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1 A deep learning-based approach to facilitate the as-built state recognition of 

2 indoor construction works

3 Abstract

4 Purpose – Recognising the as-built state of construction elements is crucial for construction 
5 progress monitoring. Construction scholars have used computer vision-based algorithms to 
6 automate this process. Robust object recognition from indoor site images has been inhibited by 
7 technical challenges related to indoor objects, lighting conditions and camera positioning. 
8 Compared to traditional machine learning algorithms, one-stage detector deep learning (DL) 
9 algorithms can prioritise the inference speed, enable real-time accurate object detection and 

10 classification. Therefore, this study presents a DL-based approach to facilitate the as-built state 
11 recognition of indoor construction works.

12 Design/methodology/approach - The one-stage DL-based approach was built upon YOLO 
13 version 4 (YOLOv4) algorithm using transfer learning with few hyperparameters customised 
14 and trained in the Google Colab virtual machine. The process of framing, insulation, and 
15 drywall installation of indoor partitions was selected as the as-built scenario. For training, 
16 images were captured from two indoor sites with publicly available online images. 

17 Findings - The DL model reported a best trained weight with a mean average precision of 92% 
18 and an average loss of 0.83. Compared to previous studies, the automation level of this study 
19 is high due to the use of fixed time-lapse cameras for data collection and zero manual 
20 intervention from the pre-processing algorithms to enhance visual quality of indoor images. 

21 Originality – This study extends the application of DL models for recognising as-built state of 
22 indoor construction works upon providing training images. Presenting a workflow on training 
23 DL models in a virtual machine platform by reducing the computational complexities 
24 associated with DL models is also materialised.  

25 Keywords As-built state; Indoor construction progress monitoring; Deep learning; Google 
26 Colab; Virtual machine; YOLOv4

27 Paper type Research paper

28 Introduction

29 Recognising the as-built state is crucial for monitoring the progress of construction works 

30 (Hamledari et al., 2017) for the purposes of calculating progress payments, determining 

31 deviations from the baseline program and taking remedial actions to address any budgetary and 

32 delay issues (Kropp et al., 2014). Traditional methods of as-built state recognition typically 

33 involve manual site inspections by different construction personnel utilising visual subjective 

34 assessments that produce approximate rather than precise results (Golparvar-Fard et al., 2015). 

35 These traditional practices are labour intensive, time-consuming, costly, and generally lacking 
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1 in precise accuracy (Bosché, 2012; Golparvar-Fard et al., 2015; Yang et al., 2015). Automated 

2 visual recognition of the as-built state of construction elements entails object detection and 

3 their state classification (Ekanayake et al., 2021a; Guven and Ergen, 2021). By employing 

4 computer vision (CV)-based technologies of utilising cameras to capture images and machine 

5 learning (ML) algorithms to process images, automated visual recognition can provide more 

6 precise information about the as-built state (Ekanayake et al., 2021b).

7 Existing CV-based studies predominantly focus on exterior construction elements with 

8 relatively few studies on indoor construction (Deng et al., 2020; Hamledari and McCabe, 2016; 

9 Kropp et al., 2014). Kopsida et al. (2015) contend that many schedule delays and budget 

10 overruns in indoor construction projects are triggered by misunderstanding of the details and 

11 complexities of the indoor elements. Recognising the as-built state of construction elements is 

12 challenging in the indoor environment because of obstructions, cluttered indoor environments, 

13 illumination changes and the achromatic appearance of most indoor components (Deng et al., 

14 2020; Hamledari and McCabe, 2016; Kropp et al., 2014). These challenges have been 

15 categorised as technical challenges related to indoor objects, lighting conditions and camera 

16 positioning (Ekanayake et al., 2021a; Ekanayake et al., 2021b).

17 Pioneering CV-based indoor construction progress monitoring studies have employed 

18 traditional ML algorithms, which use manual feature extraction to determine the as-built state 

19 of indoor construction elements (Hamledari et al., 2017; Kropp et al., 2014). The algorithms 

20 relying on manually extracting features such as edges, colour and texture for object detection 

21 and classification are sensitive to the visual quality of the input images and are difficult to be 

22 extended to new image datasets with different visual conditions (Ying and Lee, 2019). As a 

23 result of the technical challenges, the region of interest (ROI) in the images cannot be detected 

24 easily without initially performing pre-processing algorithms to remove background noise and 

25 lighting impacts (Ekanayake et al., 2021a). 

26 Wang et al. (2021) note that the advances in CV have led to the use of deep learning (DL), 

27 which is a branch of ML to improve automation. DL models automatically learn features by 

28 training large amount of data under supervised learning (Nanni et al., 2017). This self-training 

29 ability of DL models enables the use of a single object recognition algorithm to detect and 

30 classify objects, without conducting additional steps of pre-processing (Ying and Lee, 2019). 

31 Therefore, the DL models not only improve automation but also reduce the inaccuracies caused 

32 by biases of the programmers in manual feature extraction (Slaton et al.,  2020). Despite the 
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1 efficiency and accuracy of DL, DL models have not been widely used to resolve issues related 

2 to real-time indoor elements as-built state recognition. This is mainly due to the high computing 

3 resource requirement and training configuration difficulties associated with DL models 

4 (O’Mahony et al., 2019).

5 This paper presents a DL-based approach to facilitate the as-built state recognition of indoor 

6 construction works. It is a one-stage detector DL approach, which was built upon the YOLOv4 

7 model. YOLOv4 is highly efficient and accurate in real-time object detection and classification 

8 (Bochkovskiy et al., 2020). The framing, insulation, and drywall installation process of indoor 

9 partitions was used to demonstrate the DL model. Indoor site images from this as-built process 

10 were captured to train and test the model. The onerous process of building DL models from 

11 scratch and training them using high computational resources outweigh their anticipated 

12 benefits. To address the computational complexities of building these model from scratch, 

13 transfer learning (Pan and Yang, 2009) was employed on a pre-trained YOLOv4 model with 

14 few hyperparameters customised. Then the model was trained on a cloud enabled virtual 

15 machine (VM) runtime using Google Colab (Google Research, 2022) to reduce the 

16 computational resource requirements and to enable sharing among project stakeholders. The 

17 main objective of this study is to present an efficient, accurate and readily shareable DL-based 

18 approach to facilitate the as-built state recognition of indoor construction works. This paper 

19 commences with a literature review on CV, DL and ML approaches followed by a description 

20 of the research methods used. The development of the DL-based object recognition approach 

21 is then described in detail and discussed. The paper culminates with a summary of the key 

22 findings and recommendations on future research directions. 

23 Literature review

24 The literature review section explains how construction elements recognition has advanced 

25 from using traditional ML algorithms to DL models. Followed by a discussion on the 

26 mechanism behind deep neural networks, this section further highlights the role of VM 

27 technology in reducing the training complexities associated with DL models. 

28 Construction elements recognition using traditional ML algorithms

29 Traditional ML algorithms administer object detection and classification by manual feature 

30 extraction. This is also referred to as handcrafted feature extraction, which involves the 

31 programmer designing the specific features to be extracted (O’Mahony et al., 2019). This can 
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1 be further explained by a feature extraction algorithm such as the Canny edge detector (Canny, 

2 1986). The programmer must manually design how to extract the edges (Nanni et al., 2017). 

3 As the number of classes to detect increases, feature extraction becomes inefficient (O’Mahony 

4 et al., 2019). CV-based indoor construction elements recognition studies such as those 

5 conducted by Kropp et al. (2014); Kropp et al. (2018); Hamledari and McCabe (2016); and 

6 Hamledari et al. (2017) have employed traditional ML algorithms to determine the as-built 

7 state of indoor construction elements.

8 A key difficulty with the traditional approach is that a significant level of algorithmic pre-

9 processing is required to remove background noise (i.e. unnecessary data) and enhance visual 

10 quality in images (Razavi et al., 2008). Lighting variation related pre-processing is usually 

11 done using low-light image enhancement (LIME) algorithms to enhance the images captured 

12 in environments with low natural lighting (Guo et al.,  2016). For noise smoothing due to 

13 cluttered scenes and background objects, background subtraction techniques such as frame 

14 differencing are employed (Kartika and Mohamed, 2011). As a result, instead of employing a 

15 single object recognition algorithm to detect and classify objects, handcrafted feature extraction 

16 requires conducting multiple steps of pre-processing to make the ROI easily detectable (Ying 

17 and Lee, 2019). 

18 The mechanism behind deep neural networks

19 The use of DL, which is a branch of ML, for construction progress monitoring has been 

20 advancing rapidly (Martinez et al., 2019). DL models incorporate deep neural networks, which 

21 leverage input-to-target mapping through a deep neural network to extract features from input 

22 data (Chollet, 2017; LeCun et al., 2015). Object recognition using DL aims at locating, 

23 classifying, and detecting objects in the images and labelling them with rectangular bounding 

24 boxes to show the confidence score of existence (Chollet, 2017). The convolution neural 

25 networks (CNNs) are the widespread type of DL neural networks used for image processing 

26 (Chollet, 2017). Figure 1 illustrates the difference in mechanism behind traditional ML and DL 

27 models in detecting a framing instance in an image by using a Canny edge detector and a CNN 

28 respectively.
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1

2 Figure 1: Mechanism behind (a) traditional machine learning (Canny edge detector); (b) 

3 deep learning (CNN)

4 As illustrated in Figure 1, when using a traditional ML algorithm such as Canny edge detector, 

5 the programmer selects and extracts edges as the feature. Conversely, a typical CNN structure 

6 is composed of a deep sequence of input layer, convolutional layers, pooling layers, fully 

7 connected layers, and an output layer. Compared to traditional ML algorithms, CNNs can 

8 achieve better detection and classification accuracy on large image datasets due to the ability 

9 of joint feature and classifier learning from training images (Chollet, 2017; LeCun et al., 2015). 

10 There are two types of CNN object recognition frameworks. The two-stage detectors generate 

11 region proposals initially and then classify each proposal into different object categories 

12 (Kardovskyi and Moon, 2021). Region-based convolutional neural networks (R-CNN) belong 

13 to this category (Zhao et al., 2019). In CNNs such as Fast R-CNN, Mask R-CNN, object 

14 detection is complex and slow because of the initial region proposals to predict the ROI 

15 (Bochkovskiy et al., 2020). In one-stage detectors, object detection is treated as a 

16 regression/classification problem. Regression predicts classes and bounding boxes for the 

17 whole image in a single run and identifies the object’s position in an image. Classification 

18 establishes the object's class (Redmon et al., 2016; Zhao et al., 2019). Two examples are You 

19 Only Look Once (YOLO) (Redmon et al., 2016) and Single Shot Multi-Box Detector (Liu et 
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1 al., 2016). As a result of this neural network operation, the inference speed is high for accurate 

2 real-time object detection and classification in one-stage detectors (Bochkovskiy et al., 2020).

3 The application of DL models for construction progress monitoring has gained momentum in 

4 recent years. Examples include rebar counting using YOLO (Li et al., 2021) and pre-cast walls 

5 installation monitoring using Mask R-CNN (Wang et al., 2021). However, these models largely 

6 focus on construction works that can be viewed externally and studies incorporating indoor 

7 progress monitoring are limited. In recent CV-based indoor construction progress monitoring 

8 studies, Mask R-CNN models have been applied to recognise the building objects (walls, doors, 

9 and lifts) (Ying and Lee, 2019) and HVAC ducts (Shamsollahi et al., 2021). Mask R-CNN has 

10 also been employed for calculating the work-in-progress of brick layering and plastering of an 

11 indoor wall (Wei et al., 2022). These applications have been gaining recognition because of 

12 improved automation and reduced inaccuracies compared to traditional ML counterparts. 

13 Virtual machines to train DL models

14 DL models perform far better than traditional ML algorithms, albeit with trade-offs related to 

15 computing requirements and training time (O’Mahony et al., 2019; Wang et al., 2021). It is 

16 essential to build an extensive training image database with annotations for supervised DL 

17 models implementation. DL models training requires high level hardware resources such as 

18 graphic processing units (GPUs), high performing memory, processor, and storage (O’Mahony 

19 et al., 2019; Wang et al., 2021). In addition, computing platforms such as compute unified 

20 device architecture (CUDA), and libraries including CUDA based deep neural networks 

21 (cuDNN) should be installed for GPU enabled DL execution (Jian et al., 2013; Jorda et al., 

22 2019). Without a proper training platform, DL models training on datasets of thousands of 

23 images could take days (Carneiro et al., 2018). Advances in computing technology have 

24 facilitated the use of GPU-enabled gaming computers and edge computing devices for training 

25 DL models (Pal and Hsieh, 2021). Despite these advancements, the hardware requirements are 

26 still expensive, and the configurations needed for training DL models are complicated and time 

27 consuming. 

28 With the proliferation of cloud computing and virtualisation, leading technology companies 

29 have provided dedicated development environments to overcome these hardware and 

30 configuration issues that have been impeding DL model deployment. Examples that are at the 

31 forefront of this development include Colaboratory (Colab) by Google, Azure Machine 

32 Learning by Microsoft, Watson Studio by IBM, and SageMaker by Amazon (Pal and Hsieh, 
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1 2021). Virtualisation using cloud computing is the process of creating a virtual version of a 

2 physical computer with a dedicated amount of processer, memory and GPU borrowed from a 

3 cloud provider’s server. As a result of this, virtual machines (VMs) remain independent of the 

4 local physical host computer (Rahman et al., 2022). 

5 For DL model training, a functional computer with the hardware requirements mentioned 

6 above currently cost approximately USD 2,000. Apart from the freely available Colab version, 

7 Google offers Colab Pro, Colab Pro+ and cloud enabled platforms for a subscription fee 

8 (Google Research, 2022). Colab Pro for DL model training is currently the cheapest option as 

9 it saves money on special hardware requirements. Employing Colab as a VM only requires a 

10 Google account and a cost of approximately USD 10. Successful developments of DL models 

11 using Colab platform are evident in the studies of Canesche et al. (2021); Carneiro et al. (2018) 

12 and Ohkawara et al. (2021). The major advantage of using VMs to develop DL models for 

13 construction applications is that they enable efficient DL models to be shared among project 

14 stakeholders through the cloud without configuration modifications (Pal and Hsieh, 2021; 

15 Rahman et al., 2022). Despite the avenues such as VM technology to reduce computational 

16 complexities associated with DL models development, construction elements recognition of 

17 indoor construction works using DL models is lacking. 

18 Research methods

19 The overarching research process used to develop the DL-based approach to recognise as-built 

20 indoor elements during construction works is shown in Figure 2. It involves three major stages 

21 of the research process.

22
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1 Figure 2: Process of developing the DL-based approach to recognise indoor as-built 

2 elements

3 The first stage involves building an annotated indoor site images dataset. Having a training 

4 dataset comprising high-quality images with different lighting conditions, material, texture, 

5 and colour is crucial for overcoming the underfitting and overfitting problems related to DL 

6 models (Wang et al., 2018). Underfitting is the failure to capture relevant patterns in data, 

7 which leads to inaccurate predictions (Jabbar and Khan, 2015). Overfitting occurs when the 

8 model accurately recognises objects within training images, but the model is not as accurate at 

9 recognising objects in the images that are not trained on or are not present in the training dataset 

10 (Rice et al., 2020). Therefore, it is essential to build an annotated image dataset by overcoming 

11 the aforementioned challenges.

12 The second stage of the DL-based approach is built upon YOLOv4 using transfer learning with 

13 few hyperparameters customised and then trained on Google Colab. Programmers employ 

14 transfer learning to reuse pre-trained DL neural networks because transfer learning reduces 

15 time and manual intervention (Nalini and Radhika, 2020). A DL model can either be built from 

16 scratch or a pretrained model which uses existing networks such as GoogleNet, AlexNet, 

17 ResNet, VGG-16 can be employed (Simonyan and Zisserman, 2014). The first approach 

18 involves computational complexities of building the convolutional, pooling and fully 

19 connected layers from scratch with their optimisations. The latter approach uses transfer 

20 learning to refine the pre-trained model to which the new data containing previously unknown 

21 classes is introduced only by customising certain hyperparameters of the new DL model (Pan 

22 and Yang, 2009; Torrey and Shavlik, 2010). Since the DL model has been pre-trained on large 

23 dataset of object classes, this approach is not as prolonged and manually intervened as creating 

24 a model from scratch (O’Mahony et al., 2019). 

25 Google Colab’s ability to run as a VM with the runtime fully configured for DL model training 

26 and free-of-charge access to GPUs, memory and processors have gained widespread 

27 recognition (Canesche et al., 2021; Carneiro et al., 2018). Colab is a web based Jupyter 

28 notebook enabled to execute Python codes. Colab notebooks are stored in Google Drive 

29 enabling Google Drive as the storage unit to be accessed from any web browser as opposed to 

30 using the hard drive in a local computer (Ohkawara et al., 2021). Colab enables setting up VM 

31 as runtime by connecting to GPUs and tensor processing units (TPUs) hosted by Google or 

32 through Google cloud platform hosted services. Colab users also can opt to connect to a local 
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1 runtime by executing the code in local computers’ hardware (Google Research, 2022). Since 

2 zero configuration is required and most of the ML libraries are already installed, DL models 

3 can be trained on Colab with a few lines of code and can be shared, stored, and accessed using 

4 Google Drive (Pal and Hsieh, 2021).

5 The final stage involves the DL model being tested on indoor site images to confirm that the 

6 as-built state of indoor elements during the construction process can be recognised 

7 automatically by using this model. Upon providing as-built images, this model can be extended 

8 to automated recognition of any indoor construction elements. The indoor wall element 

9 comprising the framing, insulation, and drywall installation of indoor partitions was selected 

10 as the as-built case scenario to test the model. The reason for selecting this scenario is that 

11 indoor partitions cover a significant portion of indoor construction and delays with this indoor 

12 element can typically create costly consequences (Kropp et al., 2012). Internal wall partition 

13 works also overlap several different trades such as framers, insulation installers and drywall 

14 installers and different levels of site supervision and management (Hamledari et al., 2017). 

15 Three indoor sites were used as case projects. Two projects were used to capture training 

16 images and the third was used to capture test images.

17 Image data collection and preparation

18 Training images were collected from two construction sites in Sydney, Australia. Site 1 is a 

19 residential building renovation project and Site 2 is an office building fit-out project. Two time-

20 lapse cameras (Brinno TLC200 PRO) were used at each site. Fixed time-lapse cameras were 

21 selected due to their ubiquitous use in construction sites for inexpensive progress monitoring 

22 and surveillance (Ahmadian Fard Fini et al., 2022). The reason for using two cameras at the 

23 same site was to collect images under various lighting conditions in different floor layouts and 

24 to capture images from best vantage points. The resolution of the images captured was 

25 1280×720 pixels. The cameras were checked, and videos were collected on a fortnightly basis 

26 over a 10-months period to avoid memory and battery outage and damages to the cameras in 

27 heavily cluttered indoor areas. 

28 To create a diverse and large dataset from each category in the framing, insulation, and drywall 

29 installation scenario, publicly available online images were also sourced. When the number of 

30 diversified images is higher, DL model has sufficient features to learn, and the accuracy 

31 increases by overcoming the underfitting problem (Wang et al., 2018). For example, as shown 
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1 in Figure 3, image (a) was captured from insulation in Site 1 and image (b) was sourced from 

2 insulation images available online. 

3

4

5

6

7

8

9 To generate more training images with variability, data augmentation was applied. It is a 

10 technique to transform the existing images to create new versions of the original images 

11 (Shorten and Khoshgoftaar, 2019). This helps in reducing the overfitting problem (Rice et al., 

12 2020). Data augmentation can be performed through photometric distortions and geometric 

13 distortions. Adjusting the brightness, contrast, hue, saturation, and noise of an image are 

14 examples of photometric distortion. Strategies for geometric distortion are random scaling, 

15 cropping, flipping, and rotating (Bochkovskiy et al., 2020). Using the ML library “imgaug”, 

16 which is commonly used for image augmentation, a code was developed to enable image 

17 augmentation. After preparing the dataset, the images were annotated with a bounding box 

18 using the online annotation tool “Make Sense”. The corresponding text files containing the 

19 coordinates of the ground truth bounding box were obtained as the labels. The labels in the 

20 dataset were “framed”, “insulated”, “drywall_installed”. 2,250 annotated images were 

21 prepared for training. 

22 Developing the DL-based object recognition approach using YOLOv4

23 YOLO is computationally faster and simpler compared to R-CNNs for object recognition 

24 (O’Mahony et al., 2019). YOLOv4 (Bochkovskiy et al., 2020) is currently the most stable, 

25 accurate and optimal speed version of YOLO. Understanding the network structure of 

26 YOLOv4 is important to determine which hyperparameters need to be customised using 

27 transfer learning. The network structure of a DL model comprises a CNN backbone for feature 

28 learning and extraction and a head to predict classes and bounding boxes of the objects 

Figure 3: a) Image captured from Site 1; b) image sourced from the Internet

a) b)
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1 (Bochkovskiy et al., 2020). YOLOv4 has a backbone made of Darknet-53 (Redmon, 2013). Its 

2 head is made of YOLOv3 (Redmon and Farhadi, 2018). The original YOLOv4 model has been 

3 trained by the creators of YOLOv4, Bochkovskiy et al. (2020) on the COCO dataset which 

4 comprises of day-to-day general objects of 80 different classes. Darknet has been pre-trained 

5 for these objects and thus the network backbone of YOLOv4 is capable of feature learning and 

6 extraction (Bochkovskiy et al., 2020; Wang et al., 2020). Transfer learning was used for the 

7 current study to harness this feature learning and extraction ability of pre-trained Darknet to 

8 generate the weights for the new classes of “framed”, “insulated”, “drywall_installed”. 

9 The workflow of training the DL model in Colab

10 The steps in training YOLOv4 using transfer learning in Colab are illustrated in Figure 4 and 

11 explained forthwith. Figure 4 presents the technical algorithm for DL-based object recognition 

12 that was used for this study. This process relates to the training images collected for the classes 

13 of “framed”, “insulated”, “drywall_installed” in the progress monitoring scenario. 
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1
2
3 Figure 4: Technical algorithm for DL-based object recognition approach using YOLOv4

4 Step 1: Customising the hyperparameters in the yolov4 configuration file

5 As the first phase of using transfer learning, the yolov4 configuration file “yolov4-custom.cfg” 

6 was downloaded from the Github repository for YOLOv4, AlexeyAB (Bochkovskiy et al., 
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1 2020). The changes made to some of the training hyperparameters in the yolov4 configuration 

2 file are listed below.

3  Number of classes in yolo layers      = 3

4  Filters in the convolutional layers before each yolo layer = 24

5  Batch      = 64

6  Subdivisions      = 8

7  Network size      = 416x416

8  Maximum batches      = 6000

9 These hyperparameters are explained as follows.

10  In the yolov4 configuration file, the YOLO layers and the convolutional layers before 

11 each YOLO layer are modified. Before each of the 3 YOLO layers, there are 3 

12 convolutional layers. In convolutional layers, filters are used to extract features to build 

13 high-level feature map of the objects. The original Darknet used 255 filters which is 

14 dependent on the number of classes of 80. The number of filters is calculated using the 

15 formula: (number of classes + 5) x 3 (Bochkovskiy et al., 2020). As there are 3 classes 

16 in the image training dataset, the number of classes in the YOLO layers and the 

17 corresponding number of filters must be adjusted. The rest of the layers are kept without 

18 making any changes since the original model has been optimally tuned for large number 

19 of classes as 80.

20  Batch=64 indicates loading 64 images for one iteration. 

21  Subdivision=8 indicates splitting batch into 8 mini-batches, such that 64/8 = 8 images 

22 per mini-batch. These 8 images are sent to the GPU for processing. Processing in mini 

23 batches facilitates fast processing by GPU (Bochkovskiy et al., 2020). The process is 

24 performed 8 times until the batch is completed, and a new iteration starts with 64 new 

25 images.

26  The pixel resolution must be a multiple of 32. The resolution size chosen for the current 

27 study is 416x416. Larger image resolution may slow down the training and smaller 

28 image resolution may reduce the accuracy of training. Medium sized resolution is 

29 considered as the best practice (Redmon et al., 2016).

30  The maximum batches is 6000, which can be calculated using the formula (number of 

31 classes x 2000 = 3 x 2000 = 6000). For Darknet, the minimum batches should be 2000. 

32 In Darknet YOLO, the number of iterations depends on the max_batches (Redmon, 
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1 2013). A complete epoch requires 100 iterations. Since the max_batches = 6000, 

2 training ends after 60 epochs. 

3 Step 2: Uploading files needed for training to Google Drive

4 Google Drive is the storage location for Colab. Therefore, before executing training in Colab, 

5 the files carrying instructions for training must be uploaded to Google Drive. In this study, a 

6 folder named “yolov4” was created in the Google Drive. The following files and sub folders 

7 were uploaded to this “yolov4” folder. The naming convention was adapted to reflect the 

8 purpose of each file.

9  “data.zip”- The zip folder containing the images and their corresponding text files 

10 with annotation details.  

11  “training”- The sub folder to save the weights of the YOLOv4 model trained on the 

12 image dataset.

13  “yolov4-custom.cfg”- The yolov4 configuration file downloaded from the Github 

14 repository, AlexeyAB.

15  “script.py”-The Python script containing the instructions to split the dataset into 2 

16 parts as 90% for training and 10% for validation.

17  “classes.names”-The names file with the instructions on the 3 name classes of the 

18 objects, “framed”, “insulated’’, “drywall_installed”.

19  “paths.data”-The data file with the instructions on the paths to training and validation 

20 data.

21 Step 3: Linking the Google Drive and Colab notebook

22 The Colab notebook was created from the same Google account linked to the Google Drive for 

23 executing the Python code for training. This Colab notebook was saved to Google Drive. The 

24 mount drive command was executed to link the “yolov4” folder to the Colab notebook. For 

25 this study, Colab was connected to a hosted runtime and the runtime was set to GPU and high 

26 RAM capacity. At the time of executing this DL model, Colab offered NVIDIA Tesla T4 GPU 

27 of 16GB, 13GB RAM and 2.2 GHz of processor speed. 

28 Step 4: Cloning Darknet and enabling GPU

29 Darknet was cloned to Colab from the Github repository AlexeyAB. Cloning was done to 

30 import the repository to Colab with the pre-trained weights. Enabling the GPU was carried out 
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1 to execute the DL model using the CUDA version 11.2 and cuDNN version 7.6.5. In this study, 

2 a sub folder called “darknet” was created automatically inside “yolov4” folder after cloning. 

3 Step 5: Building and customising the Darknet

4 As the second phase of transfer learning, the “make” command was executed to build the 

5 Darknet customisable to the instructions in the files uploaded to Google Drive. With the make 

6 command, the files uploaded in Step 2 were copied to the Darknet directory. This enabled 

7 Darknet to be customised according to the newly introduced training data and their class names. 

8 Step 6: Training the customised DL model

9 Upon executing the train custom detector command, as per the changes made in Step 5, weights 

10 of the custom YOLOv4 model were saved to the “training” sub folder in every 1000 iteration, 

11 until 6000 iterations were achieved. 

12 Evaluating the performance of the DL model

13 The study focused on the mean average precision (mAP) and average loss to capture the overall 

14 performance of the DL model at an intersection over union (IoU) of 0.5. The metric, mAP is 

15 widely used to evaluate the detection accuracy of DL models (O’Mahony et al., 2019). In 

16 addition to mAP, when training DL models, loss value indicates how well a DL model behaves 

17 after each iteration. The reduction of loss after each or several iterations is an indication of the 

18 higher accuracy of the DL model (Akbari et al., 2021). The IoU measures how much the 

19 predicted boundary detected by the DL model overlaps with the real object boundary or the 

20 ground truth (O’Mahony et al., 2019). Accordingly, this DL model did not detect objects, 

21 whose confidence of existence score was less than 50%. This accuracy level is usually set as 

22 the minimum threshold of detection for many DL models. The mAP of the best weight is 92% 

23 and the overall mAP of the DL model considering all the weights is 87.3%. The average loss 

24 of the model is 0.83. The performance of all the trained weights is illustrated in the chart in 

25 Figure 5. 
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19

20 Figure 5: Performance chart of the proposed DL model

21 The best weight with the highest mAP of 92% was used to detect the test images uploaded to 

22 Google Drive. The test images were obtained as in Figure 6a and 6b to recognise the framing, 

23 insulation, and drywall installation states.

24
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1

2

3

4

5

6

7 Figure 6: Test image for a) insulation and drywall installation; b) framing

8 Confidence of existence scores of 97% and 98% were recorded for recognising the state of 

9 drywall installation and 99% for insulation respectively in Figure 8a. Figure 8b shows how 

10 framing state was recognised with a confidence of existence score of 86%. Accordingly, the 

11 detection and classification ability of YOLOv4 was harnessed to recognise the as-built states 

12 of indoor partitions through this automated object recognition approach.

13 Discussion

14 This section discusses how the results generated by the DL model of the current study can be 

15 compared with the previous CV-based studies on indoor construction elements recognition in 

16 terms of reducing the impacts of the technical challenges related to indoor objects, lighting 

17 conditions and camera positioning. A comparison with the recent studies, which employed DL 

18 models is also provided. Challenges encountered in training the DL model in Colab 

19 environment are also discussed. 

20 Indoor elements state recognition by overcoming the technical challenges

21 Previous CV-based studies on indoor construction elements recognition have used handcrafted 

22 feature extraction and employed pre-processing algorithms to enhance visual quality and 

23 remove background noise in images for recognising as-built elements. This study aimed at 

24 reducing the impacts of the technical challenges and improving the accuracy of objects 

25 recognition by harnessing the detection and classification ability of DL models for complex 

26 indoor construction environments.

27 Figure 7a exhibits challenges related to CV-based indoor construction elements recognition, 

28 when the framing process (shown inside the red-coloured rectangular box) was captured. The 

29 major challenge was to determine the strategic location to install the camera that provides the 

30 best viewing angle of the framing process. Previous studies by Kropp et al. (2013); Hamledari 

a b
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1 and McCabe (2016) and Ekanayake et al. (2021a) identified the limitations related to relocating 

2 fixed cameras and limited field of view and angles. Additionally, detecting the ROI was 

3 constrained by the presence of a stepladder and movements of construction personnel 

4 obstructing the framing area. The presence of temporary equipment and material and 

5 movements of construction personnel create clutter and obstructions in images (Ekanayake et 

6 al., 2021b; Hamledari and McCabe, 2016; Kropp et al., 2014). 

7 Moreover, the natural light entering the indoor site from openings produced backlight and 

8 caused shadows. As stated by Kropp et al. (2013); Hamledari and McCabe (2016) and 

9 Ekanayake et al. (2021a), backlights and shadows constrain feature extraction. To obtain the 

10 ROI, the image was only cropped and resized, more accurately without subjecting to 

11 algorithmic pre-processing to enhance visual quality and remove noise (as shown in Figure 7b) 

12 The customised DL model recognised the framing state as evidenced in Figure 7b although the 

13 confidence score of existence in detecting framing state is 58% due to the background noise 

14 and poor visual quality in the indoor site image. 

15

16

17

18

19

20

21

22

23

24

25

26 Source: (The Authors)

27 Figure 7: Indoor elements state recognition by overcoming the technical challenges

c                   d

a                b
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1 Figure 7c depicts further technical challenges in the indoor sites. The recognition of the 

2 insulation state was significantly affected by the presence of an artificial lighting fixture in the 

3 middle of the ROI. Previous studies by Ekanayake et al. (2021b) and Hamledari and McCabe 

4 (2016) have highlighted that artificial lights cause non-uniform illumination constraining 

5 robust feature extraction. Indoor objects related challenges such as construction material 

6 including batt insulation blankets and insulation tools caused clutter in the indoor scenes and 

7 the ROI was blocked by construction workers carrying out the insulation. Even though this 

8 indoor scene was heavily cluttered and poor visual quality was evident, the DL model could 

9 accurately recognise the framing and insulation states as evidenced in Figure 7d. The 

10 confidence scores of existence for insulation are 54% and 57% whilst framing has a score of 

11 64%. 

12 Additionally, when the ROIs captured from the fixed cameras were of irregular shapes and 

13 orientations, the confidence scores of detections tended to be low. Nonetheless, without using 

14 any pre-processing algorithms to make improvements to the images, the indoor elements as-

15 built states in the ROIs were recognised by using the YOLOv4-based DL approach used in this 

16 study. 

17 Comparison with the previous studies which employed DL models

18 The pioneering studies of Ying and Lee (2019) and Shamsollahi et al. (2021) only provide 

19 evidence on the recognition of the indoor elements using Mask R-CNN. The automation level 

20 is heavily manually intervened during the data collection in Ying and Lee (2019). Since 

21 synthetic images are used as the training images, Shamsollahi et al. (2021) fails to reflect the 

22 impacts of challenging indoor construction environment. While Wei et al. (2022) calculates 

23 indoor work completion percentage using Mask R-CNN-based segmentation and maps the 

24 relationship between 2D images and 3D building information models, the high manual 

25 intervention in the data collection and algorithmic pre-processing steps is noteworthy. The use 

26 of a small training dataset and testing and training images being collected from the same 

27 location are the other limitations. 

28 Compared to these studies, the automation level of the current study is high due to the use of 

29 fixed time-lapse cameras for data collection and zero manual intervention from the pre-

30 processing algorithms to enhance visual quality of indoor images. The current study also 

31 reflects the impacts of challenging indoor construction environment on automated visual 

32 recognition of indoor elements. These previous studies have not used a DL model other than 
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1 Mask R-CNN and have not addressed the means to overcome the DL model training related 

2 complications by using a VM platform such as Colab.

3 Challenges encountered in training the DL model in Colab

4 Despite offering a cost effective and pre-configured environment to train DL models, the free-

5 of-charge Colab platform poses certain limitations. Even with a steady internet connection, idle 

6 timeouts of more than 90 minutes can cause disruptions. When Colab gets disconnected during 

7 the training, backbone executables of DL models will not work. Considering these limitations, 

8 Colab Pro was employed for the current study. When trained in Colab Pro, the VM was 

9 connected to a stable runtime with faster GPU, RAM, and processor. To avoid being 

10 disconnected from Colab Pro, an auto click code was executed. 

11 Despite the current limitations, the advancements in cloud computing are highly promising to 

12 train DL models in the cloud enabled VMs. One such advancement is that Colab users can 

13 setup a Google cloud platform (GCP) account and connect to a GCP marketplace VM as the 

14 runtime (Rahman et al., 2022). These VMs offer complete flexibility and provide a consistent 

15 environment removing all the Colab enforced runtime limitations. At a reasonable subscription 

16 fee, the deployment of DL models for very large image datasets through cloud enabled 

17 platforms has become relatively fast and easy to set up with less configurations compared to 

18 the edge computing counterparts.  

19 Conclusions and future directions

20 Traditional methods of as-built state recognition practices lack accuracy, are inefficient and 

21 costly. Compared to exterior sites, the as-built object recognition in indoor site images is 

22 hindered by the technical challenges related to indoor objects, lighting conditions and camera 

23 positioning. Since traditional ML algorithms employ manual feature extraction and are 

24 sensitive to image quality, recognising indoor construction elements with poor visual quality 

25 is challenging. By harnessing YOLOv4 algorithms’ ability in real-time efficient and accurate 

26 object detection and classification through training images, this study presents a DL-based 

27 approach to facilitate the as-built state recognition of indoor construction works. 

28 Using transfer learning, trained weights were generated for the customised YOLOv4 model for 

29 the selected indoor as-built scenario of framing, insulation, and drywalls installation. This DL 

30 model proves high accuracy with a best trained weight reporting a mAP of 92% and an average 
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1 loss of 0.83. Different from the recent DL-based indoor construction progress monitoring 

2 studies, this study contributes to the body of knowledge and the industry practitioners from the 

3 following two aspects. (1) The current study offers an efficient, accurate and readily shareable 

4 workflow of training DL models in a VM platform based on Google Colab. (2) Upon providing 

5 training images, the accurate detection and classification ability of the customised YOLOv4 

6 model can be extended to recognise the as-built states of other indoor scenes such as tiling, 

7 ceiling sheets installation, interior glazing.  

8 There are some limitations to this study despite its contributions. The images collected from 

9 complex environments such as indoor construction sites pose challenges for the detection and 

10 classification ability of DL models. Therefore, in future studies, there is room for improving 

11 the performance of the current DL model by introducing more training images and fine-tuning 

12 the hyperparameters such as learning rate, loss function of the YOLOv4 algorithm. 
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Reviewers Comments to Author Authors Response to Reviewers 
Comments

We sincerely appreciate all the valuable suggestions and the constructive feedback 

given by the reviewers. 

 Appropriate changes suggested by the reviewers have now been presented in 

red-coloured text in the revised manuscript. 

 The title has been revised as “A deep learning-based approach to facilitate 

the as-built state recognition of indoor construction works”.  After 

addressing the reviewers’ comments, we determined that the revised title 

better communicates main objective of this manuscript. 

 To meet the word limit of the journal without hampering the quality of the 

revisions made, Table 1 has now been converted to text.

Reviewer 1
1- The abstract needs to be summarised 

the main points and avoid 
unnecessary parts to understand better 
and readability. The abstract is very 
general, with unnecessary statements. 
Please revise the abstract.

The “purpose” paragraph has been 
entirely revised. Lines 12-13 and17-20 in 
page 1 have now been revised to address 
this comment. 

2- Please underscore the scientific value 
added in the abstract. Add some of 
the most critical quantitative results to 
the Abstract.

Lines 17-20 in page 1 have now been 
revised to address this comment. The key 
findings of the study are now highlighted 
with the quantitative values. 

3- The objective of the study is not clear 
and needs to be specified in the 
introduction section.

Lines 6-8 and14-18 in page 3 have been 
revised to address this comment.

4- The results should be explained in 
more detail to a better understanding 
by readers and compared the findings 
with the existing literature. The given 
information is not sufficient.

A new section has been added under 
discussion in page 19 (lines 17-32). This 
section includes a comparison of the 
current study with the recent deep 
learning based indoor construction 
progress monitoring studies.

5- The conclusions need to be revised 
and improved. Please make sure the 
conclusion section underscores the 
scientific value added to the paper and 
the applicability of the 
findings/results. The conclusions are 
very general, with unnecessary 
statements.

The first paragraph of the conclusion 
provides an overview to the background 
and the purpose of this study in page 20 
(lines 21 -26). The second paragraph of 
the conclusion has now been revised to 
highlight the key results and the 
contributions of this study (pages 20-21).

6- Please refer to more recent and 
relevant papers.

Lines 3-12 in page 6 have now been 
revised to refer to the most recent (2021, 
2022) deep learning applications. 
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Reviewer 2
1- page 4 (line 46 to 53). The literature 

review: overview of the literature 
review is not necessary. it makes it 
more like book or thesis. it is 
therefore suggested to be removed

This paragraph, “as recapitulated from 
the literature review…..” has now been 
removed (lines 18-22 in page 7).

2- page 5, line 37, the subsection on 
neural network appeared suddenly 
without any prior mention or link 
from the preceding section to make a 
meaningful reading to the reader. As 
such, flow of thoughts should be 
applied in all the other sections of the 
literature review sections

In the paragraph before Figure 1, (line 
24-27 of page 4), the convolution neural 
networks (CNNs) have been introduced 
as the widespread type of deep neural 
networks. Furthermore, Figure 1 has been 
used to demonstrate the differences of 
object recognition between a deep neural 
network (CNN) and a traditional ML 
algorithm (Canny edge detector). In page 
5, lines 4-6, have now been reworded to 
communicate the explanation on CNN 
clearly.

3- page 6, Figure 1, line 28. when an 
image is from the Authors, there is no 
need to put the “source as Authors” 
(this applies to all other figures). 
However, are the Authors sure that 
the figures are theirs? remember this 
is literature review section.

“Source: The Authors” has now been 
removed.

Although Figure 1 appears in the 
literature review section, it was created 
by the authors to clearly visualise the 
mechanism behind traditional machine 
learning algorithms and deep neural 
networks. Apart from the images 
collected from the indoor construction 
sites, all the other figures have been 
created by the authors.

4- page 9, are line 10, the word “below” 
should be removed. once a figure 
number is mentioned, there is no need 
to mention its location

This has now been corrected in page 7, 
line 20.
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List of Figures

Figure 1: Mechanism behind (a) traditional machine learning (Canny edge detector); (b) deep 
learning (CNN)

Figure 2: Process of developing the DL-based approach to recognise indoor as-built elements
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a) b)

Figure 3: a) Image captured from Site 1; b) image sourced from the Internet
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Figure 4: Technical algorithm for DL-based object recognition approach using YOLOv4
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Figure 5: Performance chart of the proposed DL model
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Figure 6: Test image for a) insulation and drywall installation; b) framing

a b

c                   d

a                b

Figure 7: Indoor elements state recognition by overcoming the technical challenges

Page 31 of 31 Construction Innovation: Information, Process, Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


