
Acoustic Radiation Force and Torque
Acting on Asymmetric Objects in
Acoustic Bessel Beam of Zeroth Order
Within Rayleigh Scattering Limit
Shahrokh Sepehrirahnama* and Sebastian Oberst*

Centre for Audio, Acoustics and Vibration, University of Technology Sydney, Ultimo, NSW, Australia

Acoustic momentum exchange between objects and the surrounding fluid can be
quantified in terms of acoustic radiation force and torque, and depends on several
factors including the objects’ geometries. For a one-dimensional plane wave type, the
induced torque on the objects with arbitrary shape becomes a function of both, direct
polarization and Willis coupling, as a result of shape asymmetry, and has only in-plane
components. Here, we investigate, in the Rayleigh scattering limit, the momentum transfer
to objects in the non-planar pressure field of an acoustic Bessel beam with axisymmetric
wave front. This type of beam is selected since it can be practically realized by an array of
transducers that are cylindrically arranged and tilted at the cone angle β which is a
proportionality index of the momentum distribution in the transverse and axial propagation
directions. The analytical expressions of the radiation force and torque are derived for both
symmetric and asymmetric objects. We show the dependence of radiation force and
torque on the characteristic parameters β and radial distance from the beam axis. By
comparing against the case of a plane travelling plane wave, zero β angle, we
demonstrated that the non-planar wavefront of a zeroth order Bessel beam causes an
additional radial force and axial torque. We also show that, due to Willis coupling, an
asymmetric object experiences greater torques in the θ direction, by minimum of one order
of magnitude compared to a plane travelling wave. Further, the components of the partial
torques owing to direct polarization andWillis coupling act in the same direction, except for
a certain range of cone angle β. Our findings show that a non-planar wavefront, which is
quantified by β in the case of a zeroth-order Bessel beam, can be used to control the
magnitude and direction of the acoustic radiation force and torque acting on arbitrarily
shaped objects, implying that the wavefront should be adjusted according to the object’s
shape to impart acoustic momentum in all directions and achieve a desired
acoustophoretic response.
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1 INTRODUCTION

Acoustic manipulation of objects depends on their scattering
response, when subjected to an external wave field [1–5]. Acoustic
radiation force and radiation torque originated from the radiated
momentum of the scattered waves, with both being proportional
to the products of the scattered and of the incident fields [1, 3,
5–7]. The object-related factors determining these radiation force
and torque include the material properties, dimensions, shape
asymmetries, internal structure, and absorption capacity [1,
8–10]. Factors related to the surrounding fluid cover the
viscosity, its density and compressibility, boundary conditions
and the character of the wave front. Among these factors, the
theoretical relation between shape asymmetry and wave front of
the incident acoustic field is yet to be investigated.

Acoustic radiation force and torque applied to objects with
axisymmetric geometries such as spheres, spheroids, Cassini ovals
(red blood cell shape model) and others have been extensively
investigated for travelling and standing plane waves, which are
1D propagating waves [1, 2, 5, 10, 12–15]. Analytical expressions
of the force and torque were derived for such geometries using the
partial-wave expansionmethod [7–9, 16–22]. The same analytical
approach was used to study the radiation force and torque acting
on axisymmetric objects due to acoustic Bessel beams of zeroth
and first orders [11, 23–31]. Acoustic Bessel beams are of the 2D
type of wave propagation, with an axisymmetric wave front that is
characterised by an axis and a cone angle β, which indicates how
much of wave propagation is along and normal to the beam axis,
as shown in Figure 1A. Compared to the travelling plane waves,
spherical objects of certain sizes can experience a pull radiation
force in the opposite direction of the wave propagation, when
positioned on the beam axis [30, 32]. For off-axis positions, the
acoustic radiation force acts in the axial and transverse directions
of the beam and there is an additional torque applied to the
objects [25, 28]. These effects are examples of demonstrating the

potential of controlling the acoustic manipulation of objects by
changing the incident wave front.

Asymmetry in the shape of an object changes the radiation
force and torque applied to them by inducing the Willis coupling
between the monopole-dipole scattering response and the
incident velocity and pressure fields, respectively [33–35]. For
objects within the Rayleigh scattering limit, the shape asymmetry
manifests as non-zero coefficients of the polarizability tensor of
up to dipole accuracy [5]. Analytical expressions of the radiation
force and torque due to the shape asymmetry show the
contribution from Willis coupling effects, compared to direct
polarizability coefficients that are the diagonal sub-tensors of the
polarizability tensor [5]. Since the acoustic polarization tensor is
independent of the excitation type, the radiation force and torque
of an object with an arbitrary shape in an acoustic Bessel beam of
zeroth order can be investigated directly using the generic force
and torque equations in Ref. [5].

In this paper, we investigate analytically the effects of a Bessel
beam of zeroth order, as an axisymmetric case of non-planar
travelling wave, on the acoustic radiation force and torque exerted
on a object with arbitrary shape. This type of incident wave has a
pressure anti-node on the axis, which can be considered as an
approximate model for focused acoustic beams. It is assumed that
there is no phase variation across the wavefront; however, the
same analytical approach can be used to obtain the radiation force
and torque for a vortex-type non-planar beam [36, 37]. The
dependence of the radiation force and torque on the location of
an object with respect to the beam axis are studied to provide
insight about the acoustophoretic response of objects located off-
axis. The objects are considered to be much smaller than the
wavelength within the Rayleigh limit, and their polarizability
tensor up to monopole-dipole approximation is given.
Comparing the radiation force and torque induced by Bessel
beam against those of the plane travelling wave provides insights
about acoustic manipulation of objects with arbitrary shapes

FIGURE 1 | Acoustic Bessel beam of zeroth order in cylindrical coordinate system with beam axis aligned with the z-axis, (A) the wave front variation over a half
wavelength in the z-direction, showing a travelling wave propagation, (B) the circular arrangement of sources at infinite distance emitting plane waves at angle β with
respect to the z-axis to generate a Bessel beam of zeroth order [11]. The cylindrical coordinates (R, θ, z) of the position vector of an object with arbitrary shape located off-
axis and the local Cartesian coordinate system are shown. The wave vector k and its components kR and kz and their relation with the cone angle β are shown in
panel (A). The dotted lines in panel (A) shows the pressure nodes (P.N.) of the Bessel beam, implying a standing wave behaviour in the radial R-direction.
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using non-planar engineered beams with potential implications
for various fields of science and engineering, including the
ultrasonic manipulation of biological structures.

2 THEORY

The acoustic wave equations derived from the first-order
approximation of the Navier-Stokes equations and in the zero
viscosity limit are expressed [1, 2], as follows,

zttp � c2f∇
2p, ∇p � −ρfztv, p � c2fρ (1)

where p, ρ and v denote the acoustic pressure, density and velocity
fields, respectively, cf and ρf are the speed of sound and the mean
density of the fluid, respectively,  denotes the spatial gradient
operator, and zt denotes the differentiation with respect to time t.
The acoustic fields are time harmonic, e.g., p(x, t) = p(x)e−jωt with x
being the position vector,ω = 2πf and f denoting the wave frequency.
We assume that the object size is within the Rayleigh limit, which is
expressed as ka≪ 1 with k =ω/cf being the wavenumber and a being
the characteristic length of the object.1 Then, the scattered pressure
field of such small object can be approximated by monopole-dipole
partial fields [5, 34, 38], as follows,

ps ≈ − ω2ΩMG + ω2∇ · ΩDG[ ], G � ejkr

4πr
e−jωt, (2)

where M and D are the volumetric monopole and dipole
moments, Ω is the volume of the object, and G is the free-
space Green’s function of the acoustic wave equation, Eq. 1. By
employing the acoustic polarizability, the scattering moments M
and D can be expressed in terms of the incident pressure and
velocity fields [5], as follows,

M
D

[ ] � α̂
pi

vi
[ ], α̂ � 1

Ω
α̂pp α̂T

pv

α̂vp α̂vv
( ),

α̂pv �
αxpv
αypv
αzpv

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, α̂vp �
αxvp
αyvp
αzvp

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, α̂vv �
αxx
vv αxyvv αxz

vv

αyx
vv αyyvv αyz

vv

αzxvv αzy
vv αzz

vv

⎛⎜⎝ ⎞⎟⎠,

(3)
where α̂ denotes the polarizability tensor, α̂pv and α̂vp are the
Willis coupling coefficients, associated with the object’s shape
asymmetry, while α̂pp and α̂vv are the direct polarization
coefficients. The polarizability tensor is independent of the
incident fields, neglecting non-linear scattering response or
fluid properties, and describes the object’s scattering response
as a function of its geometry, material properties, absorption and
dissipation mechanisms within the fluid. A Cartesian description
of these sub-tensors with respect to the coordinate system
attached to the object, denoted by the hat (^ ), is provided in
Eq. 3. Considering the tensor properties under translation and
rotation [22], the description of α in cylindrical coordinates,
shown in Figure 1B, becomes

α � α̂pp α̂T
pvR

T

Rα̂vp Rα̂vvR
T( ), R �

ex · eR ey · eR 0
ex · eθ ey · eθ 0
0 0 1

⎛⎜⎝ ⎞⎟⎠, (4)

where R is the rotation tensor from the local Cartesian coordinates
to the global cylindrical coordinates, and e denotes the unit basis
vector in the direction indicated by its subscript. For the case of a
sphere, the Willis coupling coefficients are zero and α̂vv � α̂vvI,
with I denoting the identity tensor. For axisymmetric objects with a
plane symmetry in the axis direction, e.g., prolate and oblate
spheroids, Cassini ovals etc. [10], the Willis coupling coefficients
become zero too, αxxvv � αxxvv ≠ αzzvv , assuming the axis of symmetry
is in the z-direction, and αxyvv � αyxvv � αxzvv � αzxvv � αyzvv � αzyvv � 0.
In this study, we consider an object with arbitrary shape such that
all the polarizability coefficients in Eq. 3 are non-zero, to provide a
general formulation of acoustic radiation force and torque due to
Bessel beams. Although we assume that the acoustic polarizability
tensor is given, it can be obtained for objects with arbitrary shapes
computationally using Boundary Element method [5, 39, 40], or
Finite Element method [33, 41]. Here, we consider the zeroth order
Bessel beam to derive the analytical expressions; however, the same
formalism can be applied to Bessel beams of higher orders, or other
non-planar beams regardless of the phase variation across the
wavefront.

2.1 Acoustic Bessel Beam of Zeroth Order
The pressure field of an acoustic Bessel beam of zeroth order is
expressed [11], as follows,

pi � AJ0e
jkzze−jωt, J0 � J0 kRR( ), R �

������
x2 + y2

√
(5)

where J0 denotes the regular Bessel function of zeroth order, and
A is the magnitude of the wave. According to the representation
of a Bessel beam using Durnin rings [42, 43],

J0 kRR( ) � 1
2π

∫2π

0
ej kRx cosφ+kRy cosφ( )dφ, (6)

this type of incident beam can be generated from the superposition
of plane travelling waves coming towards a given axis at an incidence
angle of β, as illustrated in Figure 1B. The Bessel beam is of the
travelling type along the beam axis, i.e., z-direction, while fixed
pressure and velocity nodes are (standing wave profile) along the R-
direction. This special acoustic beam is axisymmetric, which implies
the same acoustic pressure for points that are at the same radius from
the axis and zθp = 0. The pressure nodes are indicated in Figure 1A,
and a zone in the vicinity of the beam axis is shaded as a region of
interest for investigating the radiation force and torque exerted off-
axis objects. The velocity field of this Bessel beam and its spatial
derivatives are as in the following,

∇pi · ez � jAk cos βJ0e
jkzze−jωt, ∇pi · eR � −Ak sin βJ1ejkzze−jωt,

vi · ez � A

ρfcf
cos βJ0e

jkzze−jωt, vi · eR � jA

ρfcf
sin βJ1e

jkzze−jωt,

∇vi: ezez� jAk

ρfcf
cos2 βJ0e

jkzze−jωt,∇vi: eReR� jAk

ρfcf
sin2 β J0− J1

kRR
( )ejkzze−jωt,

∇vi: eRez � ∇vi: ezeR � −Ak
2ρfcf

sin 2 βJ1e
jkzze−jωt,

(7)
1the dimension estimated by, e.g., dividing the object’s volume through its surface
area for 3D objects.
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where : operator denotes inner product of two second-order
tensors, ∇ � zReR + 1

Rzθeθ + zzez, and the dyadic products of
the unit basis vectors are denoted by ezeR, ezez, and eReR. From
Eq. 7, it can be seen that all the derivative fields are also
axisymmetric, i.e., vi: eReθ = vi: eθez = vi: eθeθ = vi ·eθ = pi
·eθ = 0. These field expressions of the Bessel beam of the zeroth
order in Eqs 5, 7 are required to formulate the dependence of
the radiation force and torque on cylindrical coordinates (R, θ,
z) and cone angle β.

2.2 Acoustic Radiation Force and Torque
Acoustic radiation force and torque are exerted on an object
within an incident field as a result of radiation stresses 〈σ〉 that
can mathematically be expressed as follows,

〈σ〉 � − 1
2
κf〈p2〉 − 1

2
ρf〈v2〉[ ]I − ρf〈vv〉, (8)

where κf � 1/ρfc
2
f is the mean fluid compressibility, 〈〉 operator

denotes a time-averaging over one wave period [2]. The first term
on the right hand side of Eq. 8 is called radiation pressure that is
generated by the radiated momentum of the scattered pressure
field, and the second term represents the Reynolds stresses
indicating the contribution from the object’s surface
oscillations to the radiation momentum [1, 2, 5, 8, 9, 44].
Acoustic radiation force and torque are obtained from
radiation stresses 〈σ〉, as follows,

F � ∫
Γ
〈σ〉 · ndΓ, T � ∫

Γ
x × 〈σ〉 · n[ ]dΓ, (9)

where Γ denotes a surface enclosing the object and n is the
outward normal vector of Γ surface. By using the far-field
approach and integrating the stresses on any fictitious surface
enclosing the object [2, 8, 45], the radiation force and
torque exerted on an object with arbitrary shape and size
in the Rayleigh scattering limit ka≪ 1 is expressed [5], as follows,

F � Fd + Fc,

Fd � −〈αpp

2ρf
∇ p2

i[ ] + jωαvvvi · ∇vi〉r�0,

Fc � 〈 1
ρf
αpv · pi∇vi − vi∇pi[ ]〉r�0.

T � Td + Tc,
Td � 〈jω αvvvi[ ] × vi〉r�0, Tc � 〈jωpiαvp × vi〉r�0, (10)

where d and c subscripts indicate the force and torque associated with
direct polarization and Willis coupling, respectively. By substituting
Eqs 5, 7 into Eq. 10 and using the reciprocity properties of the
polarizability tensor [5, 22, 35, 38, 46], the analytical expressions of
the force and torque are obtained, as in the following,

Fd ·ez �−2Eik

ρf

1
κf

Im αpp( )cos βJ20+kcfRe αzz
vv( )cos3βJ20+kcfRe αRR

vv( )sin2βcos βJ21[ ],
Fd · eR �−2Eik

ρf
− 1
κf

Re αpp( )sin βJ0J1 + kcfRe αRz
vv( )sin2 β cos β J20 + J21 −

J0J1
kRR

( )[ +

kcfIm αzz
vv( )cos2 β sin βJ0J1 − kcfIm αRR

vv( )sin3 β J0J1 − J21
kRR

( )],
(11)

Fc · ez � −2Eik

ρf
2cfRe αR

pv( )sin β cos βJ0J1[ ],
Fc · eR � −2Eik

ρf
cfIm αR

pv( )sin2 β J20 + J21 −
J0J1
kRR

( )[ ], (12)

Td · ez � −2Eik

ρf
−cfRe αθz

vv( )sin β cos βJ0J1 + cfIm αθR
vv( )sin2 βJ21[ ],

Td · eθ � −2Eik

ρf
cfRe αzzvv( )sin β cos βJ0J1 − cfIm αzRvv( )sin2 βJ21+[

cfIm αRzvv( )cos2 βJ20 + cfRe αRR
vv( )sin β cos βJ0J1],

Td · eR � −2Eik

ρf
−cfIm αθzvv( )cos2 βJ20 − cfRe αθR

vv( )sin β cos βJ0J1[ ],
(13)

Tc · ez � −2Eik

ρf
− 1
κf

Re αθ
vp( )sin βJ0J1[ ],

Tc · eθ � −2Eik

ρf

1
κf

Re αzvp( )sin βJ0J1 + 1
κf

Im αR
vp( )cos βJ20[ ],

Tc · eR � −2Eik

ρf

1
κf

Im αθvp( )cos βJ20[ ],
(14)

where Ei � A2/4ρfc
2
f denotes the energy density of the incident

Bessel beam. Both partial forces Fd and Fc have components
only in z- and R-directions, which implies objects being
pushed or pulled in axial and radial directions in an
axisymmetric acoustic field. For the partial torques Td and
Tc, in addition to the component in the θ-direction, there exist
two more components the z- and R-plane, which means a full
3D torque is induced by an axisymmetric acoustic field. This is
in contrast to the case of a standing, plane wave, where only in-
plane torque components are generated [5, 22]. Compared to a
plane wave, this torque property of the Bessel beam shows that
a 3D rotational manipulation an object with arbitrary shape
can be realized even using 2D propagation type, axisymmetric
beams. The real and imaginary parts of all polarizability
coefficients, from the cylindrical description of the
polarizability tensor in Eq. 4, are required to obtain the
three components of the radiation torque; while only the z-
and R-dependent coefficients are required to calculate both
partial forces. This indicates the significance of accounting for
the shape of the object to find the radiation force and torque in
a Bessel beam of zeroth order.

3 RESULTS

To further investigate the changes of Bessel radiation force
and torque, we examine the expressions in Eqs 11–14 in four
limit cases of (I) β = 0, i.e., plane travelling wave, (II) β tends
to 0 corresponding to radially weak Bessel beam, (III) R = 0
indicating on-axis location of the object’s centroid, and (IV)
kRR ≪ 1, which is the vicinity of the axis, shown by the
yellow-shaded strip in Figure 1A. For general off-axis
locations, the force and torque should be obtained directly
from Eqs 11–14.
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3.1 Case I: β = 0 - Travelling Plane Wave
This case corresponds to zero radial variation of the wavefront kR =
0, which means the Bessel beam degenerates to a travelling plane
wave. By substituting sinβ= 0, cosβ= 1, J0 = 1, J1 = 0, and J1/kRR≈ 1/
2, the partial radiation forces and torques in Eqs 11–14 become

Fd · ez � −2Eik

ρf

1
κf

Im αpp( ) + kcfRe αzzvv( )[ ], Fd · eR � 0,

(15)
Fc · ez � 0, Fc · eR � 0, (16)

Td · ez � 0 Td · eθ � −2Eik

ρf
cfIm αRzvv( ),

Td · eR � −2Eik

ρf
−cfIm αθz

vv( )[ ], (17)

Tc · ez � 0, Tc · eθ � −2Eik

ρf

1
κf

Im αRvp( )
Tc · eR � −2Eik

ρf

1
κf

Im αθvp( ). (18)

Equations 15–18 are identical to expressions in Eq. [26] of Ref. [5],
verifying our formulation of the radiation force and torque under a
Bessel beam at the limit case of β = 0. It is also found that Willis
coupling effects show zero contribution to the force and only
generates torque in the in-plane directions of a travelling plane
wave. The forces and torques generated by a travelling plane wave
are constant and independent of the location of the objects,
meaning that the radiation force and torque fields are uniform
and only depend on the polarizability response of the object.

3.2 Case II: β → 0 - Radially Weak Bessel
Beam
This case corresponds to the long wavelength limit in the radial R
direction, and kR = k sin β ≈ kβ. This case is of interest since it
represents relatively weaker propagation of acoustic energy in theR
direction, i.e., the standing wave profile and fixed pressure and
velocity nodes. By using the asymptotic approximation of the
Bessel function in this limit, i.e., J0 ≈ 1 and J1 ≈ kRR/2, sin β ≈
β, cosβ ≈ 1 and β2≪ β, Eqs 11–14 can be approximated, as follows,

Fd · ez � −2Eik

ρf

1
κf

Im αpp( ) + kcfRe αzzvv( )[ ],
Fd ·eR� −2Eik

ρf
− k

2κf
Re αpp( )β2R+ k2cf

2
Im αzzvv( )β2R+ kcf

2
Re αRz

vv( )β2[ ],
(19)

Fc · ez � −2Eik

ρf
kcfRe αR

pv( )β2R,
Fc · eR � −2Eik

ρf

cf
2
Im αR

pv( )β2, (20)

Td · ez � −2Eik

ρf
−kcf

2
Re αθz

vv( )β2R[ ],
Td · eθ � −2Eik

ρf

kcf
2

Re αzz
vv + αRRvv( )β2R + cfIm αRz

vv( )[ ],
Td · eR � −2Eik

ρf
−cfIm αθz

vv( ) − kcf
2

Re αθR
vv( )β2R[ ],

(21)

Tc · ez � −2Eik

ρf
− k

2κf
Re αθ

vp( )β2R[ ],
Tc · eθ � −2Eik

ρf

k

2κf
Re αzvp( )β2R + Im αR

vp( )[ ],
Tc · eR � −2Eik

ρf

1
κf

Im αθvp( ).
(22)

For a given cone angle β, we can see from Eqs 19–22 that the
radiation force and torque spatially depend only on their radial
coordinate R, changing linearly, while these fields are independent of
the axial coordinate z, due to the travelling wave nature of
propagation in this direction. Compared to the limit case of β =
0, it was found that the additional terms proportional to β2 appear in
the force and torque expressions Tc ·eR, as result of the weak
propagation in the R-direction, except for the radial component
of the Willis coupling torque Tc ·eR that remains unchanged. These
analytical expressions reveal the sensitivity of the radiation force and
torque, both direct and Willis coupling parts, to the change in the
wave front that is the weak Bessel-type undulations. This provides β
angle as another degree of freedom for manipulation of objects with
arbitrary shape, using this type of radially weak Bessel beams.

3.3 Case III: On-Axis Object R = 0
There is a velocity node, corresponding to maximum pressure, on
the axis of the zeroth-order Bessel beam. This is of interest since it
is a relatively good example of focused acoustic beams that can be
produced using a meta-lens [47] or a phased transducer array
[48]. When the centroid of an object is located on the beam axis,
the expressions of acoustic radiation force and torque in Eqs
11–14 are further simplified, as follows,

Fd · ez � −2Eik

ρf

1
κf

Im αpp( )cos β + kcfRe αzz
vv( )cos3 β[ ],

Fd · eR � −2Eik

ρf

kcf
2

Re αRz
vv( )sin2 β cos β[ ], (23)

Fc · ez � 0

Fc · eR � −2Eik

ρf

cf
2
Im αRpv( )sin2 β[ ], (24)

Td · ez � 0

Td · eθ � −2Eik

ρf
cfIm αRz

vv( )cos2 β[ ],
Td · eR � −2Eik

ρf
−cfIm αθz

vv( )cos2 β[ ],
(25)

Tc · ez � 0

Tc · eθ � −2Eik

ρf

1
κf

Im αR
vp( )cos β[ ],

Tc · eR � −2Eik

ρf

1
κf

Im αθvp( )cos β[ ].
(26)

From Eq. 23, we found that an object on the beam axis is subjected to
only an axial force, i.e., in the z-direction as a result of the direct
polarization.2 Since the range of values of the cone angle is 0 ≤ β < π/2,

2a combination of Im(αpp) cos β and Re(αzzvv )cos3 β.
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cosβ > 0 and the direction of the axial force is determined from the
polarization coefficients, i.e., Im(αpp) and Re(αzzvv ), implying that some
objects can experience pull-in effects from a Bessel beam of zeroth
order at the ka≪ 1 limit. The axial components of theWillis-coupling
partial force Fc and both direct and Willis coupling torques Td and Tc

are zero. Equations 25, 26 show that the dependence of the direct and
Willis coupling-induced torques on cone angle β are cos2β and cosβ,
respectively, implying that partial torque fields Td and Tc are
independent of each other and the shape asymmetry needs to be
accounted for separately. Similarly, the partial force fields Fd and Fc are
independent, as can be seen from Eqs 23, 24. Finally, the most
significant contribution of the Willis coupling is the radial
component of the radiation force, coming from Fc ·eR, meaning
that objects with shape asymmetry are pushed away from the beam
axis in the direction that Im(αRpv) is non-zero and maximum, if the
radiation torque is accounted for. This depends on the orientation of
the objects and its shape asymmetry with respect to the beam axis. For
axisymmetric shapes with one degree of asymmetry along the axis of
revolution, e.g., shapes of a Helmholtz resonator, unhealthy red blood
cells [49], or a meta-atom with controlled Willis coupling [22], this
radial force is zero if the axis of symmetry of the object is aligned with
the beam axis. It is inferred that, in general, objects tends to be off-axis
in such acoustic beams; hence, the axisymmetric wavefront provides
the same level of control compared to a 2D arbitrary wavefront.

3.4 Case IV: Object in the Vicinity of the
Beam Axis kRR � 1
We consider this special off-axis case such that kRR≪ 1, as shown by
the yellow-shaded strip in Figure 1A. This condition applies to long
wavelength limit ka≪ 1, and we assume the radial distance is close
to zero (vicinity of beam axis), while 0 ≤ β < π/2. By using the
asymptotic approximation of Bessel functions J0 and J1, the radiation
force and torque in Eqs 11–14 are approximated, as follows,

Fd ·ez�−2Eik

ρf

1
κf

Im αpp( )cosβ + kcfRe αzzvv( )cos3β+k3cf
4

Re αRRvv( )sin4β cos βR2[ ],
Fd · eR � −2Eik

ρf
− k

2κf
Re αpp( )sin2 βR + k2cf

2
Im αzzvv( )cos2 β sin2 βR+[

kcf
2

Re αRzvv( )sin2 β cos β 1 + k2

2
sin2 βR2( ) − kcf

4
Im αRR

vv( )sin4 βR],
(27)

Fc · ez � −2Eik

ρf
kcfRe αR

pv( )sin2 β cos βR[ ],
Fc · eR � −2Eik

ρf
cfIm αR

pv( )sin2 β
1
2
+ k2 sin2 β

4
R2( )[ ],

Td · ez � −2Eik

ρf
−kcf

2
Re αθzvv( )sin2 β cos βR + k2cf

4
Im αθRvv( )sin4 βR2[ ],

(28)
Td · eθ � −2Eik

ρf

kcf
2

Re αzzvv( )sin2 β cos βR − k2cf
4

Im αzRvv( )sin4 βR2+[
cfIm αRz

vv( )cos2 β + kcf
2

Re αRR
vv( )sin2 β cos βR],

Td · eR � −2Eik

ρf
−cfIm αθzvv( )cos2 β − kcf

2
Re αθRvv( )sin2 β cos βR[ ],

(29)

Tc · ez � −2Eik

ρf
− k

2κf
Re αθvp( )sin2 βR[ ],

Tc · eθ � −2Eik

ρf

k

2κf
Re αzvp( )sin2 βR + Im αR

vp( )cos β[ ],
Tc · eR � −2Eik

ρf

1
κf

Im αθ
vp( )cos β[ ].

(30)

From Eq. 30, it was found that the Tc ·eR is constant and
independent of the R-coordinate. Other components of the
partial radiation force and torques change with the radial
coordinate R, e.g., proportional to R and R2. There are also some
constant terms in Fd ·ez, Fc ·eR,Td ·eθ,Td ·eR,Tc ·eθ, andTc ·eR, which
provide the base value of these force and torque fields in the kRR≪ 1
region irrespective of the object’s radial location.

3.5 Numerical Analysis
To investigate the influence of non-planar wavefront of the zeroth
order Bessel beam on the acoustic radiation force and torque, we
consider an object with asymmetric shape such that major
asymmetry occurs along the z-direction for θ = 0 and the
polarizability coefficients become

αpp

Ωs
� 7.2 × 10−3 + 0.0j, αvp � −j

ωρf
αpv

αpv

αpp
�

8.4 × 10−4 + 7.2 × 10−4j
3.4 × 10−10 − 4.8 × 10−5j

0.0,−, 7.4 × 10−2j

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
αvv

αpp
�

1.0,×, 10−4−2.39j 3.6 × 10−9−2.89,×, 10−5j 0.0,+, 1.3 × 10−3j
1.0,×, 10−4 − 2.39j 5.0,×, 10−8−2.4 × 10−4j

Sym. 1.0,×, 10−4 − 2.43j

⎛⎜⎜⎝ ⎞⎟⎟⎠.

(31)
where Ωs denote the volume of the object, and these values
satisfy the acoustic energy balance, i.e., they are less than the
maximum admissible polarizability [38]. Although these are just
examples of the values of polarizability coefficients, they
correspond to a sphere of size a with a blind circular hole
which leads to the asymmetry along the hole axis [5], i.e., z-
direction in this study. The non-zero coefficients with relatively
smaller values correspond to the numerical discretization of this
object for the calculation of monopole and dipole moments
using Boundary Element Method, as outlined in Ref. 5.
Nevertheless, these small values indicate the level of
asymmetry in x- and y-directions, compared to the intended
one in the z-direction.

The ratio of partial forces and torques in cases II to IV against
the force and torque of a plane travelling wave, i.e., case I, is
considered for comparison. The magnitude of the force and
torque for case I are expressed, as follows,

Q � �����������������
Fd + Fc( ) · Fd + Fc( )√

, Z � �����������������
Td + Tc( ) · Td + Tc( )√

.

(32)
First, we investigate the case of weak Bessel beam, i.e., case II and
Eqs 19–22, by choosing β = 5°, corresponding to kR/k ≈ 0.1. The
three components of the partial forces and torques are presented
in Figure 2, for relatively large range of 0 < kRR < π.
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The direct partial force Fd shows a much larger radial
component than the axial z-component, which is almost the
same as the axial force component of a plane travelling wave, as
shown in Figure 2A. Similar differences between components are
observed in the Willis-coupling partial force Fc, as shown in
Figure 2B; however, the contribution of Fc to the total force is

negligible compared to Fd. It is noted that the only non-zero force
component for the reference case of a plane travelling wave is the
axial component of the direct partial force Fd ·ez. In all cases I to
IV, the force component in the θ-direction is always zero due to
the axisymmetric wavefront of the Bessel beam. Comparing the
partial torques in Figures 2C,D, we observed that the component

FIGURE 2 | Partial forces, panels (A),(B), and torques, panels (C),(D), due to direct and Willis coupling acoustic polarization for a weak Bessel beam of β = 5° and
kR/K ≈ 0.1, with respect to the radial distance from the beam axis atR = 0 for the asymmetric object given by its polarizability coefficients inEq. 31. The components of the
forces and torques in the cylindrical coordinate system (eR, eθ, ez) are shown by different line types. For the forces in panel (A),(B), the θ-component is zero. The
magnitude of these forces are shown in the logarithmic scale to indicate the difference in orders of magnitude.

FIGURE 3 | Partial forces, panels (A),(B), and torques, panels (C),(D), due to direct andWillis coupling acoustic polarization in the vicinity of the beam axis atR/a = 1
with a being the nominal radius of the asymmetric object given by its polarizability coefficients in Eq. 31. The results are shown for the entire range of 0 < β < 90° to
demonstrate the effects of wave front deviating further from a plane (β = 0) on an asymmetric object of small size ka ≈ 0.03. The components of the forces and torques in
the cylindrical coordinate system (eR, eθ, ez) are shown by different line types. For the forces in panel (A),(B), the θ-component is zero. The magnitude of these
forces are shown in the logarithmic scale to indicate the difference of orders of magnitude.
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in the θ-direction is the largest and the Willis coupling
contribution is much larger than the direct partial torque. The
R-component of the partial torques is of the same of order of
magnitude, but the z- and θ-components of Willis coupling
torque Tc are much larger than those of Td. The force and
torque components changes almost linearly with respect to the
radial R-coordinate, except for R→ 0 corresponding to region in
the vicinity of the beam axis, i.e., R = 0. These results indicate that
the effects of asymmetry of the object’s shape manifest as a
relatively large torque component in the θ-direction, for Bessel
beam of small β angle representing a weak non-planar
travelling wave.

Next, the case of objects at the vicinity of the beam axis,
i.e., case IV, is shown in Figure 3. The same object with
polarizability tensor given in Eq. 31 is placed one radius a
away from the beam axis, i.e., R/a = 1 corresponding to kR ≈
0.03. The force and torque results are shown for cone angle β in
the range of 0–90°. As shown in Figure 3A, the direct partial
force Fd has a larger component in the radial R-direction. The
component in the z-direction undergoes a sign reversal at β ≈
78°, from opposite (pull) to same (push) as the wave
propagation direction along the z-axis. The Willis coupling
partial force Fc, shown in Figure 3B, is smaller than the Fd by
several orders of magnitude and can be neglected. Comparing
the partial torques Td and Tc, shown in Figures 3C,D,
respectively, it is observed that the asymmetry in shape
results in relatively larger torque components in the θ-
direction, and the magnitude increases as the cone angle β
approaches π/2, corresponding to the limit of zero axial
propagation. Finally, the significant difference between the
magnitudes of the force and torque components correspond to
the values of the polarizability coefficients for this study, which
comes from a discretized geometry of a sphere with a blind
circular hole. Nevertheless, they can be considered as an
indication of the force and torque acting upon an object
with asymmetric shape from several directions. Finally, our
results show that the cone angle β can be used as a design
parameter for axial manipulation using zeroth order
Bessel beam.

4 CONCLUSION

Acoustic radiation force and torque on objects with arbitrary
shape were obtained by applying an acoustic Bessel beam of
zeroth order, which has a pressure anti-node on the beam axis
and fixed pressure nodes along the radial direction, as an estimate
model of engineered non-planar beams using acoustic focusing
techniques. To investigate the effects of this non-planar
wavefront, analytical expressions of the radiation force and
torque were derived by using the far-field approach,
employing the polarizability concept, by remaining under the
assumption of having a lossless fluid for sub-wavelength objects

in the Rayleigh scattering limit. These expressions were verified
by comparing against those for plane travelling waves in the limit
case of zero cone angle β, which is a measure of energy
propagation in the axial and radial directions. For cases of
weak radial field, i.e., β tends to zero, it was found that
additional terms proportional to β2 emerges, compare to the
case of a plane travelling wave, which implies the contribution
from the weak radial field. We also showed that an asymmetric
object located initially on the beam axis is pushed away from the
axis due to the contribution of the Willis coupling partial force.
Furthermore, an object located on the axis, where pressure is
maximum, can experience a pull-in effect for certain values of
direct polarizability coefficients and cone angle β. Finally, for off-
axis cases in the vicinity of the beam axis, we found that the
additional terms are proportional to R and R2, compared to the
case of plane travelling wave, showing the dependence on the
radial position in a Bessel beam. These findings are of interest for
applications of acoustic tweezing or levitation of thin elastic
structures and biological samples with asymmetric geometries,
using non-planar acoustic beams that can be produced by novel
ultrasound meta-materials, in Space engineering and Bio-
material engineering.
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