be exploited to 26

determine characteristics of multiple targets for tracking and sensing purposes. The identi- 27

fied characteristics can ultimately be translated into sub-millimeter individual movements 28

of the targets. This is attributed to the high sensitivity of mmWave radars empowered by 29

their extremely short wavelength. 30

The research and techniques available for achieving robust and reliable multi-object 31

tracking and sensing, specifically with mmWave radar, are yet to be consolidated into 32

a unified architecture. Complications, such as harsh signal propagation environments, 33

make the task of multi-object tracking and sensing quite difficult [2]. However, it should 34

be highlighted that tracking and sensing, unspecific to mmWave, is not a new concept 35

in regards to radio in general. This concept has been proven successful in other types 36

of radios, such as impulse radio ultra-wide band (IR-UWB) [3]. Therefore, the findings 37

from multi-object tracking and sensing with alternate types of radios can be assessed for 38

potential applications of similar techniques to mmWave radars. 39
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Figure 1. Discontinuous tracking scenario; An individual (1) moves into the radar’s field of view, (2)
leaves the radar’s field of view and (3) moves back into the radar’s field of view.

MmWave radars can be found in continuous and discontinuous multi-object tracking 40

literature. Continuous tracking refers to the ability to track multiple targets in an environ- 41

ment only whilst it is in the current field of view of the radar. Discontinuous tracking on 42

the other hand is an extension on continuous tracking, whereby the targets can be tracked 43

whilst in the current field of view and also correlated to a previous track if it re-appears 44

in the future field of view of the radar. To clarify the difference between the two types of 45

tracking, Fig. 1 is provided; an individual, who is currently not in the field of view of the 46

radar, performing the following sequence of events: 47

1. Moving into the radar’s field of view 48

2. Leaving the radar’s field of view 49

3. Moving back into the radar’s field of view 50

In the described scenario, a solution that is capable of continuous tracking is one 51

that is capable of detecting and tracking multiple individuals in both event 1 and event 3. 52

However, a continuous tracking solution would not be capable of correlating individuals 53

that have been tracked in event 3 with their previous tracks in event 1. On the other hand, 54

a solution that is capable of discontinuous tracking is one that is capable of detecting and 55

tracking individuals in both event 1 and 3, as well as recognizing if the same individual is 56

being tracked across the two events. Thus, a discontinuous tracking solution is one that 57

can correlate and track multiple targets across a discontinuous sequence of events. 58

A sophisticated combination of tracking and sensing in multi-object scenarios are 59

capable of reliably discontinuously tracking, and have found a number of applications. A 60

new level of security and surveillance systems could potentially be achieved by a mmWave 61

tracking and sensing system to expose and detect threats or concerns that cannot easily 62

be identified in vision-based security systems. It is also achieved without compromising 63

individual privacy. Furthermore, a mmWave multi-object tracking and sensing system 64

could also be adapted to provide a means of mass patient monitoring in the health care 65

industry. Passive and respectful monitoring of patients with a system of this nature could 66

provide a means of continuous monitoring of metrics that would usually require a nurse 67

to manually measure. This, in turn, could lead to earlier insight and awareness of patient 68

complications. Lastly, a mmWave multi-object tracking and sensing solution can also 69

provide a means of an affordable wide-scale generalized analytical and auditing platform 70

that can monitor fine-grain people movement and activities within public spaces, such as 71

shopping centers, parks, etc. This could lead to better optimization and utilization of space 72
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Figure 2. mmWave tracking architecture block diagram.

layout, particularly in a space where congestion occurs or where specific behaviors are 73

exhibited by individuals when given environmental events occur. 74

The major contributions of this paper are to provide an overview of the literature 75

surrounding multi-object tracking with mmWave radar systems, highlighting key advanced 76

technologies and hinting future research opportunities. We first present a typical general- 77

ized mmWave multi-object tracking architecture. Then, we provide a detailed review and 78

comparison of potential advancements that can contribute to further developing the multi- 79

object tracking architecture. Future research opportunities are then discussed to enhance 80

and evolve mmWave multi-object tracking. The context of mmWave radar in this paper 81

specifically relates to short-range applications, both indoors and outdoors. Furthermore, 82

the intended usage of mmWave radar in this paper is to focus on multi-object tracking of 83

targets traveling at low speeds that are within natural human capability. The methodologies 84

and models explored and presented in this paper are not specifically intended to be applied 85

to targets traveling at speeds greater than general human motion, such as automotive 86

targets. 87

2. Typical Tracking System Architecture 88

An overview of how multi-object tracking with mmWave can be modeled architec- 89

turally from data collection through to tracked target information is illustrated in figure 2. 90

The intention of the architecture model depicted in figure 2 is to provide a foundation to 91

compare and contrast mmWave tracking research, both continuous and discontinuous in 92

fashion. 93

In order to help understand the events that take place to successfully perform dis- 94

continuous multi-object tracking with mmWave, the system can be illustrated as a series 95

of five chained components. These five components and the sequence in which they are 96

invoked is illustrated in figure 2. The generalized aim of the system is to comprehend the 97

influence multiple targets simultaneously have on radar chirps. This signal disturbance 98

translates to information being exploited to initiate or resume a maintained track on an 99

object whilst it is in the radars field of view. The system should ultimately produce a 100

stream of uniquely identifiable objects along with their corresponding tracking context. 101

The overall system architecture and sequence of components is a well established pattern in 102

radar tracking literature. The uniqueness of a mmWave tracking system is ultimately held 103

in the implementation of the system components and the mechanisms that are employed 104

to characterize the tracked objects. The remainder of this section will explore and describe 105

the purpose of each stage illustrated in the generalized architecture shown in figure 2. 106

2.1. Radar Architecture 107

The radar architecture of a typical tracking system consists of the components required 108

to ultimately collect the data describing the observed environment. This usually involves 109

the hardware utilized, the antenna configuration, and the signal configuration employed. 110

Over the last couple of years, single board general-purpose mmWave radars have become 111

readily available as off the shelf products. However, prior to this hardware advancement 112
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Figure 3. Signal chirp components.

mmWave radar hardware architectures were primarily designed for their specific industrial 113

or research application. Such an architecture is demonstrated in the research performed 114

by [4]. The authors of [4] implement a frequency-modulated continuous-wave (FMCW) 115

module with a custom designed data acquisition and intermediate frequency (IF) digitizer 116

and signal amplifier. The hardware implementation details of the acquisition board used in 117

the research presented in [4] are lacking. As a result, it can be difficult to obtain consistent 118

results across research due to hardware implementation differences. 119

The advancement and availability of single board multi-purpose mmWave radars has 120

been promising in ensuring consistency across research in the regard of radar hardware 121

implementation. This in turn ensures the primary focus of the research remains on the 122

intended research challenge being addressed and not questioned by any discrepancies that 123

might be present in the radar hardware implementation. The most commonly used off 124

the shelf mmWave radars are Texas Instrument’s (TI) family of industrial and automotive 125

mmWave radar sensors. The TI mmWave radar sensors have gained popularity in academia 126

due to their reliability and plethora of support. 127

There are a number of considerations to be made when determining the antenna 128

configuration to employ for a mmWave radar multi-object tracking system. Specifically, 129

an acknowledgment should be made regarding the components that contribute to the 130

instability and non-ideal nature of the transmitted signal [5]. A multiple-input multiple- 131

output (MIMO) antenna array is the most commonly utilized antenna configuration in 132

radar systems. This is primarily due to its spatial diversity characteristics, ultimately 133

resulting in a more superior detection performance, compared to traditional directional 134

or phased-array antenna configurations [6] [7]. A study conducted in [7] demonstrates 135

statistically the performance advantages of MIMO systems in comparison to alternate 136

antenna models. The study presented in [7] highlights the ability to exploit the spatial 137

diversity of a MIMO system to ultimately overcome target fading in radar applications. 138

One of the most important characteristics that dictates the dimensionality of the measured 139

data is the antenna array’s vertical and/or horizontal placement. In order to simultaneously 140

obtain 3-dimensional real-world coordinate data points for detected objects, the antenna 141

array must have both horizontally and vertically placed arrays. The literature discussed in 142

this paper, unless otherwise noted, assumes an antenna configuration that only has either 143

horizontal or vertical placement. 144

Lastly, the final component to consider when discussing the radar architecture for an 145

mmWave multi-object tracking system is the transmit (TX) signal characteristics. Specif- 146

ically, the linear change in frequency of a single tone over time, referred to as the signal 147

chirp. 148

The signal components encapsulated and described by the chirp are illustrated in 149

figure 3. The signal chirp in an mmWave radar system indirectly impacts the measurability 150

and resolution of range and velocity [8]. 151

Rmax =
IFmaxc

2S
(1)
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Figure 4. Typical FMCW radar system.

The equation illustrated in (1) demonstrates the relationship between the signal chirp 152

slope and the maximum possible measurable range (Rmax). In equation (1), IFmax refers to 153

the maximum IF supported by the mmWave radar hardware, c refers to the speed of light 154

(3 × 108m/s) and S corresponds to the frequency slope of the signal illustrated in figure 3. 155

Rres =
c

2B
(2)

The equation shown in (2) highlights the indirect correlation between the chirp sweep 156

bandwidth and the maximum resolution of the measurable range (Rres). In equation (2), B 157

corresponds to the sweep bandwidth, also illustrated in figure 3. 158

Vmax =
λ

4Ct
(3)

The maximum radial velocity that can be measured without ambiguity (Vmax) is calculated
using equation (3). In equation (3), λ refers to the wavelength of the TX signal and Ct
corresponds to the total chirp time, which can also be seen in figure 3.

Vres =
λ

2CtCn
(4)

Lastly, the unambiguous velocity resolution can be calculated using equation (4), 159

where Cn is the number of chirps in a single frame. A frame simply refers to a sequence of 160

chirps, followed by a delay before beginning the next frame. The frame can be considered 161

as the window of observation that is operated on. 162

2.2. Position and Velocity Estimation 163

Once the appropriate radar architecture has been decided, a strategy for calculating 164

the estimated position and velocity of reflected points should be determined. It should be 165

acknowledged that the position of a reflected point is comprised of the range and azimuth 166

of the reflected point, with respect to the radar. Consider a typical FMCW radar system 167

illustrated in figure 4. In figure 4, the synthesizer is responsible for generating the chirp TX 168

signal, the reflections of the transmitted chirp are captured by the receiver and mixed with 169

the TX signal to ultimately produce the IF signal. 170

Assuming the transmitted chirp (CTx) is sinusoidal, the waveform that is transmitted 171

and the corresponding received (RX) signal (CRx) can be described as equations (5) and 172

(6) respectively. Furthermore, the IF signal (IF) of the transmitted and received sinusoidal 173

chirps is described as equation (7). 174

CTx = sin(ωTxt + ϕTx) (5)

CRx = sin(ωRxt + ϕRx) (6)

IF = sin((ωTx − ωRx)t + (ϕTx − ϕRx)) (7)
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where ωTx and ωRx are the instantaneous frequencies of the TX and RX signals respectively, 175

and ϕTx and ϕRx are the phase of the TX and RX signals respectively. 176

In an environment where multiple objects are presently causing an influence on the 177

IF signal, a fast Fourier transformation (FFT) of the IF signal can be performed to express 178

the signal so that the signal can then be expressed in the frequency domain. As a result, 179

each frequency peak evident in this form can be assumed to be associated with a particular 180

detected object. The distance of each detected object, denoted as Rx, can then be calculated 181

using the given frequency present in the IF signal, expressed in equation (8). 182

Rx =
f IFc
2S

(8)

where f IF is the frequency of the detected object in the IF signal. 183

The velocity of a detected object can ultimately be obtained by analyzing the phase 184

difference between consecutive chirps corresponding to the same object. In the situation 185

where multiple objects are present at the same distance from the radar, the phase difference 186

of the FFT of the IF signal will have multiple objects encoded within it. As a result, a second 187

FFT should be performed, labeled as the Doppler-FFT, which will ultimately reveal peaks 188

of phase differences corresponding to the number of detected objects. The velocity of a 189

given object (Vx) revealed using a Doppler-FFT can then be evaluated with equation (9). 190

Vx =
λωx

4πCt
(9)

where ωx is the phase difference of the detected object in the IF signal. 191

The last component of interest that can be derived from the reflected signal is the 192

horizontal angle, relative to radar, of the object that caused the signal reflection. This is 193

termed as the Angle of Arrival (AoA). The AoA can fundamentally be derived from the 194

phase change in a detected object’s peak in the Doppler-FFT or range-FFT. This phase 195

change is ultimately caused by a change in the distance of the detected object. Using 196

this observation, the AoA of an object can be determined by acknowledging that a single 197

object’s distance from two RX antennas will differentiate and therefore distinctly have a 198

phase difference. For two RX antennas, the AoA of a reflected signal (θx) can be expressed 199

as equation (10). In an architecture where multiple RX antenna pairs are presented. The 200

final AoA can be derived by determining the average AoA result from all RX antenna pairs. 201

θx = sin− 1(
λωx

2πd
) (10)

where d is the distance between the two RX antennas. 202

The ultimate outcome of this stage in an mmWave tracking system is to obtain the 203

necessary information to construct a 2 dimensional plot that illustrates the reflection points 204

in the environment. Estimating the range, angle and velocity of each reflection point is 205

sufficient enough to construct a plot of this nature. The most common way to illustrate this 206

information is to plot it in a point cloud graph. 207

2.3. Association and Tracking 208

The association and tracking component of a mmWave tracking system should funda- 209

mentally consume the information that illustrates reflection points, deduced in section 2.2 210

of this paper. Using this information, usually in point cloud format, the process illustrated 211

in figure 5 highlights the typical stages involved in achieving a set of continuously tracked 212

objects from the obtained point cloud data. 213

The first processing stage illustrated in figure 5, static noise removal, refers to a process 214

whereby any points in the point cloud data that are present in both frame Nx and Nx−1 215

are deemed as static noise and removed from frame Nx. This noise removal technique is 216

typical in current mmWave multi-object tracking systems. One key assumption that is 217

made in this noise removal attempt is that targets of interest must always be moving to 218

be tracked. Therefore, any targets that are mostly stationary, such as a person sitting at an 219
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Figure 5. Generalized stages of association and tracking in a mmWave tracking architecture system.

office desk, cannot reliably maintain a track under this assumption. This paper explores 220

advanced strategies in section 3 that attempt to overcome this assumption when tracking 221

multiple-objects. 222

Proceeding to the second stage in figure 5, although the static noise has been removed, 223

the data points present may not be noise free. Due to the multi-path theory, there will 224

likely be a number of data points present that are ghosts of the actual reflected objects, 225

otherwise known as false positives. As a result, an appropriate correlation and clustering 226

algorithm is usually employed to alleviate this challenge and gate relevant data objects. The 227

most successful clustering algorithm that is used in point cloud data is the density-based 228

spatial clustering of applications with noise (DBSCAN) algorithm, originally presented in 229

[9]. MmWave radar tracking systems predominately either use the DBSCAN algorithm for 230

clustering and association of data points or implement an alternate clustering algorithm 231

that is typically a variation of the original DBSCAN algorithm. The variant DBSCAN algo- 232

rithms presented usually outperform the original DBSCAN algorithm [10–13]. However, 233

before blindly adopting a variation of the DBSCAN algorithm for a claim of superiority, 234

an acknowledgment should be made of the differences between the dataset used to bench- 235

mark the variant DBSCAN algorithm and the intended dataset that the variant DBSCAN 236

algorithm will be applied to. An assessment of the differences should be made to determine 237

if the particular variations of the DBSCAN algorithm are impacted by the differences in 238

the datasets. Once the point cloud data points have been correlated and clustered together 239

to form a set of groups, a common strategy to decide the position of a holistic object is to 240

logically take the centroid of the respective cluster. 241

After guaranteeing reliable point cloud associations and clustering has been made to 242

collate the points associated with the various objects in scene, the next step is to persist 243

a track for each of these objects across a continuous set of frames. In the vast majority of 244

mmWave multi-object tracking systems, the tracking aspect in its simplest form is primarily 245

achieved through the use of a Kalman filter. Kalman filtering is a widely adopted approach 246

to efficiently provide tracking and estimations [14]. Many variations of Kalman filters have 247

been presented in the literature to ultimately optimize the performance and outcome of 248

tracking an object via mmWave radar. The research conducted by [15] demonstrates an 249

example where Kalman filtering was applied to successfully track multiple objects with 250

respect to a mmWave radar. For each object detected by the radar, an individual Kalman 251

filter is applied for tracking and estimation of the specific object. Each Kalman filter is then 252

run independently [15]. The authors of [15] highlight that the success of implementing a 253

Kalman filter to track and estimate the position of an object is highly dependent on the 254

clustering and data association techniques that have been employed for object detection. 255

2.4. Sensing and Identification 256

The final component of a mmWave tracking system is any sensing and identification 257

strategies that might be employed in addition to the core tracking architecture. The desired 258

outcome of this component of the system is to ultimately perform a particular sensing 259

or identification task and associate the outcomes with the tracked objects. It should be 260

noted that this stage is not required in a system where the sole objective is to simply 261

perform multi-object tracking. Nevertheless, this stage has been included for discussion 262

in this paper as it serves an important role in the idealized unified tracking and sensing 263
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Figure 6. Areas explored and discussed in section 3 in contrast to the typical multi-object mmWave tracking architecture block diagram
presented in figure 2.

framework, ultimately achieving more elaborate tracking profiles. Currently, there is no 264

typical/generalized way this component of a mmWave tracking system is achieved. 265

Sensing and identification components of mmWave tracking can be loosely coupled 266

with the ability to discontinuously track a particular object. Specific examples of this are 267

explored in section 3 of this paper. 268

3. Advanced Technologies and Methodologies 269

In the previous section of this paper, a typical mmWave radar multi-object tracking 270

system and its components were explored and discussed. This section of the paper aims 271

to describe the state-of-the-art advancements in mmWave multi-object tracking and how 272

it contributes to the generalized multi-object mmWave tracking architecture explored 273

in section 2. Figure 6 highlights the areas that are being explored in this section of the 274

paper in contrast to the typical system architecture presented in figure 2. The system 275

architecture stages; radar data collection, position and velocity estimation, and gating are 276

all mature in the context of multi-object tracking. The areas which require most attention 277

for developing advanced methodologies is object detection, sensing and identification. 278

These areas specifically are receiving the most focus primarily due to the limitations that 279

are faced in the current typical multi-object tracking architectures. 280

For each of the below sub-sections, the methodologies presented will be compared and 281

contrasted with respect to the below criteria. The relevant advantages and disadvantages 282

for the methodologies discussed will be outlined for each criterion (Crit.). The following 283

details the criteria that will be used to assess the methodologies: 284

• Adaptability (Adap.): The ability to apply the methodology in a generalized form so 285

that it can contribute to advancing the system architecture presented in figure 2. 286

• Performance (Perf.): The overall performance of the methodology with respect to it’s 287

suitability for real-time applications. 288

• Accuracy (Accu.): A consideration regarding the accuracy metric of the techniques 289

presented in the specific methodology. 290

• Specificity (Spec.): The sensitivity of the methodology in regard to the particular 291

event/action being measured or characterized. This criterion provides an opportunity 292

to consider any event overlap that the methodology might have, such as false positives. 293

3.1. Object Detection Enhancements 294

One of the fundamental flaws in a typical mmWave tracking system is the reliance on 295

static noise filtering. In the context of radar imaging, as opposed to tracking, there have 296
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been advancements towards adaptive background filtering. Recent adaptive background 297

filtering research in the mmWave domain can be seen presented by [16]. The authors 298

of [16] present a novel approach toward adaptive background noise suppression, that 299

remains computationally cost effective. The approach presented by [16] ultimately relies 300

on the ability to observe the operating background environment without any targets in 301

the field of view. This allows for the construction of a background image which in turn is 302

used to derive a background power map. The work presented by [16] demonstrates an 303

adaptive background filtering approach that can be used when imaging a single target with 304

mmWave. Although not practically tested, the principles that the authors of [16] rely on for 305

adaptive background subtraction are also present in the context of multi-object tracking 306

with mmWave. Therefore, this serves as an interesting approach towards reducing the 307

reliance on static noise filtering in the mmWave tracking domain. 308

The reliance on static noise filtering ultimately spawns challenges related to the reliable 309

tracking of a stationary object. As a result, a large focus on methodologies and strategies to 310

alleviate these challenges can be seen in the literature. The two overarching themes that 311

encompass the research direction for addressing these challenges are sensor fusion and 312

micro-Doppler feature analysis. 313

Sensor fusion, in the context of this paper, refers to the combination of data from 314

additional sensors in addition to a mmWave sensor. A common approach to this in the 315

literature is to fuse camera data with the data obtained from the mmWave sensor to 316

achieve a more coherent and comprehensive object detection algorithm, whilst alleviating 317

challenges associated with illumination in the vision domain. One of the primary challenges 318

with fusing camera and mmWave radar detections is that they are a heterogeneous pair of 319

sensors [17]. The plane in which the radar detections are aligned with is different to that 320

of the camera detection. Therefore, this can make associating the detections between the 321

two sensors quite difficult [17]. Research presented by [17] demonstrate a novel approach 322

to solving the association challenge. In the methodology presented in [17], the authors 323

define the concept of error bounds to assist with the data association and gating within a 324

fusion extended Kalman filter. The concept of error bounds provide a criteria to define the 325

behavior of the individual sensors before and after the sensor fusion [17]. 326

In the fusion-extended Kalman filter presented in [17], the radar point cloud clusters 327

are formed using an approach similar to the typical architecture discussed in section 2 of 328

this paper, with DBSCAN. Similarly, the bounding boxes on the image plane are initially 329

formed in isolation to the radar and then sent to the fusion-extended Kalman filter to 330

be associated and tracked with the radar clusters. The plane of the camera data points 331

is transformed from an image plane to a world plane using a homography estimation 332

method [17]. A warped bird eye view of the camera data points can then be estimated 333

using the world coordinates. The estimated warped birds eye view can then be compared 334

and associated with the radar point cloud data points [17]. In the fusion-extended Kalman 335

filter presented by [17], the error bounds are updated using data points from both of 336

the sensors (as opposed to independently) and the warped birds eye view of the image 337

plane is calculated for each sample point. As a result, the authors of [17] demonstrate 338

that although this yields a higher association accuracy a time synchronization challenge is 339

faced between the sensors. This challenge is resolved in the research by ensuring timeline 340

alignment between the sensors and a synchronization strategy is employed by comparing 341

certain regions of the fusion-extended Kalman filter output with the error bounds [17]. The 342

experimental results presented by [17] appear to demonstrate a higher reliability in real-time 343

target detection and persisted tracks, compared to a radar alone. Another approach seen in 344

literature towards mmWave sensor fusion, is a track-to-track based association method. The 345

authors of [18] demonstrate an implementation of track-to-track based association between 346

a mmWave radar and a thermal camera. In the research presented by [18], it is assumed the 347

independent sensors are co-located, whereby the two sensors are orientated and located 348

is the same position. Under this operating condition, the targets in the field of view are 349

tracked independently by the mmWave sensor and thermal camera. The independent 350
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tracks are then ultimately associated by solving a combinatorial cost minimization problem. 351

In the research presented by [18], the components involved in this problem are identified 352

as: 353

• Estimated distance 354

• Projected horizontal component 355

• Track length 356

Exploiting micro-Doppler in mmWave radar systems is actively being sought as 357

another angle to devise methodologies that resolve the challenge of static object detection 358

and localization. Specifically in the context of human detection, bio-metric information, 359

such as heartbeat and breathing are being explored as potential features that are measurable 360

through micro-Doppler. A study performed by [19] demonstrates an algorithm designed 361

to localize multiple static humans using their individual breathing pattern. The research 362

performed by [19] highlight that the time of flight of a signal is minimally impacted by the 363

small movements of a breathing chest cavity. As a result, the sub-millimeter movements 364

are lost when performing static background removal between two consecutive frames, 12.5 365

milliseconds apart in the case of the experiment performed by [19]. To counter this loss of 366

information, the authors in [19] suggest subtracting the static background from a frame 367

that is a few seconds apart, 2.5 seconds in the case of the research performed by [19]. In 368

doing this, the sub-millimeter movements are ultimately exaggerated in comparison to a 369

truly stationary object and therefore are left intact when preforming a removal of static data 370

points. 371

The authors of [19] make note that removing static background points from a frame 372

that is a few seconds apart does not work in for a non-stationary object, such as a person 373

walking. This is due to the principle that the movements appear exaggerated when 374

comparing to a frame a few seconds apart, so [19] notes that walking appears ‘smeared’ in 375

this regard. Based on this differing outcome with static and dynamic objects, the algorithm 376

presented in [19] employs independent different background removal strategies; one for 377

static object using a long window and one for dynamic objects using a short window. The 378

experimental results presented in [19] demonstrate a high accuracy of 95%. It should be 379

noted that the experiments performed by [19] does not appear to quantify the success of 380

both moving individuals and static individuals simultaneously within the scene. The radar 381

architecture used in the research presented by [19] is slightly different to the mmWave 382

tracking system that has been discussed in this paper. However, the research performed 383

by [19] illustrates the potential to use vital signs as a means of detecting a static object. 384

It would be of interest to assess the range potential of implementing a static localization 385

algorithm of this nature using a mmWave tracking system architecture. 386

The literature explored in this paper regarding vision sensor fusion and bio-metric 387

micro-Doppler feature analysis are viable approaches to enhance traditional object detection 388

techniques to track objects interchanging from a dynamic and static movement state. Table 389

1 outlines the advantages and disadvantages of the two methodologies with respect to the 390

comparison criteria. Although individually both methodologies prove viable, it would 391

be interesting to consider a combination of both methodologies to compliment each other. 392

Specifically, incorporating a micro-Doppler feature analysis component to the vision system 393

could in turn remove the need of utilizing the universal background subtraction algorithm 394

[20] for identifying moving objects in the image. This could potentially be considered as 395

a three component sensor fusion approach, where camera data points, static radar data 396

points and dynamic radar points are fused. 397

3.2. Sensing Methodologies 398

Sensing is not typically considered a usual aspect that is present in an object tracking 399

system. However, it is a stream of research that has been investigated independently 400

and has the potential when integrated with a tracking system to enhance the tracking 401

systems sensitivity and reliability. An enhancement to the tracking system through sensing 402

could ultimately spawn through the additional extracted features that the sensing solution 403
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Crit. mmWave and Vision Sensor
Fusion

Micro-Doppler Feature Analysis

Adap. ✓ Low architecture assump-
tions.

✓ Unified sensor point cloud
data.

× Unified plane projection
overhead.

✓ Decoupled from architecture
dependencies.

× Specialized noise treatment.

Perf. ✓ Suitability demonstrated in
the literature.

× Potential time synchroniza-
tion drift.

✓ No impact to typical multi-
object detection.

× Immature understanding on
technique overhead.

Accu. ✓ Azimuth angle accuracy
improved.

✓ Multi-object track persis-
tence improved.

× Immature system under-
standing regarding the
compromise of a single sen-
sor (i.e. dark room).

✓ High for multiple dynamic
objects.

✓ Uncompromised fixed multi-
object tracking.

× Immature understanding re-
garding accuracy and range
relationship.

Spec. ✓ All moving objects have a
presence in radar and vision
that can be correlated.

× Fixed objects of interest are
not typically distinguish-
able.

✓ Technique not constrained to
breathing.

× Immature understanding
of simultaneous static and
fixed multi-object tracking.

Table 1. A comparison of methodologies explored for the enhancement of object detection in a
mmWave tracking architecture.

provides, granting more data points that can be incorporated into the tracking estimation 404

and prediction. The advanced sensing methodologies that are explored in this paper can be 405

classified as either general activity recognition or specialized estimation methodologies. 406

General activity recognition can be considered as a class of sensing methodologies 407

that have an underlying objective of classifying a broad set of movements or activities that 408

a given object in the field of view might exhibit. One stream of research that dominates this 409

class of sensing methodologies is human activity recognition (HAR). Traditionally, a radar 410

based HAR system relied on machine learning techniques such as random forest classifiers 411

[21], dynamic time warping [22] and support vector machines (SVM) [23]. In comparison to 412

a deep learning based approach, these techniques are usually computationally less taxing 413

due to their lower complexity. However, relying solely on conventional machine learning 414

techniques for HAR contrastingly presents several limitations. A survey conducted by 415

the authors of [24] provides a thorough critical analysis over the evolution of radar-based 416

HAR. In [24], a conventional machine learning approach to HAR is considered to make 417

optimization and generalization of the HAR solution difficult. The authors of [24] highlight 418

three fundamental limitations of machine learning techniques with respect to a HAR system. 419

The first acknowledges the approach in which feature extraction takes place, specifically a 420

manual procedure based on heuristics and domain knowledge which is ultimately subject 421

to the human’s experience [24]. The second limitation identified relates to the fact that 422

manually selected features tend to also be accompanied by specific statistical algorithms 423

that are dependent on the trained dataset. As a result, when applying the trained model to 424

a new dataset the performance is typically not as good as the dataset that was used to train 425

the model. Lastly, the authors of [24] highlighted that the conventional machine learning 426

approaches used in a radar based HAR system primarily learn on discrete static data. This 427
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Figure 7. Walking classification system designs explored in [25]; a) Principal component analysis
combined with support vector machine classification; b) Principal component analysis combined
with k-nearest neighbor classification; c) t-distributed stochastic neighbor embedding combined with
support vector machine classification; d) t-distributed stochastic neighbor embedding combined with
k-nearest neighbor classification.

poses a difference between the data that is used to train a model and the data that the model 428

is subject to during real-time testing. The real-time data is principally continuous and 429

dynamic in nature. The survey conducted by [24] explores the potential for deep learning 430

to assist in alleviating these limitations in machine learning radar-based HAR systems. 431

Although there are some limitations with using conventional machine learning ap- 432

proaches, it should also be acknowledged that there has been successful applications of 433

radar-based HAR using these techniques. The research presented in [25] identifies recent 434

work that attempts to classify three different walking/movement patterns: 435

• Slow walk 436

• Fast walk 437

• Slow walk with hands in pockets 438

The authors of [25] attempt to classify these walking patterns comparing the performance 439

between an approach using k-Nearest Neighbor (k-NN) and SVMs. The four system designs 440

explored in the work presented by [25] can be seen illustrated in 7. In [25], both the range- 441

Doppler and Doppler-time data is incorporated into feature extraction. In the research 442

presented by [25], the impact each of the walking patterns has in the range-Doppler and 443

Doppler-time maps is illustrated in the form of a heat-map. It can be seen in this illustration, 444

that the change in walking speed (the difference between slow and fast walking) results in 445

a dramatic change in the range-Doppler and Doppler-time maps. Whereas, maintaining a 446

consistent walking speed and with hands in the pocket has less of a notable difference. 447

In regard to extracting the features, the authors of [25] explore and compare two 448

potential approaches, using either Principle Component Analysis or t-distributed Stochastic 449

Neighbor Embedding. Both of which are non-supervised transform algorithms. The two 450

feature extraction methods are compared against each other whilst equally being applied 451

with the two aforementioned classification methods. The permutations of feature extraction 452

methods with classification algorithms explored are shown in figure 7. The results obtained 453

from [25] for each of the explored system designs in figure 7 demonstrate the capability of 454

classifying fast and slow walking with high accuracy. Using the feature extraction methods 455

and classification algorithms explored in [25], the authors note a 72% accuracy in classifying 456

slow walking with hand in the pocket. 457

Another piece of leading research in radar-base HAR is RadHAR presented in [26]. In 458

[26], the authors explore a range of classification approaches, including both conventional 459

machine learning algorithms and deep learning based algorithms. The primary objective 460

of the RadHAR system is to classify five human movement activities; walking, jumping, 461

jumping jacks, squats and boxing. 462
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Unlike the research presented in [25], in [26] the data that is used for classification 463

originates from point cloud. The point cloud data is first voxelized to to ensure a uniform 464

frame size, despite the number of points, before feeding to the classification algorithm. 465

Using the voxelized point cloud data, an SVM, multi-layered perceptron (MLP), Long 466

Short-term Memory (LSTM) and convolution neural network (CNN) combined with LSTM 467

were trained and compared against each other. 468

The results of the research conducted in [26] demonstrate that the classification al- 469

gorithm with the highest accuracy, 90.47%, is that of a combined time-distributed CNN 470

and bi-directional LSTM. The authors of [26] hypothesis that the high accuracy of this ap- 471

proach can be attributed towards the fact that the time-distributed CNN learns the spatial 472

features of the point cloud data, whilst the bi-directional LSTM learns the time dependent 473

component of the activities being performed. 474

Another more recent piece of research, presented in [27], demonstrates a mmWave 475

sensing framework that is capable of recognizing gestures fundamentally using micro- 476

Doppler and AoA (both elevation and azimuth) data to form a set of feature maps. Features 477

are then ultimately extracted using an empirical feature extraction method and used to train 478

a MLP to classify gestures [27]. An important aspect to consider regarding the research 479

presented by the authors of [27], is that the approach presented is for a field of view where 480

only a single human performing gestures is present (i.e. not multi-object). This same 481

limitation can also be seen in a similar piece of research presented in [28]. The authors 482

of [28] demonstrate a mmWave system capable of performing 3D finger joint tracking 483

using the vibrations and distortions evident on the forearm as a consequence to finger 484

movements. However, as previously mentioned, this specialized estimation is also subject 485

to the challenge of operating in a multi-person environment. Despite this, the authors of 486

[27] have made their approach so that underlying encoded assumptions about the number 487

of people in the field of view has been abstracted from the core methodology to performing 488

gesture recognition. Instead, the field of view constraint has been isolated to being a data 489

formation challenge. The authors of [27] acknowledge that the range data has not been 490

taken into account in their presented approach, but would yield beneficial in extending 491

their design to handle multiple people simultaneously performing their own sequence of 492

gestures. Putting the specific classification task aside, the abstracted methodology presented 493

by the authors of [27] could serve as a framework to incorporating generalized activity 494

recognition into a mmWave multi-object tracking system, ultimately uplifting the tracking 495

profile maintained for an individual. As the authors of [27] did not have multi-object within 496

scope, extending the methodology to operate on each range bin, for satisfying multi-object 497

support, raises concerns around whether real-time processing is still feasible. 498

Specialized estimation, as opposed to general activity recognition, is a class of sensing 499

that ultimately has a primary focus on a single objective that can be measured. Measurement 500

of this nature of course should be considered as an estimation. This class of sensing has 501

overlap with features that can be used as a criteria for identifying a specific object. More 502

details on features with the potential to be used as an identification strategy are addressed 503

in section 3.3 of this paper. The primary driver behind research in radar-based specialized 504

estimation methodologies originates from a human health perspective. The ability to 505

determine human vital signs passively is an area in which mmWave radar is being explored 506

as a viable solution. A study performed in [29] demonstrates a solution named ’mBeats’ 507

which aims to implement a moving mmWave radar system that is capable of measuring 508

the heart beat of an individual. The proposed ’mBeats’ system implements a three module 509

architecture. The first modules is a user tracking module, which the authors of [29] state 510

that the system utilizes a standard point cloud based tracking system, as illustrated in 511

section 2 of this paper. The purpose of this module is to ultimately find the target in the 512

room. It should be noted that in [29] an assumption is made that there will only be one 513

target in the field of view. The second module is termed proposed in [29] is termed as the 514

’mmWave Servoing’ module. The purpose of this module is to optimize the angle in which 515

target is situated from the mmWave radar to give the best heart beat measurement. To 516
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achieve this, the authors of [29] specify the ultimate goal of this module as obtaining peak 517

signal reflections for the targets lower limbs, since the mmWave radar is situated on a robot 518

at ground level. Using the Peak To Average value as a determinant for the reflected signal 519

strength, the authors define an observation variable which is incorporated by a feedback 520

Proportional-Derivative controller to ultimately orientate the radar in the direction that 521

yields the highest signal strength. 522

The last module is the heart rate estimation module, responsible for ultimately de-
termining the targets heart rate from a set of different poses. The poses consist of various
sitting and lying down positions. The authors of [29] acknowledge that heartbeats lie in the
frequency band of 0.8 4Hz, and therefore implement a biquad cascade infinite impulse
response (IIR) filter to eliminate unwanted frequencies and extract the heartbeat waveform.
A CNN is selected in [29] as the predictor due to the heartbeat detection problem being
considered as a regression problem. The authors state that a key challenge with using a
CNN for this problem is estimating the uncertainty of the result. Uncertainty in this prob-
lem is ultimate caused by measurement inaccuracies, sensor biases and noise, environment
changes, multipath and inadequate reflections [29]. To overcome this, the authors of [29]
cast the problem into a Bayesian model, defining the likelihood between the prediction and
ground truth (y) as a probability following a Gaussian distribution. This ultimately results
in a loss function as illustrated in equation (7).

loss(x) =
∥y − ŷ∥2

2œ2 +
1
2

log œ2 (7)

where the CNN predicts a mean ŷ and variance œ2. Using this approach the authors 523

of [29] compare the outcome of their model with three other common signal processing 524

approaches (FFT, Peak Count (PK) and Auto-correlation (XCORR)) with accuracy as the 525

metric that is compared. 526

In the results presented in [29], it can be seen that the other approaches fail to maintain 527

an accuracy above 90% in all poses, whereas the CNN presented in [29] does maintain a 528

high accuracy for the selected poses. The authors acknowledge that in the current system 529

the target must maintain static whilst performing the heartbeat measurement and that 530

future work will be focused on measuring a moving object. It would also be interesting to 531

assess the viability and challenges of this approach in a multi-person scene. 532

The underlying theme of the sensing methodologies explored in this paper is that 533

independently they are successful in the goal they aim to achieve. However, there is a lack 534

of acknowledgment in the literature regarding the suitability of these methodologies in a 535

combined holistic tracking and sensing architecture. It would not only be interesting to 536

assess their suitability in such a system, but also how they may contribute to enhance the 537

sophistication and reliability of such a tracking system. Table 2 outlines the advantages 538

and disadvantages of the explored sensing methodologies, with respect to the comparison 539

criteria. It can be seen in this table that both methodologies explored fail to address the 540

challenges of operating in a multi-object environment. In order to achieve a tracking system 541

that completes a target profile with sensing characteristics, the challenge of sensing multiple 542

objects and associating the acquired information to a detected target must be solved. 543

3.3. Identification Strategies 544

The development of identification methodologies is a natural direction of the evolution 545

for mmWave tracking systems. It can be considered a more unique type of specialized 546

estimation sensing but with the key focus on being able to reliably and uniquely correlate 547

the sensed information to a tracked object. There are a number of challenges that need 548

to be considered and overcome in identification approaches, such as the feasible range, 549

separation of multiple objects/people and generalization of the approach. This sections 550

aims to explore the leading identification methodologies of radar-based tracking systems. 551

Gait identification approaches rely on the different gait characteristics between individ- 552

uals. Gait based identification strategies are the most common passive based approach to 553
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Crit. Generalized Activity Recogni-
tion

Specialized Estimation

Adap. ✓ Decoupled architecture im-
pact.

× Uncertain tracking enhance-
ment reliability.

✓ Trusted point cloud process-
ing techniques.

× Uncertain feedback enhance-
ment reliability.

Perf. ✓ Algorithm real-time perfor-
mance proven.

× Uncertain system suitability.

✓ Real-time suitability has
been proven viable.

× Optimization overhead to
accommodate.

Accu. ✓ High pre-defined activity
accuracy.

× Dependent on training envi-
ronment.

✓ High due to the narrow
focus.

× Highly coupled to the train-
ing data.

Spec. ✓ Pre-defined actions reliably
classified.

× Uncertainty of multi-object
suitability.

× Simultaneous classification
challenging.

✓ Optimized for estimating a
single action.

× One target is considered for
estimation.

× Immature literature in
mmWave field.

Table 2. A comparison of sensing methodologies explored for the enhancement of tracking reliability
in a mmWave tracking architecture.

identifying people in a radar or WiFi based tracking system. They fundamentally leverage 554

that each person typically has a unique pattern in the way they walk, this pattern is most 555

often identified through a deep learning based technique. Gait recognition can pose it’s 556

own challenges, such as inconsistencies and unpredictable upper limb movements that 557

influence the lower limb signal reflections. This interference can ultimately reduce the 558

reliability of obtaining a consistent lower limb gait pattern for a given individual. A recent 559

study performed in [30] attempts to overcome the challenges associated with upper limb 560

movement interference by narrowing the vertical field of view and focusing attention on 561

the finer grain movements of the lower limbs. The research presented in [30] proposes a 562

system that comprises of three phases: 563

1. Signal processing and feature extraction 564

2. Multi-user identification 565

3. CNN-based gait model training 566

In the first phase the authors of [30] construct a range-Doppler map following the
traditional methodology described in section 2 of this paper. The stationary interference
in the range-Doppler map is then removed following a technique similar to the described
approach in section 2.3 of this paper. The stationary reflections are subtracted from each
frame of the range-Doppler frequency responses. The authors of [30] observe that a
cumulative deviation of the range-Doppler data occurs due to the dynamic background
noises, which are not eliminated when subtracting the static interference. To overcome this,
a threshold-based high-pass filter is implemented with a threshold τ of 10dBFS. This filter
is described in equation (11).

R(i,j,k) =

{
R(i,j,k), R(i,j,k) ≥ τ,
0, R(i,j,k) < τ,

(11)

where R(i,j,k) is the range-Doppler domain frequency response at the kth frame with range i 567

and velocity j. 568
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The authors of [30] identify that the dominant velocity V̂i can be used to describe the
targets lower limb velocity in each frame. In [30], this is expressed as equation (12).

V̂i =
∑ND

j=1

(
R̂(i,j,k)Vj

)
ND

, i ∈ [1, NR], j ∈ [1, ND]. (12)

where R̂(i,j,k) is the normalized frequency response, Vj is the velocity corresponding to the 569

frequency response R(i,j,k), NR and ND represent the number of range-FFT and Doppler-FFT 570

points respectively. 571

The authors of [30] illustrate the composition of these gait characteristics as a heat-map 572

corresponding to the actual gait captured with a camera. Using these extracted gait features, 573

the author of [30] identifies that multiple targets can be differentiated firstly by range and 574

secondly (if the range is the same) by leveraging distinct spatial positions. This is ultimately 575

done by projecting the point R(i,j,k) in the kth frame to a point R̂(i,j,k) in the two-dimensional 576

spatial Cartesian coordinate system. To differentiate the data points in the spatial Cartesian 577

coordinate system, [30] implements a K-means clustering algorithm. Each individual gait 578

feature can be generated as a range-Doppler map by negating the frequency responses that 579

were not correlated in the K-means clustering [30]. After differentiating the gait features, 580

the authors of [30] then identify a challenge regarding the segmentation of the actual step. 581

In [30], this is ultimately overcome by using an unsupervised learning technique to detect 582

the silhouette of the steps. 583

Finally, a CNN-based classifier in the image recognition domain is used to identify the 584

patterns associated with the gait feature maps. The classifier is assessed with multiple users 585

and varying steps to determine the overall accuracy of the system. Overall, the system 586

demonstrates a high accuracy that marginally decreases in accuracy as the number of users 587

increases but is ultimately corrected as the number of steps increases. 588

Another overarching class of identification strategies being explored are tagging based 589

approaches. This is not a passive approach unlike the others mentioned in this paper 590

and involves incorporating a tag on the object so that it can be uniquely identified. There 591

are two directions in which the literature focuses on in regards to identification of this 592

nature. The first is radio frequency identification (RFID). In a chipless based RFID system, 593

data must be encoded in the signal either by altering the time-domain, frequency-domain, 594

spatial-domain or a combination of two or more of the domains. An example of RFID 595

implemented as an identification strategy in mmWave can be seen in the ’FerroTag’ research 596

presented in [31]. The ’FerroTag’ system presented in [31] is a paper-based RFID system. 597

Although the usage of the FerroTag research is intended for inventory management, it 598

could potentially be adopted to as a tagging strategy for a tracking based system. FerroTag 599

is ultimately based on ferrofluidic ink, which is colloidal liquids that fundamentally contain 600

magnetic nanoparticles. The ferrofluidic ink can be printed onto surfaces which in turn 601

will embed frequency characteristics in the response of a signal. The shape, arrangement 602

and size of the printed ferrofluidic ink will ultimately influence the frequency tones that 603

are applied to the response signal. In order to identify and differentiate the different 604

signal characteristics caused by the chipless RFID surface, the solution presented by [31] 605

utilizes a random forest as a classifier to identify the corresponding tags present in the 606

field of view. The second approach to tagging as a means of identification is through 607

re-configurable reflective surfaces (RIS). To the best of our knowledge no system has been 608

presented in the literature that demonstrates a practical RIS solution for identification 609

purposes in a mmWave tracking system. Research regarding RIS with respect to mmWave 610

is predominantly in the communication domain. The challenges and opportunity to design 611

an RIS based identification system for a mmWave tracking system are yet to be detailed. 612

Shape profiling has been seen implemented in previous mmWave research to identify 613

an object by the properties of the objects shape. For example, if the object being tracked 614

is a human, the height and curvature of the human body can influence the way in which 615

the mmWave signal is reflected [32]. The authors of [32] demonstrate how a human being 616
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tracked and represented in point cloud form can be identified based on the shape profile of 617

their body. Using a fixed-size tracking window, the related points to the particular human 618

are voxelized to form an occupancy grid [32]. This is then ultimately sequenced through a 619

Long-short Term Memory network to classify the particular human [32]. This particular 620

identification method is abstracted from the tracking aspect of the process, therefore making 621

it suitable regardless if there are multiple objects being tracked. suitable for identifying 622

objects in an environment where multiple object tracking is taking place. 623

The research presented in [33] differs to that presented in [32] in the regard that the 624

tracking data is not used during the identification stage. Instead, the authors in [33] propose 625

a strategy where once the human has been tracked, the radar adjusts its transmit and receive 626

beams towards the tracked human. By doing so the granularity of the feature set available 627

from the human body is increased. In other words, more specific profiling can be performed 628

on the individual. The research presented in [33] demonstrates the ability to characterize 629

the human body by its outline, surface boundary and vital signs. Having this granular 630

feature set, and tailored profiling, provides a stronger ground to positively identify an 631

individual. However, this particular method does come at the cost of directing the beam 632

just for identification purposes. Additionally, the existing research presented in [33] does 633

not make any remarks regarding the suitability for this method in real-time applications. 634

The various identification strategies explored in this section of the paper each have 635

their own complexities involved in fundamentally incorporating into a tracking system. 636

Table 3 aims to assist in comparing the various identification methodologies, to ultimately 637

understand their suitability and limitations around implementing them in a tracking 638

system. 639

4. Future Research Directions 640

Despite many advancements underway in achieving a unified mmWave tracking and 641

sensing architecture, there are still many challenges and limitations to be resolved. The 642

following are suggestions for some of the key areas in which future research should be 643

directed to assist in the development of the limitations associated with such a unified 644

system: 645

• Concurrent Tracking Enhancements: The number of people that can reliably be 646

concurrently tracked continues to be a challenge for a tracking system. It would be 647

of interest to explore potential areas that could provide a scalable approach to this 648

problem. Integrating sensing outcomes into the tracking estimation and prediction 649

filter could be an area that is worth exploring to assist with overcoming tracking 650

concurrency challenges. 651

• Coverage Area: The maximum range in which a solution is functional until can 652

impact the practicality of the solution. This is specifically true for systems that are 653

dependent of high signal resolution, therefore sacrificing range. The default approach 654

to this problem is to simply increase the transmitter power. However, in situations 655

where this might not be possible it would be beneficial to research novel approaches 656

that overcome signal range without increasing the transmitter power and minimally 657

impacting the resolution. It could prove beneficial to investigate the techniques being 658

employed using RIS in the communications domain for signal propagation and beam 659

steering as a potential to be smarter with obtaining a larger coverage area. 660

• Integrating Tracking and Sensing Systems: There are currently not many integrated 661

sensing and tracking mmWave systems present in the literature. The challenges and 662

limitations that come with doing so deserve more focus. Integrating systems of this 663

nature could prove fruitful in designing an enhanced tracking system capable of 664

discontinuous tracking and more robust predictions. 665

• Real-time Performance: As the techniques for advanced tracking systems evolve and 666

become more complex, their feasibility for real-time applications requires assessment. 667

This especially becomes true when incorporating sensing solutions reliant on deep 668

learning based algorithms. 669
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Crit. Gait Tagging Shape Profile
Adap. ✓ Low architec-

ture impact.
× Ability to corre-

late to multiple
tracks un-
known.

× Specific hard-
ware position-
ing.

✓ Loosley coupled
to tracking ar-
chitecture.

× Different data
domain.

× Additional hard-
ware.

× Multi-object
correlation chal-
lenge.

✓ Potential to
extend on point
cloud.

× Sampling con-
cerns with
simultaneous
beam directing
and tracking.

Perf. ✓ Proven real-
time viability.

× Compute over-
head.

✓ Very minimal
impact.

✓ Pre-encoded
data absorbs
impact.

× Untested multi-
object setting.

✓ Minimal over-
head.

× Suitability un-
proven.

Accu. ✓ High multi-
object accuracy.

× Scalability chal-
lenges.

✓ Very accurate.
× Immature un-

derstanding on
range.

✓ No impact due
to multi-object.

× External depen-
dencies.

Spec. ✓ Focused move-
ment considera-
tions.

× Challenges with
wider field of
view.

✓ Low risk of
false positives.

× Undefined
challenges with
multi-object.

✓ Multi-objects
independently
profiled.

× Immature un-
derstanding on
environmental
impacts.

Table 3. A comparison of identification methodologies explored for the enhancement of tracking
objects discontinuously in a mmWave tracking architecture.

• Stationary Object Tracking: Lastly, in a pure tracking system a large fundamental 670

floor is the method in which static noise is removed from the signal response. The 671

traditional approach of subtracting signal responses that do not change between 672

frames immediately scarifies stationary objects that should not be considered as noise, 673

such as a person sitting. This challenge could be researched by either exploring more 674

sophisticated static noise removal techniques or by attempting to recover stationary 675

objects of interest after the removal of static signal responses. 676

• RNN Suitability In the literature there is an underlying theme of CNN models being 677

utilized and demonstrating the best performance. This is in contrary to the theoretical 678

better suitability of recurrent neural network (RNN) models for temporal based data. 679

A likely reason for their lack of use could be attributed toward the difficulty of training 680

the shared parameters across the layers. It would be interesting to look at introducing 681

an algorithm unfolding technique to address this potential issue by embedding domain 682

knowledge into the network itself. 683

5. Conclusion 684

This paper aimed to provide an overview and analysis into traditional, state-of-the- 685

art, and future methodologies for mmWave multi-object tracking. In the review of the 686

advanced methodologies it should be noted that many of the approaches explored have 687

only been implemented in an isolated setting. They demonstrate their potential and success 688

in achieving the particular purpose they were intended for. However, the challenges and 689
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limitations involved in some of these advanced methodologies into a real-time tracking 690

system are yet to be further explored. 691
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Abbreviations 700

The following abbreviations are used in this manuscript: 701

AoA Angle of Arrival
CNN Convolutional Neural Network
DBSCAN Density-based Spatial Clustering of Applications with Noise
FFT Fast Fourier Transformation
FMCW Frequency-modulated Continuous-wave
HAR Human Activity Recognition
IF Intermediate Frequency
IIR Infinite Impulse Response
IR-UWB Impulse Radio Ultra-wide Band
k-NN K-Nearest Neighbor
LSTM Long Short Term Memory
MIMO Multiple-input Multiple-output
MLP Multi-layered Perceptron
mmwave Millimeter Wave
PK Peak Count
RFID Radio Frequency Identification
RIS Re-configurable Reflective Surfaces
RNN Recurrent Neural Network
RX Receive
SVM Support Vector Machines
TI Texas Instruments
TX Transmit
XCORR Auto-correlation
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