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Abstract. In federated learning, data owners ‘provide’ their local data
to model owners to train a mature model in a privacy-preserving way. A
critical factor in the success of a federated learning scheme is an optimal
incentive mechanism that motivates all participants to fully contribute.
However, the privacy protection inherent to federated learning creates a
dual ethical risk problem in that there is information asymmetry between
the two parties, so neither side’s effort is observable. Additionally, there
is often an implicit cost associated with the effort contributed to train-
ing a model, which may lead to self-interested, opportunistic behaviour
on both sides. Existing incentive mechanisms have not addressed this
issue. Hence, in this paper, we analyse how dual ethical risk affects the
performance of federated learning schemes. We also derive an optimal
multi-stage contract-theoretic incentive mechanism that minimises this
risk, and experiment with calculating an optimal incentive contract for
all participants. To our best knowledge, this is the first time that dual
ethical risk for federated learning participants has been discussed. It is
also the first time that an optimal incentive mechanism to overcome this
issue has been developed.
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1 Introduction

In this era of AI, more and more complex applications based on machine learn-
ing are being introduced into our daily lives. It is now possible to train a highly
accurate machine learning model by feeding it vast amounts of real-world data.
However, we are also in an era with an emphasis on privacy protection, and
various privacy protection regulations around the world, such as the GDPR in
the EU [3], restrict data sharing. This creates a significant problem for machine
learning where training a well-performing model invariably means accessing pri-
vate data – and lots of it. In this context, federated learning, an inherently
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private learning scheme introduced by Google in 2016 [6–8], has received much
attention. With federated learning, participants train a model collaboratively
without ever needing to expose their sensitive raw data. An initialised global
model is distributed to the data owners (clients) via a federated learning server,
and each client trains the model locally using its own private data. Only the
updated parameters of the model are then uploaded to the server for aggrega-
tion. After the uploaded parameters have been integrated, the server sends the
updated model back to the clients for further training. This process is repeated
until the accuracy of the model reaches its target.

In the years since 2016, the concept of federated learning has been expanded
to include horizontal federated learning, vertical federated learning, and fed-
erated migrated learning [13], while the participants fall into two groups: the
model owners and the data owners. The architecture of a simple federated learn-
ing scheme is shown in Fig 1. The data owners consume their resources to collect,
clean and process large quantities of qualified training data. They also provide
the computational and communication resources required for local training. The
model owners consume resources throughout the training process for parameter
integration, model tuning, optimisation, and more. Thus, an incentive mecha-
nism is needed to compensate both parties for the resources consumed and to
motivate them to collaborate. To maximise performance, both parties need to
contribute their resources to the fullest degree. However, the privacy-preserving
mechanisms within the federated learning paradigm creates information asym-
metry between the participants causing a double ethical risk problem where
neither side’s effort is observable. In addition, there is often a cost associated
with the effort, which may lead to self-interested, opportunistic behaviour on
both sides given the disparity of interests and the information asymmetry. Con-
sider a practical example: a medical association with several hospital members
wants to work with a company that specialises in image recognition to build an
automated CT image recognition model that can label suspected lung cancer
nodules in CT images. The medical association cannot observe how much effort
the model provider puts into the training, and nor can the model provider ob-
serve whether the healthcare association is putting enough effort into collecting
and processing high-quality/quantity training data. Both parties can only di-
rectly observe the training results at particular stages. As such, there is a double
ethical risk in this kind of federated learning case.

Much work has been done on different aspects of incentive mechanisms for
federated learning – work that can be found in some of the recently published
state-of-art surveys [16, 17]. Currently, most reward-based incentive mechanisms
focus on model owner-led reward schemes. These are typically designed to max-
imise federated learning outcomes for model owners, while minimising the in-
centives offered to the data owners. However, to the best of our knowledge, the
issue of dual ethical risk in federated learning has not been addressed. Hence,
in this paper, we propose an incentive mechanism that differs from the status
quo. In our mechanism, the data owners are Stackelberg game leaders, which
address the above dual ethical risk. Our focus is on the ethical risk problems
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Fig. 1. Client-server architecture FL Model

with federated learning, i.e., how to gauge the implicit efforts of both groups of
participants and how this problem might be countered using multi-stage game
theory. This is our focus because the implicit efforts targeted by our incentive
mechanism are highly significant to the success of federated learning schemes.

To this end, our research examines the game between data owners and model
owners within a federated learning process, where the efforts of neither party
are directly observable. The solution involves a multi-stage incentive mechanism
designed for two parties, where the incentive contract is defined before the start
of training.

Our contribution to the literature is insight into an optimal multi-stage incen-
tive contract and an endogenous optimal payoff point description. More specifi-
cally, this article shows that the optimal scheme for the data owner who leads the
incentive contract should, to the extent possible, return all later stages incentive
payments to the model owner.

The remainder of the paper is structured as follows. Section 2 reviews the
existing incentive mechanisms for federated learning. Section 3 presents the in-
centive mechanism model used in our research and the results, and Section 4
provides a simulation example to validate the model. Finally, conclusions and
future work are drawn in Section 5.

2 Related works

This section positions our research within the existing literature by reviewing
relevant studies on incentive mechanisms for federated learning.
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When implementing federated learning, participants are often reluctant to
participate in training a model unless they receive some benefit for doing so.
This is because contributing to a model’s training can be a highly resource-
intensive undertaking. In addition, an information asymmetry exists between the
data owners and the model owners. Thus, a well-designed incentive mechanism
can be crucial to the success of federated learning. Such a mechanism is needed
to encourage collaboration between all participants and reduces the potentially
damaging effects of information asymmetry. For the best possible outcome, the
incentive mechanism needs to determine the optimal level of participation and
rewards for all parties to keep everyone involved motivated and engaged. Opti-
misation problems, such as utility maximisation, are all about deriving the best
strategy.

Incentive mechanisms typically consist of two phases: contribution assessment
and reward allocation. [12] The main contribution assessment strategies are:

– Self-declared contribution assessment. A self-declared contribution assess-
ment is a direct way for data owners to report their contributions to the
model owner. Data size and computational resource capacity are among the
many metrics used to evaluate the self-declared contribution of a data owner
[4].

– Shapley value contribution assessment. Shapley value [9] is a method of
utility assessment based on marginal contributions. One of the advantages
of this strategy is that it eliminates the effect of the order in which the
participants joined the ‘collective’ in order to calculate a fairer estimate of
their marginal contribution. Therefore, payoffs are calculated purely from
the contributions provided regardless of sequencing for a fairer distribution
of rewards. It is most common in cooperative games. Many recent studies
have discussed the assessment of data owner contributions based on Shapley
values and its refinement [5, 10].

After assessing the contribution of the data owners, the model owners should
allocate the two types of rewards to data owners to maintain and/or increase
their participation level.

– Offer rewards. Model owners can reward data owners before training. The
payoffs can be determined by the quality of the resources provided [18] or
the outcome of a vote [11].

– Share profits. In this scenario, the model owner shares the profits that the
model has generated with the data owners after the model has been trained.
In these situations, payoff delays may affect the participant’s likelihood to
contribute. However, a reward-sharing scheme [14, 15] allows for a given bud-
get to be divided dynamically.

3 The multi-stage incentive mechanism model

To ensure the success in federated learning and allow for the best training result,
it is crucial to implement an effective incentive mechanism that minimises the
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possibility of dual ethical risk. Based on the discussion in the previous section,
no existing incentive mechanism has suitably addressed this issue. This section
introduces a multi-stage incentive mechanism model based on contract theory.
It addresses the dual ethical risks associated with federated learning while in-
centivising both parties to cooperate successfully. Note that, for simplicity, the
game assumes one data owner and one model owner. A contract-theoretic solu-
tion for federated learning scenarios with more than one data owner is left to
future work.

3.1 The model

The two participants in our model, the data owner and the model owner, are
risk-neutral. Both parties agree that the entire training process will be conducted
in K stages, with both parties jointly checking the training results at the end
of each stage to confirm that the training was successful. Additionally, both
parties agree that the contract cannot be ended earlier than these K stages
unless the training fails. We assume that the effort value committed by the data
owner at stage k is Dek, and the effort value committed by the model owner
at stage k is Mek. Dek and Mek are both uncorrelated variables. Furthermore,
Dek ≥ 0,Mek ≥ 0.

Table 1 lists the notations commonly used in this paper for ease of reference.

Table 1. Commonly Used Notations

Notation Description

k Training stages, k = 1, · · ·K.

Mek The effort committed by the model owner at stage k

Dek The effort committed by the data owner at stage k

Pk(Mek, Dek) The probability of successful training at stage k

C(Mek) The effort cost of the model owner at stage k

C(Dek) The effort cost of the data owner at stage k

Vk The incremental value of the model after stage k

Mk The market value of the model at stage k

Ik The data owner’s costs at stage k

DRk Total expected revenue of the data owner from stage k to K

MRk Total expected revenue of the model owner from stage k to K

Rk The reward received by the model owner if training success at stage k

Xk(Mek, Dek) The model’s performance at stage k

ϕ, ν The weight parameters of the model at stage k

Naturally, the performance of a model, e.g., the accuracy of its inferences, will
be higher if the data owner contributes more effort to providing more and higher
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quality data. Similarly, if the model owner puts in more effort, such as improving
the algorithm, model performance will also increase. The model’s performance
is assumed to be

Xk(Mek, Dek) = 1− e−ϕ(Mek,Dek)
ν

,

where ϕ and ν are the weight parameters.
Fig. 2 shows the relationship between the performance of a typical federation

learning model and the effort values Me and De of the training participants.

Fig. 2. Federated Machine Learning Performance

The following assumptions are made over the probability that training at
stage k will be successful:

Pk(Mek, Dek),

and

1 ≥ Pk(Mek, Dek) ≥ 0,
∂Pk(Mek, Dek)

∂Mek
> 0,

∂Pk(Mek, Dek)

∂Dek
> 0,
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∂2Pk(Mek, Dek)

∂Mek
2 < 0,

∂2Pk(Mek, Dek)

∂Dek
2 < 0, (k = 1, · · · ,K).

Thus, there is a positive correlation between the probability of successful training
and the efforts contributed by the data and model owners. The probability of
success increases as Mek and Dek increase with diminishing marginal returns.

The cost of inputting effort by the two parties in the training stage k are
C(Mek) and C(Dek). Obviously, these costs increase as the effort increases, i.e.,
C ′(Mek) > 0, C ′(Dek) > 0. Similarly, the marginal cost of effort increases as
well, i.e., C ′′(Mek) > 0, C ′′(Dek) > 0.

Suppose that federated learning is successful in stage k. In that case, the
data owner receives the incremental value of the upgraded model as Vk (Vk is a
constant agreed upon by both participants before the contract), and the training
continues into stage k+1. Assuming that the model’s market value at the end of
stage k is Mk and the data owner’s cost at stage k is Ik, we have Vk = Mk − Ik.
After all K stages of training have been completed, the data owner receives the
final value of the model as

∑K
k=1 Vk =

∑K
k=1(Mk − Ik).

DRk and MRk are defined as the total expected revenues of the data owner
and model owner from stage k to K. Logically, the data owner will only partic-
ipate in training if they believe that the total expected revenue will be positive.
If the total expected revenue in stages k to K turns out to be a loss, the data
owner will drop out at any stage from k + 1 to K and terminate the contract.
Therefor, we can assume that Vk+DRk+1 > 0 and DRk ≥ 0. This assumption is
reasonable because it assumes that the parties have some opportunity to argue
success or failure at each stage. If the data owner expects a negative payoff, they
will claim failure to get out of the contract. It is assumed that before a par-
ticular point in the training Vk < 0, i.e., the data owner’s contribution is more
significant than the benefit. After that point, the data owner’s payoff becomes
positive. This assumption ensures that the data owner agrees to cooperate with
the model owner for the purposes of training the model. Rk represents the re-
ward given by the data owner to the model owner if the training is successful at
stage k. The event sequence in the contract is shown in Fig. 3.

Before entering the federated learning scheme, the data owner and the model
owner need to agree on the reward Rk > 0 (k = 1, · · · ,K) and set up the
contract. The model owner receives Rk from the data owner after training is
confirmed to be successful in stage k. According to the contract, the model
owner commits the optimal level of effort Mek

∗ to maximise their expected
return MRk. At the same time, the data owner also to commit the optimal level
of effort Dek

∗ to maximise DRk. If the training result is successful at the end
of stage k, the value of the updated model held by the data owner increases by
Vk, and the model owner receives the reward Rk from the data owner. Training
then proceeds to the next stage. If stage k training fails, both the model owner
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Fig. 3. Contract Execution Stages

and the data owner gain nothing for that stage. Note that the optimal strategy
for the Stackelberg game leader is to not reward the follower for failure at each
stage of the game [1, 2]. Both parties will pay C(Mek) and C(Dek) regardless
of success or failure. Thus, the following recursive equation describes the profit
of the data owner and the model owner,

MRk = Pk(Mek, Dek)[Rk +MRk+1]− C(Mek) (1)

and

DRk = Pk(Mek, Dek)[Vk −Rk +DRk+1]− C(Dek), k = 1, · · · ,K. (2)

In our model, the contract is set before the first phase. The relevant payoffs
in the first phase are DR1 for the data owner and MR1 for the model owner.
Note that the payoff for stage k is directly effected by the payoffs for stage k+1.
Expanding the above recursive equations, we have:

MRm =

K∑
k=m


k∏

j=m

Pj(Mej , Dej)Rk


−

K∑
k=m


k−1∏
j=m

Pj(Mej , Dej)C(Mek)


(3)

and
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DRm =

K∑
k=m


k∏

j=m

Pj(Mej , Dej)(Vk −Rk)


−

K∑
k=m


k−1∏
j=m

Pj(Mej , Dej)C(Dek)

 .

(4)

3.2 Research Findings

In this section, we outline the findings of the above model, beginning with the
optimal effort Dek

∗ of the data owner.
The derivative of the data owner’s payoff with respect to their effort Dek

from Equation 2 is

dDRk

dDek
=
dPk(Mek, Dek)

dDek
(Vk −Rk +DRk+1)−

dC(Dek)

dDek
=0 (k = 1, · · · ,K),

(5)

where

dPk(Mek, Dek)

dDek
(Vk −Rk +DRk+1) =

dC(Dek)

dDek
(k = 1, · · · ,K). (6)

Thus, the optimal effort Dek
∗ of the data owner is:

Dek
∗ = Dek

∗(Vk −Rk +DRk+1). (7)

Corollary 1. The optimal effort of the data owner is a function of the incre-
mental value of the model, the reward to the model owner, and the data owner’s
expectation of future payoffs. Reducing the reward to the model owner and in-
creasing the incremental value of the model and the data owner’s expectations
for the future should motivate the data owner to put in more effort and reduce
their ethical risk.

In the same way, we can solve the optimal effort Mek
∗ of the model owner.

The derivative of the model owner’s payoff with respect to it’s effort Mek from
equation 1 is

dMRk

dMek
=
dPk(Mek, Dek

∗)

dMek
(Rk +MRk+1)−

dC(Mek)

dMek
=0 (k = 1, · · · ,K).

(8)

Thus, the optimal effort Mek
∗ of the model owner is:

Mek
∗ = Mek

∗(Rk +MRk+1). (9)
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Corollary 2. The optimal effort level of the model owner is positively corre-
lated with the reward and their expected future payoff. Higher rewards from the
data owner and increasing the model owner’s future expectations should motivate
the model owner to work harder and reduce any ethical risks.

Based on Corollaries 1 and 2, we have the following conditions:{
dPk(Mek,Dek)

dDek
(Vk −Rk +DRk+1) =

dC(Dek)
dDek

;
dPk(Mek,Dek)

dMek
(Rk +MRk+1) =

dC(Mek)
dMek

(k = 1, · · · ,K).
(10)

Corollary 3.An optimal incentive mechanism should be such that the marginal
benefit of each participant’s effort equals their marginal cost.

Given the optimal level of effort Mek
∗ and Dek

∗ for the model owner and
data owner, MRm in Equation 3 satisfies the following conditions:

∂MRm

∂Rk
=

k∏
j=m

Pj(Mej
∗, Dej

∗) (k = 1, · · · ,K;m ≤ k). (11)

From Equation 11,

∂MR1

∂Rk

∂MR1

∂Rk+1

=

∏k
j=1 Pj(Mej

∗, Dej
∗)∏k+1

j=1 Pj(Mej
∗, Dej

∗)
=

1

Pk+1(Mek+1
∗, Dek+1

∗)
> 1

(k = 1, · · · ,K − 1).

(12)

Then

∂MR1

∂Rk

∣∣∣∣
Mej∗,Dej∗

>
∂MR1

∂Rk+1

∣∣∣∣
Mej∗,Dej∗

(k = 1, · · · ,K − 1). (13)

Corollary 4. The marginal utility of the rewards diminishes for the model
owner over time. Therefore, to encourage the model owner to increase their ef-
fort, the rewards for the model owner in the incentive mechanism should be grad-
ually increased as training continues. This should mean the incentive mechanism
stays effective in motivating the model owner to work hard.

The optimal incentive Rk
∗ > 0 (k = 1, · · · ,K) for the model owner is

determined before starting the first stage of training. Therefore, the optimal
payoff Rk

∗ of the data owner can also be solved. The first-order condition of
data owner with respect to payoff Rk from Equation 2 is

∂DR1

∂Rk

∣∣∣∣
Ri

∗,i=1,··· ,K
=

[
P1

′(Me1
∗, De1

∗)Me1
∗′ ∂MR2

∂Rk

+P1
′(Me1

∗, De1
∗)De1

∗′ ∂DR2

∂Rk

]
(V1 −R1 +DR2)

+ P1(Me1
∗, De1

∗)
∂DR2

∂Rk
− C ′(De∗1)De∗1

′ ∂DR2

∂Rk
= 0.

(14)
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From Corollary 4, we can derive ∂MR2

∂Rk
=
∏k

j=2 Pj(Mej
∗, Dej

∗) and from

Corollary 1, we can derive P ′
1(Me1

∗, De1
∗)(V1−R1+DR2)−C ′(De1

∗) = 0, V1−
R1 +DR2 > 0. Substituting both of these into Equation 14 and rearranging the
terms yield:

{
De1

∗′[P1
′(Me1

∗, De1
∗)(V1 −R1 +DR2)− C ′(De1

∗)] + P1(Me1
∗, De1

∗)
}

∂DR2

∂Rk
+ P1

′(Me1
∗, De1

∗)Me1
∗

 k∏
j=2

Pj(Mej
∗, Dej

∗)

 (V1 −R1 +DR2) = 0.

(15)

Then,

∂DR2

∂Rk

∣∣∣∣
Ri

∗,i=1,··· ,K
=− 1

P1(Me1
∗, De1

∗)
P1

′(Me1
∗, De1

∗)Me1
∗′

 k∏
j=2

Pj(Mej
∗, Dej

∗)

 (V1 −R1 +DR2) < 0.

(16)

Thus, if Rk
∗ > 0 and Rj

∗ > 0,j > k, then

∂DR2

∂Rj

∣∣∣∣
Ri

∗,i=1,··· ,K
=

(
j∏

i=k+1

Pi(Mei
∗, Dei

∗)

)
∂DR2

∂Rk

∣∣∣∣
Ri

∗,i=1,··· ,K

>
∂DR2

∂Rk

∣∣∣∣
Ri

∗,i=1,··· ,K
.

(17)

Corollary 5. The expected payoff to the model owner increases marginal utility
for the data owner over time. Intuitively, the data owner always wants to delay
the reward to the model owner, while the model owner wants to receive the reward
as early as possible. For the data owner, the later the reward is given to the model
owner, the more likely it is for ethical risk to be avoided.

From Corollary 5, for k > 1,

∂DR1

∂Rk
=

[
P1(Me1

∗, De1∗)′Me1
∗′ ∂MR2

∂Rk
+ P1(Me1

∗, De1∗)′De1
∗′ ∂DR2

∂Rk

]
(V1 −R1 +DR2) + P1(Me1

∗, De1∗)
∂DR2

∂Rk
− C(De1

∗)
′
De1

∗′ ∂DR2

∂Rk
.

(18)

For every m < k,

∂DRm

∂Rk
=

[
Pm(Mem

∗, Dem∗)′Mem
∗′ ∂MRm+1

∂Rk

+ Pm(Mem
∗, Dem∗)′Dem

∗′ ∂DRm+1

∂Rk

]
(Vm −Rm +DRm+1)

+ Pm(Mem
∗, Dem∗)∂DRm+1

∂Rk
− C(Dem

∗)
′
Dem

∗′ ∂DRm+1

∂Rk
,

(19)
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and for every k,

∂DRk

∂Rk
=[Pk(Mek

∗, Dek∗)′Me∗k
′ − Pk(Mek

∗, Dek∗)′De∗k
′](Vk −Rk +DRk+1)

− Pk(Mek
∗, Dek∗) + C(Dem

∗)
′
De∗k

′.

(20)

From Corollary 1, we can derive Pk(Mek
∗, Dek∗)′(Vk − Rk + DRk+1) −

C(Dek)
∗′

= 0, and substituting this into the three equations above, we have

∂DR1

∂Rk
=

 k∏
j=1

Pj(Mej
∗, Dej

∗)

 k∑
i=1

1

Pi(Mei
∗, Dei

∗)

Pi
′(Mei

∗, Dei
∗)Mei

∗[Vi −Ri +DRi+1]−
k∏

j=1

Pj(Mej
∗, Dej

∗),

(21)

and

∂DR1

∂Rk+1
=
∂DR1

∂Rk
Pk+1(Mek+1

∗, Dek+1
∗)

+

 k∏
j=1

Pj(Mej
∗, Dej

∗)

Pk+1
′(Mek+1

∗, Dek+1
∗)

Me∗k+1
′[Vk+1 −Rk+1 +DRk+2] = 0 (k = 1, · · · ,K − 1).

(22)

Since ∂DR1

∂Rk

∣∣∣
Ri

∗,i=1,··· ,K
= 0, from Equation 22, we can derive Vk+1−Rk+1+

DRk+2 = 0. It is known that DRK+1 = 0, so it follows that RK
∗ = VK , so

DRK = 0. Similarly, for any δ, there is 1 ≤ δ ≤ K − 1. If Meδ
∗ > 0 and

Rδ
∗ > 0, then: {

Rk
∗ = Vk (k = δ + 1, · · · ,K).

DRk = 0 (k = δ + 1, · · · ,K).
(23)

Then,

DR1 =

δ−1∑
j=1

(
j∏

i=1

Pi(Mei
∗, Dei

∗)(Vj − C(Dei
∗))

)

+

(
δ−1∏
i=1

Pi(Mei
∗, Dei

∗)

)
Pδ(Meδ

∗, Deδ
∗)[Vδ −Rδ].

(24)
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Theorem 1. The data owner can receive their optimal payoff at point δ during
training such that {

Rk
∗ = 0 (k < δ),

Rk
∗ = Vk

∗, DRk
∗ = 0 (k > δ),

(25)

and DR1 ≥
∑δ−1

j=1

(∏j
i=1 Pi(Mei

∗, Dei
∗)
(
Vj − C(Dej

∗)
))

,

DR1 ≤
∑δ

j=1

(∏j
i=1 Pi(Mei

∗, Dei
∗)
(
Vj − C(Dej

∗)
))

.
(26)

Theorem 1 shows an optimal payoff point for the data owner, where the
data owner receives the total payoff from the federated learning process and the
reward given to the model owner is zero in phases 1 − δ. However, after that
point, the data owner does not have any profit, the expected future payoffs are
zero, and the benefit goes entirely to the model owner. Thus, point δ is the
optimal payoff point for the data owner. Essentially, what Theorem 1 indicates
is that, for a federated learning scenario initiated by the data owner, the optimal
incentive scheme is one where as much of the incremental value of the model as
possible is paid to the model owner. Therefore, success in the later stages of
training is based on the success in the earlier stages and, in turn, rewards in the
later stages incentivise effort in the earlier stages. Overall, giving back as much
of the value created by the model owner’s efforts as possible in the later stages
is the least costly incentive scheme for the data owner.

4 Experimental Evaluation

To complement the analytical findings and evaluate the performance of our in-
centive mechanism for federated learning, we create a multi-stage contract sim-
ulator for the data and model owners. The simulator evaluates the impact of
different reward settings on the level of effort contributed by each participant
and gives the total payoff for both parties.

4.1 Experiment Settings

Assume that the incremental model values are V1 = 1, V2 = 2 and V3 = 3,
where federated learning is carried out in 3 stages (i.e., K = 3) and the func-
tional expression for the probability of success at each stage is Pk(Mek, Dek) =
MIN(0.6(Mek + Dek), 1). As we will see later, the equilibrium effort satisfies
0.6(Mek

∗ +Dek
∗) < 1, so we can count Pk(Mek, Dek) = 0.6(Mek +Dek). We

also assume that the effort cost of the model owner’s function is C(Mek) =
Mek

2, and the effort cost of the data owner’s function is C(Dek) = Dek
2, such

that the utility function of the model owner is

mrk = 0.6(Mek +Dek)(Rk +mrk+1)−Mek
2, k = 1, 2, 3,

mr4 = 0.
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Taking the utility function for each stage and deriving it to its effort level deter-
mines the optimal effort yield for the model owner:

Mek
∗ =

∂mrk
∂Mek

= 0.3(Rk +mrk+1) k = 1, 2, 3.

Repeating the same approach, and its based on Equation 24, we can derive
the utility function of the data owner and their optimal effort:

drk = 0.6(Mek +Dek)(Vk −Rk + drk+1)−Dek
2, k = 1, 2, 3,

dr3 = 0, dr4 = 0.

Dek
∗ =

∂drk
∂Dek

= 0.3(Vk −Rk + drk+1) k = 1, 2, 3,

De3 = 0.

The utility functions and the optimal efforts of the two parties in different stages
are listed in Table 2.

Table 2. the utility functions and the optimal efforts, K = 3

K Data Owner Model Owner

1
dr1 = 0.6(Me1 +De1)(V1 −R1 + dr2)−De1

2

De1 = 0.3(V1 −R1 + dr2)
mr1 = 0.6(Me1 +De1)(R1 +mr2)

Me1 = 0.3(R1 +mr2)

2
dr2 = 0.6(Me2 +De2)(V2 −R2 + dr3)−De2

2

De2 = 0.3(V2 −R2 + dr3)
mr2 = 0.6(Me2 +De2)(R2 +mr3)

Me2 = 0.3(R2 +mr2)

3
dr3 = 0
De3 = 0

mr3 = 0.6(Me3 +De3)(R3 +mr4)
mr4 = 0,Me3 = 0.3(R3 +mr3)

4.2 Experimental Result and Discussion

Fig. 4 shows the optimal rewards yielded for the model owner, calculated by
recurring the above equations in Table 2 and the derivative of the data owner’s
payoff dr1 with respect to the reward R2

∗:

R1
∗ = 0, R2

∗ = 0.4085, R3
∗ = 3,

where the probabilities of successes are P1(Me1
∗, De1

∗) = 0.3707, P2(Me2
∗, De2

∗)
= 0.5058, P3(Me3

∗, De3
∗) = 0.54. As predicted by Theorem 1, the optimal pay-

off point for the data owner is δ = 2, and R1
∗ = 0, R3∗ = V3, and 0 < R2 < V2.

The data owner’s expected payoff is dr1 = 0.3608, which is consistent with The-
orem 1,

{
dr1 ≥ P1(Me1

∗, De1
∗)(V1 −De1

2) = 0.2878,
dr1 ≤ P1(Me1

∗, De1
∗)(V1 −De1

2) + P2(Me2
∗, De2

∗)(V2 −De2
2) = 1.1841.
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Fig. 4. The optimal rewards yielded for the model owner

Table 3. the reward settings vs the best efforts of each stage

Reward settings
DO expected
payoff dr1

Stg1 BEs
Me1 +De1

Stg2 BEs
Me2 +De2

Stg3 BEs
Me3 +De3

R1 = 0, R2 = 0.2, R3 = 3 0.3508 0.6114 0.843 0.9

R1
∗ = 0, R2

∗ = 0.4085, R3
∗ = 3 0.3608 0.6179 0.843 0.9

R1 = 0, R2 = 1, R3 = 3 0.3386 0.6109 0.843 0.9

R1 = 0.5, R2 = 0.4085, R3 = 3 0.2949 0.6179 0.843 0.9
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We have taken some relevant data from the simulator to make it easier to
understand, as shown in Table 3. This table shows the effects of the reward value
settings at different stages on the efforts of the participants and the expected
payoff for the data owner in the incentive contract. Some settings around the
optimal one have been selected as comparisons: R1

∗ = 0, R2
∗ = 0.4085, R3

∗ = 3.
From the results, we can see that:

1. Any deviation from the optimal value of R2
∗ = 0.4085 negatively impacts

the efforts of both participants and the expected training payoff for the data
owner. This means that any reward setting that deviates from the optimal
value R2

∗ will increase the ethical risk of the participants.
2. If the data owner keeps R2 = R2

∗ and increases the reward R1 for stage
1, this scenario is identical to the optimal incentive scenario in terms of
the effort values at each stage. However, the data owner’s expected training
payoffs will be significantly lower. From a self-interested perspective by the
data owner, as the leader of the incentive contract, there is no incentive to
increase the reward given to the model owner at Stage 1.

Thus, we can conclude that our model is able to reduce the dual ethical
risk of federated learning due to information asymmetry. It can motivate the
participants to exert an optimized effort to training, confirming the intuition
behind our model that the success in the later stages is based on success in the
earlier stages. Thus, rewards in the later stages incentivise efforts in the earlier
stages. Moreover, giving back as much of the value created by the model owner’s
efforts in the later stages is the least costly incentive scheme for the data owner.

5 Conclusion and Future Works

In this paper, we have used the framework of a dynamic game to investigate the
dual ethical risk problem between model owners and data owners in federated
learning. The model used is novel and it has derived optimal incentive payoff
contracts for the data and model owners through two sets of analyses: one for a
multi-stage incentive payoff game and the other for the dual ethical risk affecting
the contract design. The output is an optimal payoff point for the data owners.
Our approach has provided insights into the characteristics of optimal incentive
contracts between data owners and model owners in federated learning schemes,
including their endogenous optimality. Specifically, our study has shown that, for
a federated learning scenario initiated by the data owner, the optimal incentive
scheme is one where as much of the incremental value of the model as possible is
paid to the model owner. There could be several possible extensions of this paper,
which requires further research in this field. First, we explored the dual ethical
risk problem in the data owner-led federated learning scenario using a multi-stage
incentive model. Further work will extend this model in other scenarios and can
be compared comprehensively with existing incentive mechanisms. Second, we
negated the possibility of multiple data owners to treat them as a single entity. It
would be interesting to consider multi-data owners joining the game at different
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stages as a possible extension to our proposed model. The third extension of this
paper would be to investigate how the efforts of model and data owners with fair
preferences in the later stages of cooperation (based on fair preference theory)
are affected by the value of benefits and new compensation schemes.
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