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Robust Stabilization of LPV Systems with Structured Uncertainty using
Minimax Controllers

Li Li and Valery A. Ugrinovskii

Abstract— This paper addresses a robust control scheduling
scheme for uncertain linear parameter-varying systems with
structured uncertainty. A gain-scheduled controller is proposed
which employs a set of minimax optimal robust controllers
and incorporates an interpolation rule to achieve continuity
of the controller gain over a range of operating conditions.
Novel weighted time-domain integral quadratic constraints are
introduced to assist in the derivation of the controller. The key
idea of the interpolation for the structured uncertainty case is
to transform the parameterized algebraic Riccati inequalities
into equivalent linear matrix inequalities. For every fixed value
of the system parameter, the proposed controller guarantees
robust stability and a certain bound on the worst-case per-
formance of the corresponding uncertain closed loop system.
Furthermore, a bound on the rate of parameter variations is
obtained under which the closed loop LPV system is robustly
stable. To obtain the proposed controller, a set of semi-definite
programming problems are introduced; this enables an efficient
numerical solution to the problem under consideration.

I. I NTRODUCTION

The problem of analytical gain-scheduling has been of
increasing interest since 1990s [1], [2]. Recently, the interest
in this technique has significantly increased owing to the
progress in the area of parameter dependent linear matrix
inequalities (LMIs) [3], [4]. Following [5], the LMI approach
to gain-scheduling relies on converting the underlying control
problem into a set ofH∞ control problems parametrized by
the scheduling parameter and then converting these problems
into an infinite array of LMIs. To overcome the infinite
dimensionality of the resulting LMI problem, relaxation
techniques are considered [4]; to achieve relaxation of the
LMIs to a finite dimensional problem, an LFT dependency
structure of the system on the scheduling parameters [6],
polynomial representations [7] or rational approximations [8]
are often needed. The technical assumption of convexity of
the set of models is another essential requirement of this
approach [6], [7], [9], which may result in more conservative
performance.

Different from the class of uncertain systems considered
in the mentioned references, we consider Linear Parameter
Varying (LPV) systems with structured uncertainty shown in
Figure 1 in which∆j are non-stationary operators

wj(t) = ∆j(t, zj(·)|
t
0), j = 1, . . . , n, (1)
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Fig. 1. The uncertain LPV system

which map the plant uncertainty outputszj into the plant
uncertainty inputswj ; they are not used as scheduling
parameters. Also, the nominal plant is an LPV plant whose
coefficients depend on a parameter which can be measured
and used for scheduling a controller. We aim to find a gain-
scheduled controller to ensure the closed loop uncertain LPV
system is absolutely stable for all admissible uncertainties.

The methodology of the paper builds on the results
of the recent paper [10] which addressed the design of
gain-scheduled controllers for uncertain LPV systems with
unstructured uncertainty. Unlike the mentioned references
using the direct LMI approach, the scheduling algorithm
developed in [10] uses the interpolation approach to gain-
scheduling originated from [11]. This approach has an ad-
vantage that the scheduling parameters are not required to be
polytopic/polynomial/rational dependent; this allows toavoid
the restrictions in [6], [7], [8], [9], e.g., overbounding of the
underlying set of system models by a convex set.

In this paper we extend the results of [10] in several
directions, the most significant one being the extension to
uncertain LPV systems with structured uncertainty. Incor-
porating the uncertainty structure into the control design
algorithm is known to be one way to reduce conservatism
of the controller design. It was shown in [12] that a number
of robust control design problems for LTI uncertain systems
with structured uncertainty can be addressed using the uncer-
tainty description involving time-domain Integral Quadratic
Constraints (IQCs). In this paper we extend the method
of IQCs to deal with the LPV uncertain system shown in
Figure 1. Specifically, our control design uses the fact thatthe
uncertainty inputs under consideration satisfy certain IQCs
in which the effect of parameter variations in the system
is captured by introducing parameter dependent weightings
into the signal norms; thus, the magnitude of the admissible
uncertainty is tied to parameter variations. Unlike this paper,
in the case of unstructured uncertainty [10] it was possible
to use the same IQCs as in the LTI case in the design of



a gain-scheduled controller. However, it appears that this
approach cannot be directly extended to the case of structured
uncertainty. The technical contribution of this paper is to
develop an approach which overcomes this difficulty.

The method of [10] involves interpolation of controllers
designed using parameter-dependent algebraic Riccati equa-
tions (AREs). The key idea of the proposed extension to
the structured uncertainty case is based on transforming
the parametrized AREs into equivalent LMIs. This leads to
a scalable controller interpolation algorithm owing to the
convexity of these LMIs. Different from the mentioned refer-
ences on the LMI approach to gain-scheduling, in our case,
the LMIs are related to the minimax optimal control design
and are convex with respect to inverse Lagrange parameters
included to account for the uncertainty constraints. This
property serves as the basis for our controller interpolation
method. Global convexity with respect to the scheduling
variable is not required.

Another important extension of the results of [10] concerns
the construction of the control interpolation algorithm. The
selection of the Lagrange parameters and corresponding
matrix variables is one of the key steps of the controller
scheduling scheme proposed in [10]. However, in general
[10] gives no indication as to how one can select those
unknown design parameters nor it suggests how the oper-
ating points for interpolation can be determined. This paper
proposes an effective numerical method to solve for those
parameters and connects them to the selection of operat-
ing points for interpolation. By relaxing the parametrized
AREs to inequalities and introducing some additional slack
variables, our result reduces the design of a gain-scheduled
controller to solving a set of semi-definite programming
(SDP) problems involving LMIs.

II. PROBLEM FORMULATION

We consider the following class of uncertain LPV systems
shown in Figure 1:

ẋ(t) = A(ρ(t))x(t) + B1(ρ(t))u(t) +

n
∑

j=1

B2jwj(t),

zj(t) = Cjx(t) + Dju(t), j = 1, · · · , n, (2)

where x(·) ∈ R
nx is the state,u(·) ∈ R

nu is the control
input, zj(·) ∈ R

qj is the uncertainty output,wj(·) ∈ R
pj

denotes the disturbance, and the time-varying parameterρ(·)
is a continuous function[0,∞) → Γ , [γmin, γmax] ⊂ R.
The matricesA(ρ), B1(ρ) are continuous onΓ. To simplify
the derivation of the results, we assumeC′

jDj = 0.
The system (2) is more general than that in [10] in that

the control input matrixB1 is dependent on the scheduling
variableρ(·), and also the uncertainty is structured, as shown
in Figure 1. In accordance with this uncertainty structure,we
will assume thatwj(·) andzj(·) connected by (1) obey the
following ‘sector bound’ constraints,

‖wj(t)‖ ≤ ‖zj(t)‖ ∀t ≥ 0; (3)

‖ ·‖ denotes the standard Euclidean norm. However, in order
to make use of the minimax control design method, we need

to re-write these constraints in the form of IQCs. First, we
select a number of design points{γi}m

i=1 , Γd ⊂ Γ and
for eachi = 1, · · · , m − 1, consider the functionsλi(t) ,
γi+1−ρ(t)
γi+1−γi

andχi(t) such thatχi(t) = 1 if ρ(t) ∈ [γi, γi+1)

and χi(t) = 0 otherwise. In the sequel, we will impose
additional conditions on the design points. For now, we
introduce the following notion of admissible uncertainty for
the system (2).

Definition 1: Let dν,j(i) > 0, ν, j = 1, · · · , n, i =
1, · · · , m − 1, be given constants. An uncertainty input
w(·) = [w′

1(·), · · · , w′
n(·)]′ of the form (1) is an admissible

input for the LPV system (2) if the following condition
holds. For any locally square integrable control inputu(·)
and a corresponding solution to (2) on[0, +∞), there exists
a sequence{tl}∞l=1 such thattl → +∞, tl ≥ 0 and

∫ tl

0

[

λν−1
i (t)[1 − λi(t)]

n−νχi(t)
×(‖wj(t)‖2 − ‖zj(t)‖2)

]

dt ≤ dν,j(i), (4)

ν, j = 1, · · · , n, i = 1, · · · , m − 1.

Note thattl may be equal to infinity. The set of all admissible
uncertainty inputsw(·) will be denotedWLPV .

Conditions (4) are generalized time domain IQCs. Orig-
inally introduced by Yakubovich, the IQC uncertainty de-
scription has proved useful in a number of controller syn-
thesis problems for LTI systems [12]. In particular, it has
enabled the development of the minimax control approach to
the design of robust controllers for uncertain LTI systems.In
this paper we will employ these results on the minimax LTI
control in the derivation of guaranteed cost control results
for the more general uncertain LPV system (2).

Compared to the standard IQCs [12], the constraints (4)
involve the weightingsλν−1

i (t)[1 − λi(t)]
n−νχi(t). Owing

to the indicator functionχi(t) of the interval[γi, γi+1) the
constraints (4) restrict attention to the mismatch in the energy
of uncertainty inputs and uncertainty outputs in this particular
part of the system envelop. Also, the weightingλν−1

i (t)[1−
λi(t)]

n−ν helps to relate the allowable mismatch between the
uncertainty inputs and uncertainty outputs to the variations
of the scheduling variableρ(·) in the interval[γi, γi+1).

Note some special cases of the IQCs (4). As the first
special case, we note that the pairs of uncertainty inputs and
uncertainty outputs satisfying (3), also satisfy (4), and hence
are admissible in the sense of Definition 1. For instance, the
norm-bounded time-varying uncertainty satisfies the IQCs
(4) trivially. The second special case is whereρ(t) ≡ γ =
const ∈ [γi∗ , γi∗+1). In this case,χi(t) ≡ 0 for all i 6= i∗,
λi∗(t) ≡ (γi∗+1 − γ)/(γi∗+1 − γi∗) = const, and the
IQCs (4) reduce to (assumingλν−1

i∗ (1 − λi∗)n−ν 6= 0): for
ν, j = 1, . . . , n,

∫ tl

0

(‖wj(t)‖
2 − ‖zj(t)‖

2)dt ≤
dν,j(i

∗)

λν−1
i∗ (1 − λi∗)n−ν

. (5)

That is, the condition (5) is a standard IQC
∫ tl

0

‖wj(t)‖
2dt ≤

∫ tl

0

‖zj(t)‖
2dt + dj , j = 1, · · · , n, (6)

in which dj ’s are some suitable constants.



Associated with the LPV system (2) and the uncertainty
classWLPV , consider the following set of state-feedback
gain-scheduled controllersu = u(t, ρ(t), x) of the form

ẋc(t) = Ac(ρ(t))xc(t) + Bc(ρ(t))x(t),

u(t) = Kc(ρ(t))xc(t), (7)

wherexc ∈ R
nc is the controller state vector. We aim to

design a state-feedback controller of the form (7) for the
uncertain LPV system (2) such that under the condition
ρ(t) ∈ Γ ∀t ∈ [0,∞), the closed-loop uncertain system is
absolute stable for all admissible disturbancesw(·) ∈ WLPV

in the sense of Definition 2 given below. The design should
utilize only a finite number of design pointsΓd ⊂ Γ.

Definition 2: The system (2), (4) is said to be absolutely
stabilizable via state feedback control if there exists a con-
troller (7) and a constantc > 0 such that for any initial con-
ditions [x′(0), x′

c(0)]′ and any admissible uncertainty inputs
wj(·), the signalsx(·), xc(·), wj(·) are uniformly bounded,

‖x(·)‖2
2 + ‖xc(·)‖

2
2 +

n
∑

i=1

‖wj(·)‖
2
2

≤ c(‖x(0)‖2 + ‖xc(0)‖2). (8)

Here we used the notation‖q(·)‖2
2 ,

∫ ∞

0
‖q(t)‖2dt.

The IQCs (6) were considered in the minimax optimal
control approach to the design of robust controllers for the
LTI uncertain systems [13], [12], and in the case ofρ(t) =
const, the stability property stated in Definition 2 reduces
to the absolute stability property for LTI uncertain systems
considered in those references. Hence, if it were possible to
‘freeze’ the scheduling parameterρ, the controller could be
constructed using the minimax control design method. It is
important to note that the condition (6) is independent of
ρ. This observation is crucial for the controller design that
follows. It will allow us to proceed with the controller design
as if the parameters of the system were fixed, and then derive
additional conditions on the rate of parameter variation ofthe
system (2) under which the underlying uncertain LPV system
(2), (4) governed by this controller is absolutely stable.

III. R EVIEW OF THE MINIMAX CONTROL DESIGN

A. Minimax control design for a fixed parameter system

Let us fix γ ∈ Γ and assume that(A(γ), B1(γ)) is
stabilizable. Consider the fixed parameter uncertain linear
system with structured uncertainty

ẋ = A(γ)x + B1(γ)u +

n
∑

j=1

B2jwj ,

zj = Cjx + Dju, j = 1, · · · , n. (9)

As observed above, the IQCs (4) in this case reduce to the
IQCs (5), or equivalently the IQCs (6); we denote the set of
uncertainties of the form (1) for the system (9) satisfying (6)
by Wγ . This allows us to apply the minimax optimal control
design technique of [13], [12] to the system (9) subject to
the IQCs (6). Consider the following quadratic cost:

J(u, w) :=

∫ ∞

0

(x′Mx + u′Nu)dt, (10)

whereM > 0 andN > 0 are given weighting matrices. The
minimax optimal state-feedback control lawu∗ minimizes
the worst case of the performance cost (10) for this system,

u∗ := arg inf
u

µ(u),

µ(u) := sup
w∈Wγ

{J(u, w) : subject to (9)}. (11)

Since for now we assume thatγ is fixed, the results of [13]
can be applied to obtain a solution to the problem (11).

Consider the matrix Riccati equation:

A′(γ)X +XA(γ)−X [B1(γ)(N +

n
∑

j=1

τjD
′
jDj)

−1B′
1(γ)

−
n

∑

j=1

τ−1
j B2jB

′
2j ]X + M +

n
∑

j=1

τjC
′
jCj = 0, (12)

where τj > 0, and define the setΠ(γ) consisting of all
τ = (τ1, · · · , τn), τj > 0, for which (12) admits a stabilizing
solutionX(τ) = X ′(τ) > 0.

Lemma 1 ([13], [12]): For a givenγ ∈ Γ, if Π(γ) 6= ∅,
then the solution to the problem (11) is given by

u∗(x) = −(N +

n
∑

j=1

τ∗
j D′

jDj)
−1B′

1(γ)X(τ∗)x, (13)

τ∗ = (τ∗
1 , · · · , τ∗

n) := arg inf
τ∈Π(γ)

x′
0X(τ)x0. (14)

The worst-case cost defined in (11), is given by

µ(u∗) = x′
0X(τ∗)x0 +

n
∑

j=1

τ∗
j dj . (15)

Conversely, if Π(γ) = ∅, then the optimal minimax
controller u∗ does not exist andµ(u) = ∞ for all state-
feedback controllersu(·).

B. Minimax control design for an LPV system: small param-
eter variations

The minimax optimal controller (13) for a fixedγ ∈ Γ can
be used in the derivation of a controller for the LPV system
(2), provided parameter variations are sufficiently small,i.e.,
ρ(t) ≈ γ ∀t ≥ 0. In this case small parametric perturbations
of the matricesA(·), B1(·) can be treated as disturbances,
and the LPV system (2) can be regarded as a perturbation
of a linear fixed-parameter system. Let us fixγ ∈ Γ, and
rewrite the uncertain LPV system (2) as follows

ẋ = A(γ)x + B1(γ)u +

n
∑

j=1

B2jwj + β1ξ1 + β2ξ2, (16)

where β1 > 0, β2 > 0 are some constants,ξ1(t) :=
(1/β1)[A(ρ(t))−A(γ)]x(t), andξ2(t) := (1/β2)[B1(ρ(t))−
B1(γ)]u(t). The minimax optimal controller can now be
designed based on the representation (16); it will guarantee
robustness of the system (16) against both the disturbance
wj(·) and the parameter variation inA(·), B1(·). To proceed,
the setW of uncertainties (1) for the system (16) satisfying
the uncertainty constraint (6) needs to be augmented in order
to account for the structured uncertaintywj(·), ξ1(·) ξ2(·).
Associated with the modified state equation (16), we consider
the following IQCs, additional to the IQCs (6):



∫ tl

0

‖ξ1‖
2dt ≤

∫ tl

0

‖x‖2dt,

∫ tl

0

‖ξ2‖
2dt ≤

∫ tl

0

‖u‖2dt.

(17)
Here{tl} is the sequence from Definition 1. In (17),x(·) is
the state process generated by the fixed parameter LPV sys-
tem (2) (or equivalently (16)) driven bywj(·), j = 1, · · · , n,
and u(·). Note that whenρ(·) ≡ γ = const, then ξ1(·) ≡
0, ξ2(·) ≡ 0 and the structured uncertainty constraints (17)
are trivially satisfied, hence the system uncertainty is subject
to the IQCs (6) only. Also, in contrast to [10], to reduce
conservatism, the uncertainty due to deviations of the system
matrices from the fixed values is accounted for using separate
constraints from those imposed on the disturbanceswj .

The introduced modification allows us to apply the min-
imax optimal state-feedback control design technique to
the LPV system (16). The resulting controller, due to its
robustness properties, will stabilize the original uncertain
LPV system provided the parameterρ(·) varies in a small
neighborhood ofγ. The size of the neighborhood depends
on the choice ofβ1, β2 and also on the parameterγ ∈ Γ.
We conclude this discussion by formally stating the result.

Theorem 1:Let β1, β2 andγ ∈ Γ be chosen so that

‖A(ρ(t)) − A(γ)‖ < β1, ∀ t ∈ [0,∞), (18)

‖B1(ρ(t)) − B1(γ)‖ < β2, ∀ t ∈ [0,∞); (19)

‖ · ‖ denotes the largest singular value. Consider the ARE

A′(γ)X + XA(γ) + M + (

n
∑

j=1

τjC
′
jCj + τn+1I)

− X [B1(γ)(N +
n

∑

j=1

τjD
′
jDj + τn+2I)−1B′

1(γ)

− (

n
∑

j=1

τ−1
j B2jB

′
2j + τ−1

n+1β
2
1I + τ−1

n+2β
2
2I)]X = 0, (20)

and suppose that the correspondingly modified setΠ(γ) =
{~τ = (τ1, · · · , τn+2) : τj > 0, (20) admits a stabilizing
solution X = X ′ > 0} is not empty. Then the minimax
optimal controller

u∗
γ = −(N +

n
∑

j=1

τ∗
j D′

jDj + τ∗
n+2I)−1B′

1(γ)X(~τ∗)x, (21)

~τ∗ = (τ∗
1 , ..., τ∗

n+2) := arg inf
~τ∈Π(γ)

[

x′
0X(~τ )x0 +

n
∑

j=1

τjdj

]

,

absolutely stabilizes the uncertain LPV system (2), (6) and
yields the robust performance bound

µ := sup
w∈W

J(u∗
γ , w) ≤ x′

0X(~τ∗)x0 +

n
∑

j=1

τ∗
j dj . (22)

IV. GAIN -SCHEDULING OFM INIMAX OPTIMAL

CONTROLLERS

In this section we use the results of the previous section
in order to introduce a controller schedule for the uncertain
LPV system (2), (4). We will assume that the selected set of
design pointsΓd ⊂ Γ satisfies the following conditions:

1) Each pair(A(γi), B1(γi)) is stabilizable.
2) For eacht ∈ [0,∞), there exists at least onei ∈

{1, . . . , m} and β1,i > 0, β2,i > 0 such that the
inequalities (18), (19) hold withβ1 = β1,i, β2 = β2,i.

3) ∀i = 1, . . . , m, the ARE (20) admits a stabilizing
solution Xi > 0 for someτ1,i > 0, · · · , τn+2,i > 0
and selectedβ1,i > 0, β2,i > 0; i.e, the corresponding
setsΠ(γi) must be not empty for the selectedβ1,i, β2,i.

In section V, we will show that the last assumption can be
reformulated as a certain set of SDP problems. This will
allow for this assumption to be verified numerically.

The above assumptions allow us to use Theorem 1 to
computem minimax optimal controllers of the form (21) for
the uncertain LPV plants (16) subject to (6), (17) for each
γi. Let u∗

i and µi denote such minimax optimal controller
(21) and the corresponding worst-case cost in (22). Also, let
~τi =

(

τ1(i), · · · , τn+2(i)
)

and Xi denote the value~τ∗ in
(22) and the corresponding matrixX(~τ∗), respectively. Due
to robustness of each such controller, we can ascertain the
existence of a neighborhoodUi ⊂ R of each design point
γi ∈ Γd, such that all closed loop properties in Theorem 1
hold under the condition{ρ(t); 0 ≤ t < ∞} ⊂ Ui. Then,
choosing the design points{γi} such thatΓ ⊂ ∪m

i=1Ui,
allows us to conclude that any fixed parameter system in
which ρ(t) = γ ∈ Γ is stabilizable by one of the designed
controllers; this property corresponds to the stability covering
condition [11]. The proposed controller schedule is

uns(t, γ, x) := u∗
ν(x), (23)

ν := arg mini{µi : ‖A(γ) − A(γi)‖ < β1,i, ‖B1(γ) −
B1(γi)‖ < β2,i}; that is, if γ ∈ ∩iUi, then we choose a
controller which guarantees a better performance.

However, if the controller (23) is applied to the LPV
system (2), its gain may become discontinuous at the time
instant when the trajectory ofρ(t) exits the setUi and enters
the setUi+1. In a practical situation, switching control gains
may lead to undesirable transients. We therefore propose a
continuous interpolation of the minimax controllers{u∗

i }
m
i=1,

following the reference [11]. Our interpolation technique
follows [10] and differs from that used in [11] in that it
preserves, along with stability of the nominal closed loop
system, the property of interpolants to guarantee a bound
on the worst-case quadratic performance cost and hence ro-
bustness. Although the idea behind this particular robustness
preserving controller interpolation was proposed in [10],this
paper revisits the design of [10] from a different technical
perspective. This allows us to remove some limitations of
the approach of [10], the main limitation being the lack of
tools to address the structure of uncertain perturbations.

A. The design of a gain-scheduled controller

We first introduce an interpolated controller for the fixed
parameter system (9), and then show that the proposed
controller can be applied to the LPV system (2). Consider
the uncertain fixed parameter system (9), and assumeγ ∈



Ui ∩ Ui+1, that is

‖A(γ) − A(γk)‖ < β1,k for k = i, i + 1, (24)

‖B1(γ) − B1(γk)‖ < β2,k for k = i, i + 1. (25)

Lemma 2:Suppose (γi, ~τi, Xi) and (γi+1, ~τi+1, Xi+1)
satisfy (20), where~τk =

(

τ1(k), · · · , τn+2(k)
)

, k = i, i + 1.
Also, supposeA(γ), B1(γ) satisfy (24), (25). Define for
λ ∈ [0, 1]

Nλ =N +

n
∑

j=1

τλ,jD
′
jDj , Xλ =

[

λX−1
i +(1−λ)X−1

i+1

]−1

,

τλ,j =
[

λτ−1
j (i) + (1 − λ)τ−1

j (i + 1)
]−1

. (26)

Then (τλ, Xλ), τλ , (τλ,1, · · · , τλ,n), satisfies

A
′

(γ)Xλ + XλA(γ) +

n
∑

j=1

τ−1
λ,j XλB2jB

′

2jXλ

− XλB1(γ)N−1
λ B′

1(γ)Xλ + M +
n

∑

j=1

τλ,jC
′

jCj < 0. (27)

Definition 3: Assuming (24-25), define the interpolated
controller by lettingλ = (γi+1 − γ)/(γi+1 − γi) and

uλ := −N−1
λ B′

1(γ)Xλx. (28)
The minimax optimality properties of the interpolants do

not imply that the interpolated controller delivers a bounded
worst-case performance. The robust controller interpolation
problem is no different in this regard from the stability
interpolation problem discussed in [11]. However, the robust
stability and performance of the uncertain fixed parameter
system (9), governed by the controller (28), can be evaluated
following the idea of [10]. By proving that the worst-
case quadratic performance of the fixed parameter uncertain
system is bounded, we can ascertain stability of the closed
loop system.

Theorem 2:Under conditions (24) and (25), the interpo-
lated controlleruλ(·) given in (28) robustly stabilizes the
uncertain fixed parameter system (9). The corresponding
worst-case cost is bounded as follows,

µ̄(γ) := sup
w∈W

J(uλ, w) ≤ λµi + (1 − λ)µi+1. (29)

B. Stabilizing properties of the interpolated controller

To study stabilizing properties of the interpolated con-
troller in relation to the underlying LPV system (2), for
simplicity, we will assume that[γi, γi+1] ∈ Ui ∩ Ui+1 for
all i = 1, . . . , m − 1. This technical assumption can be
easily relaxed at the expense of considering a somewhat
more complex piecewise continuous interpolation rule as in
[10]. Under this simplifying assumption, the interpolation
rule simplifies to the following LPV controller gain schedule:

us(t, ρ(t), x) = −(Ns)−1B′
1(ρ(t))Xsx, (30)

where Ns = N +

n
∑

j=1

τs
j D′

jDj , ρ(t) ∈ [γi, γi+1),

(τs
j , Xs) := (τλ(t), Xλ(t)), λ(t) =

γi+1 − ρ(t)

γi+1 − γi
. (31)

It follows from Theorem 2 that the controller (30) sta-
bilizes the uncertain system (9) with constant buta priori
unknownparameterγ ∈ Γ. We now show that this gain-
scheduled controller robustly stabilizes the original uncertain
LPV system (2), (4), provided the scheduling variableρ(t)
varies sufficiently slowly.

Let τ̃s =
n
∏

v=1
τs
v . Then we can writeτs

j /τ̃s as

τs
j

τ̃s
=

m−1
∑

i=1

n
∑

v=1

λv−1(t)[1 − λ(t)]n−vθv,j(i)χi(t). (32)

whereθv,j(i) > 0 is a constant defined byτ−1
l (i), τ−1

l (i +
1), l 6= j, whenγ ∈ [γi, γi+1).

Lemma 3:Under the IQC conditions (4), the follwing
IQCs also hold forj = 1, · · · , n:

∫ tl

0

τs
j

τ̃s
(‖wj(t)‖

2 − ‖zj(t)‖
2)dt ≤

m−1
∑

i=1

n
∑

v=1

θv,j(i)dv,j(i),

(33)
From Lemma 3, the main result of the paper follows.
Theorem 3:Suppose that the time-varying parameterρ(·)

of the uncertain LPV system (2) satisfies the condition

sup
t

|ρ̇(t)| <
qη

δ
, δ := sup

γ∈Γ\Γd

∥

∥

∥

d

dγ
(Xs/τ̃s)

∥

∥

∥
, (34)

whereq ∈ [0, 1) is a constant, andη > 0 is defined as

η := min
γ∈Γ

%
{ 1

τ̃ s
[M + X

s
B1(γ)(Ns)−1

N(Ns)−1
B

′

1(γ)Xs]
}

;

%(·) denotes the smallest eigenvalue of a matrix. Then, the
closed loop uncertain LPV system consisting of the uncertain
LPV system (2), (4) and the gain-scheduled controller (30)
is absolutely stable for all disturbancesw(·) satisfying the
IQCs (4). Furthermore, the following worst-case performance
bound can be ascertained

sup
w∈WLPV

J(us, w) ≤
τ̃max

1 − q

[ 1

τ̃s(γ◦)
x′(0)Xs(γ◦)x(0)

+

n
∑

j=1

m−1
∑

i=1

n
∑

v=1

θv,j(i)dv,j(i)
]

, (35)

whereγ◦ := ρ(0), τ̃max := max
γ∈Γ

τ̃s.

As observed in Section II, the uncertain perturbations of
the form (1) satisfying the constraint (3) also belong to the
setWLPV . The definition ofWLPV involves the parameters
dν,j(i), however embedding the constraints (3) into (4) can
be achieved by selecting arbitrarily smalldν,j(i). Therefore
the conditions of Theorem 3 imply robust stabilization of the
underlying system (2) subject to the structured uncertainty
(1), (3) by means of the gain-scheduled controller (30).

The bound (34) depends on the design parameters
β1,i, β2,i. SinceA(γ), B1(γ) are continuous, conditions (24),
(25) implicitly relate the parametersβ1,i, β2,i to the size of
cover setsUi. In Section V, we will introduce a set of SDP
problems from whichβ1,i, β2,i and the corresponding scaling
parameters can be found numerically.



Finally, note that for the fixed parameter system (9), we
have τ̃max = τ̃s and ρ̇ = 0. Thereforeq = 0 and the IQCs
(4) are equivalent to IQCs (6) sinceλ is a constant, and the
cost bound (35) reduces to the bound (29) in Theorem 2.

V. LMI REALIZATION

As shown in Sections III, IV, the proposed gain-scheduling
controller design involves solving a set of parameterized
game-type AREs fori = 1, · · · , n,

A′(γi)Xi + XiA(γi) − Xi[B1(γi)N
−1
αi B′

1(γi)

− (

n
∑

j=1

τ−1
j (i)B2jB

′
2j + τ−1

n+1(i)β
2
1,iI + τ−1

n+2(i)β
2
2,iI)]Xi

+ M +

n
∑

j=1

τj(i)C
′
jCj + τn+1(i)I = 0, (36)

whereNαk = N +
n
∑

j=1

τj(k)D′
jDj + τn+2(k)I.

Define the following variables:

X̄i = X−1
i , τ̄j(i) = τ−1

j (i), j = 1, · · · , n + 2,

τ̂1(i) = τ−1
n+1(i)β

2
1,i, τ̂2(i) = τ−1

n+2(i)β
2
2,i. (37)

By applying the technique used in [14], under the assump-
tion that the pair

(

A(γi), B1(γi)
)

is stabilizable fori =
1, · · · , m, solving the ARE (36) is equivalent to solving
the following SDP problems in the variablesWi, X̄i, F̄i,
τ̄1(i), · · · , τ̄n+2(i), τ̂1(i), τ̂2(i):

min Trace(Wi)
[

M11 M12

? M22

]

< 0,

[

Wi Inx

? X̄i

]

> 0,

where M11 = X̄iA
′(γi) + A(γi)X̄i +

n
∑

j=1

τ̄j(i)B2jB
′
2j

+ τ̂1(i)I + τ̂2(i)I + B1(γi)F̄i + F̄ ′
iB

′
1(γi),

M12 =
[

X̄iM
1/2, F̄ ′

iN
1/2, X̄iC

′
1 + F̄ ′

i D
′
1, · · · ,

X̄iC
′
n + F̄ ′

iD
′
n, X̄i, F̄

′
i

]

,

M22 = − diag
[

Inx
, Inu

, τ̄1(i)Iq1
, · · · , τ̄n(i)Iqn

,

τ̄n+1(i)Inx
, τ̄n+2(i)Inu

]

.

This equivalence can be proved in a similar fashion to [14].
Solving the above SDP problems allows to obtainXi,

τ1(i), · · · , τn(i), β1,i, β2,i from (37) systematically. Then the
state feedback gainK is readily scheduled from (30).

The controller interpolation algorithm proposed in [10]
was essentially a two-step algorithm. First the parameters
β1,i, β2,i were to be selected, then the parametrized AREs
(36) corresponding to these parameters were to be solved,
while no indication was given as to how one should choose
β1,i, β2,i. In contrast, the algorithm proposed above pro-
vides a convex approach to solving forβ1,i, β2,i and the
corresponding scaling parameters. This makes this algorithm
much easier to implement in practical systems.

Finally note that the controller interpolation schedule (28)
can be generalized to uncertain LPV systems whose dynam-
ics are governed by varying vector parameters. The details

of this extension will be reported elsewhere. We only note
that the proposed improved scheme employs a substantially
reduced number of interpolants, compared to [10].

VI. CONCLUSIONS

In this paper we have considered a continuous gain-
scheduling problem for uncertain LPV systems. Our result
extends the robust gain-scheduling via interpolation approach
developed in [10] to the case of uncertain systems in
which the uncertainty is structured. The key idea behind the
proposed controller interpolation algorithm is to transform
the parameterized algebraic Riccati inequalities into equiv-
alent LMIs, so that the natural convexity properties of the
LMI feasibility sets can be exploited. It has been shown
that the proposed controller robustly stabilizes the fixed-
parameter uncertain LPV system, yielding a bounded worst-
case quadratic cost, and as a result, the uncertain closed
loop LPV system governed by the interpolated controller
is absolutely stable provided the system parameters vary
sufficiently slowly. A bound on the rate of scheduling param-
eter variations has been obtained. Furthermore, we providea
systematic way to solve the underlying parameterized AREs,
which transforms the proposed gain-scheduled controller
design to solving a set of SDP problems involving LMIs.
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