“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

Al-Enabled Automated and Closed-Loop
Optimization Algorithms for Delay-Aware Network

Da Xiao*, Wei Nif, J. Andrew Zhang*, Renping Liu*, Shuo Chen™ and Yiwen Qu*

*The University of Technology Sydney, Global Big Data Technologies Centre (GBDTC), Australia
fData61, Commonwealth Scientific and Industrial Research Organization (CSIRO), Sydney, Australia
*School of Computer Science and Engineering, Nanyang Technological University, Singapore
Email:{ Andrew.Zhang; renping.liu} @uts.edu.au; {Da.Xiao; Yiwen.Qu-1} @student.uts.edu.au;
wei.ni@data61.csiro.au; schen@ntu.edu.sg

Abstract—Network slicing is one of the core techniques of the
current 5G networks. To accommodate as many network slices
as possible with limited hardware resources, service providers
need to avoid over-provisioning of resources. In this paper,
we first propose a Deep Q-Network (DQN) based network
slicing algorithm to maximize the acceptance ratio and ensure
prior placement of higher-priority requests for Ultra-Reliable
Low-Latency Communication (URLLC) services. Specifically,
we model the network slicing as a Markov Decision Process
(MDP), where we consider Virtual Network Function (VNF)
placements to be the actions of the MDP, and define a reward
function based on service priority. For every service request, we
use the DQN to choose an MDP action for performing the VNF
placement. The placement results in an MDP reward that we can
use to train the DQN. Once trained, the DQN approximates the
optimal solution of the MDP. Considering the over-provisioning
of resources, we then propose a Binary Search Assisted Transfer
Learning algorithm (BSATL), in which the available hardware
resources are scaled down/up and the knowledge learned from
the source task is transferred to the target task in each iteration,
to achieve automated and closed-loop optimization for the ever
changing infrastructure, a scenario of 6G Event Defined uRLLC
(EDuRLLC). Numerical evaluations show that our proposed
scheme can significantly improve cost-utility while maintaining
the optimal acceptance ratio.

Index Terms—network slicing, over-provisioning of resources,
VNF placement, 6G, EDuRLLC, transfer learning, Deep Q-
Network.

I. INTRODUCTION

The current-generation mobile network (5G) imposes strin-
gent Quality-of-Service (QoS) requirements on payload traffic
than its predecessor, the 4G system [1], for supporting Ultra-
Reliable Low-Latency Communication (URLLC) applications
such as remote surgery and self-driving vehicles [2]. There-
fore, efficient and automatic placement of network services is
one of the most important technologies for meeting such QoS
requirements. Furthermore, within URLLC, traffic from dif-
ferent users may have different latency requirements. Hence,
we need to create several network services, also known as
sub-slices, to meet diverse requirements.

In 6G era, the network will be required to support an
advanced version of URLLC service: Event Defined uRLLC
(EDuRLLC). Unlike 5G network, in which redundant re-
sources are reserved to offset uncertainties in URLLC applica-
tion scenarios, 6G will need to support URLLC in emergency

events with spatially and temporally changing device densi-
ties, traffic patterns, and spectrum as well as infrastructure
availability. Therefore, the 6G architecture should be smart
enough to learn the network dynamics and automatically re-
orchestrate network services.

Many solutions have already been proposed for the place-
ment of network services [3]. Some techniques were proposed
to formulate and solve optimization problems [4]-[6]. They
typically assume some theoretical traffic and service models.
When these models do not match the practical ones, their
performance might largely degrade. Some other authors pro-
posed heuristic methods that are good for stationary systems
while could have degraded performance for dynamic systems
[7], [8]. Recently, techniques based on deep learning were
developed [9]-[11]. For the latency issue, [9] is the first paper
that proposes to extract latency in real time, making it very
attractive. Adopting the real-time model can greatly improve
the accuracy of the model, however, there exist several limits
in [9]. First, they used Virtual Network Function Forwarding
Graphs (VNF-FGs) requested by clients to symbolize traffic
in the deep reinforcement learning state. It is important to
take VNF-FGs into the state, but it is equally important to
include the incoming traffic of each service, an indispensable
feature of the environment. This is because for a given VNF-
FG configuration, different traffic rates may result in different
real latencies. Second, the authors assumed that the requested
resources of VNFs are normalized and distributed uniformly,
which could be impractical in some real cases. For instance,
in OpenStack (an open source cloud computing infrastructure
software project) supported cloud environment, for resources
like VCPU, RAM and Disk, there are several ‘flavors’ [12] to
choose from. Therefore, these required resources are discrete
random variables rather than continuous random variables.

Of all the existing works, there are two main open issues.
First, only a few of them focus on sub-slices issue, let
alone latency-sensitive sub-slices. Second, most works deploy
network slices in stable systems. However, in some cases
where environmental characteristics such as infrastructure
availability, service requests, and traffic patterns are prone to
change, an automated and closed-loop optimization algorithm
is needed to help re-orchestrate network slices.

In this paper, to tackle the sub-slice issue, we propose a

Deep Q-Network (DQN) based network slicing algorithm for
deploying several URLLC sub-slices with different latency
requirements. Specifically, we model the VNF placement
for all requests as a Markov Decision Process (MDP) and
represent the MDP action space as the possible VNF place-
ments of a single request. We further prioritize those requests
based on their latency requirements and define the reward
function of the MDP based on priority. For every incoming
request, the DQN chooses an MDP action to determine the
VNF placement. In response to the VNF placement, an MDP
reward is returned from the environment to train our DQN.
Once trained, the DQN approximates the optimal solution of
the MDP that maximizes the acceptance ratio and ensures
prior placement of higher-priority services.

Then, to cope with the over-provisioning of resources, we
propose a Binary Search Assisted Transfer Learning algo-
rithm (BSATL), in which the available hardware resources
are scaled down/up and the knowledge learned from the
source task is transferred to the target task in each iteration,
to achieve automated and closed-loop optimization for a 6G
EDuRLLC scenario.

The main contributions of this paper can be summarized
as follows:

1) We formulate the VNF placement problem as an MDP
with appropriate state and action, by including the real
incoming traffic into state, rather than by using VNF
capacity (CPU, memory, ...) to symbolize incoming
traffic as in [9]. This is important because, in some
cases, VNF capacity could not accurately reflect real
network traffic, which is critical to latency-sensitive
services.

2) We prioritize service requests based on latency require-
ments (the lower latency threshold a service requests,
the higher priority it gets) and propose a DQN frame-
work to maximize the service acceptance ratio while
ensuring prior placement of higher-priority requests.

3) We design an automated and closed-loop optimization
algorithm (BSATL) for a 6G EDuRLLC scenario.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Architecture

In the NFV architecture, Network Slice Management Func-
tion (NSMF) receives slice requests. Accordingly, it interfaces
with Management and Orchestration (MANO) to plan for
VNFs placement. In our work, the DQN-agent, which takes
the role of MANO, is responsible for choosing location
for VNFs. As for the infrastructure, we adopt a widely
used nonblocking fat-tree topology, depicted in Fig 1. Let
D denote the set of edge clouds and IE; denote the set
of servers in the i edge cloud. For simplification, we
assume that the number of servers in all edge clouds are
the same. Hence, the number of edge clouds is |D| and the
number of servers in each edge cloud is |E|. Without loss of
generality, we consider the following example. When DQN-
agent handles a service request VNF1—VNF2—VNF3, we
suppose that it chooses serverl to place VNFI1 and VNF2,
and server5 to place VNF3. After the incoming traffic travels

Server8

Server?

Server2 Server6

Fig. 1: Network infrastructure considered in this paper.

through VNF1—VNF2—edge switchl —core switch—edge
switch2—VNF3, the agent extracts the real latency to see
whether the corresponding latency requirement is satisfied.

B. Characteristics of Service Requests

Let K represent the number of requested services. Also,
the number of chained VNFs for the URLLC service is
assumed to be V. Unlike the authors in [9], who assume
that all services have the same latency requirement, we
assume that, within the URLLC category, each service has
its distinctive latency requirement. Hence, we represent the
latency threshold of the i" service with L;.

C. Problem Formulation

In this part, we formulate the objective as an optimization
problem. Our purpose is to maximize the acceptance ratio
while ensuring prior placement of higher-priority services,
under the infrastructure resource constraints. Thus, the op-
timization problem can be written as

K
(P1): mEXC(A) = qu x f(Li —1;)

M
M=

s
Il
—

<.
Il
—

IZJ' X ¢ < Cit, n=1,2,..., UD)| X |E‘ (1a)

IZ‘] X Ws, 5 S VVtoh n= 1727 tey |D| X UE| (1b)

R
M=

s
Il
-

<.
Il
—

In the objective function above,

ro={ 7

1
pi= = i =12, K, 3)
Zi:l ;

pi denotes the priority of service ¢, element a; ; in matrix A
indicates on which server is the j" VNF of the i" service
located, and L; and [; respectively symbolize the latency

requirement and the real latency of the i service.
In the constraints above, the binary variable xf] indicates

whether the j VNF of the i request nests on the n'

<0

23>0, 2

server, ¢; ; and w; ; denote the required CPU and bandwidth
resources of the j™ VNF of the i™ request, and Ci,; and Wi,
denote the CPU and bandwidth capacity of any server.

The constraints need to be modified if the infrastructure
availability changes. Learning based techniques can be uti-
lized to learn such network dynamics and solve the problem.
The goal of the learning technique is to learn a policy that
determines what action to take in each environment state. In
the following, we introduce a model based on DQN for VNF
placement problem regarding latency requirement.

III. OUR PROPOSED VNF PLACEMENT SCHEME

We model the VNF placement for all requests as an MDP,
which can be resolved by a DQN framework, and represent
the MDP action space as the possible VNF placements of
a single request. A state can be defined as a vector of the
available resources provided by the infrastructure and the
characteristics of a service. Once the VNF placement action
of the first service is determined, the state is updated. Then
the action for the second service will be determined, so on and
so forth. Since our aim is to maximize the acceptance ratio
while ensuring prior placement of higher-priority services, we
prioritize those requests based on their latency requirements
and define the reward function of the MDP based on service
priority. The details of the state, action, and reward function
in the context of our problem will be provided in Sections
[I-B, III-C and III-D.

We first propose a DQN framework with the aim of
maximizing the acceptance ratio and ensuring prior place-
ment of higher-priority services. Then, to resolve the over-
provisioning of resources, we propose the BSATL algorithm,
in which the minimum number of online servers for maintain-
ing the maximum acceptance ratio is iteratively searched for,
to achieve automated and closed-loop optimization for the 6G
Event Defined uRLLC (EDuRLLC) scenario. The details are
presented below.

A. Overview of the Proposed DON

A general overview of the DQN used in our scheme is
shown in Fig. 2. The state, indicated by a vector, is fed into
the neural network, which outputs a vector of Q-values, with
each indicating the expected discounted cumulative reward of
a corresponding action (VNF placement). At time step ¢, the
Q-value of taking an action a; in state s; based on policy 7
is given by

K
Q™ (st,a¢) = E(Z 'y(i_t)R(si,ai)\shat).)

i=t
The objective of the agent is to learn a policy that maximizes
the expected return Q™ (s, a;). At the beginning of the train-
ing, the weights of the evaluation neural network are random
and thus the policy is poor. Given a state, the maximum Q-
value may not account for the optimal policy. Hence, we train
the framework episode by episode. When an episode starts,
we re-initialize the state of the environment and feed the agent
K requests, which will be handled one by one in K time

Aa) Aa,) 9@ 9
| I

Co
Evaluation network (@) wcifl?lﬂ; Qb Target network (@)

- A A » , A

s 2 Ks,a | @ vax §(s.,a | &)
1 4; | Update B ® a0

weights 4
Environment @
Loss function

® ®f
S d; Mini batch
O g4,

i+l

Store transitions

Spd, I 5,

Fig. 2: Flowchart of the Deep Q learning network.

steps. In each time step, the agent serves a request and updates
the neural networks. When the agent finishes the placement
of K requests, this episode ends and the next one starts. The
loop ends as the weights of the neural networks converge.
Then, given a state, the agent is able to find the best action
by taking the largest Q-value from the output vector. The
workflow for each time step can be summarized as follows:

1) Step 1: The agent observes the state (s;) of the envi-
ronment.

2) Step 2: The agent performs an action (a;), i.e., the VNF
placement, randomly with probability € or according to
the evaluation network with probability 1 — €, and thus
gets a reward (7).

3) Step 3: The experience tuple (s, a, 7¢, S¢+1) is stored
into an experience replay buffer.

4) Step 4: To train the DQN framework, a mini-batch of
N tuples are uniformly sampled from the experience
replay buffer.

5) Step 5: For tuple i, s; and a; are fed into the evaluation
network (#), while s;; is fed into the target network
@).

6) Step 6: The weights of the evaluation network are
updated by minimizing a loss function:

N
1
L= — R . 2
~ ;(y Q(si, ai]0))?, (5)
where
y; = r; +ymaze Q' (sir1,a’|07). (6)

7) Step 7: The weights of the target network are updated
by copying the weights of the evaluation network every
C time steps.

B. State

We define the state as a vector of available resources
provided by the infrastructure and the characteristics of a

service request. As a result, the state set of the environment
can be written as:

S = {Cnawnaci,jvwi,jaLi,)\i}a
n=1,2,,[D|*|E|,j = 1,2,...V,i € {1,2, .. K}, ()

where ¢, and w, respectively represent the remaining CPU
and bandwidth resources of the n'™ server, ¢; ; and w; ;, which
can be selected from VM ‘flavors’, denote the required CPU
and bandwidth resources of the j" VNF of the i" service,
and L; and)\; respectively denote the latency requirement
and the incoming traffic of the i" service.

C. Action

We define the action as the possible placement for an
incoming service i:

A:{ai,j},j: 1,2,...,V,i e {172,...,K}, ®)

where a; ; indicates on which server does the j™ VNF of the
i service nest.

D. Reward

We leverage a simulation tool CloudSimSDN-NFV [13] to
obtain the real latency of an embedded service. If the service’s
latency requirement is not satisfied, the agent will receive a
penalty. Otherwise, it will be granted a reward. For the i
service, the reward function regarding delay is defined as

. 1 L<L
Raenay (i) = { -1 L>L ©)

where [; and L; denote the real latency and the latency
requirement of the i service.

We suppose that the j® VNF is planned to be placed on the
n® server. If the remaining bandwidth or CPU of server n is
insufficient to accommodate VNF j, then the placement for
this VNF is a failure. When DQN-agent performs an action
for service ¢, the failure placement for any VNF can lead
to a penalty for this action. Therefore, the reward function
regarding resources constraint is defined as

-1
if 35 €[1,V], ¢;j > cporw;j >wy, (10)
0 otherwise,

Rres (Z) =

where ¢; ; and w; ; denote the required CPU and bandwidth
resources of the j" VNF of the i" service, and ¢, and
wy, respectively represent the remaining CPU and bandwidth
resources of the n'" server.

We place VNFs for all services such that a global utility
function expressed below is maximized.

K
U= maXZ(nl X pi X Rdelay(i) + M2 X Rres(i))y (11)
i=1
where 1; and 7y are the weights of two reward functions and
p; indicates the priority of service i. For any VNF placement,
satisfying the resources constraint is the prerequisite for being
measured the delay. Thus, 7, is greater than 7;.

“Maximum number of servers (Smax)
-Random weights
-Minimum resource unit (Cminy
-CPU capacity of a server (Ctot)

- "max .7 Tmax
- Weights of the, DQN - Weights of the
source task source task

ACceptance ratio converge
to the optimal?

Yes

Scale up to get an updated
tentative number of servers

me in the upper half

1. Store the weights and mark this task
as source task for later use
2. Store the tentative number of servers:
Vain = tmax
3. Scale down to get an updmedtlmxiu
the lower half

No

Fig. 3: Workflow of the BSATL algorithm.

E. The Binary Search Assisted Transfer Learning Algorithm

Our BSATL algorithm is summarized in Algorithm 1.
The main workflow is shown in Fig 3. The algorithm starts
from a DQN learning process in an initial environment with
the maximum number of servers (Sy.az). Smaz and O are
considered the two ends of the binary search (BS). A new
iteration of transfer learning is triggered once the BS creates
a new environment, indicated by the tentative maximum
number of servers (t,,q.). In each iteration, the source task
and target task [14] share the same action space and reward
function, and the only difference between the two tasks is
the DQN state. Hence, it is reasonable to reuse the neural
network model developed in the source task as the starting
point of the target task. When the resource gap between the
most recently verified environment and the current tentative
environment is less than the minimum resource unit (C);5),
the loop ends and the minimum number of servers (vy,;,) for
maintaining the maximum acceptance ratio is returned.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
DQN algorithm regarding acceptance ratio in phase one and
the cost-utility of the proposed BSATL algorithm in phase
two. We use the CloudSimSDN-NFV as our simulation frame-
work. As for the infrastructure (Fig. 1), the bandwidth is set
to 1 Mbps for each link and the MIPS of each server is 1000.
In our experiment, we assume that there are five categories of
latency-sensitive services, each of which consists of a chain of
three VNFs and has a distinctive latency threshold. In terms
of priority, flowl>flow2>flow3>flow4>flow5. For security
purposes, we assume that they are isolated networks and thus
they do not share VNFs.

The DQN network is set up with the following parameters.
Adam is adopted to learn the neural network parameters. The
learning rate is 0.005 and the discount factor is 0.99. The
weights of the target network are updated every 100 episodes.

Algorithm 1 BSATL Algorithm
InplIt: Smam Otol» CYmin
Output: vy,

I tmin = 0, tmax = Smaxs Umin = 0
2:1=1
3. while (Umin - tmax)ctot > Cpinori =1 do

Substituting ¢,,,x into DQN state and training or

retraining the network to see whether the DQN converges

4
5
6: if the acceptance ratio converges to the optimal then
7
8
9

tmax +tmi
Umin = tmax, tmax = %
else
tmi i
: tmin = tmaxv tmax = Lnind nia
10: end if
1m: t1=1t+1

12: end while
13: return vy,

The batch size is 64. We set two hidden layers for the fully
connected network, the number of units is 4096 for the first
hidden layer and 1024 for the second hidden layer. We adopt
the Rectified Linear Unit (ReLU) activation for hidden layers.

Our proposed algorithms both consist of an offline training
phase and an online testing phase. In the training phase, we
create service requests according to their traffic and arrival
pattern history and continuously train the framework until the
weights of neural networks converge.

During the online testing phase, we compare the per-
formance of our proposed algorithms with a state-of-the-
art heuristic algorithm — Holu [8] and the typical Best-Fit
algorithm. The Holu algorithm, which aims to minimize the
number of online Physical Machines (PMs) while meeting
end-to-end delay and resource capacities, maps VNFs to PMs
using a centrality-based PM ranking strategy. The Best-Fit
algorithm deploys VNFs one after another to the smallest
free partition which meets the resources requirement of the
VNFs.

In phase one, we compare our DQN algorithm with the
Holu and the Best-Fit regarding acceptance ratio. From Fig.
4, we can see that, when we restrict the number of online
servers to be four, the DQN and the Holu accept four
requests while the Best-Fit accepts three. Furthermore, only
our DQN algorithm accepts four higher-priority services and
discards the lowest priority service. This is because we assign
greater reward/penalty values to the success/failure of higher-
priority service requests, and the DQN algorithm achieves
the maximization of the total discounted cumulative reward
at the sacrifice of some instantaneous reward. However, the
other two algorithms, which do not consider the priority issue,
handle requests based on their arrival sequence. As a result,
with the same number of online servers, our DQN algorithm
achieves the same acceptance ratio as the Holu. Meanwhile,
it ensures prior placement of higher-priority services.

In phase two, to create an over-provisioning of resources
scenario, we first turn on all eight servers to pre-train a
DQN framework that can accept all five requests. From
Fig. 5, we can see that, before episode 10000, DQN-agent

5
-
2
a
3
-,
Proposed Holu BestFit
DON -
flowl flow2 flows3 flowd flow5
Fig. 4: Accepted services with different priorities.
100% -
80%
=}
T 0%
8
c
o
-
S 40%
=
=T
20% 7
0% -

T T T T T T T
0 2000 4000 6000 8000 10000 12000
Episode

Fig. 5: DQN learning process of the initial task.

explores the environment. As the agent becomes smarter and
smarter, the acceptance ratio increases gradually. After we
finish the training at episode 10000, our DQN algorithm
always achieves the maximum acceptance ratio.

Then, we run BSATL algorithm to see whether the over-
provisioning problem can be resolved. From Fig. 6, we can
see the transfer learning process during the loop of Algorithm
1. To maintain the maximum acceptance ratio, the minimum
number of online servers should be five. Compare to the initial
environment with 8 servers, we significantly improve the
cost-utility while maintaining the acceptance ratio. Regarding
the common characteristics, we can see that, all curves start
from a value greater than or equal to 40% and finally
converge within 1200 episodes, much faster than the rate
of convergence in the initial task. This is because in any
new environment, DQN-agent benefits from the knowledge
learned in the source task. Regarding the differences, we can
notice that, although the agent inherits knowledge from the
initial task for both the environment with 6 servers and that
with 4 servers, the curve of 6 servers starts from a higher
acceptance ratio and converges faster than that of 4 servers.
This is because the environment with 6 servers shares more
similarities with the initial environment. Another finding is
that the acceptance ratio for the environment with 5 servers
falls to 80% and then climbs to 100% very soon. The reason

— 4servers
—— B servers

100%

5 servers

90% —— 4.5 servers

80%
70%
60%

Acceptance ratio

50% o

40%

T T T T
1000 2000 3000 4000 5000 000 7000 8000
Episode

Fig. 6: The binary search assisted transfer learning process.

25 0.95

15

10

- uni 1l
. 1l

5
Number of rcquosts
M BSATL M Holu M Best-Fit

0.9

0.85
0.8
ol il
0.7

> Nunber of 1(‘quc‘sts
M BSATL M Holu M Best-Fit

Number of online servers

Average CPU utilization

(a) (b)

Fig. 7: Cost-utility comparison.

is that, the environment of this task is highly similar to that
of its source task, the environment with 6 servers.

Finally, we compare our BSATL algorithm with the Holu
and the Best-Fit in terms of cost-utility under different
network environments. From Fig. 7(a), we can see that our
BSATL and the Holu occupy the same number of servers
while the Best-Fit requires more, to accept all incoming
requests. The reason is that, the Best-Fit, which places VNFs
to the smallest free partition one by one but does not consider
the closeness between adjacent VNFs, needs more resources
to meet the delay requirement when adjacent VNFs are far
away from each other. Unlike the Best-Fit, the Holu takes
the closeness between node pairs into consideration when
placing VNFs and our BSATL optimizes the VNF placement
during the learning phase. From Fig. 7(b), we can see that
the average CPU utilization of our BSATL is lower than that
of the Holu. That is to say, our BSATL requires fewer CPU
resources to accept the same number of requests. The first
reason is that our BSATL flexibly reduces the VNFs size by
selecting templates from ‘flavors’ to enhance the cost-utility.
In contrast, the Holu fixes the capacity of VNFs, inevitably
falling into the over-provisioning mire. The second reason is
that the BSATL minimizes the cost from a global perspective,
while the Holu only minimizes the cost instantaneously rather
than farsightedly. In addition, the Best-Fit algorithm has the
highest average CPU utilization and thus consumes the most
resources for the aforementioned reason. In conclusion, our
BSATL outperforms the other two algorithms in terms of cost-
utility.

V. CONCLUSIONS

In this paper, we leveraged the DQN algorithm to max-
imize the acceptance ratio and ensure prior placement of
higher-priority services for latency-aware network slices. We
considered a multi-edge cloud scenario in which several
service requests with different priorities are fed into the
DQN-agent, and developed an intelligent policy to place
the VNFs. First, considering the objective, we defined our
new state, action, reward function for the DQN framework.
Using simulations, we showed that DQN-agent is able to
maximize the acceptance ratio and ensure prior placement
of higher-priority services for latency-aware services with
different latency requirements. Then, we proposed an algo-
rithm — BSATL, which achieves automated and closed-loop
optimization for a 6G EDuRLLC scenario, to resolve the over-
provisioning of resources. Numerical results showed that our
proposed scheme can improve cost-utility while maintaining
the acceptance ratio, as expected.

REFERENCES

[1] H. Tullberg et al., “The metis 5g system concept: Meeting the 5g
requirements,” IEEE Communications Magazine, vol. 54, no. 12, pp.
132-139, Dec. 2016.

[2] M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “The 5g-
enabled tactile internet: Applications, requirements, and architecture,”
in 2016 IEEE Wireless Communication and Networking Conference
Workshops (WCNCW), Doha, Qatar, Apr. 2016, pp. 1-6.

[3] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling tech-
nologies, and solutions,” IEEE Communications Surveys & Tutorials,
vol. 20, no. 3, pp. 2429-2453, third quarter 2018.

[4] Q. Ye, W. Zhuang, X. Li, and J. Rao, “End-to-end delay modeling for
embedded vnf chains in 5g core networks,” IEEE Internet of Things
Journal, vol. 6, no. 1, pp. 692-704, Feb. 2019.

[5] A. Baumgartner, V. S. Reddy, and T. Bauschert, “Combined virtual
mobile core network function placement and topology optimization
with latency bounds,” in 2015 Fourth European Workshop on Software
Defined Networks, Bilbao, Spain, Sep.-Oct. 2015, pp. 97-102.

[6] D. B. Oljira, K. Grinnemo, J. Taheri, and A. Brunstrom, “A model for
qos-aware vnf placement and provisioning,” in 2017 IEEE Conference
on Network Function Virtualization and Software Defined Networks
(NFV-SDN), Berlin, Germany, Nov. 2017, pp. 1-7.

[71 M. Mechtri, C. Ghribi, and D. Zeghlache, “A scalable algorithm for the
placement of service function chains,” IEEE Transactions on Network
and Service Management, vol. 13, no. 3, pp. 533-546, Sep. 2016.

[8] A. Varasteh, B. Madiwalar, A. V. Bemten, W. Kellerer, and C. Mas-
Machuca, “Holu: Power-aware and delay-constrained vnf placement
and chaining,” IEEE Transactions on Network and Service Manage-
ment, no. 2, pp. 1524-1539, Jun. 2021.

[9] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “A deep reinforce-
ment learning approach for vnf forwarding graph embedding,” IEEE
Transactions on Network and Service Management, vol. 16, no. 4, pp.
1318-1331, Dec. 2019.

[10] M. Bunyakitanon, X. Vasilakos, R. Nejabati, and D. Simeonidou, “End-
to-end performance-based autonomous vnf placement with adopted
reinforcement learning,” IEEE Transactions on Cognitive Communi-
cations and Networking, vol. 6, no. 2, pp. 534-547, Jun. 2020.

[11] A. Rkhami, Y. Hadjadj-Aoul, and A. Outtagarts, “Learn to improve:
A novel deep reinforcement learning approach for beyond 5g network
slicing,” in IEEE Consumer Communications & Networking Conference
(CCNC), Virtual, United States, Jan. 2021, pp. 1-6.

[12] Open Science Data Cloud dev document, “Vir-
tual machines (vms),” 2014. [Online]. Available:
https://www.opensciencedatacloud.org/support/instances.html

[13] J. SON, T. He, and R. Buyya, “CloudSimSDN-NFV: Modeling and
simulation of network function virtualization and service function
chaining in edge computing environments,” Software: Practice and
Experience, vol. 49, no. 12, pp. 1748-1764, Dec. 2019.

[14] F. Zhuang et al., “A comprehensive survey on transfer learning,”
Proceedings of the IEEE, vol. 109, no. 1, pp. 43-76, Jan. 2021.

	2021 IEEE
	AI-Enabled Automated and Closed-Loop Optimization Algorithms for Delay-Aware Network.pdf

