“© 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works.”



Robust Stabilization of LPV Systems with Structured Uncerainty using
Minimax Controllers

Li Li and Valery A. UgrinovskKii

Abstract— This paper addresses a robust control scheduling
scheme for uncertain linear parameter-varying systems wh
structured uncertainty. A gain-scheduled controller is proposed
which employs a set of minimax optimal robust controllers
and incorporates an interpolation rule to achieve continuty
of the controller gain over a range of operating conditions.
Novel weighted time-domain integral quadratic constrains are
introduced to assist in the derivation of the controller. The key
idea of the interpolation for the structured uncertainty case is
to transform the parameterized algebraic Riccati inequalties
into equivalent linear matrix inequalities. For every fixed value
of the system parameter, the proposed controller guarantee
robust stability and a certain bound on the worst-case per-
formance of the corresponding uncertain closed loop system
Furthermore, a bound on the rate of parameter variations is
obtained under which the closed loop LPV system is robustly
stable. To obtain the proposed controller, a set of semi-defite
programming problems are introduced,; this enables an effi@nt
numerical solution to the problem under consideration.

I. INTRODUCTION
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Fig. 1. The uncertain LPV system

which map the plant uncertainty outpuis into the plant
uncertainty inputsw;; they are not used as scheduling
parameters. Also, the nominal plant is an LPV plant whose
coefficients depend on a parameter which can be measured
and used for scheduling a controller. We aim to find a gain-
scheduled controller to ensure the closed loop uncertaih LP
system is absolutely stable for all admissible uncertanti

The problem of analytical gain-scheduling has been of e methodology of the paper builds on the results

increasing interest since 1990s [1], [2]. Recently, theriegt

of the recent paper [10] which addressed the design of

in this technique has significantly increased owing to thgain.scheduled controllers for uncertain LPV systems with
progress in the area of parameter dependent linear mat{jxsiructured uncertainty. Unlike the mentioned reference
inequalities (LMIs) [3], [4]. Following [5], the LMl approgh  sing the direct LMI approach, the scheduling algorithm
to gain-scheduling relies on converting the underlyingtcan developed in [10] uses the interpolation approach to gain-
problem into a set of{, control problems parametrized by scheduling originated from [11]. This approach has an ad-
the scheduling parameter and then converting these preblegyntage that the scheduling parameters are not requireel to b
into an infinite array of LMIs. To overcome the infinite polytopic/polynomialirational dependent; this allowsaimid
dimensionality of the resulting LMI problem, relaxationiye restrictions in 6], [71, [8], [9], e.g., overbounding the
techniques are considered [4]; to achieve relaxation of th?nderlying set of system models by a convex set.
LMis to a finite dimensional problem, an LFT dependency | this paper we extend the results of [10] in several
structure of the system on the scheduling parameters [§iractions, the most significant one being the extension to
polynomial representations [7] or rational approximasif8l  ncertain LPV systems with structured uncertainty. Incor-
are often needed. The technical assumption of convexity ghrating the uncertainty structure into the control design
the set of models is ar_10ther essentia_ll requirement of _théﬁgorithm is known to be one way to reduce conservatism
approach [6], 7], [9], which may result in more consenvativ of the controller design. It was shown in [12] that a number
performance. _ _ of robust control design problems for LTI uncertain systems
~ Different from the class of uncertain systems consideregith structured uncertainty can be addressed using therunce
in th_e mentioned referen.ces, we consider ngar Param.e@(nty description involving time-domain Integral Quatita
Varying (LPV) systems with structured uncertainty shown inconsiraints (IQCs). In this paper we extend the method
Figure 1 in whichA; are non-stationary operators of IQCs to deal with the LPV uncertain system shown in
wi(t) = Aj(t, 2 (b)), (1) Figure 1. Specifically, our control design uses the factttiet
uncertainty inputs under consideration satisfy certai€dQ
UnTi\?eifsi‘tNO(f)'; ’i\lse V\Slugggtfée\‘ugsthe Australian Research Councdl & jn \which the effect of parameter variations in the system
L. Li |ys with National ICT Australia, Department of Electak and is captured by introducing parameter dependent weightings
Electronic Engineering, The University of Melbourne, VI&10, Australia  into the signal norms; thus, the magnitude of the admissible
li.li@e.uninelb. edu.au. o uncertainty is tied to parameter variations. Unlike thipgra
V. A. Ugrinovskii is with School of ITEE, University of New Sth Wales in the case of unstructured uncertainty [10] it was possible

at the Australian Defence Force Academy, Canberra ACT 2808iralia, ) . -
v. ougri novski @df a. edu. au. to use the same IQCs as in the LTI case in the design of
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a gain-scheduled controller. However, it appears that thte re-write these constraints in the form of 1QCs. First, we
approach cannot be directly extended to the case of steetturselect a number of design poinfs;}7, £ I'; ¢ T' and
uncertainty. The technical contribution of this paper is tdor eachi = 1,--- ,m — 1, consider the functiong;(t) £
develop an approach which overcomes this difficulty. 21=plt) gng xi(t) such thaty;(¢t) = 1if p(t) € [vi,Vit1)
The method of [10] involves interpolation of controllersavﬁalX:(t) = 0 otherwise. In the sequel, we will impose
designed using parameter-dependent algebraic Riccad-equdditional conditions on the design points. For now, we

tions (AREs). The key idea of the proposed extension tmitroduce the following notion of admissible uncertainty f
the structured uncertainty case is based on transformifige system (2).

the parametrized AREs into equivalent LMIs. This leads to Definition 1: Let dyi(i) > 0, v,j = 1,---,n, i =
a scalable controller interpolation algorithm owing to they ... m — 1, be given constants. An uncertainty input
convexity of these LMIs. Different from the mentioned refer (.) = [w/ (-),--- ,w’ ()]’ of the form (1) is an admissible

ences on the LMI approach to gain-scheduling, in our casgput for the LPV system (2) if the following condition

the LMIs are related to the minimax optimal control desigmolds. For any locally square integrable control input)

and are convex with respect to inverse Lagrange parameteiisd a corresponding solution to (2) {ih +oo), there exists

included to account for the uncertainty constraints. Thig sequencét; }7°, such that; — +oo, ¢; > 0 and

property serves as the basis for our controller interpmati T .

method. Global convexity with respect to the scheduling / |:)‘i O =A@ "xi0) | 4 (@, (@

variable is not required. 0 X(lw; O = [z @)12) | = 7
Another important extension of the results of [10] concerns v,j=1---,n, i=1---,m—1

the construction of the control interpolation algorithmheT i that; may be equal to infinity. The set of all admissible
selection of the Lagrange parameters and correspondi[“;k:ert(,;limy inputsu(-) will be denotedV; py.

matrix \{ariables is one of the_key steps of the _controller Conditions (4) are generalized time domain IQCs. Orig-
scheduling scheme proposed in [10]. However, in generglyy introduced by Yakubovich, the IQC uncertainty de-
[10] gives no indication as to how one can select thoSg:rintion has proved useful in a number of controller syn-
unknown design parameters nor it suggests how the oPgfgis problems for LTI systems [12]. In particular, it has
ating points for interpolation can be determined. This papgnapied the development of the minimax control approach to
proposes an effective numerical method to solve for thosfe gesign of robust controllers for uncertain LTI systems.
parameters and connects them to the selection of operglis haper we will employ these results on the minimax LTI
ing points for interpolation. By relaxing the parametrizéd,oniro| in the derivation of guaranteed cost control result
AREs to inequalities and introducing some additional slack,: the more general uncertain LPV system (2).

variables, our resglt reduces the de_sign_of a gain—schédule Compared to the standard 1QCs [12], the constraints (4)
controller to sonmg a set of semi-definite programming,olve the weightings\” ~ (£)[1 — A; (£)]"~":(t). Owing
(SDP) problems involving LMIs. to the indicator functiony;(t) of the interval[y;, ;1) the
[I. PROBLEM FORMULATION constraints (4) restrict attention to the mismatch in thergn

of uncertainty inputs and uncertainty outputs in this paitr
part of the system envelop. Also, the weightiRg " (¢)[1 —
" A:(1)]"" helps to relate the allowable mismatch between the
N o uncertainty inputs and uncertainty outputs to the vanmsio
&(t) = Alp()z(t) + Bi(p(®)u(®) + ZIBQJU}J ®), of the scheduling variablg(-) in the interval|y;, yit1)-
! @) Note some special cases of the 1QCs (4). As the first

special case, we note that the pairs of uncertainty inpuds an
wherez(-) € R" is the stateu(-) € R" is the control uncertainty outputs satisfying (3), also satisfy (4), ardde
input, z;(-) € R% is the uncertainty outputy;(-) € R?  are admissible in the sense of Definition 1. For instance, the
denotes the disturbance, and the time-varying paraméter norm-bounded time-varying uncertainty satisfies the 1QCs
is a continuous functior0, 00) — I' 2 [ymin, Ymax] C R.  (4) trivially. The second special case is wheig) = ~ =
The matricesA(p), B1(p) are continuous of". To simplify  const € [y, v:+11). In this casey;(t) = 0 for all i # i*,

We consider the following class of uncertain LPV system
shown in Figure 1:

zi(t) = Cjx(t) + Dju(t), j=1,---,n,

the derivation of the results, we assufieD; = 0. Ai«(t) = (virx1 — v)/(vi*41 — =) = const, and the

The system (2) is more general than that in [10] in thafQCs (4) reduce to (assuming.’jl(l — X )" Y £ 0): for
the control input matrixB; is dependent on the scheduling, j =1,... n,
variablep(-), and also the uncertainty is structured, as shown o (%)
in Figure 1. In accordance with this uncertainty structwe, / (lw; I = Nz 0Pt < =22 - (5
will assume thato;(-) and z;(-) connected by (1) obey the A (L= g )
following ‘sector bound’ constraints, That is, the condition (5) is a standard IQC

[lw; @I < llz; ()] vt = 0; ®)

tl tl
| O < D@, =1, 0 @
||| denotes the standard Euclidean norm. However, in order o 0
to make use of the minimax control design method, we neéd which d;'s are some suitable constants.



Associated with the LPV system (2) and the uncertaintywhereM > 0 and N > 0 are given weighting matrices. The
class Wy py, consider the following set of state-feedbackminimax optimal state-feedback control lamf minimizes

gain-scheduled controllers = u(t, p(t), ) of the form the worst case of the performance cost (10) for this system,
Ze(t) = Ac(p(t))zc(t) + Be(p(t))x(t), u* = arginf u(u),
u(t) = Ke(p(t))ze(t), () p(u) == sup {J(u,w): subjectto (9).  (11)

. . W,
wherez. € R"e is the controller state vector. We aim to wEWy

design a state-feedback controller of the form (7) for th&ince for now we assume thatis fixed, the results of [13]
uncertain LPV system (2) such that under the conditioaan be applied to obtain a solution to the problem (11).
p(t) € T Vt € [0,00), the closed-loop uncertain system is Consider the matrix Riccati equation:

absolute stable for all admissible disturbancés € Wi py A(NX + XA~ — XIB N D'DA-LB
in the sense of Definition 2 given below. The design should X+ ™) B +ZTJ ;D) 1(7)

j=1
utilize only a finite number of design poinig; C T'. n i
Definition 2: The system (2), (4) is said to be absolutely _ ZTj_lBQjBéj]X + M+ ZTJC’}C} =0, (12)
stabilizable via state feedback control if there exists a-co = =
troller (7) and a constant > 0 such that for any initial con- i .-
ditions [2/(0), 2.,(0)]" and any admissible uncertainty in utsWhere 7j > 0, and define the_ sell(y) consisting O.f. ‘F."”
e y . ynputs, _ (11, ,mn), 7 > 0, for which (12) admits a stabilizing
w;(+), the signalse(-), z.(-), w; () are uniformly bounded, solutiolr;X(r’) ”:’XJ,(T) > 0.
= Lemma 1 ([13], [12]): For a giveny € T, if TI(y) # 0,
2 2 012
ez + llze ()2 + 21 s Ol then the solution to the problem (11) is given by
< c([2(0)[* + [Jz(0)[*)- (8) u*(z) = —(N + > 7DDy Bl ()X (r*)z,  (13)
Here we used the notatidfy(-)[13 £ [>° [lq(t)]|>dt. . =t . /
The 1QCs (6) were considered in the minimax optimal 7 = (715", 7,) = argTelIﬁfw)on(T)wo- (14)

control approach to the design of robust controllers for the i i o

LTI uncertain systems [13], [12], and in the casepof) = The worst-case cost defined in (1121, is given by

const, the stability property stated in Definition 2 reduces p(u*) = wh X (7%)zo + ZT;dﬂ“ (15)

to the absolute stability property for LTI uncertain sysgem =

considered in those references. Hence, if it were posgible t c v I B h h imal mini

‘freeze’ the scheduling parametgy the controller could be on;llerse;y(,j IfII(y) = . 0, then t S optlfma lrlnlnlmax

constructed using the minimax control design method. It ign(;g) ekru O(TIS not exist angi(u) = oo for all state-

important to note that the condition (6) is independent o edback controllers(.).

p- This observation is crucial for the controller design thaB. Minimax control design for an LPV system: small param-

follows. It will allow us to proceed with the controller dgsi  eter variations

as if the parameters of the system were fixed, and then derivery o minimax optimal controller (13) for a fixede T can

additional cond|t|ons_on the rate of parameter\_/ananomef be used in the derivation of a controller for the LPV system

system (2) under which the underlying uncertain LPV syster) ', qvided parameter variations are sufficiently snia,

(2), (4) governed by this controller is absolutely stable. ) - vt > 0. In this case small parametric perturbations
[1l. REVIEW OF THE MINIMAX CONTROL DESIGN of the matricesA(-), By(-) can be treated as disturbances,

A. Minimax control design for a fixed parameter system @and the LPV system (2) can be regarded as a perturbation

of a linear fixed-parameter system. Let us fixe T', and

Let us fix v € T and assume thatA(v), B1(7v)) is . .
stabilizable. Consider the fixed parameter uncertain iineéewrlte the uncertain LPVns ystem (2) as follows

system with structured uncertainty = A(Y)z + Bi(y)u + Z Bojwj + $1&1 + Beba, (16)

s = " B =
E= A0zt Bi(yu+ ;Bg]w” where 3, > 0,5, > 0 are some constants,(t) :=
2 = Cjz+ Dju, j= 1, . @ (L/B)[Ap(®) = A)]x(t), and&s(t) := (1/82)[Bi(p(t)) -

o Bi(v)]u(t). The minimax optimal controller can now be
As observed above, the 1QCs (4) in this case reduce to tisigned based on the representation (16); it will guaeante

IQCs (5), or equivalently the 1QCs (6); we denote the set qhpustness of the system (16) against both the disturbance
uncertainties of the form (1) for the system (9) satisfyify ( w;(-) and the parameter variation #Y-), B, (-). To proceed,
by V. This allows us to apply the minimax optimal controlthe set)y of uncertainties (1) for the system (16) satisfying
design technique of [13], [12] to the system (9) subject tghe uncertainty constraint (6) needs to be augmented irr orde
the IQCs (6). Consider the following quadratic cost: to account for the structured uncertainty(-), & (-) &(-).
e, , Associated with the modified state equation (16), we comside
J(u, w) = /0 (&"Maz + u'Nu)dt, (10)  the following 1QCs, additional to the IQCs (6):



i t t t . . .
[ alae< [Celpan [l < [ a1 E2h paTAGe, i) s stabilzable.
0 0 o 17) 2) For eacht € [0,00), there exists at least one €

Here {t,} is the sequence from Definition 1. In (17)) is i{nlé(.qﬁle{lirtrilgs ?23),6359)10% €v2i’tlh$1>: %:l:l;: :thﬁaQti'the
the state process generated by. the fixed pgrameter LPV sy%) Vi = 1,...,m, the ARE (20) admits a stabi’lizing
tem (2) (or equivalently (16)) driven by, (-),j =1,--- ,n, solution X; > 0 for somer,; > 0,--- ,Tni2; > 0
andu(-). Note that wherp() = v = const, then&,(-) = and selected; ; > 0, 52 > 0; i.e, the corresponding
0,52(-_) = 0 an_d _the structured uncertainty con_stra_|r_1ts a7) setslI(~;) must be not empty for the selected,, fs.i.
are trivially satisfied, hence the system uncertainty igestb ) ] T
to the IQCs (6) only. Also, in contrast to [10], to reduceln section V, we will shqw that the last assumption can b_e
conservatism, the uncertainty due to deviations of theesyst réformulated as a certain set of SDP problems. This will
matrices from the fixed values is accounted for using separa!loW for this assumption to be verified numerically.
constraints from those imposed on the disturbancgs The above assumptions allow us to use Theorem 1 to
The introduced modification allows us to apply the min£omputern minimax optimal controllers of the form (21) for
imax optimal state-feedback control design technique té€ uncertain LPV plants (16) subject to (6), (17) for each
the LPV system (16). The resulting controller, due to it§:- Let u; and y; denote such minimax optimal controller
robustness properties, will stabilize the original unaiert (21) and the corresponding worst-case cost in (22). Algo, le
LPV system provided the parametef-) varies in a small 7 = (71(i),-- ,Tut2(7)) and X; denote the valug™ in
neighborhood ofy. The size of the neighborhood depend422) and the corresponding matri(7*), respectively. Due
on the choice of3;, 3, and also on the parametere I'. 10 robustness of each such controller, we can ascertain the
We conclude this discussion by formally stating the result.existence of a neighborhodd; C R of each design point

Theorem 1:Let 31, 5, and~y € I' be chosen so that vi € I'q, such that all closed loop properties in Theorem 1
hold under the conditiodp(t);0 < ¢ < oo} C U;. Then,

[A(p(#)) =AM < B1, YEe[0,00),  (18)  choosing the design pointsy;} such thatl' ¢ U™, U,
|1B1(p(t)) — Bi(7)]] < B2, YVt e [0,00); (19) allows us to conclude that any fixed parameter system in
| - || denotes the largest singular value. Consider the AREWhICh o(t) T € I is stabilizable by one of thg_des_|gned

controllers; this property corresponds to the stabilityaring

zn: condition [11]. The proposed controller schedule is
AMX + XA+ M+ (Y 7,C,C5 +10l)

Jj=1 uns(ta’yax) = U,t((E), (23)
~ X[Bi(Y)(N + Y 7;D}Dj + Tuy2I) ' Bi() v = argmin{p; : [[A(7) — A(v)| < B [[Bi(y) —
j=1 Bi(vi)|l < Bz2.i}; that is, if v € n;U;, then we choose a

2, , R IR controller which guarantees a better performance.
- (Z 7 BajByj + 7 Bl + 70002 D)X =0, (20) However, if the controller (23) is applied to the LPV
7=t system (2), its gain may become discontinuous at the time
and suppose that the correspondingly modifiedIset) = instant when the trajectory ¢f(t) exits the set/; and enters
{T = (m1, -+ ,Tay2) : 7; > 0, (20) admits a stabilizing the setl/; . In a practical situation, switching control gains
solution X = X’ > 0} is not empty. Then the minimax may lead to undesirable transients. We therefore propose a
optimal controller continuous interpolation of the minimax controllgrs;} 7 ,
n following the reference [11]. Our interpolation technique
ul = —(N+ZT;D;DJ» + 75 o) By (v) X (7)x, (21) follows [10] and differs from that used in [11] in that it
j=1 preserves, along with stability of the nominal closed loop
n system, the property of interpolants to guarantee a bound
= (71, Tpyo) == arg ?elgl(c : (20X (F)zo+ Y _7d; ],  on the worst-case quadratic performance cost and hence ro-
K j=1 bustness. Although the idea behind this particular rolasstn
absolutely stabilizes the uncertain LPV system (2), (6) an@reserving controller interpolation was proposed in [10is
yields the robust performance bound paper revisits the design of [10] from a different technical
n perspective. This allows us to remove some limitations of
pi= sup J(ul,w) < )X (7)o + ZT;dﬂ" (22) the approach of [10], the main Iimitation_ being the I_ack of
wEW = tools to address the structure of uncertain perturbations.

IV. GAIN-SCHEDULING OFMINIMAX OPTIMAL ) )
CONTROLLERS A. The design of a gain-scheduled controller

In this section we use the results of the previous section We first introduce an interpolated controller for the fixed
in order to introduce a controller schedule for the uncertaiparameter system (9), and then show that the proposed
LPV system (2), (4). We will assume that the selected set @bntroller can be applied to the LPV system (2). Consider
design pointd’; C T" satisfies the following conditions: the uncertain fixed parameter system (9), and assymne



U;NU;1, that is It follows from Theorem 2 that the controller (30) sta-
L bilizes the uncertain system (9) with constant bupriori

14(y) = Alw)ll < Pre for k= Z,’Z,+ Lo (@24) unknownparametery € I'. We now show that this gain-
[B1(7) = Bi(w)|| < B2 for k=ii+1. (25 scheduled controller robustly stabilizes the originalentein

Lemma 2:Suppose (v;, 7, Xi) and (i1, g1, Xip1) LPV system (2), (4), provided the scheduling variap(e)

satisfy (20), where, = (ﬁ(kr), e ,Tn+2(k)), k=ii+1. varies sufficisntly slowly.
Also, supposeA(y), Bi(vy) satisfy (24), (25). Define for  Let 75 = 75. Then we can write? /7° as
A€ [0, 1] v=1
n 1 TS m—1 n
NA:N+_Z;TA,J-D;DJ-, X=Pxrtea-nxgy 2= 1 2%1@)[1 A0, (valt). (32)
1= 1=1 v=
—1 . . _ 1/ —1/.
™ = {)\Tj—l(i) + (1 =N7 i+ 1)} _ (26) wheree_l,,j(z') > 0 is a constant defined by ' (i), 7, (i +
A o 1)313&]! When’}/e [’Yia’YiJrl)'
Then(7y, X1), T = (a1, Tan), Satisfies Lemma 3:Under the IQC conditions (4), the follwing

" IQCs also hold forj =1,--- ,n:
A (MX) + XaA() + Z T):;XAB2,jB;jXA

ty 8 m—1 n
= | Uy = 101 < 3037 0,500 )

n , i=1 v=1
— XaBi(VNy ' BI()Xa + M + > 73,6505 < 0. (27) (33)
o . =1 _ From Lemma 3, the main result of the paper follows.
Definition 3: Assummg (24-25), define the interpolated Theorem 3:Suppose that the time-varying parameté)
controller by lettingA = (vi+1 —)/(vi+1 — ;) and of the uncertain LPV system (2) satisfies the condition

Uy = —N;lBi () Xxz. (28) ] qn d oy s
The minimax optimality properties of the interpolants do ~ SUP lp(t)] < 5 0= GSIEIFF @(X [T (34)
Y d

not imply that the interpolated controller delivers a boed
worst-case performance. The robust controller interpmiat whereq € [0, 1) is a constant, ang > 0 is defined as
problem is no different in this regard from the stability 1 . L L .
interpolation problem discussed in [11]. However, the stbu 7 := min Q{;[Z\/H-X Bi(7)(N?) " N(N®)" Bi(m)X ]};
stability and performance of the uncertain fixed parameter ) )

system (9), governed by the controller (28), can be evatuate¢(-) denotes the smallest eigenvalue of a matrix. Then, the
following the idea of [10]. By proving that the worst- closed loop uncertain LPV system consisting of the unaertai
case quadratic performance of the fixed parameter uncert&RY System (2), (4) and the gain-scheduled controller (30)
system is bounded, we can ascertain stability of the closd® @bsolutely stable for all d|sturbancez§-) satisfying the
loop system. IQCs (4). Furthermore, the following worst-case perforoen

Theorem 2:Under conditions (24) and (25), the interpo-bound can be ascertained

lated controlleruy(-) given in (28) robustly stabilizes the s Tmaz 1, s
uncertain fixed parameter system (9). The corresponding, % J(u®,w) < —q [7:5(%)55 (0)X*(v0)x(0)
worst-case cost is bounded as follows, n m—1 n

+

YN 0ui(du()|,  (35)

p(y) == sup J(ux,w) < Api + (1= MNpipr. (29)
wew j=1 i=1 v=1

B. Stabilizing properties of the interpolated controller wherey, := p(0), Fnae = max 7°
) F .

To study stabilizing properties of the interpolated con- ag opserved in Section II, the uncertain perturbations of
troller in relation to the underlying LPV system (2), fory,e form (1) satisfying the constraint (3) also belong to the
simplicity, we will assume thaty;, vi+1] € Ui N Vi1 for — gatyy, 0 The definition oWy py involves the parameters

all 2 = 1,...,m — 1. This technical assumption can bed (1), however embedding the constraints (3) into (4) can

. . . 1%
easily relaxed a_t the_expens_e of c0_n5|der|ng_ a somewi"_@é achieved by selecting arbitrarily smdll ;(¢). Therefore
more complex piecewise continuous interpolation rule as ifq ¢ongitions of Theorem 3 imply robust stabilization o th

[10]. Under this simplifying assumption, the interpolatio ,qerying system (2) subject to the structured uncestaint
rule simplifies to the following LPV controller gain schedul (1), (3) by means of the gain-scheduled controller (30).

u(t, p(t),z) = —(N*) ' By (p(t)) X, (30) The bound (34) depends on the design parameters

n B1.is Bo,i. SinceA(y), B1(vy) are continuous, conditions (24),
where N° =N + ZTJ-SD;DJ», p(t) € [visYit1)s (25) implicitly relate the parameter$, ;, 3-; to the size of
j=1 cover setdJ;. In Section V, we will introduce a set of SDP

s o g1 — p(t) problems from whictp; ;, 52 ; and the corresponding scaling
(75, X7) = (maa, Xaw), AMH) = il — (31 parameters can be found numerically.



Finally, note that for the fixed parameter system (9), wef this extension will be reported elsewhere. We only note
have7,,.. = 7° andp = 0. Thereforeg = 0 and the IQCs that the proposed improved scheme employs a substantially
(4) are equivalent to 1QCs (6) sinceis a constant, and the reduced number of interpolants, compared to [10].

cost bound (35) reduces to the bound (29) in Theorem 2.
VI. CONCLUSIONS

V. LMI REALIZATION In this paper we have considered a continuous gain-
As shown in Sections I1l, IV, the proposed gain-schedulingcheduling problem for uncertain LPV systems. Our result
controller design involves solving a set of parameterizegixtends the robust gain-scheduling via interpolation agagi
game-type AREs foi = 1,--- ,n, developed in [10] to the case of uncertain systems in
which the uncertainty is structured. The key idea behind the
proposed controller interpolation algorithm is to tramsio
the parameterized algebraic Riccati inequalities intoivequ
alent LMIs, so that the natural convexity properties of the
LMI feasibility sets can be exploited. It has been shown
that the proposed controller robustly stabilizes the fixed-
parameter uncertain LPV system, yielding a bounded worst-
case quadratic cost, and as a result, the uncertain closed
loop LPV system governed by the interpolated controller
is absolutely stable provided the system parameters vary
sufficiently slowly. A bound on the rate of scheduling param-
Xi=X', 5@)=7'%), j=1--.n eter variations has been obtained. Furthermore, we pravide
NS AN =1 o\ a2 systematic way to solve the underlying parameterized AREsS,
1) =T (D8Li - 72(0) = Toa (D (37) which transforms the proposed gain-scheduled controller
By applying the technique used in [14], under the assumptesign to solving a set of SDP problems involving LMIs.
tion that the pair(A(y:), Bi(y:)) is stabilizable fori =
1,---,m, solving the ARE (36) is equivalent to solving
the following SDP problems in the variablé¥;, X;, F;,

T1 (2)7 T ’77_71-5-2(1')’ 7A-1(2‘)v7ﬁ2(2‘):

A'(%)X' + XiA(vi) — Xi[B1 (i) Ny B (%)

ZT 2 ()33 DX,

BQJBQJ +Tn+1( )61 1I+T

+ M+ 7(6)C)C) + Tnia ()T =0, (36)
j=1
whereNy, = N + > Tj(k:)D;-Dj + Tnaa(k)I.
j=1
Define the foIIovfling variables:

+ 2,
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