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Acoustofluidics 24: Theory and experimental measure-
ments of acoustic interaction force

Shahrokh Sepehrirahnama†a, Abhishek Ray Mohapatrac, Sebastian Oberst†a,b, Yan Kei
Chiangb,a, David A. Powellb, and Kian-Meng Limc

The motion of small objects in acoustophoresis depends on the acoustic radiation force and torque.
These are nonlinear phenomena originating from wave scattering, and consist of primary and sec-
ondary components. The primary radiation force is the force acting on an object due to the incident
field, in the absence of other objects. The secondary component, known as acoustic interaction force,
accounts for the interaction among objects, and contributes to the clustering patterns of objects,
as commonly observed in experiments. In this tutorial, the theory of acoustic interaction forces is
presented using the force potential and Partial-Wave expansion approaches, and the distinguishing
features of these forces such as rotational coupling and non-reciprocity are described. Theoretical
results are compared to experimental measurements of interaction forces using a glass micro-capillary
setup to explain the practical challenges. Finally, the phenomenon of clustering patterns induced by
the close-range interaction of objects is demonstrated to point out the considerations about multiple
collision and the predicted clustering patterns entirely due to the interaction force. Understanding
the principles of acoustic interaction enables us to develop novel acoustofluidic applications beyond
the typical processing of large populations of particles and with focus on the controlled manipulation
of small clusters.

1 Introduction
In an acoustofluidic process, objects within a pressure field are
manipulated according to the acoustic radiation force and torque
fields, which depend on their scattering behaviour1–3. These
forces and torques are mainly dependent on objects’ dimensions,
geometry, and the external acoustic field. They can be applied
to change the dynamic balance of an object, which depends on
other forces such as weight, buoyancy, and fluid drag. In par-
ticular, acoustic manipulation has been shown to be a promis-
ing technique for objects with size much smaller than the wave-
length, commonly referred to as particles. In most practical ap-
plications, including ultrasonic manipulation of biological cells or
functional micro-/nano-beads in microfluidic chips, a population
of such particles in a host fluid is treated simultaneously, resulting
in particle agglomeration. This clustering is associated with the
pair-wise interaction between objects in a population, which is re-
ferred to as the acoustic interaction force or secondary radiation
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b School of Engineering and Information Technology, University of New South Wales,
Canberra, Australia
c Mechanical Engineering Department, National University of Singapore, Singapore
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force4–12. In this tutorial, we present the theory of the acous-
tic interaction force and related experimental techniques for its
measurement using a microfluidic chip.

The primary radiation force is a nonlinear acoustic phe-
nomenon, originating from the product of the external acoustic
field and the scattered field of an object, as shown in Fig. 1(a),
meaning that it does not include the scattered field of other par-
ticles and reflection from the walls of the fluid domain2,13–15.
The secondary force, which is called acoustic interaction here-
after, is a form of nonlinear acoustic interaction and occurs when
there are multiple objects in the acoustic field4–8,10,15,16. This
force originates from the product of the pressure and velocity
fields scattered from one object with those scattered from another
(Fig. 1(b)). Similarly, the notion of acoustic interaction forces can
be extended to an object and the walls of a fluid domain which,
similarly to another object, reflects the acoustic wave. This physi-
cal description can be generalized to explain the primary force as
an interaction between the target body and an object located at
infinity, emitting acoustic energy. Despite the underlying physics
of primary and interaction forces being the same, they exhibit
different effects on objects in a sound field, with the primary
force driving them towards acoustic traps (stable equilibrium lo-
cations), while the interaction force determines how they interact
with each other during cluster formation.
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Both primary and interaction forces depend on material prop-
erties2,17, shape18, viscosity19 and object size20. In addition,
interaction forces decrease as the distances between a target and
its neighbouring objects increase5–7,15. Hence, the acoustic inter-
action is considered as a close-range nonlinear effect of objects
on each other3,21–23. The action of this acoustic interaction con-
tinues even after particles arrive at acoustic traps, where the pri-
mary force is negligible. Viscosity contributes to the primary and
interaction forces by affecting the scattering process and conse-
quently inducing acoustic streaming13,24,25. This hydrodynamic
contribution mainly depends on the type of acoustic streaming
flow, which can be determined from the scattering behaviour of
the objects or the walls of the fluid domain, the viscosity level,
and the relative difference in the material properties of the buffer
fluid and the objects13,19,26–28. The streaming contribution to
the primary force can vary from a fraction of its radiation com-
ponent13,19,26,27 to orders of magnitude larger28, for sufficiently
dense objects and when the viscous boundary layer is compara-
ble to the object’s size. In addition to the material density and the
viscous layer, the relative distance between the objects is a ma-
jor factor in determining the hydrodynamic contribution to the
acoustic interaction.

Mutual interaction between oscillating particles was reported
first in 1906 for pulsating bubbles in terms of the Bjerknes
force16,29–31. The primary Bjerknes force acting on a single pul-
sating bubble arises from the reaction of the surrounding fluid to
the radiated momentum of the outgoing wave due to the surface
pulsation16,30,31, which is the same physical principle behind the
primary radiation force. The difference is that the primary Bjerk-
nes force is associated with surface pulsation, stimulated either
internally or externally, while the primary radiation force is due to
the scattering of an external acoustic field. This implies that the
primary radiation force also exists for acoustically rigid objects
with zero surface-oscillation due to the effect of radiation pres-
sure2,13. These forces are referred to as primary forces, since they
are obtained under the assumption of a single object in a fluid do-
main16,32. Similarly, the secondary Bjerknes force corresponds to
the interaction force, as both describe the interaction between a
pair of objects, including gas bubbles and liquid droplets, with
the dominant contribution coming from surface oscillations31–36.
The interaction force is also applicable to solid objects, due to the
contribution from radiation pressure5–8,15.

The acoustic interaction force has been studied theo-
retically4–6,8,15,37, numerically7,11,21,38, and experimen-
tally9,10,12,37,39–41. For a pair of objects, the acoustic interaction
force has a component that acts in the centre-to-centre direction,
inducing attraction or repulsion similar to electrostatic forces
between charges. In addition, it can have a component in the tan-
gential direction, which induces coupled rotational motion7,15.
The acoustic interaction forces on a pair of identical objects
are equal, and act in opposite directions, while they violate
the action-reaction principle for non-identical pairs15. These
properties of acoustic interaction result in different regimes
of cluster formation and growth23,41, compared to the typical
dynamics of agglomeration under electrostatic interaction.

Agglomeration processes due to acoustic interaction forces

have been observed in both microfluidic applications and for in-
air levitation, cf. Fig. 1. The agglomeration patterns depend on
the properties of the external acoustic field10,42, cf. Fig. 1(c) and
(e), the material properties of the buffer fluid and the objects un-
der manipulation43, cf. Fig. 1(d), and the number of particles23,
cf. Fig. 1(f). The average size of spherical particles in these appli-
cations varies from 10 µm to around 1 mm and the ultrasonic fre-
quencies range from 45 kHz to 3 MHz, indicating the wide range
of size and frequency at which the clustering is a significant part
of the acoustic manipulation process. Particle clusters also exhibit
collective mechanical properties that can be measured from the
dynamic motion and deformation of the clusters, implying acous-
tic interaction forces can act as binding forces that give structural
integrity to the cluster of particles41.

Among various applications of the interaction force, biological
cell patterning in tissue culture42, seed particle technology44–46

and single particle trapping or manipulation47,48 are noteworthy
examples. An accurate estimation of the agglomeration time and
patterns of cell clusters in the vicinity of acoustic traps requires
a better understanding of the role of acoustic interaction42. The
interaction force acting on biological cells can be comparable to
or orders of magnitude larger than the primary radiation force,
particularly when cells are already within the ultrasonic trap and
their relative distance is small enough to trigger a strong interac-
tion, leading to novel ways of ultrasound manipulation of biolog-
ical cells, e.g., isolation, sorting and assembly of small clusters49.
In seed particle technology, as the size of particles approaches the
nanometer-scale, the influence of the drag induced by acoustic
streaming becomes stronger, compared with the primary radia-
tion force50. With the use of preloaded micrometer-sized seed
particles, the particle-particle interactions introduce significant
interaction force, enabling agglomeration of sub-micron parti-
cles, even for a small number of them44–46. An example is the
extraction of sperm cells from low concentration samples using
small clusters of polystyrene beads to enhance their acoustic trap-
ping51,52. Furthermore, studies of spherical particles and biolog-
ical cells with size comparable to the acoustic wavelength show
that the effects of interaction forces can be observed at locations
where the primary force is close to zero and during the forma-
tion of clusters in the vicinity of the acoustic trap47,48. Therefore,
accurate estimation of the interaction force is also important for
single particle or cell manipulation. Recently, an acoustofluidic
device was developed to assist in the study of chemical composi-
tions of biological cells using Raman spectroscopy53. It operates
with a resonance chamber and the contact-free levitation of par-
ticles, resulting in measurements with little noise, which are re-
quired to conduct accurate scans of a Raman spectrum. In these
applications of acoustophoresis, the occurrence of clustering can
be attributed to the patterns of acoustic interaction between the
objects, which depend on their surrounding conditions too. The
understanding of the interaction force is important to optimise
the concentration of such particles and the input power for a sta-
ble configuration at the pressure node during scanning53, and
potentially novel ways of controlling such interactions can be de-
veloped for practical applications.
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0 s 1 s 2 s
(c) (d)

100 μm

0 mM CaCl2 8 mM CaCl2 20 mM CaCl2

(f)(e)

200 μm 200 μm

p0, v0

(a) primary force:
(p0, v0) × (ps, vs) 

scattered field: ps, vs

object s

(b) interaction force:
(ps, vs) × (pq, vq)

object s object q

scattered field: ps, vs scattered field: pq, vq

External field 

Fig. 1 Physical principle of (a) the primary radiation force, indicated by the black arrow acting on the centroid of object s, and (b) the acoustic
interaction force, indicated by the blue arrow acting on the centroids of object s and q, as a result of the product of two distinct fields. Cluster formation
due to close-range acoustic interaction between objects, (c) in a microfluidic cavity excited by a standing wave with Kisker PSI-10 spherical particles
of 10µm diameter at a frequency of 1.481 MHz (Reprinted from Baasch, T., Leibacher, I. and Dual, J. Multibody dynamics in acoustophoresis,
The Journal of the Acoustical Society of America 141 (3), pp 1664—1674. Copyright 2017, with permission from Acoustic Society of America,
https://doi.org/10.1121/1.4977030), (d) 25µm Polystyrene particles in a 3 MHz ultrasound trap subject to various concentrations of electrolyte
buffer (Reprinted from Bazou, D., Coakley, W. T., Meek, K. M., Yang, M. and Pham, D. T., Characterisation of the morphology of 2-D particle
aggregates in different electrolyte concentrations in an ultrasound trap, Colloids and Surfaces A: Physicochemical and Engineering Aspects 243 (1—3),
pp 97—104, Copyright (2004), with permission from Elsevier, https://doi.org/10.1016/j.colsurfa.2004.04.075), (e) schematic of membrane-
stained C2C12 myoblast (ATCC) particles patterned as sixteen distinct clusters in a microfluidic cavity, using dual standing waves at 2.1 MHz,
(Reprinted from Armstrong, J. P., Maynard, S. A., Pence, I. J., Franklin, A. C., Drinkwater, B. W., and Stevens, M. M. Spatio-temporal quantification
of acoustic cell patterning using Voronoï tessellation. Lab on a Chip, 19(4), pp 562—573 (2019), under Creative Commons Attribution 3.0 Unported
Licence https://doi.org/10.1039/C8LC01108G), and (f) various patterns for different numbers of levitated Polyethylene spheres (Cospheric) with
diameter of 710−850µm in air at 45.65 kHz (Reprinted by permission from Springer Nature Customer Service Centre GmbH: Nature, Nature Physics
Lim, M. X., Souslov, A., Vitelli, V., and Jaeger, H. M., Cluster formation by acoustic forces and active fluctuations in levitated granular matter,
(2019), Nature Physics, 15(5), pp 460–464 https://doi.org/10.1038/s41567-019-0440-9).

2 Theoretical estimation of the interaction
force

We start with a review of acoustic wave propagation and the the-
ory of acoustic radiation force for an ideal fluid, i.e. a fluid where

viscous effects can be neglected. Two analytical models of acous-
tic interaction force are discussed in detail. The first model, based
on force potentials, is valid for small sub-wavelength particles,
while the second model is based on Partial-Wave expansion and is
applicable to particles of any size. A numerical model of acoustic
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interaction force applicable to different shapes, sizes and mate-
rial properties is discussed. Finally, using the theoretical models,
important features of acoustic interaction force are described.

2.1 Fundamentals and governing equations

Ideal fluid flow is governed by the Navier-Stokes equations13,54:

∂tρ +∇∇∇
(
ρv
)
=0,

∂t
(
ρv
)
+∇∇∇ ·

(
ρvv

)
=−∇∇∇p,

(1)

where ρ, p, v denote the density, pressure and velocity fields, re-
spectively, vv is the dyadic product of the velocity vectors, ∂t de-
notes the time-dependent rate operator, and ∇ denotes the spatial
gradient operator with respect to position vector x of a material
point in the fluid domain. Derivation of the governing equations
of acoustic wave propagation from Eq. (1) relies on the perturba-
tion expansion of the density, pressure and velocity fields2,54 up
to the second-order approximation, as follows,

ρ = ρ f +ρ + ρ̃ +O(3),

p = p f + p+ p̃+O(3),

v = v f +v+ ṽ+O(3),

(2)

where ρ f , p f , and v f are zero order density, pressure and velocity
fields, respectively, associated with a steady-state fluid flow or
a static fluid (time-independent), which are also referred to as
the background flow fields. Without loss of generality, we can
assume no background velocity field v f = 0 for the rest of the
formulation54. The sum of neglected terms of order three and
higher is denoted by O(3). The first and second order fields are
denoted by (ρ, p,v) and (ρ̃, p̃, ṽ), respectively.

2.1.1 Acoustic wave propagation

By substituting the first order fields into Eq. (1), the first order ap-
proximation of the nonlinear Navier-Stokes equations is derived
as a linear set of equations,

∂tρ =−ρ f ∇∇∇ ·v,

ρ f ∂tv =−∇∇∇p.
(3)

From the equation of state of fluids, the relation between first
order pressure and density fields becomes p = c2

f ρ, where c f is
the speed of sound in the fluid within the isentropic limit. This
allows us to derive the governing equations of the acoustic wave
propagation from Eq. (3) as

c2
f ∇

2 p = ∂tt p, (4)

where ∂tt denotes second-order differentiation with respect to
time t and ∇2 = ∇∇∇ ·∇∇∇ denotes the Laplacian operator. Further-
more, the first order terms ρ, p and v are commonly referred to
as the acoustic density, pressure and velocity fields, respectively.
The theory of acoustic interaction force in the non-viscous limit
relies on Eq. (4) which describes the incident, scattered, reflected
and refracted waves in an ideal fluid. The acoustic velocity can be

expressed as v =∇∇∇φ , with φ denoting the scalar velocity potential
field.

For an object q in the fluid domain, the acoustic pressure ap-
plied at the exterior surface causes the object to oscillate at the
wave frequency, and this rigid-body oscillation is expressed as5,13

ρqΩq∂twq =−
∫

Γq

pnqdΓ, (5)

where ρq denotes the density of the object, Ωq is the volume of
the object enclosed by the exterior surface Γq with nq being the
outwards normal vector, and wq denotes the velocity of the rigid-
body oscillation. The time-averaged position of the object over
one period of the wave remains the same, indicating the time-
averaged action of the acoustic pressure is zero. Similarly, the
oscillatory rotation of objects due to the acoustic pressure applied
at their surface can be described using Newton’s second law of
motion; however, the time-averaged orientation of the object re-
mains unchanged. The time-average of a time-dependent field
H(x, t) over a cycle of an acoustic wave is

〈H〉= 1
T

∫ T

0
Hdt, (6)

where T denotes the wave period.

2.1.2 Second-order effects of acoustic excitation

The time-average of a time-harmonic acoustic field p(x, t) =

p(x)e−iωt is zero, since 〈e−iωt〉 = 0. However, the time-averaged
value of the product of two harmonic fields is non-zero, which
implies a resultant action in a temporal frame much slower than
that of the acoustic fields. Here, the time-averaged second-order
approximation of the Navier-Stokes equations is presented to
demonstrate the influence of such product terms, and describe
their effects in terms of a second-order radiation pressure. By
substituting Eq. (2) into (1), the time-averaged second-order ap-
proximation of the Navier-Stokes equations becomes13,54

ρ f ∇∇∇ · 〈ṽ〉= mb, mb =−∇∇∇ · 〈ρv〉

∇∇∇〈p̃〉= fb, fb =−〈ρ∂tv〉−ρ f 〈
(
v ·∇∇∇

)
v〉=−∇∇∇ · 〈vv〉,

(7)

where mb and fb are the volumetric mass and force source terms
that are proportional to the product of acoustic density and ve-
locity fields. For an ideal fluid, the second-order pressure 〈p̃〉
can be expressed using ρ f ∂tv = −∇∇∇p from Eq. (3), p = c2

f ρ, and

(v ·∇∇∇)v = 1
2∇∇∇ · (v2), in the common form2,13,26,55 as

〈p̃〉= 1
2

κ f 〈p2〉− 1
2

ρ f 〈v2〉, (8)

where κ f = 1/ρ f c2
f denotes the mean fluid compressibility, and

v2 = v ·v.

2.1.3 Acoustic radiation force and torque

In the ideal fluid limit, the viscous stresses become zero. The
time-averaged force (up to second-order accuracy) applied to an
object in the acoustic field is obtained directly from the fluid pres-
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sure as

F =
〈∫

Γ(t)

(
p+ p̃

)
ndΓ

〉
=
〈∫

Γ(t)
pndΓ

〉
+
∫

Γ

〈p̃〉ndΓ, (9)

where Γ(t) and Γ denote the instantaneous and at-rest surface of
the object, respectively. The first term on the right-hand side of
Eq. (9) can be simplified further using the divergence theorem
and the first-order momentum conservation Eq. (3), as follows,〈∫

Γ(t)
pndΓ

〉
=
〈∫

Γ̂

pndΓ

〉
−
〈∫

Ω(t)
∇∇∇pdΩ

〉
,

=
∫

Γ̂

〈p〉ndΓ+
〈∫

Ω(t)
ρ f ∂tvdΩ

〉
,

(10)

where Γ̂ is a fixed surface surrounding the object and Ω(t) denotes
the instantaneous volume bounded by the object’s surface Γ(t)
and Γ̂. The first term on the right-hand side of Eq. (10) is zero
since 〈p〉= 0. By applying the material derivative operator d/dt =
∂t + v∇∇∇ to the second term on the second line of Eq. (10)56, we
obtain

d
dt

∫
Ω(t)

vdΩ =
∫

Ω(t)
∂tvdΩ−

∫
Γ(t)

v
(
v ·n

)
dΓ. (11)

By substituting Eq. (11) into (10), using the divergence theorem,
and considering 〈d/dt

∫
Ω(t) vdΩ〉= 0, the contribution to the force

of the acoustic pressure acting on the surface of the object be-
comes〈∫

Γ(t)
pndΓ

〉
=
〈∫

Γ(t)
ρ f vv ·ndΓ

〉
=−

〈∫
Γ(t)

σσσRey ·ndΓ

〉
, (12)

where σσσRey denotes the Reynolds stresses that arise from low-
amplitude oscillation of the surface of the object due to external
wave excitation. The radiation stress tensor 〈σσσ〉 is expressed as

〈σσσ〉=−〈p̃〉I+ 〈σσσRey〉=−
[1

2
κ f 〈p2〉− 1

2
ρ f 〈v2〉

]
I−ρ f 〈vv〉, (13)

where I denotes the second-order unitary tensor. Substituting
Eqs. (8), (12) and (13) into Eq. (9) and using momentum conser-
vation in (7), the force integral becomes

F =
〈∫

Γ(t)

(
− p̃I+σσσRey

)
·ndΓ

〉
F =

∫
Γ̂

〈−p̃I+σσσRey〉ndΓ+
〈∫

Ω(t)

(
∇∇∇ p̃+∇∇∇ ·vv

)
dΩ

〉
F =

∫
Γ̂

〈−p̃I+vv〉ndΓ.

(14)

From (14), the radiation force F and, similarly radiation torque T
acting on a object are obtained in terms of the radiation stresses,
as follows,

F =−
∫

Γ

〈σσσ〉 ·ndΓ, T =−
∫

Γ

x×
[
〈σσσ〉 ·n

]
dΓ, (15)

where x is the position vector with respect to a given origin e.g.,
the centre of mass of the object. The term Γ denotes any surface
enclosing the object, i.e. at-rest exterior surface of the object or
a fixed fictitious surface Γ̂. Due to the conservation of radiated

momentum, this surface can take arbitrary shape and can be con-
sidered at any distance away, provided it encloses the object in
an ideal fluid2. In the case of a single object in a viscous fluid,
this integration surface needs to be separated from the object by
several times the thickness of the viscous boundary layer. At such
distances, viscous dissipation effects are negligible and the acous-
tic velocity field becomes irrotational19.

2.2 Multiple scattering and acoustic interaction force

For a population of N objects in a external acoustic field, the total
acoustic pressure satisfying the wave equation, Eq.(4), becomes

p = p0 +
n=N

∑
n=1

pn, (16)

where p0 denotes the external pressure field, coming from a
source outside of the fluid domain, and pn is the partial scattered
pressure from the nth object. The incident pressure p̂ for object q
is defined as

p̂q = p0 +
N

∑
n=1
n6=q

pn = p0 +∑
n;q

pn, (17)

where ∑n;q is short-hand notation for the sum of scattering from
the other N−1 objects, excluding target object q, and p = p̂q+ pq.
Eq. (17) implies that the scattering from each object depends on
the external pressure field and the scattered pressure of other ob-
jects. Therefore, in general, the total pressure field is obtained
by solving the fully coupled multi-scattering problem, using com-
putational methods, e.g., the Boundary Element (BE) or Finite
Element (FE) methods for acoustic wave propagation. For the
special case of spherical objects, the multiple scattering problem
can be solved by using Partial-Wave expansion, also known as a
multipole series expansion, which will be discussed in Section 2.4.

To revisit the definitions of the primary and interaction forces,
the quadratic terms of the radiation stresses in Eq. (13) are
expanded with respect to their external and scattered acoustic
fields. Together with Eq. (17) for the target object q, we get

p2 =
(

p̂q + pq

)(
p̂q + pq

)
= p̂2

q +2 p̂q pq + p2
q

=p2
0 +2p0 ∑

n;q
pn +

(
∑
n;q

pn

)2
+2 p̂q pq + p2

q.

(18)

Similar expansions can be written for the v̂ · v̂ and v̂v̂ terms of
the radiation stresses. Considering the radiation force and torque
acting on object q, the terms p2

0, v̂0 · v̂0 and v̂0v̂0 due to the inci-
dent field produce no force2,5,6,15. The stresses induced by the
self-product of scattered fields of the object, p2

q, vq · vq and vqvq,
produce forces and torques that are of the order of (ka)6. For
sub-wavelength objects in the Rayleigh limit ka� 1, this results
in more than three orders of magnitude smaller forces compared
to the primary and interaction forces; hence, these terms can be
neglected2. A single isolated object only experiences the radia-
tion stresses due to the cross terms such as p0 pq, which give rise
to the primary radiation force2. This implies that the primary ra-
diation force explicitly depends on the external pressure field p0.
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Fig. 2 (a) Spherical objects interacting under an external acoustic field. Large and small clusters are formed at various locations regardless of the
existence of a global acoustic trap, typically a pressure or velocity node for plane standing waves (PSW). Panel (b) shows the interaction potential for
a pair of identical spheres with the source n fixed and target q used for probing the potential. Panel (c) is the landscape of interaction potential for
the case of the source sphere being around 2.2 times larger than the target. The case of three spheres is shown in (d) to (i). The presented numerical
results were obtained for spherical polystyrene beads with kan ≈ 0.03, in water with density ratio ρn/ρ f = 1.050 and the ratio of the compressibility
modulus κn/κ f = 0.388, in the absence of viscous losses, viscous boundary layer, and viscosity-induced streaming. The Rayleigh index of kan ≈ 0.03
corresponds to 5 µm polystyrene beads in water subject to an ultrasonic wave at 1.5 MHz. The pairs of indices indicate the partial interaction potential
associated with pressure and velocity fields from the objects with the same labels, for instance [0,n1] corresponds to 〈p0 pn1 〉 and 〈v0vn1 〉 in Eq. (28).
Figure reprinted with permission from Sepehrirahnama S., Lim K.-M., Physical Review E, 102, 043307, 2020. Copyright (2020) by the American
Physical Society, https://doi.org/10.1103/PhysRevE.102.043307

The remaining terms in the radiation stresses, corresponding to
the second and fourth terms of the second line of Eq. (18), lead
to the sum of the primary and interaction force7,8,15, which can
be further expanded as

〈σσσq〉=〈σσσ
(q)
0 〉+∑

n;q
〈σσσ (q)

n 〉

〈σσσ (q)
0 〉=

[
κ f

〈
pq p0

〉
−ρ f

〈
vq ·v0

〉]
I+ρ f

〈
vqv0 +v0vq

〉
,

〈σσσ (q)
n 〉=

[
κ f

〈
pq pn

〉
−ρ f

〈
vq ·vn

〉]
I+ρ f

〈
vqvn +vnvq

〉
,

(19)

where σσσ
(q)
n denotes the radiation stresses associated with the

acoustic interaction, due to the product terms between the scat-
tered pressure and velocity fields from the target object q and

those of object n. From Eq. (19), we can infer that the radiation
force and torque depend on any factor that affects the scatter-
ing response of the objects. The factors that affect both the pri-
mary and interaction forces include the objects’ size relative to the
wavelength of the external wave, their geometry and dimensions,
material properties relative to those of the surrounding fluid, in-
ternal structure of the objects, their capacity to absorb acoustic
energy through internal dissipation or refraction, position and
orientation in the external pressure field, and the wavefront of
the external pressure wave. The factors that affect the interac-
tion force are the relative distance between objects, their relative
size difference, and the relative difference between the material
properties of the objects. Here, we present two analytical formu-
lations of the acoustic interaction force, the force potential6,15

and Partial-Wave5,7,8 models, with the goal of showing the con-
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tribution of these physical factors, followed by the description of
a numerical model based on Finite Element method (available in
the Supplementary Materials).

2.3 Force potential formulation

The far-field approach, which leads to the Gor´kov force poten-
tial for the primary radiation force2, is applicable to the acoustic
interaction force by considering the incident field of an object be-
ing the sum of external and scattered fields of other objects6,15, as
shown in Eq. (17). By using the divergence theorem and conser-
vation of momentum in the absence of any other external forces,
the total radiation force integral can be simplified to

F(q) =−
∫

Γ∞

〈σσσq〉 ·ndΓ =−
∫

Ω

∇∇∇ · 〈σσσq〉dΩ

=−
∫

Ω

∇〈κ f pq p̂q−ρ f vq · v̂q〉dΩ

−
∫

Ω

ρ f ∇ · 〈v̂qvq +vqv̂q〉dΩ.

(20)

Using ∇p = −ρ f ∂tv, 〈p∂tv〉 = −〈v∂t p〉, and v = ∇φ , Eq. (20) be-
comes

F(q) =−ρ f

∫
Ω

〈
v̂q
(
∇

2
φq−

1
c2 ∂ttφq

)〉
dΩ. (21)

Assuming the target object q is spherical in shape, the scattered
velocity potential φq is expressed up to the dipole term as

φq =−αq
a3

q

3ρ f
∂t ρ̂q

ei(krq−ωt)

rq
−

βq

2
a3

q∇∇∇ ·
(
v̂q

ei(krq−ωt)

rq

)
, (22)

where ω is the circular frequency of the wave, k = ω/c f denotes
the wavenumber, aq is the radius of the object q, αq = 1−κq/κ f

and βq = (2ρq−2ρ f )/(2ρq +ρ f ) are the monopole and dipole co-
efficients2,6,15, respectively, and rq is the radial distance from the
centre of sphere q. The incident acoustic density and velocity
are ρ̂q = ρ0 +∑n;q ρn and v̂q = v0 +∑n;q vn. Using the property
of Green’s functions for the wave equation

(
∇2 + k2)

(
eikrq/rq) =

−4πδ (r;rq) and integrating by parts, Eq. (21) can be solved ana-
lytically, and the total radiation force acting on object q becomes

F(q) = 2πa3
qρ f

〈
βqv̂q ·∇∇∇v̂q

〉
x=xq
−

4πa3
q

3

〈
αqv̂q∂t ρ̂q

〉
x=xq

. (23)

where xq denote the position vector of the centroid of object q.
Further, using 〈F∂tG 〉=−〈G ∂tF 〉 and ∇∇∇p̂n =−ρ f ∂t v̂n, the above
expression can be rewritten in terms of the incident pressure and
velocity,

F(q) = 2πa3
qρ f

〈
βqv̂q ·∇∇∇v̂q

〉
x=xq
−

4πa3
q

3
κ f

〈
αq p̂q∇∇∇p̂q

〉
x=xq

. (24)

This allows the total force potential G to be derived as

F(q) =−∇∇∇G(xq),

G = Ωq

[
κ f

2

〈
αn p̂q p̂q

〉
−

3ρ f

4

〈
βnv̂q · v̂q

〉]
,

(25)

where Ωq = 4πa3
q/3. Substituting p̂q = p0 +∑n;q pn and v̂q = v0 +

∑n;q vn in Eq. (25) leads to

F(q) =F(q)
0 +∑

n;q
F(q)

n ,

F(q)
0 =

3Ωq

2
ρ f

〈
βqv0 ·∇∇∇v0

〉
x=xq
−Ωq

〈
αq p0∇∇∇p0

〉
x=xq

,

(26)

F(q)
n =

3Ωq

2
ρ f

〈
βq

[
∇∇∇
(
vn ·v0

)
+vn ·∇∇∇vn +

1
2

N

∑
l=1

l 6=n,q

∇∇∇
(
vn ·vl

)]〉
x=xq

−Ωq

〈
αq

[
∇∇∇
(

p0 pn
)
+ pn∇∇∇pn +

1
2

N

∑
l=1

l 6=n,q

∇∇∇
(

pn pl
)]〉

x=xq
,

(27)

where F(q)
0 denotes the primary radiation force, and ∑n;q F(q)

n de-
notes the resultant interaction force acting on q. The pairwise
interaction force F(q)

n is derived as a partial component; however,
the resultant force is important when a population of objects is
studied. Both primary and interaction forces can be written in
terms of force potential functions as

F(q)
0 =−∇∇∇G0(xq), G0 = Ωq

〈
κ f

2
αq p2

0−
3
4

ρ f βqv2
0

〉
,

F(q)
n =−∇∇∇Gn(xq),

Gn = Ωq

〈
κ f αq

(
pn p0 +

1
2

p2
n +

1
2

N

∑
l=1

l 6=n,q

pn pl
)
−

3
2

ρ f βq
(
vn ·v0 +

1
2

v2
n +

1
2

N

∑
l=1

l 6=n,q

vn ·vl
)〉

,

(28)

where G0 and Gn denote the force potential functions of the pri-
mary force and partial interaction force exerted by object n on the
target q. The expressions for these scalar potentials indicate the
dependence of acoustic interaction force on size, which appears
as volume factor Ω, compressibility and density ratios, which de-
termine explicitly α and β , and the external and scattered acous-
tic fields. The change of interaction force with respect to rela-
tive distance (d) between a source n and target q, as shown in
Fig. 2(a), can be derived for the special case of a pair of iden-
tical particles along or normal to the propagation direction of a
plane wave6, corresponding to the direction of the pressure gra-
dient, and has been shown6,40 to be inversely proportional to
(kd)4. Furthermore, in this force potential formulation, the fully
coupled scattering effects, up to the monopole-dipole approxima-
tion, are included in the calculation of the scattered fields of other
objects, i.e., pn and vn in Eq. (28), while αq and βq only depend
on the density and compressibility ratios15. At large interparticle
distances, the effect of re-scattering is negligible6,40 and the scat-
tered fields from neighbouring object n can be calculated directly
from αn, βn and the external fields p0 and v0.

In Fig. 2, a collection of spherical bodies under an external
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acoustic field is shown to cluster at various locations as a result of
close-range interactions. Fig. 2(b) and (c) are the landscapes of
interaction force potentials, obtained by moving the probe parti-
cle q around the fixed source particle n. The results are shown for
a pair of spheres with the same size, cf. Fig. 2(b), and different
sizes, cf. Fig. 2(c), to indicate the stronger interaction due to a
volume increase of source sphere n.

To investigate the contribution of each of the terms in the inter-
action potential in Eq. (28), partial force potentials are shown in
panels Fig. 2(d)-(i), for two source particles n1 and n2 and probe
particle q. Comparing their range of variations in the close-range
area, it can be seen that the interaction potential is dominated by
〈pn p0〉 and 〈vnv0〉 terms in Eq. (28), and denoted by the pair of
indices [0,n1] and [0,n2] in Fig. 2.

2.4 Partial-Wave expansion formulation

A partial-Wave expansion or multipole series expansion is the
method of describing a wave field by using the eigensolutions of
the wave equation5,7,8. In this section, it is employed to present
a series-based formulation for acoustic interaction force acting on
spherical objects. This method is applicable to any size range, in-
cluding comparable to or larger than the wavelength, since the
force includes terms higher order terms such as quadrupole, oc-
tupole etc. The external velocity potential field at frequency ω,
being well-defined at any point in a fluid domain, is written as

φ0 = e−iωt
∑
n,m

Alm jn(kr)Ylm(θ ,ϕ), (29)

where jn and Ylm denote the spherical Bessel and spherical har-
monics functions, respectively, (r,θ ,ϕ) are the spherical coordi-
nates with respect to the centre of expansion, Alm denote the se-
ries coefficients, and ∑n,m = ∑

∞
l=0 ∑

n
m=−n. The series expansions of

the scattered and refracted potentials of object q are

φq = e−iωt
∑
n,m

B(q)
lm hn(krq)Ylm(θq,ϕq),

φ q = e−iωt
∑
n,m

C(q)
lm jn(krq)Ylm(θq,ϕq),

(30)

where (rq,θq,ϕq) are the spherical coordinates measured from the
centre of object q, and hn denotes the spherical Hankel function of
the first kind that automatically satisfies the outgoing wave con-
dition, which means scattered waves propagate away from the
object. The coefficients B(q)

lm and C(q)
lm denote the scattering and

refraction coefficients of object q, which are determined from the
boundary conditions at the surface of the target object. The re-
fraction potential φ q corresponds to the transmitted acoustic en-
ergy inside the particle. The boundary conditions on the at-rest
surface of a compressible object q are2,5,21,56

v̂q ·nq +vq ·nq = vq ·nq +uq ·nq,

p̂q + pq = pq,

uq =
i

ρqΩqω

∫
Γq

(
p̂q + pq

)
nqdΓ,

(31)

where p̂q and v̂q denote the incident pressure and velocity upon
target object q, pq and vq are the pressure and velocity of the re-
fracted field inside object q, nq denotes the unit vector normal to
the surface of the object and pointing outwards, and uq is the ve-
locity of the rigid-body oscillation of the object under the action of
the total acoustic pressure. The use of the Partial-Wave expansion
and the orthogonality of the spherical harmonics were outlined in
references5,7,8,15,20,21, which provide a semi-analytical approach
to solve the multi-scattering problem. This is useful in finding
the scattering coefficients Blm and Clm of the series expansions for
all objects at once, up to a given cut-off order L. By using the
field relations in Eq. (3), and substituting Eq. (29) and (30) into
Eq. (19), the stresses acting on object q are obtained. Then substi-
tuting the stresses into Eq. (15), the total acoustic radiation force
and torque can be found. The integrations in Eq. (15) can be
solved by applying the orthogonality properties of the spherical
harmonics. These expressions are given for the Cartesian compo-
nents of the total radiation force and torque as5,8

F(q)
x + iF(q)

y =
iE0

2k2 ∑
l,m

γxy

[
S(q)l b(q)l,mb∗(q)l+1,m+1 +S∗(q)l b∗(q)l,−mb(q)l+1,−m−1

]
,

F(q)
z =

E0

k2 ℑ

[
∑
l,m

γzS
(q)
l b(q)l,mb∗(q)l+1,m

]
,

T (q)
x + iT (q)

y =− E0

2k3 ∑
l,m

ζxy

[
Ŝ(q)l b(q)l,mb∗(q)l,m+1 + Ŝ∗(q)l b∗(q)l,−mb(q)l,−m−1

]
,

Tz =−
E0

k3 ℜ

[
∑
l,m

ζzŜ
(q)
l b(q)l,mb∗(q)l,m

]
,

S(q)l =s(q)l + s∗(q)l+1 +2s(q)l s∗(q)l+1 , Ŝ(q)l =
(
1+ s(q)l

)
s∗(q)l ,

γxy =

√
(l +m+1)(l +m+2)

(2l +1)(2l +3)
, ζxy =

√
(l−m)(l +m+1),

γz =

√
(l−m+1)(l +m+2)

(2l +1)(2l +3)
, ζz = m,

(32)

where B(q)
lm = s(q)l b(q)lm . The scaling factors s(q)l are independent

of order m for the case of spherical particles, and these are ob-
tained from the boundary conditions for compressible spheres.
The terms b(q)lm are the series coefficients of the incident velocity
potential on sphere q,

φ̂q = e−iωt
∑
n,m

b(q)lm jn(krq)Ylm(θq,ϕq). (33)

The resultant interaction force and torque are obtained by sub-
tracting the primary ones from the total force and torque from
Eq. (32),

∑
n;q

F(q)
n = F(q)−F(q)

0 ,

∑
n;q

T(q)
n = T(q)−T(q)

0 ,

(34)
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where F(q)
0 and T(q)

0 are the primary radiation force and radiation

torque and obtained by substituting s(q)l = A(q)
lm /B(q)

lm into Eq. (32).

The force and torque expressions in Eq. (32) are valid for spher-
ical objects of arbitrary size. For numerical calculations using this
method, the Partial-wave series, Eqs. (29)-(30) needs to be trun-
cated to an order that is determined by the same factors that af-
fects the scattering response of an object, including its relative
distance to others in the fluid5–8,20. These truncated series with
N terms imply that the multiple scattering solution for a popu-
lation of objects is accurate up to the Nth re-scattering order7.
For sub-wavelength objects within the Rayleigh limit ka� 1, the
force and torque series can be truncated at l = 2, which implies
the dominant contributions from monopole and dipole scattering
modes of the target objects. For larger objects, accurate estimates
of the force and torque are obtained by including higher order
scattering coefficients l = 3,4, · · · ,L. However, they provide no
explicit relation between the physical factors and the acoustic in-
teraction force. The dependence on the relative distance between
the objects is implicitly included in the coefficients of multipole
translation and rotation5,7,8. Several attempts were made to de-
rive explicit equations from the force expressions for a simple con-
figuration of a pair of spherical objects along and normal to the
direction of a plane wave5,7. Nonetheless, these expressions give
the radiation force and torque directly from the scattering coeffi-
cients, which are obtained by solving the multiple scattering prob-
lem.

2.5 Numerical modelling

The acoustic interaction force acting on spherical objects in a
standing wave was widely investigated based on the aforemen-
tioned theoretical approaches. However, numerical modelling of-
fers a more generic approach for studying the effects of geometry,
material properties and thermo-viscous losses beyond the appli-
cability limit of analytical models. Finite Element models, which
account for coupled scattering from a number of objects by solv-
ing the acoustic wave equation Eq. (4) and imposing outgoing
conditions on the scattered waves, were proposed to examine nu-
merically the acoustic interaction force40,57. The simulation pro-
vides a direct solution of the total acoustic pressure and velocity
fields, from the superposition of the external and scattered com-
ponents. The total acoustic radiation force can be obtained using
the surface integral over a fictitious surface enclosing the target
object, given by Eq. (15). The acoustic interaction force is then
calculated by subtracting the primary force from this total radia-
tion force.

A Finite Element model enables estimation of the acoustic
interaction force from the scattered pressure field at the post-
processing level, provided that viscosity-induced acoustic stream-
ing effects are negligible. The compressibility of the objects and
the acoustic refraction can be coupled with an exterior acous-
tic scattering model38,58, to incorporate the effects of the ob-
ject’s material properties. In a Finite Element model, the cou-
pled scattering and deformation of an object in the acoustic field
are accounted for automatically for all orders of scattering that
can be captured by a certain mesh size, as compared to the force

potential model in Sec. 2.3 and the Partial-Wave expansion so-
lution in Sec. 2.4, which only include several orders of scatter-
ing modes for numerical evaluation. The Finite Element model
also provides a robust approach to investigate the effects of ex-
ternal acoustic fields with arbitrary wavefront on the interaction
between objects of different shapes. Thermo-viscous effect can
be incorporated in the numerical model to simulate the change
in scattering and viscous dissipation. However, this numerical ap-
proach is not valid for objects in contact with each other, which
can be solved by using other methods such as those based on
Partial-Wave expansions, as outlined in Sec. 2.4. Another draw-
back of the Finite Element model is the computational cost of
a three-dimensional full-wave simulation that increases signifi-
cantly as more objects are considered in the acoustic field, partic-
ularly when their surface-to-surface distance is much smaller than
their dimensions. A COMSOL implementation of this Finite Ele-
ment model of acoustic interaction force for sound-hard spheres
in an ideal fluid, provided as Supplementary Material, has been
used to validate the results of the analytical solution in Sec. 2.4.

2.6 Modelling results

Fig. 3(a) shows the numerical results of acoustic interaction force
for two spheres located symmetrically with respect to a pressure
node at z/as = 0 in a plane standing wave, using a 3D acoustic
scattering simulation conducted with COMSOL Multiphysics. The
results are in a good agreement with those shown in Fig. 3(b)
of reference7, obtained from the Partial-Wave expansion method,
except for the case of spheres in contact, which are marked by red
crosses in Fig. 3(a). These forces can be decomposed into com-
ponents along and normal to the centre-to-centre line, as shown
in Fig. 3(b), to demonstrate the coupled rotational motion due
to the tangential components, in addition to the radial repulsion-
attraction between the spheres. This is one distinguishing fac-
tor of acoustic interaction forces, compared to other forms of in-
teraction e.g., those generated by an electric field. This pattern
of interaction in terms of direction of forces for a pair of identi-
cal spheres is independent of their locations in a plane standing
wave, and only the magnitude of the interaction forces varies with
their location relative to the pressure node.

Acoustic interaction forces are usually equal and opposite for
identical objects, i.e., with same modes of scattering, as shown in
Fig. 4(a) and (b) for two similar polystyrene beads in water. In
this case, the scattering is dipole-dominant. For the case of non-
identical spheres, with different material properties as shown in
Fig. 4(c) and (d), the interaction forces applied to each of the
objects are different both in terms of direction and magnitude.
This non-reciprocity is another distinguishing feature of acous-
tic interaction, which originates from the nonlinear second-order
acoustic effects. Considering these two features, rotational cou-
pling and non-reciprocity, close-range agglomeration of objects in
an acoustic field can be described through a pair-wise tracking of
interactions for population of objects with size, shape or material
heterogeneity10,21,59–62.
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Fig. 3 Acoustic interaction forces acting on a pair of spherical objects at symmetric locations at the sides of a pressure node of a plane standing
wave, obtained using (a) a Finite Element model and (b) a semi-analytical Partial-Wave expansion7 (Reprinted with permission from Shahrokh
Sepehrirahnama S., Lim K.-M., Chau F.S. Numerical study of interaction force acting on rigid spheres in a standing wave, The Journal of the
Acoustical Society of America 137, 2614. Copyright 2015, Acoustic Society of America, https://doi.org/10.1121/1.4916968). The decomposition
of the interaction force into radial and tangential components, denoted F ·ed and F ·eθ , respectively, with ed and eθ being the radial and tangential basis
vectors, respectively, is shown in panel (b). These theoretical results are obtained for the limit of sound-hard and immovable spheres with ka ≈ 0.03
for an ideal fluid, for which viscosity effects on scattering and streaming are neglected. In practical applications, the size index of ka≈ 0.03 relates to
manipulation of 5 µm particles using 1.5 MHz ultrasonic wave. The case of touching spheres, shown by the cross markers, can be only solved using
the semi-analytical approach; since the volume of elements in the Finite Element model should be non-zero to avoid modelling-related singularities.
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Fig. 4 Reciprocity analysis of interaction forces acting on each object due to the presence of the other for (a)-(b) two identical solid spheres with
(dipole-dominant scattering responses) and (c)-(d) non-identical ones, which are a gas bubble (monopole-dominant scattering responses) and a solid
sphere (dipole-dominant scattering response). The size index of the spheres is ka≈ 0.03, similar to those in Figs. 2 and 3, and the results are obtained
at the limit of ideal fluid, governed by Eqs. (7), (13), and (15). Panels (a) and (c) show the change in the force angle when the source is fixed and
the probe is shifted horizontally with an offset distance. In the case of the non-identical pair, the source is the gas bubble. Unlike electrical forces,
acoustic interaction forces satisfy the Newton’s third law only for identical objects. The results are shown for plane standing waves and the probe is
placed at the pressure node. Reprinted figure with permission from Sepehrirahnama S., Lim K.-M., Physical Review E, 102, 043307, 2020. Copyright
(2020) by the American Physical Society, https://doi.org/10.1103/PhysRevE.102.043307.
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2.7 Limitations of the ideal-fluid assumption

The theoretical models presented in subsections 2.2-2.6 are ob-
tained for an ideal fluid, i.e., neglecting thermo-viscous dissi-
pation and its contribution to acoustic streaming. Only the
radiation-related stresses are used to determine the acoustic
forces, i.e., the primary forces and the interaction forces. Within
this limit, the Partial-Wave expansion model, Eqs. (32)-(34), ap-
plies to any particle size and frequency, as long as sufficient terms
are used in the estimate of the multipole series and as long as
the wave propagation is governed by Eq. (4). The force poten-
tial model of acoustic forces, Eqs.(28), only applies to particles
in the Rayleigh scattering limit of ka� 1, an assumption valid for
ka< 0.3 in numerical calculations7,63, based on the comparison of
primary force between these models7,13,27. Nevertheless, the size
considerations in the two models for an ideal fluid can provide an
estimate of interaction force direction and magnitude, based on
which the theoretical results and experimental measurements can
be compared.

These models can also be used for calculation of the primary
force in a viscous fluid19,27, due to the viscous losses becoming
negligible at distances of several wavelengths away from an ob-
ject and its thermal and viscous boundary layers. At such dis-
tances the fluid is well approximated by a lossless medium19,64.
This implies that objects can be modelled by their equivalent
counterparts, by adding the viscous layer thickness to their size,
and giving them equivalent material properties such that their
scattering response is the same as the original object in a vis-
cous fluid. This modelling approach provides a corrected estimate
of the acoustic radiation force and streaming effects by account-
ing for thermo-viscous dissipation in the vicinity of the objects’
surface19,64; however, it is not applicable to cases with strong
viscous-induced flow.28. Finally, these analytical models provide
an estimate of the acoustic radiation forces, neglecting the hy-
drodynamic effects of acoustic streaming, as a reference and to
demonstrate the relative behaviour of particles using acoustic in-
teraction force. If viscosity effects are included, the dynamics of
the particles can be modelled more accurately. We will review the
influence of viscous dissipation in Sec. 5 from the viewpoint of
the acoustic interaction force.

The acoustic radiation force results from radiation stress, cf.
Eq. (15) as a coupled fluid-structure effect, acting on the exterior
surface13,15; hence, it scales with the square of the nominal size
of an object2,13. For objects much smaller than the wavelength,
exhibiting Rayleigh scattering2, the magnitude of the acoustic
force can become comparable to the weight and buoyancy forces.
Such small objects are commonly referred to as particles, imply-
ing that they behave dynamically like point masses. However,
recent studies showed that the classical particle view is insuffi-
cient to describe the dynamics of certain objects, due to the rela-
tion between the geometry and the acoustic radiation torque65–67

and limitations of force models based on symmetric shapes such
as spheres, spheroids, disks and cylinders18. Shape effects can be
incorporated into the models presented in Sec. 2.3, using acous-
tic polarizability and Willis coupling, or by solving for multipole
coefficients numerically, as presented in Sec. 2.4. Similar to the

interaction forces, there are interaction torques between particles
with asymmetries11, which have yet to be studied in detail. For
non-spherical particles there exists a preferred orientation due to
the action of radiation torque. To further extend the presented
models, it is necessary to include the effects of the interaction
torque for a population of non-spherical particles, which would
also represent a more realistic model of biological cells.

3 Experimental measurements
Experimental measurement of radiation force in acoustophoresis
is performed indirectly, typically the force is extracted from the
observed trajectories of the particles. This relies on a descriptive
model to analyse the particle motion. The equations of motion in-
dicating this dynamic model are solved for the radiation force, as
one of the forces acting on the particles. Direct measurement of
acoustic radiation force is also possible in a hybrid opto-acoustic
setup, where the stiffness of the optical trap is used to calculate
the acoustic radiation force from the small displacement of a par-
ticle68–71. The small wavelength of the optical source results in
finer spatial resolution of the radiation forces. However, it re-
quires more instrumentation, a laser source, and precise calibra-
tion. More importantly, the measurement of acoustic interaction
by hybrid opto-acoustical methods is yet to be explored.

In this section, the requirements for obtaining of acoustic inter-
action force from the trajectories of particles are outlined. As the
particles are small and their intertia is negligible compared to the
external force and the fluid drag, the equations of motion can be
obtained with the quasi-static assumption12. A two sphere-model
will be used to describe the equations of motion in the quasi-static
regime, including acoustic and hydrodynamic forces. The acous-
tic interaction forces from the experimental measurements will
be presented and compared with the theoretical predictions. The
quasi-static motion can be used to describe the dynamics of par-
ticles that have negligible inertia. This is a phenomenological
model describing the slow changes of the scatterers’ positions un-
der an acoustic streaming field, compared to the time period of
the external acoustic wave, and is valid for ultrasound frequen-
cies in practical applications3,13,24,25,54. Such quasi-static motion
requires a balance between acoustic radiation forces and the hy-
drodynamic resistance (drag), which can be due to a background
mean flow, i.e., relative motion of the fluid to moving objects from
before the acoustic excitation, and acoustic streaming72,73. In ad-
dition, the motion of a particle in a fluid generates a flow field
around neighbouring objects which causes them to hydrodynami-
cally interact74. In the presence of other force fields such as elec-
trostatic or the pressure gradient of a background mean flow, the
contribution from the hydrodynamic forces will change according
to the resultant effects of acoustic and other external forces.

3.1 Experimental setup and procedure

Particle tracking has been a major technique in acoustophoretic
experiments to characterise acoustofluidic devices and to con-
duct measurements72,73. It can be used to measure and quan-
tify acoustic radiation forces acting on particles subject to an ul-
trasound field. Fig. 5(a) presents a schematic of a setup used
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in acoustophoretic experiments12, which we describe in detail
here. The corresponding photography is presented in Fig. 5(b),
where the microfluidic channel is a glass capillary viewed from
the top via microscope12, which tracks the motion of beads un-
der acoustic radiation forces. Similar microfluidic channels can
be manufactured from a silicon wafer40,72,73, a steel plate9, or
PDMS enclosed in an Aluminium housing (hybrid metal-polymer
design)75. The advantage of the glass capillary is the smoother
surfaces compared to channels that are etched or cut from silicon
and metal. Glass capillaries have also been used in measurements
of membrane stiffness of biological cells38,58. Although it has
been shown that micron-sized irregularities on the channel wall
may result in a slightly weaker acoustic pressure field, the effect
was found to be negligible76. Also, these manufacturing-related
issues of surface roughness can be resolved by using hybrid
metallic-polymer microfluidic fabrication, which is also a cost-
effective manufacturing approach that leads to much smoother
channel walls75.

The basic experimental set-up consists of an optical micro-
scope (Leica DMLM), charge-coupled device (CCD) camera, com-
puter, external light source (Leica CLS 150X), signal generator
(Agilent 33120A) and syringe pump12. To monitor the signal,
temperature and other experimental conditions, an oscilloscope
(Hewlett-Packard 54600A), high frequency multimeter (Agilent
3458A) and thermistor (MP-2444, TE Technology) are used12. A
power amplifier (e.g., NF HSA 4101) is used to amplify the out-
put of the signal generator to drive the piezo transducer. At high
power levels, the piezo transducer generates excessive heat due
to hysteresis and the temperature of the device may get too high
for the experiment. Therefore, the device includes a cooling sys-
tem consisting of a heat sink, Peltier module (from TE Technol-
ogy) and temperature control unit (TC-48-20, TE Technology) as
shown in Fig. 5(b)38. Electrical connections are shown as black
dashed lines, and the fluid network is shown as blue solid lines in
Fig. 5(a).

The experiment for acoustic interaction forces requires tracking
of particles in a fluid. Particle motion is recorded with a CCD cam-
era connected to the microscope and image processing software
(e.g., Nikon NIS Elements BR scientific image processing soft-
ware)38. The digital media files are stored in a computer and post
processed using image processing software, e.g., Tracker77, to ex-
tract the trajectories of the particles from the media files12,73.

Experimental measurements for the interaction force have been
conducted with the specimen solution of polystyrene spheres in
water9,12,40. Additionally, fluorescent particles can be used as
they are better for the tracking12. It has been shown that pre-
cisely two spheres can be trapped in the field of observation by
using a low concentration of polystyrene sphere suspensions12.
This low concentration suspension was prepared by diluting the
suspension mix, which resulted in about 10 to 100 particles per
microlitre of the specimen solution for 7.81−12.32 µm diameter
particles. The specimen solution was monodisperse, i.e., only one
size of the particle (7.81 µm, 9.9 µm or 12.32 µm) was present
for any observation in the experiment. The size of the particles
was selected based on the cross section of the channel, which is
40 µm ×400 µm and the strength of the input signal. Select-

ing a larger diameter of the particle may lead to difficulty in in-
jecting the particles into the shallow channel and will also result
in extra drag from the top and bottom surfaces of the channel.
However, smaller particles require a high power input signal for
sufficient signal to noise ratio, which results in more heat dissi-
pation from the PZT transducer and the temperature increasing
rapidly in the channel. The setup was designed to include a single
pressure node in the 400 µm width, at the 1.875 MHz excitation
frequency. The input signal to the PZT transducer was set to 60 V
peak-peak. The selection of particle sizes (7.81,9.9 and 12.32 µm)
is a compromise between these considerations. During the spec-
imen solution preparation, a small amount (about 0.2− 0.3% of
the total volume) of Tween 20, a non-ionic aqueous solution, was
added.12. Tween 20 is a surfactant which is used to reduce the
surface tension of the buffer fluid78. A glass surface becomes hy-
drophilic when treated with Tween 20 surfactant79, which pre-
vents the beads from sticking to the glass surface of the fluid
chamber. Furthermore, the concentration of Tween 20 is very
low in the specimen solution, and it barely alters the mechani-
cal properties, such as dynamic viscosity of the water medium80.
As the measurements of the interaction force were conducted for
non-touching particles, the influence of this additive is negligible
in interaction force measurements.

3.2 Energy density measurement

The energy density Eac of the incident acoustic standing wave in
the resonating chamber is the key quantity to obtain. The ampli-
tude of the acoustic pressure is directly proportional to the square
root of the acoustic energy density, which is used as the input in
the numerical simulations and theoretical calculations. There-
fore, it is important to measure the acoustic energy density Eac

accurately to reduce discrepancies between the theoretical calcu-
lations and experimental results. Generally, the estimation of Eac

involves tracking of spherical particles or beads under the influ-
ence of the primary radiation force. By the quasi-static approxi-
mation, the primary radiation force (F0) is balanced by the Stokes
drag72,73,

F0 = 6πµau, (35a)

4πa3k Eac Φ sin(2kh) = 6πµau. (35b)

where Φ = α

3 + β

2 , a, k, u, h and µ are the acoustic contrast factor,
radius of the spherical particle, wavenumber, speed of the par-
ticle, distance from the pressure node and dynamic viscosity of
the host fluid, respectively56. In the above expression, the pri-
mary radiation force is always acting towards the pressure node;
hence, h is the distance from the pressure node to the particle cen-
tre and is always positive. The closed form of primary radiation
force F0 in Eq. 35b is valid up to the dipole approximation of the
scattered pressure fields. Also, this expression is valid under the
assumptions that the sphere is much smaller than the wavelength
under investigation, and considering a perfectly planar standing
wave within an unbounded fluid domain.

The experimentally observed trajectory in the direction of the
field is fitted with a theoretical trajectory using a least-squares
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Fig. 5 (a) Schematic of an acoustophoretic experimental set-up: (1) computer, (2) syringe, (3) syringe pump, (4) microscope, (5) CCD, (6)
valve, (7) waste flask, (8) signal generator, (9) amplifier, (10) oscilloscope, (11) multimeter, (12) light source, (13) microfluidic device, (14)
temperature control unit, and (15) thermistor. (b) Laboratory set-up for the acoustophoretic experiment. Reprinted figure with permission from
Mohapatra A. R., Sepehrirahnama S., Lim K.-M., Physical Review E, 97, 053105, 2018. Copyright (2018) by the American Physical Society.
http://dx.doi.org/10.1103/PhysRevE.97.053105.

method of Eq. (35b), where Eac is the unknown parameter72,73.
The estimation of Eac from the least-squares method is accurate,
when the particle is isolated, i.e., the hydrodynamic interaction
and also the acoustic interaction force induced by other parti-
cles can be neglected due to their large separation. For multiple
particles in proximity, the dynamics become complicated and the
error in the above model, Eq. (35b) and least-squares method
increases. For the above model in Eq. (35b), the estimation of
Eac is required to analyze all the particles simultaneously with
hydrodynamic and radiation interaction forces. Hence, the mea-
surement of acoustic energy density using the motion of probing
particles should ideally be performed using a single isolated par-
ticle2,9,12,72. For particles much smaller than the cross-section of
a fluidic channel, the Stokes drag equation is sufficient to include
the hydrodynamic effects. However, this is only applicable when
the particle is trapped in a location where the streaming-induced
drag force from the fluid domain walls is negligible, e.g., when
particles are trapped at the pressure node of a plane standing
wave and far away from the walls. Otherwise, the contribution
of the channel walls to the hydrodynamic effects becomes sig-
nificant12,81. In a large population, isolating a single particle to
estimate the energy density is challenging. This is yet to be fully
explored, one possible approach is to use a coupled model of hy-
drodynamic interaction to obtain a more accurate estimation of
the energy density.

In the acoustic interaction force experiment of Ref.12, the mea-
surements were performed for a pair of isolated particles. The
motion of a particle is influenced by the presence of the other
particle only. The effect of the acoustic interaction force on the
estimation of Eac can be neglected in this case, since the primary
radiation force is much higher than the acoustic interaction force.
Nonetheless, the hydrodynamic force should be included for the
correct estimation of the drag and consequently of Eac. The mo-
tion of a particle in the fluid induces a Stokes-type flow in ad-
dition to the background or streaming flows. For the two par-
ticles moving parallel to each other towards the pressure node,
the total hydrodynamic interaction assists the motion of the par-
ticles, resulting in their dynamics being determined by the sum of

the primary radiation and the hydrodynamic interaction forces.
Therefore, the inclusion of hydrodynamic interaction will result
in a smaller Eac estimation compared to the case without hydro-
dynamic interaction, e.g., using Stokes drag in case of a single
particle12.

3.3 Experimental observations

The direct evidence of the acoustic interaction force can be ob-
served from the trajectories of the particles. The interaction force
is stronger at short ranges. Therefore, to observe its effect, the
particles should be in close vicinity. Fig. 6 presents the trajecto-
ries of a pair of 12.32 µm diameter polystyrene beads subject to
an ultrasound standing wave12. The normalised centre-to-centre
distance between the beads (r/a) decreases with time, as shown
in Fig. 6(c), due to the attractive nature of the interaction force
in this configuration27. The two beads finally meet at the pres-
sure node plane, i.e., the middle of the channel, shown as dashed
line in Fig. 6(a) and (b). To calculate the interaction force from
experimental observations, the trajectories of the beads near the
pressure node were chosen. Near the pressure node, the primary
radiation force becomes negligible, and the overall dynamics of
the beads depend primarily on the interaction force12. Fig. 6(d)
and 6(e) present the trajectories in x and y from the experiment
and the quadratic fit (solid line) to the experimental observations.
The quadratic fit is useful to calculate the velocity of the beads by
differentiation during the calculation of the interaction force. The
least-squares method or curve fitting tool in MATLAB can be used
for the quadratic fit of the experimental observations of the tra-
jectory. This analysis was performed for particle pairs of equal
size and for all three diameters (7.81,9.9 and 12.32 µm). The
measurement of the acoustic interaction force for all three sizes
is presented in the following section.

3.4 Extraction of the interaction force

Next, a model is developed for the two-bead system to calcu-
late the unknown interaction force from the trajectories of the
beads. Fig. 7 presents a two sphere model for the calculation of
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(d) (e)

x

y
0 s 0.36 s 0.72 s(a)

(c)(b)

Fig. 6 Experimental observations of a pair of 12.32 µm polystyrene
beads12. (a) Snapshots of the beads in ultrasound, (b) the tra-
jectories during the expetiment, (c) normalised centre-to-centre dis-
tance (r/a). (d) and (e) Experimental and quadratic fit of the tra-
jectories in x and y. Reprinted figure with permission from Mohap-
atra A. R., Sepehrirahnama S., Lim K.-M., Physical Review E, 97,
053105, 2018. Copyright (2018) by the American Physical Society.
http://dx.doi.org/10.1103/PhysRevE.97.053105.

the interparticle radiation force, where the beads are approach-
ing the pressure node12. The beads in the fluid medium experi-
ence acoustic radiation force induced by the ultrasound standing
wave and the fluid drag. The acoustic radiation force is separated
into the primary radiation force (F0) and the acoustic interaction
force (F(1)

2 and F(2)
1 for the interaction force acting on bead 1

due to bead 2 and on bead 2 due to bead 1, respectively). The
primary radiation force can be further separated into nominal or
mean primary radiation force (F0) and the perturbation of the
primary radiation force (F̃0). For the case of a sphere of radius a
at a distance h from the pressure node of the standing wave, the
time-averaged magnitude of the radiation force56, F0 is given by

F0 = 4πa3k Eac Φ sin(2kh). (36)

The perturbation part of the primary radiation force, F̃0 is due
to the imperfections in the resonance cavity and the non-uniform
energy transfer from the piezo transducer to the resonance cav-
ity12. F̃0 is treated as an unknown in the model because of the
difficulty to predict it. The total primary radiation force in the

x
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1 2
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F
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Fig. 7 Two sphere model for calculation of the acoustic inter-
action force12. Reprinted figure with permission from Mohapa-
tra A. R., Sepehrirahnama S., Lim K.-M., Physical Review E, 97,
053105, 2018. Copyright (2018) by the American Physical Society.
http://dx.doi.org/10.1103/PhysRevE.97.053105.

model is

F0 = F0,y + F̃0,x + F̃0,y, (37)

where x and y in the subscript denote the components in the
Cartesian coordinate. When the beads are close, the perturba-
tion part of the primary radiation force, F̃0 is assumed to be the
same for both beads12.

The acoustic interaction force can be resolved into two compo-
nents: radial and tangential. The tangential component is neg-
ligible when the centre-to-centre line of the beads is nearly per-
pendicular to the incident wave direction and the beads are close
to the pressure nodal plane (h < 30µm)12. Therefore, the inter-
action forces are only in the radial direction (x-direction) in this
model, and they are denoted as F(1)

2,x and F(2)
1,x .

In the above quasi-static model, the inertia force is negligible
and the external forces on the beads are balanced by the fluid
drag. It is recommended to include hydrodynamic interaction in
the model for the measurement of acoustic interaction force12.
The translational velocities (U) of the two spheres in an infinite
quiescent fluid domain are proportional to the total drag forces
(D)12 through(

U (1)
i

U (2)
i

)
=

1
6πµa

[
δi j Ci j

Ci j δi j

](
D(1)

j

D(2)
j

)
, (38)

where δi j is the Kronecker delta, and the superscript in paren-
theses indicates the sphere involved. The coefficient Ci j for two
spheres separated by centre-to-centre distance r in the xy plane is

Ci j =
3a
4r5

r4 +
r2a2

3
+(r2−a2)x̂2 (r2−a2)x̂ŷ

(r2−a2)x̂ŷ r4 +
r2a2

3
+(r2−a2)ŷ2

 .
(39)

The indices i and j take on the corresponding direction x or y
accordingly. This model can be extended to a population of N
particles, accounting for collisions, to model the process of ag-
glomeration10,21.

From the free body diagram (Fig. 7), the equations of motion
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of the two beads are obtained as

F̃0,x +F(1)
2,x −D(1)

x = 0 (40a)

−F(1)
0,y − F̃0,y +D(1)

y = 0 (40b)

F̃P
x −F(2)

1,x −D(2)
x = 0 (40c)

−F(2)
0,y − F̃0,y +D(2)

y = 0 . (40d)

As the two beads are identical to each other, F(1)
2,x = F(2)

1,x . From
the above equations of motion, the interaction force between the
two beads is given by F(1)

2,x = F(2)
1,x = 1

2 (D
(1)
x −D(2)

x )12.

Similar dynamic models have been reported in9,40,82 for the
calculation of interaction forces. The balance of forces between
the acoustic radiation force and drag is common to all of these
models. The small variations among the models are due to the dif-
ferent experimental conditions and procedures. Including the hy-
drodynamic interaction for the calculation of the total drag is im-
portant for the close-range estimation of the interaction force12.
Also, the inclusion of buoyancy, and gravity are considered, when
the direction of the standing wave and the motion of the particles
in the experiment are aligned with them. For polystyrene beads,
with slightly higher density than water, the effect of gravity can
be ignored. Moreover, the motion of the beads is in the horizon-
tal plane for the present model; hence, the forces in the vertical
direction have been ignored.

The interaction force between two equal polystyrene beads
has been measured and compared with the theoretical results
in Fig. 8(a)12. The interaction force has been normalised to
F(1)

2,x /(Eack4a6) to factor out the size effect of beads, which re-
sults in a slope of about four on a log-log scale. The value of Eac

in the normalisation is the average of the estimates from the in-
dividual bead trajectories in the pair. In Fig. 8, Theoretical-1 was
generated from the analytical formula derived by Silva and Bruus
(2014)83 using up to dipole approximation and Theoretical-2 was
obtained from the numerical simulation similar to Sepehrirah-
nama et. al. (2015)27 with the Partial-Wave expansion up to
fifth order. Both theoretical results were obtained by including
the compressibility of the particles.

Fig. 8(b) presents the linear fit of the experimental data using
MATLAB. These trends are in general agreement with the theoret-
ical lines, which consider only the leading dipole terms in the in-
teraction force83. The experimental values are larger than those
given by theory, although the slopes of the experimental trend
lines are close to those from theory. This could be due to the
effects of viscosity and acoustic streaming at close-range, which
result in higher interparticle radiation forces20. The different
between theoretical and experimental results has a contribution
from the wall effect in a shallow channel12,74. The calculation is
based on the quasi-static equilibrium of the particles in an infinite
fluid domain. However, in the experiment the acoustic chamber is
a finite domain, and the walls of the channel result in additional
drag forces on the particles due to hydrodynamic interaction12,74.
The effect of this drag is about 42% of the simple Stokes drag,
when a 12.32 µm bead is in the mid-plane of a 40 µm shallow

channel12. The correction may be larger if the bead is off-centre
and closer to the channel wall. This will result in an overesti-
mation of Eac by the least-squares method, and the experimental
results in Fig. 8 would be shifted further away from theoreti-
cal prediction. The additional drag due to the surfaces results in
a smaller normalised interparticle radiation force, F(1)

2,x /(Eack4a6)

being obtained from experiments. In Ref.12 it was shown that
the decrease in experimental result, F(1)

2,x /(Eack4a6), will be about
18% between two 12.32 µm beads separated at r/a = 2.26, when
the beads are at the mid-plane between top and bottom surfaces .
Nevertheless, the difference between theoretical and experimen-
tal results of interparticle radiation forces will decrease with the
inclusion of wall effects.

4 Predicting cluster patterns
To study the clustering patterns in an acoustic field, it is impor-
tant to consider the collision behavior of the objects. The position
correction method21 and the collision tracking model10 can be
used to investigate the clustering patterns for a given external
field. In Fig. 9 identical spheres undergo close-range agglomer-
ation within the pressure node of a plane standing wave with
zero primary radiation force. The spheres are located initially on
the nodal plane resulting in zero primary force throughout the
simulation. This is to investigate their dynamics under only the
interaction forces. The position correction method is illustrated
in Fig. 9(a) and (b) for the cases of two and three solid spheres,
respectively, to ensure that the no-penetration condition is met
throughout the clustering process. A pair attracts each other di-
rectly along the centre-to-centre line, as shown in Fig. 9(c). The
effects of rotational coupling become apparent when there are
more than two objects, as shown in Fig. 9(d)-(f) for three, six and
ten spheres, resulting in a collective rotation with the direction
depending on the shape of the cluster. The evolution of acous-
tical agglomeration under the action of radiation and hydrody-
namic forces can be tracked by using time-adaptive approaches,
which are outlined in references10,21, for the quasi-static regime
of sub-wavelength particles in an acoustic field.

5 Effects of viscosity on interaction force
It is well-known that the viscosity triggers acoustic streaming, an
additional time-averaged flow induced by the attenuation of out-
going waves24,25. Strong streaming effects in a fluid cavity oc-
cur due to walls. The contribution from the particles’ scattering
to the streaming flow, which is also referred to as microstream-
ing, may become comparable to or overcome the wall-induced
streaming, depending on the ratio of the material properties of
the particles and the fluid28,84. Studies on the effects of vis-
cosity on acoustic interaction forces showed an increase of ra-
dial attraction/repulsion due to the fluid streaming around a pair
of particles, assuming a free-space fluid domain20. This means
the effects of acoustic streaming, originating either from the side
walls or the particles, can be accounted for as an additional hy-
drodynamic resistance force. In the experimental measurements
of acoustic interaction force, it is necessary to consider that the
total hydrodynamic forces are induced by a background flow,
acoustic streaming generated by channel walls, and the motion of
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(a) (b)

Fig. 8 Comparison between experimentally measured and theoretical interaction force. (a) Experimental and theoretical interaction force across
three different sizes of beads12. (b) Linear fit of the experimental observations and Theoretical-2, by simulation. Theoretical-1 is from the analytical
formula by Silva and Bruus (2014)83. Theoretical-2 is from the numerical simulation similar to Sepehrirahnama et al. (2015)7. Reprinted figure with
permission from Mohapatra A. R., Sepehrirahnama S., Lim K.-M., Physical Review E, 97, 053105, 2018. Copyright (2018) by the American Physical
Society. http://dx.doi.org/10.1103/PhysRevE.97.053105.

S. 1

S. 2

 

x/
λ

y/λ y/λ y/λ y/λ

0

0.06

0
0 0

0 0 0 00.05 0.05 0.05

S. 2 S. 3

S. 1

−0.06
−0.05 −0.05 −0.05

(a) (b)

(c) (d) (e) (f)

Fig. 9 Schematics of collision detection and position adjustment for (a) two and (b) three non-penetrating spherical objects in the close-range regime
of acoustic interaction. Trajectories and cluster formation of (c) two, (d) three, (e) six and (f) ten rigid spheres, with ka ≈ 0.03 corresponding to 5
µm particles subject to a frequency of 1.5 MHz in an ideal fluid, are shown in the pressure node of a plane standing wave with zero primary radiation
force. Reprinted by permission from Springer Nature Customer Service Centre GmbH: SpringerLink, Microfluidics and Nanofluidics, Acoustophoretic
agglomeration patterns of particulate phase in a host fluid. Sepehrirahnama, S., Lim, KM. (2020), advance online publication, 2 November 2020,
https://doi.org/10.1007/s10404-020-02397-5

surrounding particles. At large distances from the walls, hydro-
dynamic interaction between the objects and the walls becomes
negligible. Nevertheless, the accuracy of the measured energy
density and interaction force depends on the inclusion of these
hydrodynamic effects into the particle dynamics model.

Viscosity of the fluid medium affects the scattering response of
particles and objects, even in the Rayleigh limit of ka� 1, by dis-
sipating acoustic energy13,20,26. In addition, this viscous dissipa-
tion leads to a second-order effect in the form of a time-averaged
flow that is called acoustic streaming24,25. To formulate the ef-
fects of viscosity on the acoustic interaction force, we start by
revisiting the governing equations. For a compressible and vis-

cous fluid and in the absence of body forces, the Navier-Stokes
equations become13,

∂tρ +∇∇∇
(
ρv
)
=0,

∂t
(
ρv
)
+∇∇∇ ·

(
ρvv

)
=−∇∇∇p+µ∇

2v+
(
η +

1
3

µ
)
∇∇∇
(
∇∇∇ ·v

)
,

(41)

where µ and η denote the shear and bulk viscosity coefficients.
Substituting the perturbation expansion of the pressure, velocity
and density fields Eq. (2) into Eq. (41) and keeping the first-order
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terms, the acoustic wave equation for a viscous fluid becomes19

∂tρ =−ρ f ∇∇∇ ·v,

ρ f ∂tv =−∇∇∇p+µ∇
2v+

(
η +

1
3

µ
)
∇∇∇
(
∇∇∇ ·v

)
.

(42)

By using the Helmholtz decomposition of the acoustic velocity
field v = ∇φ +∇×ΨΨΨ under the gauge condition ∇∇∇ ·ΨΨΨ = 0 and the
fluid equation of state p= c2

f ρ, the acoustic wave propagation can
be further described using a scalar and a vector wave equations
as

(
∇

2 + k2)p =0, k =
ω

c f

(
1− iω

ρ f c2
f

[4
3

µ +η

])

(
∇

2 + k2
µΨΨΨ
)
=0, kµ =

1+ i
δ

=
(
1+ i

)√ 2µ

ρ f ω

p =−ρ f ∂tφ .

(43)

where k and kµ denote the wavenumbers of the pressure and
shear waves, respectively, δ =

√
2µ/(ωρ f ) is the viscous penetra-

tion depth, also known as the acoustic boundary layer thickness,
and ∇2ΨΨΨ = ∇∇∇×

(
∇∇∇×ΨΨΨ

)
. The complex wavenumbers in Eq. (43)

imply the acoustic energy dissipation in both the pressure and
shear waves. It is expected that viscous dissipation changes the
scattering strengths of objects compared to case of an ideal fluid.
To understand the change in the acoustic radiation force, the gov-
erning equations of acoustic streaming are revisited. By substitut-
ing Eq. (2) into Eq. (41), keeping the second-order terms only,
and time-averaging, the acoustic streaming equations become

ρ f ∇∇∇ · 〈ṽ〉=mb, mb =−∇∇∇ · 〈ρv〉

−∇∇∇〈σ̃σσ〉=fb, fb =−〈ρ∂tv〉−ρ f 〈
(
v ·∇∇∇

)
v〉,

σ̃σσ =− p̃I+µ

(
∇∇∇ṽ+

[
∇∇∇ṽ]T

)
+
(
η− 2

3
µ
)
∇∇∇ · ṽ,

(44)

where superscript T denotes the tensor transpose operator. Com-
pared to streaming in an ideal fluid Eq. (7), the volumetric
mass mb and force fb terms are unchanged; however, the viscous
stresses are included in the momentum conservation equation.
This implies that acoustic streaming induces hydrodynamic ef-
fects due to viscous stresses. Hence, similar to Eq. (9) and using
Eq. (12), the mean force acting on objects, being the sum of the
radiation forces and the hydrodynamic streaming force, is

F =
∫

Γ

〈σ̃σσ −ρ f vv〉 ·ndΓ. (45)

Equation (44) describes fluid motion under volumetric source
terms mb and fb, which are quadratic functions of the acoustic
density and velocity fields. To solve Eq. (44) for streaming asso-
ciated with the scattered acoustic fields, the self-product of the
external acoustic fields, i.e., 〈ρ0v0〉,

〈
ρ0∂tv0〉, and 〈

(
v0 ·∇∇∇

)
v0
〉
,

are subtracted from the source terms mb and fb
13,20,26,27. Using

Eq. (18), an example of this deviatoric form of the scalar source

term m(s)
b is given in the following,

m(s)
b =−∇∇∇ · 〈ρv−ρ0v0〉

=−∇∇∇ ·
〈

ρ0 ∑
n;q

vn +∑
n;q

ρnv0 +∑
n;q

ρn ∑
n;q

vn+

ρ̂qvq + v̂qρq +ρqvq

〉
,

(46)

where m(s)
b denotes the scattering-dependant scalar source. Simi-

larly, we can obtain the expression of the deviatoric vector source
term f(s)b using 〈ρ∂tv−ρ0∂tv0〉 and

〈(
v ·∇∇∇

)
v−
(
v0 ·∇∇∇

)
v0
〉
. Using the

divergence theorem and Eq. (44), the contribution from products
of the external fields become zero and the mean force in Eq. (45)
becomes

F =
∫

Γ

〈σ̃σσ (s)−ρ f
(
vv
)(s)〉 ·ndΓ, (47)

where superscript (s) denotes the deviatoric form of the product
terms, similar to Eq. (46).

Similar to the case of an ideal fluid, we need to solve the multi-
ple scattering problem in an infinite domain neglecting the wall-
induced streaming. The boundary condition of the tangential
component of the acoustic velocity should be accounted for in the
boundary conditions for the case of viscous fluid, and Eq. (31)
becomes

v̂q ·nq +vq ·nq = vq ·nq +uq ·nq,

v̂q · tq +vq · tq = vq · tq +uq · tq,

p̂q + pq = pq,

uq =
i

ρqΩqω

∫
Γq

(
p̂q + pq

)
nqdΓ,

(48)

where tq is the unit tangent vector to the surface of particle q,
which can be decomposed into two orthogonal components in
a given coordinate system. The acoustic boundary conditions
Eq. (48) can be solved numerically, e.g., by a Finite Element
model of acoustic scattering in a lossy fluid28 or using a mul-
tipole expansion of velocity potentials and the orthogonality of
the spherical harmonics describing the angular dependence of the
fields20,27. Without loss of generality, we consider an axisymmet-
ric configuration of a pair spherical particles on the opposite sides
of a pressure node of a plane standing wave, i.e. the external field
has no vector velocity potential component, ΨΨΨ0 = 0 and v0 =∇∇∇φ0.
The scalar velocity potential is expressed as in Eq. (30) for an
ideal fluid, with scattering coefficients B(q)

n0 . The vector velocity
potential ΨΨΨ becomes

ΨΨΨ =ΨΨΨ1 +ΨΨΨ2

ΨΨΨq =e−iωte(q)ϕ

∞

∑
l=0

D(q)
N hn(kµ rq)

dYl0

dθq
, q = 1,2

(49)

where (rq,θq,ϕq) denote the spherical coordinates with respect
to the local coordinate system at the origin of sphere q, and Yl0

is the spherical harmonics of degree zero, i.e., m = 0, indicating
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the axisymmetry of this problem. Since the vector velocity po-
tential ΨΨΨ has only one component in the azimuthal ϕ direction,
it generates acoustic velocity components in the radial direction
r and polar polar direction θ . Hence, for this case of a pair of
rigid immovable spheres in an axisymmetric configuration, and
using the orthogonality of the spherical harmonics, the boundary
conditions become∫

Γq

Yl0
(
vq ·nq +v3−q ·nq

)
dΓq =

∫
Γq

Yl0
(
v0 ·nq

)
dΓq

∫
Γq

dYl0
dθq

(
vq · tq +v3−q · tq

)
dΓq =

∫
Γq

dYl0
dθq

(
v0 · tq

)
dΓq,

(50)

where q = 1,2 giving four independent sets of equations from
which the scattering coefficients B(1)

n0 , D(1)
n0 , B(2)

n0 and D(2)
n0 are ob-

tained20, for up to a given cut-off order. The cut-off order can
be l = 3 and l = 6 for large and small interparticle distances, re-
spectively. The minimum cut-off order can be obtained from a
convergence analysis of the scattered pressure field or of the re-
sultant acoustic radiation force20.

Next, the source terms mb and fb in the streaming equations,
Eq. (44), are obtained from the external and scattered pres-
sure and velocity fields. The effects of the scalar source term
mb are negligible compared to those of the vector source term
fb

13,20,26,27,55; hence, mb can be set to zero and the streaming
flow becomes an incompressible linear Stokes flow20,26,27. The
streaming pressure p̃ and velocity ṽ in Eq. (44) can be solved us-
ing numerical models of inhomogeneous Stokes flow, e.g. using
the Microfluidic module in the COMSOL Multiphysics software
package, or the method of Stokeslet85, which is similar to partial
wave expansion for acoustic scattering. The pair of spheres re-
sponds to the source terms mb and fb by generating an additional
streaming flow such that the boundary conditions, e.g. no-slip
condition, are met at their surfaces. The method of Stokeslet
as a well established analytical solution of linear viscous flow85

which can be implemented by discretizing the body of the fluid
into small volume elements, placing a Stokeslet at their centroids,
and calculating the effects of each fluid element on the surface of
the spheres. The method of Stokeslet for a pair of spheres can be
written as

〈ṽ〉=〈ṽ〉1 + 〈ṽ〉2 + 〈ṽ〉(S)

〈p̃〉=〈p̃〉1 + 〈p̃〉2 + 〈p̃〉(S)

〈ṽ〉(S)xo =
N

∑
l=1

Ωn

8πµ

( I
rn

+
rnrn

r3
N

)
f(n)b ,

〈p̃〉(S)xo =
N

∑
l=1

Ωn

4π

rn

r3
n
· f(n)b ,

rn =xn−xo, r2
n = rn · rn,

(51)

where Ωn denotes the volume of the nth fluid element, f(n)b is the
vector source term evaluated at the centroid of element n, and xo

denotes the position vector of the probe point. This implementa-
tion requires a cut-off size for the fluid domain, e.g., larger than

5λ away from the smallest surface enclosing all particles, to gen-
erate a finite computational domain representing the infinite free
space fluid domain20.

The contributions of sphere q to the streaming flow are denoted
by 〈ṽq〉 and 〈p̃q〉, and can be expressed using a set of scalar and
vector potential functions13,20,27

〈ṽq〉=∇∇∇φ̃q +∇∇∇×ψ̃ψψq,

〈p̃q〉= µ∇
2
∇∇∇×ψ̃ψψq.

(52)

These potentials can be written in terms of a multipole expansion
in the k = 0 limit13 as

φ̃q =
∞

∑
l=0

B̃(q)
n

(aq

rq

)n+1
Yl0,

ψ̃ψψq =e(q)ϕ

∞

∑
l=0

D̃(q)
n

4n−2

(aq

rq

)n−1 dYl0
dθq

(53)

where aq is the radius of sphere q. The set of coefficients B̃(q)
n and

D̃(q)
n are obtained from the boundary conditions for the streaming

flow on the spheres, which are written using the orthogonality of
spherical harmonics as∫

Γq

Yl0

(
〈ṽ〉q ·nq + 〈ṽ〉3−q ·nq

)
dΓq =

∫
Γq

Yl0

(
〈ṽ〉(S) ·nq

)
dΓq

∫
Γq

dYl0
dθq

(
〈ṽ〉q · tq + 〈ṽ〉3−q · tq

)
dΓq =

∫
Γq

dYl0
dθq

(
〈ṽ〉(S) · tq

)
dΓq,

(54)

where q = 1,2. From B̃(q)
n and D̃(q)

n , the streaming pressure and
velocity, and subsequently, stresses are calculated using Eq. (44),
and Eqs. (51)-(53).

For object q, the total force in Eq. (47) can be split into partial
forces of radiation and streaming (hydrodynamic) types as

F(q) = F(q)
0 +∑

n;q
F(q)

n +H(q), (55)

where F(q)
0 and F(q)

n are the primary and interparticle radiation
forces, respectively, and H(q) denotes the hydrodynamic force, in-
cluding hydrodynamic interaction effects. For a single sphere,
it has been shown that H(q) reduces to the Stokes drag13,85, and
F(q) is the sum of the primary radiation force and the Stokes drag.
However, this separation of the interaction force due to radia-
tion from the hydrodynamic interaction is yet to be done, and the
Stokeslet method can be integrated into the force potential for-
mulation Sec. 2.3 to realize this distinction. To demonstrate the
effects of viscosity on the radiation force, the combined radiation
and hydrodynamic interaction forces can be obtained as

F(q)
int = ∑

n;q
F(q)

n +H(q) = F(q)−F(q)
0 , (56)

where F(q) is obtained by solving for the streaming pressure, ve-
locity and stresses in Eq. (44), using Eqs. (50), (46), (51) and
(54), and substituting them into Eq. (47). The primary radiation
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force F(q)
0 can be obtained from the far-field approach Eq. (21), as

described in19 for particles with size in the Rayleigh limit ka� 1,
or using the series expansion of F(q) in Eq. (32)20,27,86, for which
the scattering coefficients are obtained by assuming that particle
q is alone in the fluid domain.

The effects of viscosity on the interaction force are shown in
Fig. 10, for a pair of spheres at the two sides of a pressure node
of a plane standing wave, as shown in Fig. 10(f). In this sym-
metric configuration, all force components acting on the spheres
are equal in magnitude and opposite in direction. Spheres of ra-
dius 1, 5, and 10 µm are considered while the wavelength is 1
mm, e.g., water at room temperature and wave frequency of 1.5
MHz2,54,87, corresponding to viscous penetration depth δ = 0.4
µm. In Fig. 10(a), it is shown that the primary forces calculated
for both cases of a single sphere and a pair of spheres match well,
with relative difference of less than 1% for a wide range of in-
terparticle distance d, in which the total force decreases by at
least three orders of magnitude, as shown in Fig. 10(b). Further-
more, in Fig. 10(b), the total force with and without viscosity,
i.e., obtained from Eq. (47) and Eq. (20), respectively, are shown
to differ by order of several magnitude for small separation d.
Viscosity effects become negligible when particles are relatively
far apart d/δ > 210. The interaction force Fint calculated using
Eq. (56) is shown in Fig. 10(c)-(e) for three sizes of spheres, and
compared against calculations with no viscosity from Eq. (34).
Also, a third case, in which the interaction force is obtained by
including the viscosity effects on the scattering fields (first-order
effects) in Eq. (34) and without considering the streaming flow
(second-order effects), is shown in Fig. 10(c)-(e) to demonstrate
the significant hydrodynamic role of streaming in the increase of
the interaction forces by several orders of magnitude. Finally, it
is shown in Fig. 10(g)-(h) that the interaction force Fint reduces
by approximately 20% when the dynamic viscosity µ is reduced
to 0.2%, i.e., µ/500, confirming that the viscosity value has less
direct influence on the interaction force, and its indirect effect of
inducing streaming flow is more significant.

This theoretical study of viscosity effects on the interaction
force provides insights into the role of streaming flow and the
dependence on the dynamic viscosity of a host fluid. However,
this area is yet to be fully explored, as it might be possible to sep-
arate out the radiation and hydrodynamic components of the in-
teraction force using the methodology in Sec. 2.3 or the approach
based on Finite Element Multiphysics84. This entails separating
the interaction-related terms, similar to Eq. (18), in the expres-
sions of the source terms mb and fb in Eq. (44) and applying the
far-field approach to obtain the radiation-related interaction force
from Eq. (32) and the estimate of the primary radiation force.

6 Conclusion
In this Tutorial, the principles of acoustic interaction force were
presented, for both cases of fluid with and without viscosity. Main
features of this force was shown using the modelling results and
their roles in clustering patterns was demonstrated. Experimental
calulcations of the interaction force were provided to investigate
the validity of the theoretical models.

Theoretical models of acoustic interaction were presented to

demonstrate its dependence on factors including object size, com-
pressibility, incident wavelength and fluid viscosity, and to pro-
vide benchmark cases with a pair of spherical particles as ref-
erence. The first model based on force potential analysis led to
explicit expressions for the interaction forces and force potentials.
The second model based on the Partial-Wave expansion provided
a series expression for the total and primary radiation forces, and
the interaction force was obtained from their difference. Using
these models, the coupled-rotation and non-reciprocity features
were explained as the distinguishing features of acoustic interac-
tion. A numerical model, verified against the analytical results,
was developed and it is made available as Supplementary Mate-
rial for the readers.

The challenges of experimental measurements such as estima-
tion of energy density and indirect extraction of acoustic inter-
action forces from a hydrodynamic model were discussed. A
comparison between theoretical and experimental results of these
forces was presented. It was concluded that describing the clus-
tering of objects under an external acoustic field requires a pair-
wise analysis of interactions and a model of collision detection
depending on the object types in a mixture. Considering the ro-
tational coupling and non-reciprocity of the interaction forces,
the close-range clustering patterns are far more complicated23

than the typical notion of repulsion-attraction, originating from
the concept of electrostatic interaction. It is envisaged that fu-
ture research on acoustic interaction will lead to the improve-
ment of theoretical models and, more importantly, to the develop-
ment of novel applications for customised manipulation based on
small clusters. In the longer term, understanding and controlling
acoustic interaction forces and torques could provide a novel ap-
proach for combining the field of sub-wavelength acoustic meta-
materials and acoustophoresis. Potential applications include lo-
calized beam manipulation and trapping, hierarchical sorting by
inducing enhanced clustering between similar objects, and multi-
scale acoustophoresis through controlling nano-sized objects with
micron-sized objects.
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schematically the directions of the total, primary and interaction forces and the size of the viscous penetration layer (δ -layer) compared to the radius and
the distance from the pressure node d/2. The locations where the interaction force balances out the primary radiation force are marked by total force
being zero, F = 0. Panels (g) and (h) show the changes of the interaction force with respect to different values of dynamic viscosity µ, in the absolute
and relative form, respectively, for sphere size of a = 5 µm. Reprinted figure with permission from Sepehrirahnama, S., Chau, F. S., and Lim K.-M.,
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