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Abstract—Understanding characteristics of an environment
can benefit the ability to perform more reliable multiple object
tracking (MOT). This paper proposes an approach to extract
entry and exit points for an environment using MOT trajectories.
The observed environment is divided into a grid, in which regions
are defined for. The trajectories obtained from the MOT data
are organised into their respective regions. For each region an
activity heatmap is formed and classified using a convolutional
neural network (CNN) to determine if the region consists of either
an entry or exit point. The entry and exit points classified are
projected onto the MOT plane to illustrate the entry and exit
points of the observed environment. The approach proposed in
this paper provides a foundation in which future work can build
on to enhance the MOT capability in real-time through a greater
understanding of the observed environment.

Index Terms—multiple object tracking, movement pattern,
trajectory pattern, mmWave, convolutional neural network

I. INTRODUCTION

Multiple object tracking (MOT) with mmWave has become
quite achievable and researched due to recent innovations
in mmWave radars within the last 5 years. The ability to
perform multiple object tracking with mmWave is typically a
standalone architecture purely involving signal analysis tech-
niques. Through this approach alone, limitations can be seen
when situated in complex environments involving frequent
environment interactions from the tracked targets.

The authors of [1] demonstrate a thorough implementation
to performing MOT with mmWave. Another approach to
performing MOT with mmWave can be seen in [2]. The novel
advancements and differences, in the context of mmWave
MOT, presented in [1] and [2] reside in the tracking pre-
diction algorithm. Although the implementation techniques
are different in [1] and [2], the fundamental architecture to
MOT with mmWave remains consistent. Due to the inability
of mmWave reflections to penetrate solid objects [3], multiple
object tracking in environments where many solid objects are
presented can be unreliable and inconsistent. This problem
is notable in indoor environments where it is common to
have many fixed objects obstructing the field of view of the
radar, such as furniture, columns, etc. The implementations
demonstrated in [1] and [2], as well as others following a
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similar mmWave MOT architecture, are subject to this tracking
problem.

This paper ultimately proposes an additional step to the
general architecture of MOT with mmWave radar. The primary
aim of the additional step is to extract generalised tracking
patterns to ultimately provide insight into characteristics of
the environment that is being observed. A movement pattern
in the context of this paper can ultimately be explained as
a commonality of transitions between different start and end
states. Regional dominant movement patterns can be defined
as the most frequently occurring transitional pattern for a given
start and end state.

The study of regional dominant movement patterns in
trajectory data has been well explored. A study performed by
[4] demonstrates the potential to determine regional dominant
movement patterns in trajectory data using a pre-defined
taxonomy of trajectory patterns. The authors in [4] define
different types of movement patterns, which are then used as
a criteria for a trained convolutional neural network (CNN)
to classify trajectory clusters. Another study performed in [5]
demonstrates a novel approach for mining trajectory patterns,
as opposed to utilising a taxonomy of pre-defined patterns.
Mining trajectory patterns is a necessary approach to take in
situations where the types of trajectory patterns that might
occur are not known. In situations where particular trajectory
patterns are known or searched for, maintaining a taxonomy
of those patterns can yield more performant.

Applying the concept of regional dominant movement pat-
terns to trajectory data, termed as regional dominant trajectory
patterns (RDTP), can fundamentally expose characteristics of
the environment that is being sampled in the field of view.
This paper aims to demonstrate a novel approach to extract
environmental characteristics through movement patterns in
trajectory data.

The presented novel advancements and philosophy applied
to mmWave MOT make the following contributes:

• More reliable tracking persistence with mmWave com-
pared to existing solutions

• A combined tracking and sensing architecture model
• A model for classifying key environmental points through

mmWave tracking data
• A foundational step towards a general approach to in-

corporating environmental characteristics into mmWave



Fig. 1. Block diagram of overall stages involved in the RDTP MOT
architecture.

MOT

II. RDTP MOT ARCHITECTURE

The architecture adopted for the RDTP MOT environmental
characterization explored in this paper can be broken into 5
stages. The sequencing of the 5 stages can be seen in figure
1. The methodology and implementation of these stages will
be explored in section III of this paper. The remainder of this
section of the paper will describe the purpose of each of the
stages depicted in figure 1 in relation to the problem statement.

A. Problem Statement

Whilst performing MOT, environmental characteristics are
not known or cumulatively derived. As a result, MOT cannot
reliably be maintained in environments where non-penetrable
objects are causing disturbances in persisted tracks. Prior to
enhancing MOT with derived environmental characteristics,
an approach to determine environmental characteristics is
required.

B. Proposed Framework

The block diagram in figure 1 illustrates the proposed
architecture to establish an approach to derive environmen-
tal characteristics from MOT trajectory data. The Trajectory
Collection stage illustrated in figure 1 encapsulates the process
of performing MOT with the mmWave radar. The output of
this stage is vector of tracked objects in the form of trajec-
tories. The Trajectory Collection stage does not involve any
specific alterations to perform MOT due to the environmental
characterization that is performed.

The stages following Trajectory Collection all specifically
attribute towards deriving environmental characterization of
the MOT field of view. The Pre-processing and Normalization
stage is required to massage the data in preparation before
parsing it for trajectory patterns. This stage involves transform-
ing the vector of tracked objects returned from the Trajectory
Collection stage into an vector of regional trajectories. In
addition, as a CNN is used for Trajectory Analysis, the input
shape must be a fixed length vector. Therefore, a normaliza-
tion process is undertaken as part of the Pre-processing and
Normalization stage to re-shape the regional trajectory vector.

The Trajectory Analysis stage consumes the normalized
regional trajectory vector and applies a CNN against the data-
set to classify RDTP. The classification criterion is based on
a taxonomy of generalised trajectory patterns that have been
pre-defined. The taxonomy defined has been chosen to extract
entry and exit points in the MOT field of view. The output
of the Trajectory Analysis stage is an associated dominant
trajectory pattern for each region in the field of view.

The Entry & Exit Association stage involves the correlation
and grouping of regions that have been tagged as entry

Fig. 2. Radar installation position.

and exit points within the field of view. The significance of
this correlation is to identify bounding boxes around non-
penetrable environment features that the tracked object can
pass behind/through, such as columns. In addition to iden-
tifying non-penetrable objects, the Entry & Exit Association
stage is used to identify true entrances and exits to the MOT
field of view, such as doorways. The associations identified are
passed through the Projection stage to present the environment
characteristics on the same plot as the MOT data.

III. METHODOLOGY AND IMPLEMENTATION

To implement the RDTP MOT architecture, a Texas Instru-
ment (TI) IWR6843 mmWave sensor was used. The mmWave
sensor was installed on a TI MMWAVEICBOOST evaluation
board, in which raw ADC data from the sensor was streamed
via a TI DCA1000EVM. The sensor was mounted on a
tripod and positioned approximately 1.5m above ground. The
sensor was also tilted downward at a 10°angle to achieve
the best field of view. This position is in accordance with
the recommendation provided by Texas Instruments. Figure
2 illustrates the positioning of the sensor in relation to the
external environment. The remainder of this section describes
the methodology adopted for each of the RDTP MOT stages,
seen in figure 1.

A. MOT Trajectory Collection

The ’chirp’ is transmitted from the mmWave radar, in which
an intermediate frequency (IF) signal is calculated from. The
IF signal is calculated by determining the difference in the
reflected signal frequency between the transmitter and receiver
pair.

Using the IF and the frequency slope S, the range from the
radar in which an object was detected can be computed with:

d =
fIF c

2S
(1)

where fIF is the frequency of the IF signal and c is the speed
of light 3 × 108m/s. The FFT of the IF signal is calculated
to detect objects residing at different ranges.

The velocity of detected objects is then calculated by
analysing the phase shift in the IF signal. Two chirps are
transmitted with Tc time between transmission. The velocity
of the object can be calculated as:

v =
λw

4πTc
(2)

where λ is the wave length and w is the phase difference.
The angle of arrival of the signal can be estimated by

averaging the phase difference in each of the transmitter



receiver pairs. The phase difference θ for a single pair can
be calculated as:

θ = sin− 1(
λw

2πd
) (3)

where d is the range of a detected object, calculated using (1).
Using (1), (2) and (3) a point cloud graph is constructed,

representing the reflected signals that correlate to detected
objects. Reflected signals that are present in the previous frame
are deemed as static object and are removed at this stage.

Following the construction of the point cloud graph, point
cloud clusters are determined using a modified DBScan op-
timized for cluttered environments, as presented in [6]. The
clusters formed with DBScan at Fn are associated with clusters
formed at Fn−1 using the Hungarian Algorithm, where Fn is
the current frame and Fn−1 is the previous frame. Finally,
a Kalman filter is used to predict and correct the associated
object track.

A single tracked object i is represented as the tuple:

TOi = (p, v) (4)

where p is the two dimensional vector [x, y] representing the
current coordinates of the tracked object and v is the current
velocity of the tracked object.

For a single given frame j, the set of tracked objects present
in the frame can be illustrated as:

FTOj = {TO1, TO2, ..., TOn} (5)

where TO is a tuple in the form of (4) and n is the total
number of tracked objects in the given frame j.

For each sampled frame, a set of tracked object is persisted.
This is expressed as:

TTO = {FTO1, FTO2, ..., FTOn} (6)

where FTO represents a set of tracked objects that are present
in a single frame and n is the total number of frames.

B. Pre-processing and Normalization

To prepare for RDTP Analysis, a grid G = (i× j) must be
constructed for a field of view of size (l×w). The terms l and
w are expressed in meters, whilst i and j are the number of
cells that l and w should be split into. Regions are defined as a
collection of adjacent cells from G that form Rx = (m× n),
where x is the region number. Region dimension m and n
must both be factors of i and j respectively. Regions must not
overlap with each other and must fit into G perfectly.

For each region Rx, an activity heatmap ofRx is required
to perform RDTPAnalysis. In order to construct a heatmap
for each Rx, the vector represented in (6) will need to be
transformed so that the tracked objects TO are grouped into
their respective region. A given TO is correlated with an Rx

through the coordinates it occupies, present in (4). The related
FTO that the tracked object took place at must not be lost
when transforming the vector, this information will be required
when performing Environmental Association and Bounding.

Fig. 3. Visual representation of preprocessing and normalization of the
tracking data.

The set of regional tracked objects is expressed as a collection
of tuples:

RTOx = {(F, TO)1, (F, TO)2, ..., (F, TO)n} (7)

where F the frame the coupled TO occurred at, n is the total
number of tracked objects and x is the region index.

The activity heatmap image can then be constructed for
each RTOx expressed by (7). Each TO equates to activity
in a region, activity is positioned at the coordinates of the
respective TO. The activity heatmap is illustrated as a fixed
sized image, stored in a set expressed as:

RHM = {HM1, HM2, ...,HMn} (8)

where HM is the activity heatmap constructed for the re-
spective RTOx expressed in (7) and n is the total number of
regions in G. The tracked regional tracked objects RTOx are
ultimately normalised through their illustration as an activity
heatmap.

The transformations and stages in which the data undertakes
throughout the pre-processing and normalization phase has
been illustrated in figure 3. Figure 3 aims to illustrate a field
of view of size l × w divided into a grid G of size i × j.
The tracked objects are respectively arranged in G as per the
transformations described previously in this section, so that
for each RTOx a respective heatmap HMx can be defined
and collated as per (8).

1) Heatmap Generation: In order to generate the heatmaps
expressed in (8), the region cell Rx, must first be constructed.
After constructing the region cell, the tracked object coordi-
nates can be superimposed onto the region so that intensity
estimation can be performed. To calculate the intensity of the
region, a Kernel Density Estimation algorithm is implemented
[7]. For a given tracked object coordinate (x, y), expressed as
TOx, within the region Rx, the density of the coordinate is
expressed as:

D(TOx) =

N∑
i=1

K(TOx −RPi;h) (9)



where K is the kernel function adopted for the group of points
RPi; i = 1 · · ·N within the region Rx and h is the bandwidth
for K. A number of kernel shapes were experimented with,
in which it was discovered that a Quartic kernel, based on
the one first presented by [8], provided the best resolution of
local structures in the tracked object coordinates. Hence, the
Quartic kernel function that we applied to 9 is expressed as:

K(u;h) =

{
15
16 (1− (uh )

2)2, u ≤ h,
0, u > h,

(10)

The following algorithm illustrates the functions that were
derived to yield the heatmaps in accordance to the density
estimation described in 9 and 10.

def q u a r t i c k e r n e l ( d , h ) :
# Determine bandwid th c o n s t r a i n t s
i f d <= h :

# E v a l u a t e Q u a r t i c k e r n e l e q u a t i o n
re turn ( 1 5 / 1 6 ) * (1 − ( d / h ) * * 2 ) * * 2

e l s e :
# D i s t a n c e be tween p o i n t s i s beyond
# t h e bandwid th c o n s t r a i n t
re turn 0

def d i s t a n c e ( a , b ) :
# C a l c u l a t e d i s t a n c e be tween two p o i n t s
d2 = ( ( a [ 0 ] − b [ 0 ] ) * * 2 ) + \

( ( a [ 1 ] − b [ 1 ] ) * * 2 )
re turn math . s q r t ( d2 )

def e v a l r e g i o n d e n s i t y ( g r i d c e n t e r s ,
p o i n t s , h ) :

d e n s i t y = [ ]
# Loop t h r o u g h a l l c e l l s i n t h e r e g i o n
f o r c in range ( l e n ( g r i d c e n t e r s ) ) :

c o l d e n s i t y = [ ]
f o r r in range (

l e n ( g r i d c e n t e r s [ c ] ) ) :
den sum = 0
f o r p in p o i n t s :

# Determine p o i n t d i s t a n c e
# from c e n t e r
gc = g r i d c e n t e r s [ c ] [ r ]
d = d i s t a n c e ( gc , p )
# E s t i m a t e d e n s i t y
den sum += q u a r t i c k e r n e l (

d , h
)

c o l d e n s i t y . append ( d e n s i t y s u m )
d e n s i t y . append ( c o l d e n s i t y )

re turn d e n s i t y

C. RDTP Analysis

The purpose of the RDTP Analysis is to extract entry and
exit points from the regional trajectories formed by the tracked

(a) (b)

Fig. 4. Trajectory taxonomy.

objects. In order to do so, an idealistic taxonomy of regional
patterns that expose entry and exits should be pre-defined.

Figure 4 defines the taxonomy utilised to classify entry
and exit trajectories. The trajectory used to classify an entry
movement pattern is illustrated in figure 4 (a), whilst figure
4 (b) demonstrates the trajectory used to classify an exit
movement pattern.

A single classifier is used to determine the probability that
a given activity heatmap, expressed in the set illustrated in
(8), is one of the movement patterns expressed in figure 4.
The classifier is ultimately based on the handwritten digit
recognition network presented in [9].

Figure 5 illustrates the design of the network that was
implemented to classify entry and exit trajectories of the
mmWave MOT field of view. The input shape of the network
is a 32 × 32 pixel activity heatmap. A convolutional and
maximum pooling layer is added to extract features from the
activity heatmap. The convolutional layer consists of 16 filters
of size 5 × 5. Another convolutional and maximum pooling
layer is added to the network with 32 filters of size 3 × 3.
Finally, a softmax layer is added of size 3× 1 is added. The
3 softmax classes (C1, C2 and C3) are the two movement
patterns defined in figure 4, respectfully C1 and C2, and the
probability that neither C1 or C2 are accurate, respectfully C3.

1) Loss Function: The loss function utilised to correct
weights is a categorical cross-entropy loss function. As such,
the loss function implemented is as follows:

Error = −
3∑

i=1

yi · log ŷi (11)

where yi is the target value and ŷi is the respective scalar in
the output of the softmax layer of the proposed model. The
limit of the summation in 11 is set to 3 due to the fact that
there are 3 possible classifications the model output may be.

A categorical cross-entropy loss function was selected for
optimization of this model primarily due to the fact that
the model is a classifier by nature [10]. Furthermore, the
categorical target features of this model are encoded as a one-
hot vector. Table I illustrates the one-hot encoding that was
used for the target features of the model output. Due to the
model output target features being encoded as a one-hot vector,
a cross-entropy loss function, specifically categorical, is most
appropriate for optimization [11].

D. Environmental Association and Bounding

The classified regional activity heatmaps are organised into
those that are deemed either an entry or exit trajectory pattern
and those that are not. The regional activity heatmaps that



Fig. 5. RDTP network layer design.

Target Feature Encoding
Entry 1 0 0
Exit 0 1 0
Neither 0 0 1

TABLE I
TARGET FEATURE ONE-HOT ENCODING MODEL OUTPUT VECTOR.

Scene # ’Entry’ Collected # ’Exit’ Collected
Bedroom 96 127
Kitchen 102 110
Hallway 134 109
Living Room 104 95
Office 126 97

TABLE II
SUMMARY OF DATA POINTS COLLECTED ACROSS 5 DIFFERENT

ENVIRONMENT SETTINGS.

are not an entry or exit trajectory pattern are negated going
forward. The remaining regional activity maps are correlated
back to the individual tracked objects that constitute the region,
illustrated in (7). In this state the regions that have been
classified as entry and exit points of the field of view are
projected onto the MOT plane and rectangularly bounded.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The methodology and implementation discussed in this
paper was trained and tested using real data. A data-set of
1100 entry and exit events were collected using the MOT
trajectory collection process described in the previous section
of this paper. These events were collected across 5 different
environments. Table II summarises the data points collected
across the various scenes.

The data-set was then pre-processed and transformed into
a collection of activity heatmaps, as described in the previ-
ous section of this paper. The activity heatmaps were then
manually tagged for identification of entry and exit events.
The training set of data occupied 80% of the tagged dataset.
The remaining 30% was reserved for testing. After perform-
ing 65 epochs, taking 102.39 seconds to complete training,
the average accuracy of the network was 87.18%. Figure 6
demonstrates the change in error over the number of iterations

Fig. 6. Training and test error rate percentage across epochs.

performed. A value of 65 epochs was deemed appropriate due
to the notable convergence evident in figure 6.

The classified entry and exit points are projected onto the
MOT plane, demonstrated in figure 7 (a) and (b). The projected
entry and exit points in figure 7 (b) can be compared to the
image of the observed environment illustrated in figure 7 (c).
During MOT in this environment, at most two individuals were
present in the field of view. The individuals independently
walked around in the field of view, as well as leaving and re-
entering through the door on the left side of the room and
ducking behind the couch in the center of the room. It is
evident that the trained network successfully classified these 4
entry and exit events through the projects presented in figure
7 (b).

V. CONCLUSION AND FUTURE WORK

This paper demonstrates an approach to extract entry and
exit environment characteristics using trajectories obtained
from mmWave MOT. Through the classification of regional
activity heatmaps, the probability that a region is either an
entry or exit point in the environment can be determined. The
research conducted in this only operates in an offline context of
MOT data. Additionally, the system presented operates under
a basic assumption that no entry or exit point will co-exist in
the the one region. This assumption of the system is indirectly
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Fig. 7. MOT Plot with projections and scene.

present due to the process undertaken to normalize trajectory
vectors for a given region.

Future research would include enhancing the model to per-
form environment characterization and projection in real-time
with MOT. Furthermore, it would be valuable to reevaluate the
approach taken to illustrate the vector of a heatmap, so that the
system is capable of operating on entry and exit points that
overlap regions. It is also of interest to assess the potential
to feedback the environment characterizations as a parameter
that is considered when performing object tracking prediction
and correction. The inclusion of this research in a real-time
context opens opportunities for many potential enhancements
while performing MOT.
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