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Abstract 1 

This paper investigates soil fluidisation at the microscale using the Discrete Element Method 2 

(DEM) in combination with the Lattice Boltzmann Method (LBM). Numerical simulations 3 

were carried out at varying hydraulic gradients across the granular assembly of soil, and the 4 

development of localised hydraulic gradients, the contact force distribution, and the associated 5 

fabric changes were investigated. The novelty of this study includes microscale findings  which 6 

suggest that a critical hydromechanical state inducing fluid-like instability of a granular 7 

assembly can initiate when substantial increase in grain slipping associated with reduced 8 

interparticle contacts suddenly occur. Based on these results, a new micro-mechanically 9 

inspired criterion is proposed to characterise the transformation of granular soil from a stable 10 

solid phase to an hydromechanically unstable state. The constraint ratio (number of constraints  11 

in relation to the degrees of freedom) is introduced to portray the relative slip between particles 12 

and the loss of interparticle contacts within the granular fabric. Its magnitude of unity 13 

corresponds to the condition of zero effective stress, representing the critical hydromechanical 14 

state. In a practical sense, the results of this study reflect the phenomenon of subgrade mud 15 

pumping that occurs in railways upon the passage of heavy haul trains at certain axle loads and 16 

speeds. 17 

Keywords: Fluidisation, Discrete Element Method, Lattice Boltzmann Method, Constraint 18 

Ratio, Critical Hydraulic Gradient 19 

===================================================================20 
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1. Introduction 21 

A major problem leading to railroad instability that creates immense maintenance costs is 22 

related to the degradation of the soft subgrade and its potential for fluidisation or mud-pumping 23 

[1-5]. In this context, fluidisation is defined as when saturated soils are exposed to excessive 24 

hydraulic gradients and lose their intergranular contacts to transition into a fluid-like state. As 25 

a result, this slurry of fine particles migrates (pumps) into the overlying coarser ballast layer, 26 

hence the commonly used term mud-pumping, as investigated experimentally [2, 4, 6]. These 27 

laboratory tests enable a better understanding of the hydromechanical behaviour of the 28 

subgrade soils, but primarily at the macroscale. From a micromechanical perspective, i.e., at 29 

the grain level, slippage and/or breakage of the interparticle contacts and the resulting fabric 30 

evolution may initiate the transition from a hydromechanically stable to an unstable state that 31 

is still not fully understood. 32 

The Discrete Element Method (DEM) is a useful tool for assessing the micromechanics of 33 

a granular medium [7, 8] that has been effectively used to study the evolution of interparticle 34 

contacts and fabric during shear using the scalar and directional parameters [9, 10]. The 35 

coordination number (number of contacts per particle in the granular assembly) is a 36 

fundamental microscale fabric descriptor for characterising granular medium [10, 11]. 37 

Nonetheless, the state of interparticle contacts and fabric during fluid flow has rarely been 38 

considered. In addition, the constraint ratio, defined by the ratio of the number of constraints 39 

to the number of degrees of freedom within the particle system [12], can be used to represent 40 

the relative slip and loss of interparticle contacts during instability. However, none of past 41 

DEM studies have  defined any quantitative parameters to describe the rational mechanisms of 42 

soil fluidisation in contrast to more commomly observed undrained failures of saturated soils. 43 

The primary scope of this paper includes an attempt to describe and quantify the critical 44 

hydromechanical conditions corresponding to the fluidisation phenomenon with special 45 
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attention to granular soil at the microscale, adopting the concepts of the coordination number 46 

and the constraint ratio, as mentioned above. For the first time, a comprehensive assessment of 47 

different microscale aspects in relation to fluidisation is introduced in the current study, 48 

including an original micro-condition representing the inception of hydraulic failure of a 49 

saturated soft subgrade. Indeed, the DEM can be used in combination with Computational Fluid 50 

Dynamics (CFD) to study internal erosion and soil fluidisation in detail [13-16]. Neither of 51 

these studies could accurately quantify the critical hydromechanical conditions leading to 52 

potential fluidisation from a microscale perspective, so a more insightful microscale study of 53 

this instability process is needed. 54 

Given the above, this study uses a combined fully resolved LBM-DEM approach that is 55 

becoming increasingly popular to study fluid-particle interactions [17-19]. The advantages of 56 

the fully resolved approaches over unresolved approaches include (a) the ability to produce a 57 

much finer mesh size, i.e., finer than the particles that can simulate true experimental 58 

conditions, (b) a higher computational speed when run on parallel computers and, (c) the 59 

relative feasibility of implementation in complex geometries of porous media [20, 21]. In 60 

addition, the LBM is based on the kinetic theory of gases and represents a fluid through an 61 

assembly of particles that go through successive collision and propagation processes. This 62 

enables the calculation of the macroscopic fluid velocity and the pressure as a function of the 63 

momentum of these particles [21, 22]. 64 

The application of micromechanical modelling to a given volume of a porous medium will 65 

have inevitable size-effects when compared to real-life analysis. In the field, the seepage path 66 

lengths are large (e.g. several meters in dam sites, landslide areas etc.) compared to small-scale 67 

laboratory specimens, so one would expect the measured hydraulic gradients to be significantly 68 

smaller and generally less than unity [23]. In contrast to FEM and FDM analyses based on 69 

continuum mechanics for larger soil domains, the DEM analysis often becomes inefficient in 70 
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terms of computational time when a large soil volume is considered. As a result, for 71 

convergence of output to an acceptable accuracy, only a limited soil area can be usually 72 

analysed using DEM, hence the computed hydraulic gradients tend to be larger [24-26]. 73 

Lattice Boltzmann Method (LBM) combined with Discrete Element Method (DEM) 74 

The theoretical formulations of the LBM-DEM approach are described as follows:  75 

2.1 Fluid equations 76 

The governing Boltzmann equation is written as [27]: 77 

𝜕𝜕𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕

+ 𝑒𝑒𝛼𝛼𝑣𝑣  𝛻𝛻𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡) = 𝛺𝛺𝛼𝛼                         (𝛼𝛼 = 1,2, … … … . . ,𝑁𝑁 )                                          (1) 78 

where 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡) is the particle distribution function in the 𝛼𝛼 direction, 𝑒𝑒𝛼𝛼𝑣𝑣 is the microscopic fluid 79 

velocity and 𝛺𝛺𝛼𝛼  is the collision operator, and 𝑡𝑡 is the time. Equation (1) can be discretised on 80 

a regular lattice using a unique finite difference method, and the lattice-Boltzmann equation 81 

with the Bhatnagar-Gross-Krook (BGK) collision operator for a Newtonian fluid is written as 82 

[27, 28]: 83 

𝑓𝑓𝛼𝛼(𝑥𝑥 + 𝑒𝑒𝛼𝛼𝑣𝑣  ∆𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡)− 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡) = 𝛺𝛺𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵                                                                                       (2) 84 

where 𝛺𝛺𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵 is the BGK collision operator, and ∆𝑡𝑡 is the time-step. 85 

Each time step is divided into two sub-steps, i.e., the collision and streaming step, and the 86 

collision step is written as: 87 

𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡∗) =  𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡) + 𝛺𝛺𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵                                                                                                               (3) 88 

𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡∗) and 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡) are the particle distribution functions after and before the collision, 89 

respectively, and 𝑡𝑡∗ is the time after the collision. In the streaming step, the 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡∗) is 90 

propagated over the lattice grid as follows: 91 
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𝑓𝑓𝛼𝛼(𝑥𝑥 + 𝑒𝑒𝛼𝛼𝑣𝑣  ∆𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) = 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡∗)                                                                                                       (4) 92 

2.2 Fluid-particle interaction 93 

The participation of solid particles in the fluid is achieved by introducing an additional 94 

collision term (𝛺𝛺𝛼𝛼𝑠𝑠 ) in Equation (3) as suggested by Noble & Torczynski (1998) [29]: 95 

𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡∗) =  𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡) + [1 − 𝐵𝐵 ]𝛺𝛺𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐵𝐵𝐵𝐵𝛼𝛼𝑠𝑠                                                                               (5) 96 

𝐵𝐵 =  
𝜀𝜀𝑠𝑠�𝜏𝜏 ∆𝑡𝑡� − 1

2� �

(1 − 𝜀𝜀𝑠𝑠) + �𝜏𝜏 ∆𝑡𝑡� − 1
2� �

= (0,1)                                                                                             (6) 97 

where 𝜀𝜀𝑠𝑠 is the solid fraction in the fluid cell volume, 𝐵𝐵 is a weighting function for correcting 98 

the collision phase of the lattice-BGK equation due to the presence of solid particles, and 𝜏𝜏 is 99 

the relaxation time (Appendix 1). The method for calculating the solid fraction for the moving 100 

particles is described by [22]. 101 

The non-equilibrium part of the particle distribution function is bounced back and 𝛺𝛺𝛼𝛼𝑠𝑠 is 102 

computed using: 103 

𝛺𝛺𝛼𝛼𝑠𝑠 =  𝑓𝑓−𝛼𝛼(𝑥𝑥, 𝑡𝑡) − 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡) + 𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒�𝜌𝜌𝑓𝑓, 𝑣𝑣𝑝𝑝� − 𝑓𝑓−𝛼𝛼

𝑒𝑒𝑒𝑒�𝜌𝜌𝑓𝑓,𝑢𝑢�                                                         (7) 104 

where 𝑣𝑣𝑝𝑝 is the velocity of solid particle 𝑝𝑝 at time 𝑡𝑡 + ∆𝑡𝑡 at the node, 𝑢𝑢 is the macroscopic 105 

fluid velocity, and the notation 𝑓𝑓−𝛼𝛼  is the rebound state obtained by reversing all microscopic 106 

fluid velocities, i.e., 𝑒𝑒𝛼𝛼𝑣𝑣 to 𝑒𝑒−𝛼𝛼𝑣𝑣 . Further details on the fluid equations and the fluid-particle 107 

interaction are described in Appendix A. 108 

2.3 Validation 109 

Figure 1 shows the flowchart of the LBM-DEM approach described above. The DEM 110 

calculation cycles are within the LBM cycles. In order not to impair the accuracy of the 111 

simulation, a suitable interval for the information exchange between 2 phases was chosen [30]. 112 
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Although the coupled LBM-DEM approach was previously validated by Indraratna et al. 113 

(2021a) [18] with experimental observations of fluidisation, the transient motion of the 114 

particles in the fluid was not quantified. In this regard, this study attempts to validate the motion 115 

of a single particle falling into the fluid with different particle Reynold's numbers (Rep). This 116 

validation is carried out by comparing the numerical results with the experimental observations 117 

by Ten Cate et al. (2002) [31].  Figures 2(a) and 2(b) show the schematic sketch and the 118 

modelled problem using the LBM-DEM approach, respectively. Table 1 shows the fluid 119 

properties used with lattice resolution (N) = 5 (particle diameter corresponds to 5 fluid cells) 120 

and the relaxation time (𝜏𝜏) = 0.53. It is noteworthy that N = 5 was chosen after a preliminary 121 

sensitivity analysis in which the simulation was run with N = 5, 7 and 10. The results showed 122 

insignificant difference in the  numerical output when N > 5.  Figures 2(c) and 2(d) show an 123 

excellent agreement between the numerical and experimental results of the position and 124 

velocity of the falling particle over time at different Reynold's numbers. Hence, it could be 125 

justified with confidence that the LBM-DEM approach would reasonably predict the transient 126 

motion of the particles in the fluid with these selected numerical parameters. 127 

2. Simulating Soil Specimen Fluidisation 128 

3.1 Simulation approach 129 

Three-dimensional LBM-DEM simulations were carried out using the Hertz-Mindlin 130 

contact model (Appendix B) with the Young's modulus and the Poisson's ratio of the particles 131 

as 70 GPa and 0.3, respectively (Thornton, 2000). The particle density was set to 2650 kg/m3, 132 

and the rigid boundary walls were used. The gravitational deposition method was used for 133 

sample preparation [32], whereby the acceleration due to the force of gravity of the particles 134 

was set to 9.81 m/s2. The particles were initially created in a larger volume with no overlap and 135 

then dropped under gravity. The particles were allowed to settle until equilibrium was reached, 136 

thereby ensuring that the coordination number remained constant for a sufficient number of 137 
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numerical cycles. The sample was prepared in a dense state by setting the coefficient of friction 138 

(µs) to 0 [32, 33]. Subsequently, µs was changed to 0.30, and the particles were re-equilibrated 139 

with a sufficient number of numerical cycles before the particles became saturated with the 140 

fluid. The µs value used in this study is in the range of real quartz particle values that can be 141 

determined experimentally with a micromechanical interparticle loading apparatus [34]. It is 142 

assumed that the particle-wall contact parameters correspond to the particle-particle contact 143 

parameters [35, 36]. 144 

The fluid density was set to 1000 kg/m3 with a kinematic viscosity of 1 x 10-6 m2/s according 145 

to pure water properties at 20 oC and 1 atmosphere (101 kPa). The resolution of the fluid lattice 146 

was chosen with at least 5 lattices in each particle, i.e., the smallest particle diameter 147 

corresponds to at least 5 fluid cells with regard to the validation of the single-particle displaced 148 

downwards into the fluid described previously. A relaxation parameter close to but greater than 149 

0.50 was chosen, and the Mach number was kept below 0.1, inspired by the need for improved 150 

accuracy, as explained elsewhere by Han et al. (2007) [20]. The fluid flow was initiated with 151 

the relevant inlet and outlet pressure boundary conditions, and no-slip conditions were imposed 152 

on the boundaries perpendicular to the flow. For each hydraulic gradient applied, the flow was 153 

continued over a sufficient period of time until a steady-state condition was attained. 154 

3.2 Particle size distribution and homogeneity of the sample 155 

Figure 3(a) shows the particle size distribution of the selected sample from an experimental 156 

study carried out earlier by Indraratna et al. (2015) [24]. Figure 3(b) shows the three-157 

dimensional DEM-based sample with 17607 particles, and the direction of fluid flow is also 158 

shown, i.e., the z-direction. Figure 3(c) shows the division of the sample into 10 different inner 159 

layers. The ratio of the lateral dimension of the simulation domain to the maximum particle 160 

diameter was kept greater than 12 in order to obtain a representative elementary volume (REV) 161 
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and avoid the boundary effects. A local decrease in the void ratio occurs near the rigid 162 

boundaries [8]; hence, the bottom boundary layer (besides the rigid bottom boundary) was 163 

neglected in order to nullify the boundary effects [37]. The thickness of each layer was chosen 164 

to be more than twice the maximum particle diameter to define a REV [37]. The stresses at the 165 

boundaries do not reflect the actual material response; therefore, the interaction of the particles 166 

in each layer with the lateral boundaries was not taken into account. 167 

Figure 3(c) shows the similar initial void ratios of all layers, indicating the REV in each 168 

layer, and the initial homogeneity of the sample was further confirmed by considering the 169 

variances in the void ratios as reported by Jiang et al. (2003) [38]: 170 

𝑆𝑆2 =  
1

𝑛𝑛𝐿𝐿 − 1
 �(𝑒𝑒𝑜𝑜𝑜𝑜𝑘𝑘 − 𝑒𝑒𝑜𝑜𝑜𝑜

𝑎𝑎𝑎𝑎𝑎𝑎)2
𝑛𝑛𝐿𝐿

𝑘𝑘=1

                                                                                                          (8) 171 

where 𝑆𝑆 is the variance of the void ratios, 𝑛𝑛𝐿𝐿 is the total number of layers, 𝑒𝑒𝑜𝑜𝑜𝑜𝑘𝑘  is the initial void 172 

ratio of the kth layer, and 𝑒𝑒𝑜𝑜𝑜𝑜
𝑎𝑎𝑎𝑎𝑎𝑎 is the initial void ratio of the entire sample. The 𝑆𝑆2 value for the 173 

sample in Fig. 3(c) is 2.72 x 10-5, which is sufficiently low to classify the sample as 174 

homogenous with respect to the REV in each layer. The overall void ratio of the numerical 175 

sample is the same as that of the experimental sample. Note that the void ratio does not take 176 

into account the particulate structure of the granular medium. Figure 3(d) shows a close-up 177 

view of the particles modelled in the fluid mesh. It can be seen that the mesh size is much 178 

smaller than the particle and pore size, in contrast to the conventional unresolved approach 179 

with the Navier-Stokes equation. 180 

3.3 Calibration 181 

Figure 4 shows the calibration of the numerical model of soil fluidisation by comparing the 182 

flow curves obtained from the LBM-DEM approach and those of an earlier experimental study 183 
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(Indraratna et al., 2015) [24]. The flow curves obtained from the LBM-DEM approach and the 184 

experimental study agree with each other. The overall hydraulic gradient (io) is derived from 185 

the pressure difference between the top and bottom of the specimen, i.e., 𝑖𝑖𝑜𝑜 = ∆𝑃𝑃 𝛾𝛾𝑤𝑤𝐿𝐿⁄ , where 186 

𝛾𝛾𝑤𝑤 is the unit weight of water. The overall critical hydraulic gradient (io,cr) predicted by the 187 

LBM-DEM approach was 1.050 and the experimental value was 1.180. These values are in 188 

acceptable agreement with one another. 189 

It is important to note that the values of io,cr predicted by the current LBM-DEM approach 190 

and the previous authors’ experimental studies [24] are larger than the theoretical values based 191 

on the upward flow heave phenomenon (i.e., zero effective stresss) described by Tezaghi [39]. 192 

This is because such classical therories ignore interparticle friction within the microscale soil 193 

fabric, and also assumefrictionless boundaries in the analysis. In contrast,  the current DEM 194 

simulation considered a friction coefficient of 0.3 for the wall-particle interaction as well as 195 

interparticle contacts, resulting in an increase of the critical hydraulic gradients in the 196 

micromechanical fluid-particle coupled approach. The current computational results for 197 

hydraulic gradients are in agreement with several past micromechanical and experimental 198 

studies [25, 26, 36]. 199 

3. Results and Discussion 200 

4.1 Stress-hydraulic gradient evolution  201 

Figure 5 shows the stress-hydraulic gradient space where the local hydraulic gradients (ihyd) 202 

are plotted against the normalised Cauchy effective stresses (𝜎𝜎𝑧𝑧𝑧𝑧′ /𝜎𝜎𝑧𝑧𝑧𝑧𝑧𝑧′ ) of particles in a given 203 

layer in the fluid flow direction at any time. Here,  𝜎𝜎𝑧𝑧𝑧𝑧′  is the Cauchy effective stresses of the 204 

particles in a layer at any time, and 𝜎𝜎𝑧𝑧𝑧𝑧𝑧𝑧′  is the initial Cauchy effective stresses of the particles 205 

in that particular layer. The local hydraulic gradients are computed based on the pressure 206 

difference across each layer, i.e., 𝑖𝑖ℎ𝑦𝑦𝑦𝑦 = ∆𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝛾𝛾𝑤𝑤𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙⁄ , where ∆𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the pressure drop 207 
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across the layer and 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the thickness of each layer. The 𝜎𝜎𝑧𝑧𝑧𝑧′  is obtained using the particle-208 

based stresses via the following second-order stress tensor equation [40]. 209 

𝜎𝜎𝑖𝑖𝑖𝑖′ =
1
𝑉𝑉

 �𝜎𝜎𝑖𝑖𝑖𝑖
𝑝𝑝′𝑉𝑉𝑝𝑝

𝑁𝑁𝑝𝑝

𝑝𝑝=1

                                                                                                                              (10) 210 

where 𝑉𝑉 is the volume of the layer or the selected region, 𝑉𝑉𝑝𝑝 is the volume of particle 𝑝𝑝 in the 211 

region, 𝑁𝑁𝑝𝑝 is the number of particles in the layer, and 𝜎𝜎𝑖𝑖𝑖𝑖
𝑝𝑝′ is the average stress tensor within a 212 

particle 𝑝𝑝 and is given by: 213 

𝜎𝜎𝑖𝑖𝑖𝑖
𝑝𝑝′ =

1
𝑉𝑉𝑝𝑝

 ��𝑥𝑥𝑖𝑖𝑐𝑐 − 𝑥𝑥𝑖𝑖
𝑝𝑝�

𝑁𝑁𝑐𝑐
𝑝𝑝

𝑐𝑐=1

𝑛𝑛𝑖𝑖
𝑐𝑐,𝑝𝑝𝑓𝑓𝑗𝑗𝑐𝑐                                                                                                          (11) 214 

where 𝑓𝑓𝑗𝑗𝑐𝑐 is the force vector in the jth direction at contact c with the location 𝑥𝑥𝑖𝑖𝑐𝑐, 𝑥𝑥𝑖𝑖
𝑝𝑝 is the 215 

location of the particle's centroid, 𝑛𝑛𝑖𝑖
𝑐𝑐,𝑝𝑝 is the unit normal vector from the particle's centroid to 216 

the contact location and 𝑁𝑁𝑐𝑐
𝑝𝑝 is the number of contacts on the particle p. Note that Equations 217 

(10) and (11) compute the effective stresses directly from the contact moments and not 218 

according to the Terzaghi's concept used in the macroscale laboratory studies. Reynold's 219 

stresses are negligible up to the beginning of fluidisation and are not taken into account. 220 

The onset of fluidisation of the soil is associated with hydraulic and stress conditions, i.e., 221 

the hydromechanical conditions. The effective stresses decrease with increasing local hydraulic 222 

gradients in each layer. The onset occurs at a critical hydraulic gradient when the effective 223 

stresses drop to zero. The evolution of the stress-gradient of each layer is not the same. The 224 

stress-gradient paths of Layers 1-6 are approximately linear with a slope of -1. In contrast to 225 

the theoretical linear stress-gradient paths presented by Li and Fannin (2012) [41], the stress-226 

gradient paths of Layers 7-10 (lower layers) are nonlinear until failure. The failure initiates 227 

when the effective stress of Layer 10 approaches zero. At the same time, Layers 1-9 show 228 
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residual stresses due to the motion of the particles in the form of clusters. These residual 229 

stresses decrease as the particles in the cluster would lose further contacts over time after onset 230 

until complete fluidisation occurs. 231 

4.2 Broken contacts 232 

Figure 6 shows the development of the broken contacts (BR) compared to the normalised 233 

effective stresses (𝜎𝜎𝑧𝑧𝑧𝑧′ /𝜎𝜎𝑧𝑧𝑧𝑧𝑧𝑧′ ). BR is the percentage of interparticle contact losses in the initial 234 

number of contacts in the corresponding layer. The value of BR increases with increasing 235 

hydraulic gradient and decreasing effective stresses. Contact is lost when the normal contact 236 

force due to hydrodynamic forces becomes zero. When the fluid flows, the contacts break off, 237 

and new contacts are also formed in the layer. The sharp drop in BR represents the critical 238 

hydromechanical state where the contacts are notably lost. The granular assembly would 239 

become a fully fluid-like material when the number of unconnected particles increases to the 240 

maximum due to the breakage of the contacts. In other words, most of the particles would 241 

simply float without any contact. It can also be seen that the contact losses in the lower layers 242 

are greater than in the upper layers, which shows that more particles lose contact at the bottom 243 

and migrate upwards with the fluid flow if the constrictions are wide enough. The value of BR 244 

at the critical hydraulic gradient is about 5% in Layer 1 and 17% in Layer 10,  and it increases 245 

considerably with a further slight increase in the hydraulic gradient applied across the soil 246 

specimen.  247 

4.3 Mechanically stable particles 248 

Figure 7 shows the evolution of the fraction of mechanically stable particles (Ms) with 249 

normalised effective stresses (𝜎𝜎𝑧𝑧𝑧𝑧′ /𝜎𝜎𝑧𝑧𝑧𝑧𝑧𝑧′ ) under increasing hydraulic gradients. The 250 

mechanically stable particles are those that participate in the stable network of force 251 

transmission. The value of Ms is defined by [42]: 252 
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𝑀𝑀𝑠𝑠 =
𝑁𝑁𝑝𝑝≥4

𝑁𝑁𝑝𝑝
                                                                                                                                              (12) 253 

where 𝑁𝑁𝑝𝑝≥4 is the number of particles with at least 4 or more contacts. Particles with zero 254 

contacts that do not participate in the stable network of force transmission are called rattlers or 255 

unconnected particles; hence, they are excluded. The particles with 1, 2, and 3 contacts are 256 

temporarily stable for a limited time, so they are also neglected in the above equation. 257 

It should be noted that the values of Ms are always smaller than 1 across all layers since the 258 

temporarily stable particles are also present at the hydrostatic state. The initial values of Ms are 259 

higher in the lower layers than in the upper layers. The values of Ms decrease across all layers 260 

with a reduction in the magnitude of effective stresses. This reduction becomes significant at 261 

the critical hydraulic and stress conditions that indicate the breakup of the clusters of 262 

mechanically stable particles. The results show that a critical value of Ms ≈ 0.75 is found for 263 

all layers, below which the fluid-like behaviour of the soil is observed. 264 

4.4 Evolution of the soil fabric 265 

Figure 8 shows a conceptual model that describes the differences in the fabrics of two-266 

particle systems where particles with two different geometrical arrangements are placed, where 267 

the void ratios of both arrangements are the same. However, the number of interparticle 268 

contacts is different due to the dissimilarity of the fabrics of the particulate systems. It is 269 

noteworthy that the geometric arrangement of the particles is more important than the void 270 

ratio when it comes to the strength of the granular assembly [12]. Similar initial void ratios of 271 

all layers indicate that the number of particles in each layer is the same. However, the number 272 

of interparticle contacts may vary due to the different geometrical configurations of the 273 

particles. During fluid flow, the number of particles in each layer remains unchanged until 274 
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fluidisation begins, while the geometrical rearrangement of the particles can occur, mainly 275 

attributed to the interparticle contacts within the layer slip and/or break. 276 

To assess the evolution of soil fabric under fluid flow, this study uses a scalar approach [11] 277 

to quantify the fabric with a scalar fabric descriptor called the coordination number (Z) and is 278 

computed as follows [10].  279 

𝑍𝑍 =
2𝑁𝑁𝑐𝑐
𝑁𝑁𝑝𝑝

                                                                                                                                                 (13) 280 

where 𝑁𝑁𝑐𝑐 is the number of contacts and is multiplied by 2 since each contact is shared by two 281 

different particles.  282 

Figure 9 shows the distribution of the Z at the hydrostatic state and the onset of soil 283 

fluidisation, taking into account three distinct cases: 284 

(a) all particles, 285 

(b) particles with diameters (dp) ≥ d50 (where d50 is the particle size that is 50% finer by mass), 286 

and 287 

(c) particles with dp ≥ d85 (where d85 is the particle size that is 85% finer by mass) 288 

  Figure 9(a) shows that the distribution of the coordination numbers at the hydrostatic state 289 

across different layers is somewhat dissimilar when all particles are considered. This difference 290 

is enhanced when larger particle sizes are taken into consideration (Figures 9(c) & 9(e)), which 291 

is reflected by a dissimilarity in the fabric of all layers despite similar void ratios. This fabric 292 

dissimilarity is ascribed to the influence of gravity during the sample preparation phase. The 293 

curves of the lower layers are on the right-hand side and show higher values of the coordination 294 

numbers than those of the upper layers. The slight difference in the evolution of local hydraulic 295 

gradients and effective stresses through each layer, as previously described, is due to this slight 296 

dissimilarity of the particles' fabric in the layers. It is appealing to note that at the onset of 297 
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fluidisation, the distributions of the coordination numbers of all layers converge and become 298 

similar (Figures 9(b), 9(d), & 9(f)). The median value of the coordination number (Z50) is 4 299 

when all particles in the granular medium of the layer are taken into account (Figure 9(b)). 300 

Thus, at the onset of fluidisation, the distributions of the interparticle contacts are uniform and 301 

show a similar fabric for all soil layers. 302 

Figure 10 shows average coordination numbers (Zavg) versus normalised effective stresses 303 

(𝜎𝜎𝑧𝑧𝑧𝑧′ /𝜎𝜎𝑧𝑧𝑧𝑧𝑧𝑧′ ), where the initial (at the hydrostatic state) average coordination of Layer 10 is the 304 

highest (i.e., Zavg = 5.405), while Layer 1 has the lowest (i.e., Zavg = 4.811). As the normalised 305 

effective stresses decrease, the values of Zavg decrease across all layers, and so does the 306 

difference between them. Although each layer initially had a different fabric, the Zavg of all 307 

layers has evolved to become the same, i.e., 4.6 at critical hydromechanical state. 308 

4.5 Slipping index 309 

Figure 11 shows the distribution of the slipping index (𝑆𝑆𝑖𝑖) of the selected Layer 10. Here, 310 

all layers show an almost similar development in the slipping index as the local hydraulic 311 

gradient increases. The slipping index (𝑆𝑆𝑖𝑖) is defined by [42]: 312 

𝑆𝑆𝑖𝑖 =
𝑓𝑓𝑇𝑇

µ𝑠𝑠𝑓𝑓𝑁𝑁
                                                                                                                                              (14) 313 

Slipping or the plastic contacts occur when the tangential contact force (𝑓𝑓𝑇𝑇) has fully mobilised 314 

the friction, i.e., 𝑆𝑆𝑖𝑖 = 1. The contacts with 𝑆𝑆𝑖𝑖 < 1 are the elastic contacts and 𝑓𝑓𝑇𝑇 is independent 315 

of 𝑓𝑓𝑁𝑁 in such contacts. Note that contacts that have already been lost are not taken into account 316 

when calculating 𝑆𝑆𝑖𝑖. 317 

The results show that a small proportion of the contacts slip even at the hydrostatic state, as 318 

the static buoyancy forces act on the particles when they are saturated with the fluid. As the 319 



16 
 

local hydraulic gradients increase, the elastic contacts decrease, and the slipping contacts 320 

increase. The hydrodynamic forces from the seepage flow tend to move the particles, causing 321 

a change in the magnitudes of the resisting tangential contact force and the normal contact 322 

force. As a result, a slip is caused when the elastic tangential contact force reaches the Coulomb 323 

cut-off, i.e., 𝑓𝑓𝑇𝑇 = µ𝑠𝑠𝑓𝑓𝑁𝑁 and this slipping of the particles occurs in the weak contacts (𝑓𝑓𝑁𝑁 <324 

𝑓𝑓𝑜𝑜
𝑁𝑁,𝑎𝑎𝑎𝑎𝑎𝑎).  At ihyd ≤ 1, the proportion of slipping contacts in the total number of contacts in the 325 

layer is ≤ 10%, while it is around 17% at the critical ihyd =1.251 as shown in Figure 11(g). 326 

Thereafter, this proportion of slipping contacts increases steeply with a further, albeit slight, 327 

increase in the hydraulic gradient. It is noteworthy that the maximum tangential force is 328 

controlled by the value of µ𝑠𝑠. Therefore, the value of µ𝑠𝑠 has a profound influence on the 329 

proportion of slipping contacts and consequently on the macroscale behaviour of the granular 330 

assembly. 331 

4.6 Constraint ratio 332 

Figure 12 shows a three-dimensional representation of the constraint ratio (R) versus local 333 

hydraulic gradients (ihyd) and normalised effective stresses (𝜎𝜎𝑧𝑧𝑧𝑧′ /𝜎𝜎𝑧𝑧𝑧𝑧𝑧𝑧′ ). The constraint ratio for 334 

a three-dimensional particle system that only takes the sliding resistance into account is given 335 

by (Cundall & Strack, 1983): 336 

𝑅𝑅 =
𝑁𝑁𝑐𝑐𝑐𝑐
𝑁𝑁𝑑𝑑

=  
𝑁𝑁𝑐𝑐(3 − 2𝑆𝑆𝑐𝑐)

6𝑁𝑁𝑝𝑝
                                                                                                                   (15) 337 

where 𝑁𝑁𝑐𝑐𝑐𝑐 is the number of constraints, 𝑁𝑁𝑑𝑑 is the number of degrees of freedom, and 𝑆𝑆𝑐𝑐 is the 338 

fraction of slipping contacts in the total number of contacts at a given point in time. For an 339 

idealised granular medium with µ𝑠𝑠 = ∞, 𝑁𝑁𝑐𝑐𝑐𝑐 = 3𝑁𝑁𝑐𝑐 and 𝑁𝑁𝑑𝑑 =  6𝑁𝑁𝑝𝑝. The realistic granular 340 

medium, however, would have a finite value of µ𝑠𝑠; therefore, the two tangential force 341 

constraints on contacts subject to slipping vanish and are excluded from the total number of 342 
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constraints given in equation (15). Theoretically, if 𝑁𝑁𝑐𝑐𝑐𝑐 > 𝑁𝑁𝑑𝑑, the granular assembly is 343 

considered to be over-constrained or mechanically stable, and if 𝑁𝑁𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑑𝑑, it is considered to 344 

be in a critical or transitional state; otherwise, it is unstable. Note that R represents both slipping 345 

and loss of contacts in the particle systems, whereas the coordination number does not take into 346 

account the slipping of particles [10]. 347 

The constraint ratio in each layer decreases according to the nonlinear power laws when the 348 

normalised effective stresses decrease, and it decays exponentially after the onset of the soil 349 

fluidisation (Fig. 12). The initial mild slope shows that at the relatively low ihyd values, i.e., ihyd 350 

< 1, the particles slip less and have minimal loss of contacts. The abrupt change in slope after 351 

onset is triggered by substantial slipping and the associated rapid loss of interparticle contacts. 352 

The point at which the slope value changes represents the critical microscale hydromechanical 353 

state or the onset of soil fluidisation. This point is marked as a transition from a 354 

hydromechanically stable to a fluid-like state, as shown in Fig. 12(b). This critical 355 

hydromechanical state corresponds to R ≈ 1, with effective stresses ≈ 0 at the critical hydraulic 356 

gradient. In this respect, the soil is hydromechanically stable when R is greater than 1, while it 357 

is in a transition state from a hydromechanically stable to a fluid-like state when R is 1; 358 

otherwise, it corresponds to a slurry or fluid-like state. Complete fluidisation of the soil 359 

specimen occurs when almost all interparticle contacts are lost, which is represented by a 360 

constraint ratio that is significantly below 1. 361 

4. Conclusions 362 

This study assessed the hydromechanical state of soil fluidisation from a micromechanical 363 

perspective using the LBM-DEM approach. The good agreement between the model 364 

predictions and the experimental observations in relation to particle motion, fluid flow curves, 365 

and the critical hydraulic gradients confirms the capability and reliability of this hybrid 366 
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numerical method. Based on the findings of this study, the following salient outcomes can be 367 

drawn: 368 

• At comparatively low values of the local hydraulic gradient (ihyd), i.e., ihyd ≤ 1, the 369 

proportion of slipping contacts in the total number of contacts of the selected Layer 10 370 

(bottom of the specimen) was ≤ 10%, while it was approximately 17% at the critical ihyd 371 

=1.251. The extent of slipping contacts increased with a further increase in the hydraulic 372 

gradient applied across the soil specimen. 373 

• The fraction of mechanically stable particles was generally larger at the deeper layers, but  374 

decreased with the reduction in normalised effective stress during the corresponding 375 

increase in hydraulic gradient. The fluid-like state of soil was triggered when this fraction 376 

of mechanically stable particles dropped  below 0.75. 377 

• The hydrodynamic forces induced by the seepage flow  inevitably destable and move the 378 

particles within the granular assembly, also resulting in decreased contact forces, thus 379 

creating  critical conditions to facilitate particle slipping. The loss of interparticle contacts 380 

was not uniform across the depth of the soil specimen, as this was more pronounced in the 381 

deeper  layers when subjected to an upward flow from the base of specimen. 382 

• At the critical hydraulic gradient, the percentage of interparticle contact losses relative to 383 

the initial number of contacts was non-uniform and varied between 5 and 17% across the 384 

specimen depth. Thereafter, even with a slight increase in the hydraulic gradients, the 385 

breakage of the interparticle contacts appeared to exacerbate. 386 

• At the onset of fluidisation, the distributions of the coordination numbers across all layers 387 

of the soil specimen became more uniform, with a median value of 4 and an average value 388 

of 4.6, thus representing a more uniform granular fabric across the soil layers. 389 

• The novel use of the constraint ratio to portray soil instability proved that the granular 390 

assembly was hydromechanically stable when the constraint ratio > 1 and unstable (fluid-391 
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like) when the constraint ratio < 1, thereby establishing the microscale hydromechanical 392 

critical state at the constraint ratio of unity.  393 
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Appendix A. LBM-DEM Approach 401 

The 𝛺𝛺𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵, through which the momentum transfer occurs between the fluid particles when 402 

they collide, is given by (Bhatnagar et al., 1954): 403 

𝛺𝛺𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵 = −
∆𝑡𝑡
𝜏𝜏
�𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡) − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡)�                                                                                            (A. 1) 404 

where 𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡) is the equilibrium distribution function, 𝜏𝜏 is the relaxation time, and is related 405 

to the kinematic viscosity (𝜈𝜈𝑓𝑓) of the fluid, the lattice spacing (∆𝑥𝑥), and the time step (∆𝑡𝑡) by 406 

the following relationship: 407 

𝜈𝜈𝑓𝑓 =
1
3
�𝜏𝜏 −

1
2
�
∆𝑥𝑥2

∆𝑡𝑡
                                                                                                                           (A. 2) 408 

Eq. (A.2) implies that the 𝜏𝜏 value should be greater than 0.5. For a given value of 𝜈𝜈𝑓𝑓  and 𝜏𝜏, the 409 

∆𝑡𝑡 is defined according to the chosen ∆𝑥𝑥 by: 410 

∆𝑡𝑡 =
1

3𝜈𝜈𝑓𝑓
�𝜏𝜏 −

1
2
� ∆𝑥𝑥2                                                                                                                      (A. 3) 411 

The 𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡) for the BGK model is given by (Bhatnagar et al., 1954): 412 

𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡) = 𝜔𝜔𝛼𝛼𝜌𝜌𝑓𝑓  �1 +

3
𝑐𝑐𝐿𝐿2

𝑒𝑒𝛼𝛼𝑣𝑣  𝑢𝑢 +
9

2𝑐𝑐𝐿𝐿4
(𝑒𝑒𝛼𝛼𝑣𝑣  𝑢𝑢)2 −

3
2𝑐𝑐𝐿𝐿2

𝑢𝑢2�                                                (A. 4) 413 

where, 𝜔𝜔𝛼𝛼 is the weighting factor for the velocity vectors, 𝜌𝜌𝑓𝑓 is the fluid density, 𝑒𝑒𝛼𝛼𝑣𝑣 is the 414 

microscopic fluid velocity, 𝑢𝑢 is the macroscopic fluid velocity, and 𝑐𝑐𝐿𝐿 is the lattice speed given 415 

by:  416 

𝑐𝑐𝐿𝐿 =  
∆𝑥𝑥
∆𝑡𝑡

                                                                                                                                               (A. 5) 417 
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In lattice Boltzmann computations, 𝑐𝑐𝐿𝐿 = ∆𝑥𝑥 = ∆𝑡𝑡 = 1, and the discretisation schemes in LBM 418 

are labelled as DdQq, where d is the number of dimensions, and q represents the number of 419 

velocity vectors. This study used the D3Q19, a three-dimensional scheme with 19 velocity 420 

vectors, including one at rest. Figure A.1 shows the directions of the velocity vectors (𝑒𝑒𝛼𝛼𝑣𝑣) for 421 

the D3Q19 scheme and, for the sake of simplicity, their magnitudes are already defined by: 422 

𝑒𝑒𝛼𝛼𝑣𝑣 = �
(0,0,0)                                                𝑖𝑖 = 0 

(±𝑐𝑐𝐿𝐿, 0,0), (0, ±𝑐𝑐𝐿𝐿, 0), (0,0, ±𝑐𝑐𝐿𝐿)                 𝑖𝑖 = 1,2,3,4,5,6
   (±𝑐𝑐𝐿𝐿, ±𝑐𝑐𝐿𝐿, 0), (±𝑐𝑐𝐿𝐿, 0, ±𝑐𝑐𝐿𝐿), (0, ±𝑐𝑐𝐿𝐿, ±𝑐𝑐𝐿𝐿)            𝑖𝑖 = 7,8,9,10,11, … ,18

              (A. 6) 423 

and the weighing factors are 𝜔𝜔0 = 1/3, 𝜔𝜔1,2,3,4,5,6 = 1/18 and 𝜔𝜔7,8,…,18 = 1/36. 424 

The macroscopic fluid properties, i.e., fluid density (𝜌𝜌𝑓𝑓) and velocity (𝑢𝑢) can be retrieved at 425 

each node and given by (Han & Cundall, 2017; Seil et al., 2018): 426 

𝜌𝜌𝑓𝑓 (𝑥𝑥, 𝑡𝑡) =  �𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡)
𝑞𝑞−1

𝛼𝛼=0

                                                                                                                   (A. 7) 427 

𝑢𝑢 (𝑥𝑥, 𝑡𝑡) =
1
𝜌𝜌𝑓𝑓

 �𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡)𝑒𝑒𝛼𝛼𝑣𝑣
𝑞𝑞−1

𝛼𝛼=0

                                                                                                           (A. 8) 428 

To determine the fluid pressure 𝑝𝑝𝑓𝑓, it is assumed that the fluid is slightly compressible, and the 429 

following state equation is used: 430 

𝑝𝑝𝑓𝑓 = 𝑐𝑐𝑠𝑠2𝜌𝜌𝑓𝑓                                                                                                                                            (A. 9) 431 

where 𝑐𝑐𝑠𝑠 is the sound celerity and is defined by: 432 

𝑐𝑐𝑠𝑠 =
𝑐𝑐𝐿𝐿
√3

                                                                                                                                             (A. 10) 433 
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Fluid modelled with LBM requires a slight variation in spatial density. An approximate 434 

incompressibility situation can only be achieved under the condition that the Mach number (𝑀𝑀) 435 

is small; is therefore kept below 0.1 (Han et al., 2007), and is defined by: 436 

𝑀𝑀 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐𝐿𝐿

                                                                                                                                         (A. 11) 437 

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum velocity in the fluid flow in physical units. Fluids with lower viscosity 438 

and turbulent flows can also be simulated with LBM using the Smagorinsky Large Eddy 439 

Simulation approach (Han et al., 2007; Seil et al., 2018). 440 

For the fluid-particle interaction, the force (𝑓𝑓𝑓𝑓) (without the static buoyancy force) and the 441 

torque (𝑇𝑇𝑓𝑓) acting on a particle through the fluid can then be computed by (Noble & Torczynski, 442 

1998; Seil et al., 2018): 443 

𝑓𝑓𝑓𝑓 =
∆𝑥𝑥3

∆𝑡𝑡
��𝐵𝐵𝑛𝑛
𝑛𝑛

�𝛺𝛺𝛼𝛼𝑠𝑠 𝑒𝑒𝛼𝛼𝑣𝑣
𝛼𝛼

�                                                                                                        (A. 12) 444 

𝑇𝑇𝑓𝑓 =
∆𝑥𝑥3

∆𝑡𝑡
��𝐵𝐵𝑛𝑛  (
𝑛𝑛

𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑝𝑝)�𝛺𝛺𝛼𝛼𝑠𝑠 𝑒𝑒𝛼𝛼𝑣𝑣
𝛼𝛼

�                                                                                  (A. 13) 445 

𝐵𝐵𝑛𝑛 is the weighting function in the cell, 𝑥𝑥𝑛𝑛 is the coordinate of the lattice cell, and 𝑥𝑥𝑝𝑝 is the 446 

centre of mass of the particle. Eq. (A.12) does not include the static buoyancy forces; therefore, 447 

they are applied separately to the particles and the total hydrodynamic force (𝑓𝑓ℎ𝑦𝑦𝑦𝑦) on the 448 

particle, including the static buoyancy force (𝑓𝑓𝑏𝑏𝑏𝑏) is given by: 449 

𝑓𝑓ℎ𝑦𝑦𝑦𝑦 = 𝑓𝑓𝑓𝑓 + 𝑓𝑓𝑏𝑏𝑏𝑏                                                                                                                                (A. 14) 450 

The governing equations of motion of solid particles given by Cundall & Strack (1979), 451 

with the additional fluid-particle interaction force and the torque, are as follows: 452 
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𝑚𝑚𝑝𝑝𝑑𝑑𝑣𝑣
𝑝𝑝

𝑑𝑑𝑑𝑑
= 𝑓𝑓𝑔𝑔

𝑝𝑝 + 𝑓𝑓ℎ𝑦𝑦𝑦𝑦
𝑝𝑝 + �𝑓𝑓𝑗𝑗𝑐𝑐

𝑁𝑁𝑐𝑐
𝑝𝑝

𝑐𝑐=1

                                                                                                    (A. 15) 453 

𝐼𝐼𝑝𝑝
𝑑𝑑𝑤𝑤𝑝𝑝

𝑑𝑑𝑑𝑑
= 𝑇𝑇𝑓𝑓

𝑝𝑝 + �𝑇𝑇𝑗𝑗𝑐𝑐
𝑁𝑁𝑐𝑐
𝑝𝑝

𝑐𝑐=1

                                                                                                                   (A. 16) 454 

where 𝑚𝑚𝑝𝑝 and 𝐼𝐼𝑝𝑝 are the mass and the moment of inertia of the particle 𝑝𝑝, 𝑣𝑣𝑝𝑝 and 𝑤𝑤𝑝𝑝 are the 455 

translational and angular velocities of the particle 𝑝𝑝, 𝑁𝑁𝑐𝑐
𝑝𝑝 is the total number of contacts on the 456 

particle p, 𝑓𝑓𝑗𝑗𝑐𝑐 is the contact force vector in the jth direction at contact c on the particle p, 𝑇𝑇𝑗𝑗𝑐𝑐 is 457 

the torque that acts on the particle p due to the tangential contact force at contact c, and 𝑓𝑓𝑔𝑔
𝑝𝑝 is 458 

the gravitational force on the particle p. 459 

Appendix B. Hertz-Mindlin Contact Model 460 

Figure B.1 shows the rheological scheme and schematic sketch of the Hertz-Mindlin contact 461 

model used in this study to simulate the fluidisation of the soil. The normal contact force (𝑓𝑓𝑁𝑁) 462 

is based on Hertzian contact theory and the tangential contact force (𝑓𝑓𝑇𝑇) is based on the work 463 

of Mindlin & Deresiewicz (1989). The 𝑓𝑓𝑁𝑁  and 𝑓𝑓𝑇𝑇 have the nonlinear spring and damping 464 

components. The normal and tangential damping coefficients (cn and ct) are related to the 465 

restitution coefficient as reported by Tsuji et al. (1992). The tangential frictional force follows 466 

Coulomb's friction law (e.g., Cundall & Strack, 1979). 467 

𝑓𝑓𝑁𝑁 = 𝑘𝑘𝑛𝑛𝛿𝛿𝑛𝑛 − 𝑐𝑐𝑛𝑛𝑣𝑣𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟                                                                                                                         (B. 1) 468 

where 𝑘𝑘𝑛𝑛 is the elastic constant for normal contact, 𝑐𝑐𝑛𝑛 is the viscoelastic damping constant for 469 

normal contact, 𝛿𝛿𝑛𝑛 is the normal component of the displacement at the contact as represented 470 

by the overlap distance, 𝑣𝑣𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 is the normal component of the relative velocity of two spherical 471 

particles, and 𝑘𝑘𝑛𝑛 is given by: 472 
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𝑘𝑘𝑛𝑛 =    
4
3
𝐸𝐸∗�𝑅𝑅∗𝛿𝛿𝑛𝑛                                                                                                                             (B. 2) 473 

where 𝐸𝐸∗ is the equivalent Young's modulus and 𝑅𝑅∗ is the equivalent radius which can be 474 

written as follows: 475 

1
𝑅𝑅∗

=    
1
𝑅𝑅𝑖𝑖

+
1
𝑅𝑅𝑗𝑗

                                                                                                                                   (B. 3) 476 

1
𝐸𝐸∗

=    
1 − 𝜈𝜈𝑖𝑖2

𝐸𝐸𝑦𝑦𝑖𝑖
+

1 − 𝜈𝜈𝑗𝑗2

𝐸𝐸𝑦𝑦𝑗𝑗
                                                                                                                   (B. 4) 477 

where 𝑅𝑅𝑖𝑖  and 𝑅𝑅𝑗𝑗  are the radius, 𝐸𝐸𝑦𝑦𝑖𝑖  and 𝐸𝐸𝑦𝑦𝑗𝑗  are Young's modulus, and 𝜈𝜈𝑖𝑖  and 𝜈𝜈𝑗𝑗  are the Poisson's 478 

ratio of each neighbouring spheres in contact. The viscoelastic damping constant (𝑐𝑐𝑛𝑛)  is given 479 

by: 480 

𝑐𝑐𝑛𝑛 =   −2�
5
6

   𝛽𝛽�𝑆𝑆𝑛𝑛 𝑚𝑚∗      ≥ 0                                                                                                      (B. 5) 481 

where, 𝑚𝑚∗ is the equivalent mass and is given by: 482 

1
𝑚𝑚∗ =    

1
𝑚𝑚𝑖𝑖

+
1
𝑚𝑚𝑗𝑗

                                                                                                                                (B. 6) 483 

𝛽𝛽 and 𝑆𝑆𝑛𝑛 are given by: 484 

𝛽𝛽 =
𝑙𝑙𝑙𝑙 𝑒𝑒𝑟𝑟

�𝑙𝑙𝑙𝑙2𝑒𝑒𝑟𝑟 + 𝜋𝜋2
                                                                                                                             (B. 7) 485 

𝑆𝑆𝑛𝑛 = 2𝐸𝐸∗�𝑅𝑅∗𝛿𝛿𝑛𝑛                                                                                                                                 (B. 8) 486 

where 𝑒𝑒𝑟𝑟 is the coefficient of restitution. The tangential contact force (𝑓𝑓𝑇𝑇) is given by: 487 

𝑓𝑓𝑇𝑇 = 𝑘𝑘𝑡𝑡𝛿𝛿𝑡𝑡 − 𝑐𝑐𝑡𝑡𝑣𝑣𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟                                                                                                                            (B. 9) 488 
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where 𝑘𝑘𝑡𝑡 is the elastic constant for tangential contact, 𝑐𝑐𝑡𝑡 is the viscoelastic damping constant 489 

for tangential contact, 𝛿𝛿𝑡𝑡 is the tangential overlap, and 𝑣𝑣𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 is the tangential component of the 490 

relative velocity of two spherical particles, and 𝑘𝑘𝑡𝑡 is given by: 491 

𝑘𝑘𝑡𝑡 =  8𝐺𝐺∗�𝑅𝑅∗𝛿𝛿𝑛𝑛                                                                                                                              (B. 10) 492 

with 𝐺𝐺∗ as the equivalent shear modulus, and 𝑐𝑐𝑡𝑡 is written as follows: 493 

𝑐𝑐𝑡𝑡 =   −2�
5
6

   𝛽𝛽�𝑘𝑘𝑡𝑡  𝑚𝑚∗      ≥ 0                                                                                                    (B. 11) 494 

The 𝑓𝑓𝑇𝑇 is limited by: 495 

𝑓𝑓𝑇𝑇 = µ𝑠𝑠 𝑓𝑓𝑁𝑁                                                                                                                                       (B. 12) 496 

where µ𝑠𝑠 is the coefficient of sliding friction.   497 
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Notations 498 

The following symbols are used in this paper: 499 

B = weighing function to correct the collision phase due to the presence of solid particles, 500 

BR = percentage of broken contacts, 501 

𝑐𝑐𝐿𝐿 = lattice speed, 502 

𝑐𝑐𝑛𝑛 = viscoelastic damping constant for normal contact, 503 

cs = sound celerity, 504 

𝑐𝑐𝑡𝑡 = viscoelastic damping constant for tangential contact, 505 

dp = diameter of the particle, 506 

𝑑𝑑50 = particle size that is 50% finer by mass in the particle size distribution, 507 

𝑑𝑑85 = particle size that is 85% finer by mass in the particle size distribution, 508 

𝐸𝐸∗ = equivalent Young's modulus, 509 

𝑒𝑒𝛼𝛼𝑣𝑣 = microscopic fluid velocity, 510 

𝑒𝑒𝑜𝑜𝑜𝑜𝑘𝑘   = initial void ratio of the kth layer, 511 

𝑒𝑒𝑜𝑜𝑜𝑜
𝑎𝑎𝑎𝑎𝑎𝑎 = initial void ratio of the entire sample considering all 10 Layers, 512 

𝑒𝑒𝑟𝑟 = coefficient of restitution, 513 

𝑓𝑓𝑏𝑏𝑏𝑏 = static buoyancy force on the particle, 514 

𝑓𝑓ℎ𝑦𝑦𝑦𝑦
𝑝𝑝  = total hydrodynamic force (including the static buoyancy force) on the particle p, 515 

𝑓𝑓𝑓𝑓 = hydrodynamic forces on the particle without buoyancy force, 516 

𝑓𝑓𝑔𝑔
𝑝𝑝 = gravitational force on the particle 𝑝𝑝, 517 

𝑓𝑓𝑗𝑗𝑐𝑐 = force vector in jth direction at contact c, 518 

𝑓𝑓𝑇𝑇 = tangential contact force, 519 

𝑓𝑓𝑁𝑁 = normal contact force, 520 

𝑓𝑓𝑜𝑜
𝑁𝑁,𝑎𝑎𝑎𝑎𝑎𝑎 = average normal contact force in a layer at the hydrostatic state, 521 
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𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡) = particle distribution function, 522 

𝑓𝑓𝛼𝛼(𝑥𝑥, 𝑡𝑡∗) = particle distribution function after the collision of fluid particles, 523 

𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡) = equilibrium distribution function, 524 

𝐺𝐺∗ = equivalent shear modulus, 525 

𝐼𝐼𝑝𝑝 = moment of inertia of the particle 𝑝𝑝, 526 

io = overall applied hydraulic gradient, 527 

io,cr = critical overall hydraulic gradient of the soil specimen, 528 

ihyd = local hydraulic gradient in a layer, 529 

𝑘𝑘𝑛𝑛 = elastic constant for normal contact, 530 

𝑘𝑘𝑡𝑡 = elastic constant for tangential contact, 531 

𝑀𝑀 = Mach number, 532 

𝑀𝑀𝑠𝑠 = fraction of mechanically stable particles, 533 

𝑚𝑚𝑝𝑝 = mass of the particle 𝑝𝑝, 534 

𝑚𝑚∗ = equivalent mass, 535 

N = lattice resolution, 536 

𝑁𝑁𝑐𝑐 = number of contacts, 537 

𝑁𝑁𝑑𝑑 = number of degrees of freedom, 538 

𝑁𝑁𝑐𝑐𝑐𝑐 = number of constraints, 539 

𝑁𝑁𝑐𝑐
𝑝𝑝 = number of contacts on particle p, 540 

Np = number of particles, 541 

𝑁𝑁𝑝𝑝≥4 = number of particles with at least 4 or more contacts, 542 

𝑛𝑛 = overall porosity of the soil specimen, 543 

𝑛𝑛𝑖𝑖
𝑐𝑐,𝑝𝑝 = unit-normal vector from the particle' centroid to the contact location, 544 

𝑛𝑛𝐿𝐿 = number of layers, 545 

𝑂𝑂𝑖𝑖 = initial centroidal location of particle i, 546 
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𝑂𝑂𝑗𝑗 = initial centroidal location of particle j, 547 

𝑂𝑂𝑗𝑗′ = displaced centroidal location of particle j, 548 

R = constraint ratio for a three-dimensional particle system with only sliding resistance, 549 

𝑅𝑅∗ = equivalent radius, 550 

Rep = Reynold's number of the particle,  551 

𝑆𝑆 = variance in the void ratios, 552 

𝑆𝑆𝑖𝑖 = slipping index, 553 

𝑆𝑆𝑐𝑐 = fraction of slipping contacts,  554 

𝑇𝑇𝑓𝑓
𝑝𝑝= fluid-particle interaction torque, 555 

𝑇𝑇𝑗𝑗𝑐𝑐 = interparticle contact torque due to tangential force, 556 

𝑡𝑡 = time, 557 

𝑡𝑡∗ = time after the collision, 558 

𝑢𝑢 = macroscopic fluid velocity, 559 

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = maximum velocity of the fluid flow in physical units,  560 

𝑉𝑉 = volume of the selected region or layer, 561 

𝑉𝑉𝑝𝑝 = volume of particle p, 562 

𝑣𝑣𝑑𝑑 = superficial or discharge velocity of the fluid, 563 

𝜐𝜐𝑓𝑓  = kinematic viscosity of fluid, 564 

𝑣𝑣𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = normal component of the relative velocity of two spherical particles, 565 

𝑣𝑣𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟= tangential component of the relative velocity of two spherical particles, 566 

𝑣𝑣𝑝𝑝 = translational velocity of the particle 𝑝𝑝, 567 

𝑤𝑤𝑝𝑝 = angular velocity of the particle 𝑝𝑝, 568 

𝜔𝜔𝛼𝛼 = weighing factor for the microscopic fluid velocity, 569 

𝑥𝑥𝑛𝑛 = coordinate of the lattice cell, 570 
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𝑥𝑥𝑖𝑖
𝑝𝑝= centre of mass of the particle, 571 

z = location of the particle, 572 

Z = coordination number, 573 

Zavg. = average coordination number, 574 

∆𝑥𝑥 = lattice spacing, 575 

𝜌𝜌𝑓𝑓 = fluid density, 576 

𝛿𝛿𝑛𝑛 = normal overlap, 577 

𝛿𝛿𝑡𝑡 = tangential overlap, 578 

𝛺𝛺𝛼𝛼  = collision operator, 579 

𝛺𝛺𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵  = collision operator of the BGK model,  580 

𝛺𝛺𝛼𝛼𝑠𝑠= additional collision term for solid fraction,  581 

𝜀𝜀𝑠𝑠 = solid fraction in the fluid cell volume, 582 

𝜏𝜏 = relaxation time, 583 

µs = coefficient of sliding friction, 584 

𝜇𝜇𝑓𝑓 = dynamic viscosity of the fluid, 585 

𝜎𝜎𝑖𝑖𝑖𝑖′  = Cauchy effective stress tensor in the selected region, 586 

𝜎𝜎𝑖𝑖𝑖𝑖
𝑝𝑝′= average stress tensor within a particle p, 587 

𝜎𝜎𝑧𝑧𝑧𝑧′  = Cauchy effective stresses of the particles in a layer in the fluid flow direction at any time, 588 

and 589 

𝜎𝜎𝑧𝑧𝑧𝑧𝑧𝑧′  = initial Cauchy effective stresses of the particles in a layer in the fluid flow direction.  590 
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Table 1. Fluid properties for simulating the single-particle falling into the fluid using the 751 
LBM-DEM approach (after Ten Cate et al. 2002) 752 

  753 

Case Density (𝝆𝝆𝒇𝒇) (kg/m3) Kinematic Viscosity (𝝊𝝊𝒇𝒇) (m2/s) 
Rep = 1.5 970 3.845 x 10-4 
Rep = 4.1 965 2.197 x 10-4 

Rep = 11.6 962 1.175 x 10-4 
Rep = 31.9 960 6.042 x 10-5 
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 754 

Fig. 1. Flowchart of the Lattice Boltzmann Method (LBM) combined with the Discrete 755 

Element Method (DEM)  756 
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 757 

Fig. 2. (a) Schematic representation of a single sphere falling into the fluid with a diameter 758 

(dp) = 15 mm; (b) the modelled particle in the fluid mesh using LBM-DEM; (c) comparison 759 

of the numerical and experimental results of particle position over time; (d) comparison of 760 

experimental and numerical results of particle velocity over time  761 
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 762 

Fig. 3. (a) Particle size distribution of the sample selected for modelling in DEM; (b) three-763 

dimensional sample modelled in DEM; (c) division of the sample into different layers with 764 

the mentioned layer numbers and initial void ratios (eoi); (d) a close-up view of the particles 765 

modelled in the fluid mesh using the LBM-DEM approach 766 
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 767 

Fig. 4. Calibration of the soil specimen fluidisation model by comparing the flow curves 768 

obtained from the LBM-DEM and the documented experimental work  769 
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 770 

Fig. 5. Evolution of the local hydraulic gradient (ihyd) and the normalised effective stresses 771 

(𝜎𝜎𝑧𝑧𝑧𝑧′ /𝜎𝜎𝑧𝑧𝑧𝑧𝑧𝑧′ )  772 
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 773 

Fig. 6. Evolution of broken contacts (BR) with the normalised effective stresses (𝜎𝜎𝑧𝑧𝑧𝑧′ /𝜎𝜎𝑧𝑧𝑧𝑧𝑧𝑧′ )  774 
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 775 

Fig. 7. Development of the fraction of mechanically stable particles (Ms) with normalised 776 

effective stresses (𝜎𝜎𝑧𝑧𝑧𝑧′ /𝜎𝜎𝑧𝑧𝑧𝑧𝑧𝑧′ )  777 
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 778 

Fig. 8. Conceptual model showing the differences in the fabrics of particles with the same 779 

void ratios  780 
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 781 

Fig. 9. Distributions of the coordination number (Z) at the hydrostatic state and the onset of 782 

fluidisation of soil specimen 783 
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 784 

Fig. 10. Development of the average coordination number (Zavg) with normalised effective 785 

stresses (𝜎𝜎𝑧𝑧𝑧𝑧′ /𝜎𝜎𝑧𝑧𝑧𝑧𝑧𝑧′ ) 786 
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 787 

Fig. 11. Distribution of the slipping index (Si) of the selected Layer 10 with different local 788 

hydraulic gradients (ihyd) 789 
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 790 

Fig. 12. (a) Three-dimensional representation of the hydraulic gradient (ihyd), the normalised 791 

effective stresses (𝜎𝜎𝑧𝑧𝑧𝑧′ /𝜎𝜎𝑧𝑧𝑧𝑧𝑧𝑧′ ), and the constraint ratio (R); (b) projections of the three-792 

dimensional plot of ihdy, 𝜎𝜎𝑧𝑧𝑧𝑧′ /𝜎𝜎𝑧𝑧𝑧𝑧𝑧𝑧′ , and R. 793 
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 794 

Fig. A.1. Directions of the 19 (0-18) velocity vectors of the D3Q19 discretisation scheme 795 

used in this study 796 

1
2 3

4

5

6

7

8
9

10

11

12 13

14
15

16

17

18

0

 



49 
 

 797 

Fig. A.2. (a) Rheological scheme and (b) schematic sketch of the Hertz-Mindlin contact 798 

model used in this study to simulate fluidisation of soil specimen 799 
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