Final publication is available from Mary Ann Liebert, Inc., publishers https://doi.org/10.1089/ten.teb.2020.0267

Animal models for treating spinal cord injury using biomaterials-based tissue engineering

strategies

Jiao Jiao Li^{1#}, Haifeng Liu^{2#}, Yuanyuan Zhu³, Lei Yan², Ruxing Liu², Guishan Wang⁴, Bin Wang^{2,5*},

Bin Zhao²*

¹ School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia

² Department of Orthopedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China

³ Department of Pharmacy, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China

⁴ Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China

⁵ Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital,

the Affiliated Hospital of Nanjing University Medical School, Nanjing, China

[#] Jiao Jiao Li and Haifeng Liu are equal first authors

* Corresponding authors:

Bin Wang, +86 03513365105, <u>wangbin_pku@163.com</u>

Bin Zhao, +86 03513365106, zzbb2005@163.com

Running head: Animal models for spinal cord injury

Author contact information

Name	Email	Phone
Jiao Jiao Li, PhD	jiaojiao.li@uts.edu.au	+61 416048726
Haifeng Liu, MD	lhf7037@163.com	+86 03513365105
Yuanyuan Zhu, MD	zhuyyuan123@163.com	+86 03513365105
Lei Yan, MD	yanleisxmu@163.com	+86 03513365105
Ruxing Liu, MD	271978465@qq.com	+86 03513365105
Guishan Wang, MD	877133028@qq.com	+86 03513365105
Bin Wang, MD, PhD	wangbin_pku@163.com	+86 03513365105
Bin Zhao, MD, PhD	zzbb2005@163.com	+86 03513365106

ABSTRACT

Objective: To provide an up-to-date review of studies that used preclinical animal models for the evaluation of tissue engineering treatments for spinal cord injury (SCI), which involved the use of biomaterials with or without the addition of cells or biomolecules.

Methods: Electronic search of the PubMed, Web of Science and Embase databases was performed for relevant studies published between January 2009 and December 2019.

Results: 1579 articles were retrieved, of which 58 studies were included for analysis. Among the included studies, rats were the most common species used for animal models of SCI, while complete transection was the most commonly used injury pattern. Immediate intervention after injury was conducted in the majority of studies, and 8 weeks was the most common final time point of outcome assessment. A wide range of natural and synthetic biomaterials with different morphologies were used as a part of tissue engineering treatments for SCI, including scaffolds, hydrogels and particles.

Conclusion: Experimental parameters in studies using SCI animal models to evaluate tissue engineering treatments should be carefully considered to match the purpose of the study. Biomaterials that have functional modifications or are applied in combination with cells and biomolecules can be effective in creating a permissive environment for SCI repair in preclinical animal models.

IMPACT STATEMENT

This review provides an up-to-date summary of the preclinical landscape where tissue engineering treatments involving biomaterials were tested in animal models of SCI. Using studies published within the last 10 years, novel perspectives were presented on the animal species used, injury pattern, timing of intervention and outcome measurement, and biomaterials selection, as well as a summary of the individual findings of each study. This review gives unique insight into biomaterials-based

tissue engineering strategies that have progressed to testing in animal models of SCI, which will help shape future research in the field and propel the clinical translation of discoveries.

KEYWORDS: animal model; biomaterial; scaffold; spinal cord injury; tissue engineering

INTRODUCTION

Spinal cord injury (SCI), most often caused by traffic accidents, is one of the most serious diseases of the central nervous system (CNS), leading to devastating neurological deficits and disabilities in the patient. The incidence of SCI is estimated to be between 10.4 and 83 cases per million people per year¹. Less than 1% of SCI patients can achieve complete recovery of neurological function, with most cases resulting in partial or complete paralysis, and the cost of lifetime care for each SCI patient is in the range of 0.7-3 million USD². SCI therefore imposes a significant socioeconomic burden, particularly since the majority of patients are younger than 30 years old at the time of injury³. The management of SCI patients is challenging, since the loss of sensory, motor and autonomic functions distal to the point of injury often leads to multiple health problems including recurrent kidney stones, urinary tract infection, pressure sores, and cardiac and respiratory dysfunction⁴, as well as major impacts on quality of life due to complications such as neuropathic pain⁵, spasticity⁶, heterotopic ossification⁷, and syringomyelia⁸.

Current clinical approaches for treating SCI include early surgical decompression, drugs, and cell therapy. Early surgical decompression has been found to have positive effects on improving behavioural and pathological outcomes in preclinical SCI models⁹. However, satisfactory clinical outcomes are difficult to achieve, and there is little consensus regarding the role and timing of

decompression in SCI¹⁰. Anti-inflammatory drugs, such as a high dose of methylprednisolone, can be administered for acute SCI to reduce swelling and secondary injury¹¹. However, the common methods for drug delivery such as intraperitoneal injection using a syringe or intrathecal infusion using an osmotic mini-pump can lead to scar formation and infection¹², and tissue penetration by the drug is also limited by the blood-spinal cord barrier¹³. Cell therapy, such as stem cells, Schwann cells or olfactory ensheathing cells (OECs) have been used for reducing secondary injury and boosting axonal and neuronal regeneration following SCI. Nevertheless, these therapies are associated with risks of immunological rejection, tumorigenicity, low survival rate of transplanted cells, and potential dangers in genetic manipulation of the host tissue¹⁴. The current clinical treatments are not ideal for the safe and effective restoration of neural function following SCI. After swelling from the injury subsides, the patient begins a long period of rehabilitation, which may allow some lost spinal function to be compensated by the remaining nerve fibres.

Tissue engineering approaches have been recently explored as new therapeutic strategies for the treatment of SCI. Tissue engineering has been used across many applications in tissue regeneration to construct biological substitutes that can replace, restore or enhance tissue function¹⁵. For SCI, tissue engineering strategies such as cell delivery using a biomaterial system have been shown to preserve spared neural tissue and bridge the injury site with local tissue¹⁶. In this review, tissue engineering is defined as the insertion of biocompatible or functional scaffolds at the injury site that may or may not be combined with living cells, biomolecules or other therapeutic agents. Current tissue engineering strategies aiming to achieve functional recovery in SCI are focused on reproducing the native architecture of the extracellular matrix surrounding the injury site^{17, 18}, and tuning the differentiation of transplanted cells to re-establish communication through new neural relay circuits¹⁹. The overall

aim is to create a permissive environment for the interactions among cells, scaffolds and bioactive molecules that can limit inflammation and promote the restoration of sensory and motor function²⁰.

The safety and feasibility of using bioresorbable polymer scaffolds for the clinical treatment of SCI has been reported in a small number of patients^{21, 22}. These studies have shown some evidence of functional recovery, as reflected through the results of magnetic resonance imaging, neuronal electrophysiology, and scores for sensory, motor and autonomic neural function. However, due to the limited sample size, it was not possible to obtain reliable, high-quality evidence from follow-up. In addition, retrieving spinal cord specimens from patients to observe pathological changes is ethically prohibited. Therefore, animal models with disease aetiology that have a degree of similarity to humans are being widely used in preclinical studies to assess tissue engineering strategies for treating SCI. A holistic view of the current findings in animal models will help shape future research directions in the field and propel the clinical translation of discoveries.

The use of animal models for the preclinical assessment of tissue engineering strategies for SCI treatment has been reviewed in selected studies^{4, 23, 24}. However, the last comprehensive review on this topic was published more than 15 years ago. More recent reviews have not specifically focused on tissue engineering strategies, or focused on specific aspects within tissue engineering. They have also mainly focused on the effects of animal species selection and the injury pattern, but other important parameters such as the timing of intervention and outcome assessment, and experimental variables such as biomaterials selection have not been addressed. Biomaterials selection can play an important role in the outcome of SCI repair. Collagen²⁵, chitosan²⁶, and polyethylene glycol (PEG)^{27, 28} are some of the most commonly chosen biomaterials, but their effects in treating SCI may differ

depending on the animal species, injury pattern and timing of intervention, among other variables. In this systematic review, we provide an up-to-date analysis of studies involving animal models to assess SCI treatment using biomaterials-based tissue engineering approaches, and report on the trends observed in the selection of animal species, injury pattern, and timing of intervention and outcome assessment.

MATERIALS AND METHODS

Literature search strategy

A comprehensive systematic search was conducted in PubMed, Web of Science and Embase for studies published in the last 10 years (between 1 January 2009 and 31 December 2019), on using tissue engineering approaches to treat SCI that involved animal models. The following search terms were used: "spinal cord injury" AND "animal model" AND ("polymer" OR "hydrogel" OR "biomaterial" OR "scaffold" OR "tissue engineering"). Specific search strategies used for each database have been included in the supplementary information.

Study selection

The records of retrieved studies were imported into Endnote. After the removal of duplicate records, two reviewers independently screened all studies for inclusion in this systematic review. Any disagreement was adjudicated by a third reviewer. The inclusion criteria were: (1) studies focused on the treatment of SCI; (2) studies that used a tissue engineering approach involving biomaterial(s); (3) studies that used an animal model; and (4) studies published in English. The exclusion criteria were: (1) non-original studies, such as reviews, editorials and opinion pieces; (2) absence of essential information, including the injury pattern, timing of intervention and outcome assessment, and type of

intervention used; (3) conference abstracts and studies where the full text was unavailable.

Data extraction

For each included study, two reviewers independently extracted all relevant information for the review: (1) study characteristics (authors, journal, year of publication); (2) study design (animal species, injury pattern, timing of intervention and outcome assessment, type of intervention used); (3) outcomes and findings.

RESULTS

The search strategy identified 1579 potential studies. After the removal of duplicate records, 1400 studies were screened by title and abstract, through which 769 unrelated studies, 368 reviews and 130 studies on other aspects of tissue engineering were excluded. The full text of 133 articles were screened according to the inclusion and exclusion criteria, which gave rise to 62 eligible studies. Four of these were excluded for using an uncommon injury model, and presenting unclear outcomes, respectively. Finally, 58 articles were included for analysis in this systematic review. The study selection process is depicted in Figure 1, and a summary of the included studies is presented in Table 1.

Animal species

SCI animal models for evaluating tissue engineering treatments included rat (77.4%), mouse (6.5%), dog (7.8%), non-human primate (3.2%), pig (1.9%), and other rodents (guinea pig and rabbit, 3.2%). Rodents were the most common species used. Larger animals such as dogs and pigs, and non-human primates which have the greatest resemblance to humans, are gradually being adopted in preclinical

experiments of SCI treatment. The advantages and disadvantages of each species are shown in Figure 2.

Injury pattern

Transection and contusion (or compression) injuries were induced in SCI animal models used to evaluate tissue engineering treatments, as shown in Figure 3. For transection models, the biomaterial can be transplanted directly into the injury site, while contusion models have an intact dural structure and the biomaterial can be injected to fill the gaps. The most common injury pattern was complete transection (42.4%), followed by hemisection (33.9%). Contusion models (23.7%) were often used to test soluble or microparticle scaffolds.

Timing of intervention and outcome assessment

For the timing of intervention (Figure 4A), the biomaterial was immediately implanted into the host after SCI in the majority of studies (74.1%). Implantation at 1-2 weeks after injury (19.1%), together with other shorter times of intervention were adopted in the remaining studies. For the timing of outcome assessment (Figure 4B), 8 weeks was most commonly chosen as the final time point, followed by comparable numbers of studies that chose 4 and 12 weeks. In addition, studies involving small (Figure 4C) and large (Figure 4D) animals differed in the most common final time point chosen for outcome assessment. The majority of small animal studies were terminated at 8 weeks, while longer time points were generally chosen for large animal studies.

Biomaterials selection

A wide range of biomaterials were used as a part of tissue engineering approaches to treat SCI in

animal models, including both natural and synthetic polymers. The studies could be broadly classified by the composition of the biomaterials-based intervention: biomaterials alone, biomaterials with cells, biomaterials with drugs, or biomaterials with a combination of additional factors (Table 1). Collagen and chitosan were the most commonly used natural biomaterials, while PLGA (poly lactic-co-glycolic acid) and PEG (polyethylene glycol) were the most commonly used synthetic materials. In most studies, the biomaterials were either implanted into the injury site as scaffolds or hydrogels, or injected in the form of particles, solutions or hydrogels. The majority of studies loaded cells and/or bioactive molecules into the biomaterial(s) before implantation.

DISCUSSION

The complicated pathophysiology of SCI poses significant barriers to functional recovery, and the pace of advances in therapeutic interventions has been slow for many years. Rapid progress in tissue engineering over the last two decades has opened up the potential for new therapeutic strategies, which have already demonstrated some promising results in animal models of SCI. From the included studies, it is apparent that tissue engineering strategies consisting of a biomaterial coupled with the delivery of permissive cell types and growth factors could promote repair in SCI. Nevertheless, full recovery has been rarely achieved in animal models, and the treatment effects may be related to a variety of factors in the study design. Our review of studies published over the last 10 years, on the assessment of tissue engineering strategies to treat SCI in animal models, has indicated that the rat is the most commonly used species and complete spinal cord transection is the most commonly adopted injury pattern. The tissue engineering construct is usually implanted immediately after injury, and 8 weeks is the most frequently used final time point for outcome assessment. A wide variety of natural and synthetic polymers have been used in the form of scaffolds, hydrogels or other forms for

implantation. Gaining an understanding of the preclinical landscape for treating SCI using tissue engineering is important in the planning of future studies, and for ultimately translating the application of these therapeutic strategies to humans.

Selection of animal species

Our study showed that rats were the most commonly used species for evaluating tissue engineering treatments of SCI. Rats have the beneficial characteristics of low cost, abundance source, ease of care and operation, well-understood anatomy, and ability to test a range of injury patterns. Most types of SCI encountered in humans can be replicated in adult rats, and several established behavioural tests are available to assess the loss and recovery of sensory and motor functions^{29, 30}. Pathological changes in rats due to SCI have partial similarity to humans. For instance, the early formation of fibrotic tissue at the core of the lesion site in rats and humans are both typically associated with a breach of the three meninges, allowing fibroblasts to invade the injury site³¹. Rats also often develop large cystic cavities at the site of injury, a pathological feature which is seen in human SCI²⁴. Some methods of SCI treatment analogous to human therapy are well-established in rats, such as neuroprotective drugs and autologous cell transplantation. For example, the efficacy of riluzole in functional recovery and inhibition of damage extension³², and the effect of autologous OEC transplantation in increasing axonal growth across the injury site and promoting recovery of neural circuits³³ have been confirmed in rat SCI models. However, whether the results of tissue engineering treatments in rats can be extrapolated to human SCI still needs further exploration³⁴, for several reasons. First, the efficacy of interventions in rats is over-predicted by their high rate of spontaneous recovery³⁵, which is rarely seen in humans. Second, the design of the tissue engineering construct, including the size, elasticity and morphology of the biomaterial implant, depends greatly on the structure of the spinal cord³⁶,

which is vastly different between rats and humans. Third, the evaluation of functional recovery may be influenced by the different functions of key spinal tracts between rats and humans. For instance, the corticospinal tract is thought to be critical for fine motor control in humans and non-human primates, but less so in rats³⁷.

It is important to assess the substantial risk of moving tissue engineering treatments to human clinical trials from rodents without testing in an intermediate large animal model, such as dog, pig or non-human primate. The spinal cord anatomy and physiology of these larger animals have a greater degree of similarity to humans compared to rodents, particularly in the position and function of the spinal tracts³⁵. The spinal circuitry of non-human primates has a high degree of similarity to humans, and the activation of motor-related circuitry depends more on supraspinal input than in non-primates³⁷. Other animal models may provide species-specific benefits compared to rats, such as an adequate arterial blood supply to the spinal cord in rabbits³⁸, and similar mRNA sequence in pigs compared to humans³⁹. Large animal models of SCI may therefore allow a more physiologically-relevant evaluation of outcomes, but are limited by higher cost and more stringent ethical requirements, particularly for large vertebrates and non-human primates. We believe that the use of large animals in SCI research should only be considered when models in less developed species are inadequate for addressing important mechanistic or translational questions.

Selection of injury pattern

Transection (complete or partial) is the most commonly adopted injury pattern in animal models of SCI to test the effects of tissue engineering treatments, even though the pathology of this model is far from human SCI and causes higher complications and mortality rate compared with other models⁴⁰.

This is in large part due to the convenience of this model in providing space for easy implantation of biomaterials and evidence of repair. Complete transection results in no sparing of axons or neural tissue in the lesion site, which is useful for demonstrating genuine axonal regeneration⁴¹ and neuroplasticity⁴² when evaluating the effects of exogenous interventions. However, completely severed spinal cord stumps may form new circuits, particularly in animals where there is a high ability for spontaneous healing, leading to difficulties in evaluating the true efficacy of implanted biomaterials⁴³. For instance, self-regenerative neural circuits formed at the stumps after complete transection may play a functional role in initial locomotor improvement, independent of the biomaterial⁴⁴. Complete transection is also associated with a risk of retraction of the rostral and caudal stumps, which may cause unexpected damage if no other treatments were used to bridge the gap⁴⁵. As an alternative, partial transection or hemisection can be used to evaluate tissue engineering implants. These injury patterns lead to less severe functional deficits compared to complete transection, and can help avoid excessive animal loss⁴⁶. Nevertheless, secondary injury may be associated with hemisection that have detrimental effects on the contralateral spinal cord around the surgery site, such as the appearance of post-operative oedema and severance of midline blood vessels.

Contusion or compression, while being the least commonly used injury pattern in SCI animal models, allow for minimally-invasive implantation and are useful for injecting biomaterials in the form of particles or solutions⁴⁷⁻⁴⁹. The main advantage of this injury model is that the integrity of the spinal dura mater is preserved, avoiding the need for bigger surgical incision⁴⁶. This leads to a low fatality rate, low cost, and easy handling. However, the precision of contusion injury is difficult to maintain⁵⁰, and the presence of uninjured nerve fibres and axons in the injury site may allow compensatory proliferation and establishment of new neural connections, making it difficult to accurately evaluate

neural regeneration⁵¹.

Selection of timing of intervention

In a clinical setting, the progression of SCI should ideally be controlled during the acute or subacute phase of injury⁵². However, immediate or early intervention is difficult and largely depends on the availability of medical services, patient condition, and complexity of complications. Nevertheless, we found that the majority of studies testing tissue engineering treatments in SCI animal models implanted the biomaterial immediately following spinal operation. While this is not necessarily reflective of the clinical reality, immediate intervention has the advantage of minimising differences in individual responses to injury, particularly for small animals. A small number of studies conducted intervention within a few hours or days after injury, which may better mimic the clinical situation, but also introduces additional risks as a second injury is performed soon after the first one^{53, 54}. During acute injury, the trauma site is dominated by inflammation and cell necrosis. Previous studies in murine models indicated that homologous neural grafts and dissociated cell grafts survive poorly in acute lesion sites^{55, 56}. A biomaterial implant is beneficial in offering immediate protection to grafted cells and nutrients from inflammatory mediators and reactive oxygen species during acute injury. For instance, neural stem cells transplanted within a scaffold were found to survive in all grafted animals in a rat complete transection model, and completely filled the scaffold channels one month after injury ²⁸. However, cells transplanted without a scaffold showed poor survival and invariably failed to fill the gaps at the injury site.

A substantial portion of studies have evaluated the effects of delayed intervention during the subacute phase of injury (1-2 weeks after the initial injury). From a clinical standpoint, the pathology of the

lesion has stabilised to some extent at this stage, and the lesion site may have a more permissive environment for supporting regeneration. In a rat model, delaying hydrogel implantation to 1 week after SCI led to greater anatomical improvements than immediate implantation, as evidenced by a greater decrease in cavity volume⁵⁷. Other studies in rats suggested that SCI might be better stabilised at 2 weeks after injury, based on the injury size and glial scar formation⁵⁸. The transplantation of foetal spinal cord tissue with neurotrophins also improved axonal growth and functional recovery to a greater extent at 2 weeks compared to when applied acutely⁵⁹. The benefits associated with delayed intervention in tissue engineering studies are possibly due to avoiding the impact of environmental fluctuations and influx of inflammatory cells in the acute phase, which are thought to negatively affect the bioactivity of implanted biomaterials⁵⁸.

Selection of timing of outcome assessment

The timing of outcome assessment for different animal models of SCI needs to be adjusted according to their time course of pathological changes and potential for spontaneous recovery. The majority of included studies used 8 weeks as the final time point, which was largely tailored for the rat model. Studies conducted using larger SCI models such as dogs and non-human primates reported proportionally longer observation times typically extending beyond 12 weeks. For the rat model, histopathological changes typically stabilise and plateau at 8 weeks after injury⁶⁰, and the size of the lesion epicentre also remains constant during this time⁶¹. Additionally, 8 weeks usually allows the test group to show significant increases in the repair of neural circuits, density of fibrous tissues, and infiltration of host cells compared to the control^{12, 62}. It is also a suitable time point for assessing behavioural improvements^{42, 63}, where motor function has been reported to increase gradually in rats within 8 weeks, after which functional scores tend to stabilise⁶⁴.

The need to have longer observation times for large animal models of SCI is related to the increasing complexity of their central nervous system compared to small animals, and the greater similarity of their neural circuitry as well as injury and repair processes compared to humans. The vertebrate motor system has undergone pronounced evolutionary changes that have resulted in significant variations between rodents and non-human primates³⁷. One example is the motor cortex and the corticospinal tract as its descending output, which are highly similar between humans and non-human primates but less so in rodents. In higher vertebrates including humans which have a complex and sophisticated central nervous system, it becomes more difficult to recover neural function following injury compared to smaller animals. For this reason, the time frame for recovery in large animal models of SCI is generally longer than in rodents. Some large animal models of SCI have been used as parallel groups alongside human patients to verify their clinical relevance. For example, a canine model of complete SCI at 3 months after injury was thought to be comparable to American Spinal Injury Association (ASIA)-A patients (complete loss of motor and sensory function) at 12 months, and dogs with some retention of motor function were thought to be fit models for intervention efficacy in human ASIA-C patients (incomplete loss of function below the lesion)⁶⁵. A study which tested a combination of materials and stem cell therapy saw significant improvements in motor function in a canine complete SCI model at 3 months post-surgery, and it was speculated that a similar recovery pattern might be applicable to humans⁴¹. When choosing an SCI model to test for the clinical relevance of interventions, the timing of outcome assessment should be considered together with the animal species.

It is worth noting that the included studies typically used a series of time points for behavioural and

histological assessments, although we only included the final time point in our analysis. Behavioural assessments were usually performed weekly or at even shorter time periods, while the time points of histological assessments were carefully selected to cover the major phases of change following SCI (acute, subacute and chronic). In rodents, the transition between acute and subacute phases often occurs within a few hours to 1 day post injury (DPI), while 7 DPI is considered the point of transition to the chronic phase. In one study, a lesion core of dense fibrotic tissue was observed to form at 7 DPI, which maintained a constant morphology and showed no major changes after this time⁶¹. The transition between phases in SCI can also be identified through sequential phenotypic changes in astrocytes (naïve, reactive and scar-forming) at corresponding time points⁶⁶.

Selection of biomaterials

A wide range of biomaterials have been applied as a part of tissue engineering treatments in SCI animal models. The choice of biomaterial was influenced by the animal species and injury pattern in the majority of studies, which could impose limitations on the morphology of the biomaterial. For instance, scaffolds with pores, channels or bundles of fibres were often used for transection injuries, while particles and solutions were typically used for contusion injuries. Hydrogels were used for all injury types. Although none of the studies specifically compared the effects of different scaffold morphologies, it is expected that these would impart some effects on repair outcomes, for instance between collagen bundles⁶⁷ and linear ordered scaffolds⁶⁸, and between PLGA nanoparticles⁵³ and channelled scaffolds⁶⁹.

Synthetic polymers including PLGA and PEG were frequently chosen for SCI, which have the advantages of allowing versatile surface modification, mechanical tuning, and chemical functionalisation. All of these properties are useful in producing constructs that can protect transplanted cells from intrinsic secondary injury in SCI, while promoting their attachment, proliferation and differentiation⁷⁰. Synthetic polymers can also be modified with extracellular matrix (ECM) components, such as collagen, laminin or synthetic peptides, which can help generate a permissive microenvironment for recovery⁷¹. Some synthetic materials, such as peptide amphiphile hydrogels, can undergo self-assembly and are useful for binding and releasing growth factors and other bioactive substances^{72, 73}. Natural polymers such as collagen, chitosan, alginate and hyaluronic acid have structures that mimic native ECM, which can help maintain the normal function of host cells without introducing cytotoxic effects⁷⁰. They often contain sites for cell adhesion and can intrinsically promote cellular infiltration. However, due to their natural origin, batch-to-batch variation is an issue for these materials, and their applications in SCI repair may be further limited by weak mechanical properties and a high degradation rate *in vivo*.

It should be mentioned that the focus in the included studies was on comparing the effects of loading cells, biomolecules, and/or bioactive motifs in the biomaterials to unmodified or partially modified biomaterials. Systematic studies using well-established SCI animal models will need to be performed in the future to compare the effects of different biomaterial morphologies or compositions to advance tissue engineering solutions towards applications in the clinical treatment of SCI. A few selected biomaterials that have proceeded beyond preclinical testing to being used in clinical trials for treating complete SCI patients are presented in Table 2.

The most common form of treating clinical cases of SCI using biomaterials is to remove the damaged spinal cord and replace it with the biomaterial, with or without the combination of cells. The

biomaterials selected for testing in clinical studies to date have been confirmed to have low antigenicity, suitable mechanical strength and biodegradability, as well as significant therapeutic effects in SCI animal models. A scaffold that has currently undergone the most testing in clinical studies is NeuroRegen, a collagen scaffold made from bovine aponeurosis. This scaffold has an ordered collagen filament structure to provide nerve guidance, as well as sufficient space for cell adhesion and growth without causing significant immune responses⁷⁴. When combined with cells, either autologous bone marrow mononuclear cells (BMMCs) or allogeneic mesenchymal stem cells (MSCs), the NeuroRegen scaffold achieved a significant recovery effect in patients with acute or chronic SCI^{21, 75}. In two acute SCI patients, sensory functions began to recover at 2 months postsurgery, and one patient showed the ability to raise their lower legs against gravity when sitting on a wheelchair at 6 months⁷⁵. In five chronic SCI patients, the erection reflex was improved in two cases at 2 months post-surgery, and the recovery of somatosensory evoked potentials were detected in the lower limbs of two cases at 6 months²¹. Although these positive results have only been demonstrated in a very limited number of patients, the use of biomaterials to achieve clinical repair of SCI shows significant promise. It is anticipated that the testing of new biomaterials using physiologicallyrelevant animal models of SCI will expedite the process of clinical translation.

Animal models of SCI can help to achieve rigorous evaluation of biomaterials before they are considered for use in clinical treatment. Although a wide range of biomaterials are being developed with improved physical and chemical properties for SCI repair, many issues can surface during preclinical testing relating to the complexity of preparation, ease of handling, biocompatibility, biodegradability, and ability to integrate with the host tissue. For instance, some biomaterials may be non-biodegradable, while others may lack good biocompatibility to neuronal cells or induce an immune response following implantation⁷⁶. While scaffolds with an oriented inner structure may be beneficial for guiding axonal regrowth, these scaffolds are typically stiffer and may not integrate well with the host spinal cord, sometimes requiring a surgical opening to be made which increases the invasiveness of the implantation process⁴⁶. On the other hand, injectable scaffolds are soft and can conform to the injury site to integrate with host tissue, but cannot be used to achieve targeted neural growth⁷³. A balanced consideration of such factors, based on the information derived from testing in preclinical SCI models, is essential for advancing new biomaterials to clinical studies.

Perspectives and outlook

The satisfactory treatment of SCI to this day remains a significant challenge, with most cases resulting in irreversible damage to neurological functions. Although a small number of tissue engineering strategies involving biomaterials have been tested in clinical trials for SCI repair, these have failed to achieve the desired prognosis despite early improvements. For example, the implantation of NeuroRegen scaffolds together with autologous BMMCs were found to recover or improve sensory and autonomic nervous function in some SCI patients, such as defecation sensation, physiological erection, sweating, and superficial or deep sensations⁷⁷. However, no motor function recovery was observed in this 3-year clinical study. A good explanation is still lacking for these findings. The difficulty of producing long-term improvements using tissue engineering or other strategies is possibly related to the complex progression of SCI following the initial injury. SCI proceeds according to a sustained injury cascade, which can be divided into several phases: acute (<48 hours), subacute (48 hours to 14 days), intermediate (14 days to 6 months), and chronic (>6 months)⁷⁸. During the acute phase, injury processes including cell death, blood vessel injury, expression of proinflammatory cytokines, and infiltration of inflammatory cells can trigger secondary injury⁷⁹. This leads to the subacute phase, where ischaemia and excitotoxicity result in ongoing necrosis of neurons and glia, as well as the release of excessive harmful factors that contribute to a loss of ionic homeostasis⁸⁰. Finally, cystic cavitation and glial scar formation occur when the injury has entered the intermediate-chronic phase. It is due to this cascade of dynamic changes extending to several months after SCI that an inhibitory microenvironment is formed at the injury site or even systemically, creating significant difficulties for repair processes by limiting nerve regeneration. The rational use of animal models can help overcome the hurdles of studying SCI progression in humans and evaluating the efficacy of possible treatment strategies, for several reasons. First, animal models provide a convenient and repeatable means of observing and studying injury processes in SCI under artificially designed and controlled experimental conditions. Second, the ideal animal model can mimic human SCI anatomically and functionally, which can help researchers understand the pathophysiology of SCI and be used for preclinical validation of new therapies. For instance, large animal models such as dogs and non-human primates have an injury response similar to that observed in human SCI^{37, 65}. Third, animal models allow further investigations into the mechanisms of healing following SCI treatment, which cannot be performed in humans. Using spinal cord specimens harvested from animals that have undergone SCI treatment, a range of outcomes can be evaluated including the morphology of tissue, expression of inflammatory factors, and condition of nerve fibre regeneration.

There are some limitations in our analysis. First, we were not able to perform a meta-analysis on the included studies. The purpose of our study was to observe the selection of animal species, injury model, timing of intervention and outcome measurement, and biomaterials in preclinical studies of SCI involving biomaterials-based tissue engineering treatments. Among the included studies, there

lacked a systematic reporting process for these selection parameters, leading to huge variations in study design and significant difficulties in performing quality assessment of studies. The quality of preclinical studies could be improved by well-designed author submission checklists and analogous journal initiatives⁸¹, such as the Stroke journal's Basic Science Checklist⁸². However, such checklists are currently field-specific and similar standards are not established in preclinical studies of SCI. It would hence be challenging to conduct an accurate meta-analysis for the included studies due to greatly variable sample numbers and surgical methods. Another significant challenge arises from the non-standardised evaluation of 'effective' repair in SCI animal models. For example, some studies used histological staining to observe the morphology of the spinal cord or neurons as the primary outcome, such as haematoxylin and eosin, Nissl, and Luxol fast blue staining^{63, 73}. Meanwhile, other studies have used functional outcome measures, such as the Basso-Beattie-Bresnahan (BBB) locomotor rating scale and swimming test⁷⁶. Still others have chosen neuroelectrophysiology⁸³ or imaging examination⁸⁴ to observe spinal cord recovery in animals. These substantial variations limit the ability to conduct meta-analyses, since evaluation and interpretation of the results from animal studies of SCI need to be made in the context of the types of tests performed and relevance of the model to human pathophysiology. To enable more comprehensive analyses to be performed in the future, such as Bayesian meta-analysis⁸⁵, the quality of preclinical SCI studies needs to be improved by standardising the consideration of study design elements, such as randomisation, blinding, sample size estimation, and sex bias.

Second, among the included studies on SCI repair in animal models, neural regeneration has been used as a primary indicator for outcomes measurement. However, other important factors may contribute to injury repair that have not been explicitly evaluated in these studies. For instance, white matter injury is a potential cause of function loss after SCI⁸⁶. Some studies suggest that white matter recovery is closely correlated with functional restoration of paralysed hind limbs, and may hold the key to motor recovery⁸⁷. Interestingly, some studies have shown locomotor recovery in rodents despite not having any corticospinal fibres pass through the lesion area¹⁴, implying that other tracts may have played an important role. Indeed, it has been confirmed by electrophysiological evaluation that 10–25 % of rubrospinal tracts were linked in the rat model⁸³, which may provide additional mechanisms for locomotor recovery. Future studies may provide a better understanding of the role of white matter in the regulation and recovery of motor function in SCI by studying some of the less accessible tracts in animal models, such as the rubrospinal tract.

CONCLUSION

This review provides an up-to-date summary of the application of animal models in evaluating tissue engineering strategies for treating SCI. The animal species and injury pattern, as well as timing of intervention and outcome assessment are all important parts of the experimental protocol for gaining a practical understanding of the effects of tissue engineering treatment. To maintain translational relevance, biomaterials selection should be carefully considered to be applicable both to the animal model and for future human use. Until more advanced screening technologies can be developed, preclinical animal models remain an essential step in the testing of tissue engineering products intended for the clinical treatment of SCI.

AUTHORSHIP CONFIRMATION STATEMENT

All named authors have made substantial contributions to the conception of the review, and drafting and/or revising it critically for important intellectual content. All authors have approved the final

version of the manuscript, and agree to be accountable for all aspects of the submitted work.

AUTHOR DISCLOSURE STATEMENT

The authors have no competing interests to declare.

FUNDING STATEMENT

This study was supported by the National Natural Science Foundation of China (81802204), China

Postdoctoral Science Foundation (2020M671453), Natural Science Foundation of Shanxi Province

(201801D221117), Shanxi Medical University Second Affiliated Hospital Doctor's Funds (2017-105),

Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi

(2019L0410), and the Australian National Health and Medical Research Council (GNT1120249).

REFERENCES

1. Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? *Spinal Cord.* 2006;**44**(9):523-9.

2. Willerth SM, Sakiyama-Elbert SE. Cell therapy for spinal cord regeneration. *Adv Drug Deliv Rev.* 2008;60(2):263-76.

3. Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG. Global prevalence and incidence of traumatic spinal cord injury. *Clin Epidemiol*. 2014;**6**:309-31.

4. Talac R, Friedman JA, Moore MJ, Lu L, Jabbari E, Windebank AJ, et al. Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies. *Biomaterials*. 2004;**25**(9):1505-10.

5. Finnerup NB. Neuropathic pain and spasticity: intricate consequences of spinal cord injury. *Spinal Cord.* 2017;**55**(12):1046-50.

6. Lin Y, Chen Z, Tang J, Cao P, Shi R. Acrolein Contributes to the Neuropathic Pain and Neuron Damage after Ischemic - Reperfusion Spinal Cord Injury. *Neuroscience*. 2018;**384**:120-30.

7. Ranganathan K, Loder S, Agarwal S, Wong VW, Forsberg J, Davis TA, et al. Heterotopic Ossification: Basic-Science Principles and Clinical Correlates. *J Bone Joint Surg Am.* 2015;**97**(13):1101-11.

8. Brodbelt AR, Stoodley MA. Post-traumatic syringomyelia: a review. *J Clin Neurosci*. 2003;**10**(4):401-8.

9. Batchelor PE, Wills TE, Skeers P, Battistuzzo CR, Macleod MR, Howells DW, et al. Meta-analysis of pre-clinical studies of early decompression in acute spinal cord injury: a battle of time and

pressure. *PLoS One*. 2013;8(8):e72659.

10. Wilson JR, Voth J, Singh A, Middleton J, Jaglal SB, Singh JM, et al. Defining the Pathway to Definitive Care and Surgical Decompression after Traumatic Spinal Cord Injury: Results of a Canadian Population-Based Cohort Study. *J Neurotrauma*. 2016;**33**(10):963-71.

Bracken MB. Steroids for acute spinal cord injury. *Cochrane Database Syst Rev.* 2012;1:CD001046.
 Elliott Donaghue I, Tator CH, Shoichet MS. Local Delivery of Neurotrophin-3 and Anti-NogoA Promotes Repair After Spinal Cord Injury. *Tissue Eng Part A.* 2016;22(9-10):733-41.

13. Thorne RG, Frey WH, 2nd. Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. *Clin Pharmacokinet*. 2001;**40**(12):907-46.

14. Wang N, Zhang S, Zhang AF, Yang ZY, Li XG. Sodium hyaluronate-CNTF gelatinous particles promote axonal growth, neurogenesis and functional recovery after spinal cord injury. *Spinal Cord*. 2014;**52**(7):517-23.

15. Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. *Annu Rev Chem Biomol Eng.* 2011;**2**:403-30.

16. Mothe AJ, Tam RY, Zahir T, Tator CH, Shoichet MS. Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel. *Biomaterials*. 2013;**34**(15):3775-83.

17. Vismara I, Papa S, Rossi F, Forloni G, Veglianese P. Current Options for Cell Therapy in Spinal Cord Injury. *Trends Mol Med.* 2017;**23**(9):831-49.

18. Li X, Han J, Zhao Y, Ding W, Wei J, Li J, et al. Functionalized collagen scaffold implantation and cAMP administration collectively facilitate spinal cord regeneration. *Acta Biomater*. 2016;**30**:233-45.

19. Centeno EGZ, Cimarosti H, Bithell A. 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. *Mol Neurodegener*. 2018;**13**(1):27.

20. Samadikuchaksaraei A. An overview of tissue engineering approaches for management of spinal cord injuries. *J Neuroeng Rehabil.* 2007;**4**:15.

21. Xiao Z, Tang F, Tang J, Yang H, Zhao Y, Chen B, et al. One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients. *Sci China Life Sci.* 2016;**59**(7):647-55.

22. Theodore N, Hlubek R, Danielson J, Neff K, Vaickus L, Ulich TR, et al. First Human Implantation of a Bioresorbable Polymer Scaffold for Acute Traumatic Spinal Cord Injury: A Clinical Pilot Study for Safety and Feasibility. *Neurosurgery*. 2016;**79**(2):E305-12.

23. Yousefifard M, Maleki SN, Askarian-Amiri S, Vaccaro AR, Chapman JR, Fehlings MG, et al. A combination of mesenchymal stem cells and scaffolds promotes motor functional recovery in spinal cord injury: a systematic review and meta-analysis. *Journal of Neurosurgery-Spine*. 2020;**32**(2):269-84.

24. Sharif-Alhoseini M, Khormali M, Rezaei M, Safdarian M, Hajighadery A, Khalatbari MM, et al. Animal models of spinal cord injury: a systematic review. *Spinal Cord.* 2017;**55**(8):714-21.

25. Han S, Yin W, Li X, Wu S, Cao Y, Tan J, et al. Pre-Clinical Evaluation of CBD-NT3 Modified Collagen Scaffolds in Completely Spinal Cord Transected Non-Human Primates. *J Neurotrauma*. 2019;**36**(15):2316-24.

26. Kim H, Tator CH, Shoichet MS. Chitosan implants in the rat spinal cord: biocompatibility and biodegradation. *J Biomed Mater Res A*. 2011;**97**(4):395-404.

27. Tom B, Witko J, Lemay M, Singh A. Effects of bioengineered scaffold loaded with neurotrophins and locomotor training in restoring H-reflex responses after spinal cord injury. *Exp Brain Res.* 2018;**236**(11):3077-84.

28. Koffler J, Zhu W, Qu X, Platoshyn O, Dulin JN, Brock J, et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. *Nat Med.* 2019;**25**(2):263-9.

29. Roman JA, Niedzielko TL, Haddon RC, Parpura V, Floyd CL. Single-walled carbon nanotubes chemically functionalized with polyethylene glycol promote tissue repair in a rat model of spinal cord injury. *J Neurotrauma*. 2011;**28**(11):2349-62.

30. Imani S, Zagari Z, Rezaei Zarchi S, Jorjani M, Nasri S. Functional Recovery of Carbon Nanotube/Nafion Nanocomposite in Rat Model of Spinal Cord Injury. *Artif Cells Nanomed Biotechnol*. 2016;**44**(1):144-9.

31. Josephson A, Greitz D, Klason T, Olson L, Spenger C. A spinal thecal sac constriction model supports the theory that induced pressure gradients in the cord cause edema and cyst formation. *Neurosurgery.* 2001;**48**(3):636-45; discussion 45-6.

32. Zhou LY, Tian ZR, Yao M, Chen XQ, Song YJ, Ye J, et al. Riluzole promotes neurological function recovery and inhibits damage extension in rats following spinal cord injury: a meta-analysis and systematic review. *J Neurochem.* 2019;**150**(1):6-27.

33. Thornton MA, Mehta MD, Morad TT, Ingraham KL, Khankan RR, Griffis KG, et al. Evidence of axon connectivity across a spinal cord transection in rats treated with epidural stimulation and motor training combined with olfactory ensheathing cell transplantation. *Exp Neurol.* 2018;**309**:119-33.

34. Nout YS, Rosenzweig ES, Brock JH, Strand SC, Moseanko R, Hawbecker S, et al. Animal models of neurologic disorders: a nonhuman primate model of spinal cord injury. *Neurotherapeutics*. 2012;**9**(2):380-92.

35. Nardone R, Florea C, Holler Y, Brigo F, Versace V, Lochner P, et al. Rodent, large animal and non-human primate models of spinal cord injury. *Zoology (Jena)*. 2017;**123**:101-14.

36. Pritchard CD, Slotkin JR, Yu D, Dai H, Lawrence MS, Bronson RT, et al. Establishing a model spinal cord injury in the African green monkey for the preclinical evaluation of biodegradable polymer scaffolds seeded with human neural stem cells. *J Neurosci Methods*. 2010;**188**(2):258-69.

37. Courtine G, Bunge MB, Fawcett JW, Grossman RG, Kaas JH, Lemon R, et al. Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? *Nat Med.* 2007;**13**(5):561-6.

38. Mazensky D, Flesarova S, Sulla I. Arterial Blood Supply to the Spinal Cord in Animal Models of Spinal Cord Injury. A Review. *Anat Rec (Hoboken)*. 2017;**300**(12):2091-106.

39. Tigchelaar S, Streijger F, Sinha S, Flibotte S, Manouchehri N, So K, et al. Serum MicroRNAs Reflect Injury Severity in a Large Animal Model of Thoracic Spinal Cord Injury. *Sci Rep.* 2017;**7**(1):1376.

40. Li X, Dai J. Bridging the gap with functional collagen scaffolds: tuning endogenous neural stem cells for severe spinal cord injury repair. *Biomater Sci.* 2018;**6**(2):265-71.

41. Han S, Xiao Z, Li X, Zhao H, Wang B, Qiu Z, et al. Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine. *Sci China Life Sci.* 2018;**61**(1):2-13.

42. Marchini A, Raspa A, Pugliese R, El Malek MA, Pastori V, Lecchi M, et al. Multifunctionalized hydrogels foster hNSC maturation in 3D cultures and neural regeneration in spinal cord injuries. *Proc Natl Acad Sci U S A*. 2019;**116**(15):7483-92.

43. Kim CY. PEG-assisted reconstruction of the cervical spinal cord in rats: effects on motor conduction at 1 h. *Spinal Cord.* 2016;**54**(10):910-2.

44. Estrada V, Brazda N, Schmitz C, Heller S, Blazyca H, Martini R, et al. Long-lasting significant functional improvement in chronic severe spinal cord injury following scar resection and polyethylene glycol implantation. *Neurobiol Dis.* 2014;**67**:165-79.

45. Yoshida Y, Kataoka H, Kanchiku T, Suzuki H, Imajyo Y, Kato H, et al. Transection method for shortening the rat spine and spinal cord. *Exp Ther Med.* 2013;**5**(2):384-8.

46. Hejčl A, Růžička J, Kekulová K, Svobodová B, Proks V, Macková H, et al. Modified methacrylate hydrogels improve tissue repair after spinal cord injury. *International Journal of Molecular Sciences*. 2018;**19**(9).

47. Jeong SJ, Cooper JG, Ifergan I, McGuire TL, Xu D, Hunter Z, et al. Intravenous immune-modifying nanoparticles as a therapy for spinal cord injury in mice. *Neurobiol Dis.* 2017;**108**:73-82.

48. Wang Q, Zhang H, Xu H, Zhao Y, Li Z, Li J, et al. Novel multi-drug delivery hydrogel using scar-homing liposomes improves spinal cord injury repair. *Theranostics*. 2018;**8**(16):4429-46.

49. Papa S, Caron I, Erba E, Panini N, De Paola M, Mariani A, et al. Early modulation of proinflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury. *Biomaterials*. 2016;**75**:13-24.

50. Vijayaprakash KM, Sridharan N. An experimental spinal cord injury rat model using customized impact device: A cost-effective approach. *J Pharmacol Pharmacother*. 2013;**4**(3):211-3.

51. Tuszynski MH, Steward O. Concepts and methods for the study of axonal regeneration in the CNS. *Neuron.* 2012;**74**(5):777-91.

52. Bramlett HM, Dietrich WD. Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. *Prog Brain Res.* 2007;**161**:125-41.

53. Gao Y, Vijayaraghavalu S, Stees M, Kwon BK, Labhasetwar V. Evaluating accessibility of intravenously administered nanoparticles at the lesion site in rat and pig contusion models of spinal cord injury. *J Control Release*. 2019;**302**:160-8.

54. Tysseling VM, Sahni V, Pashuck ET, Birch D, Hebert A, Czeisler C, et al. Self-assembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury. *J Neurosci Res.* 2010;**88**(14):3161-70.

55. Kadoya K, Lu P, Nguyen K, Lee-Kubli C, Kumamaru H, Yao L, et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. *Nat Med.* 2016;**22**(5):479-87.

56. Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. *Cell*. 2012;**150**(6):1264-73.

57. Hejcl A, Urdzikova L, Sedy J, Lesny P, Pradny M, Michalek J, et al. Acute and delayed implantation of positively charged 2-hydroxyethyl methacrylate scaffolds in spinal cord injury in the rat. *J Neurosurg Spine*. 2008;**8**(1):67-73.

58. Johnson PJ, Parker SR, Sakiyama-Elbert SE. Fibrin-based tissue engineering scaffolds enhance neural fiber sprouting and delay the accumulation of reactive astrocytes at the lesion in a subacute model of spinal cord injury. *J Biomed Mater Res A*. 2010;**92**(1):152-63.

59. Coumans JV, Lin TT, Dai HN, MacArthur L, McAtee M, Nash C, et al. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. *J Neurosci*. 2001;**21**(23):9334-44.

60. Kjell J, Olson L. Rat models of spinal cord injury: from pathology to potential therapies. *Dis Model Mech.* 2016;**9**(10):1125-37.

61. Forgione N, Chamankhah M, Fehlings MG. A Mouse Model of Bilateral Cervical Contusion-Compression Spinal Cord Injury. *J Neurotrauma*. 2017;**34**(6):1227-39.

62. Shi Q, Gao W, Han X, Zhu X, Sun J, Xie F, et al. Collagen scaffolds modified with collagenbinding bFGF promotes the neural regeneration in a rat hemisected spinal cord injury model. *Science China Life sciences.* 2014;**57**(2):232-40.

63. Wang C, Sun C, Hu Z, Huo X, Yang Y, Liu X, et al. Improved Neural Regeneration with Olfactory

Ensheathing Cell Inoculated PLGA Scaffolds in Spinal Cord Injury Adult Rats. *Neurosignals*. 2017;**25**(1):1-14.

64. Bonnet M, Trimaille T, Brezun JM, Feron F, Gigmes D, Marqueste T, et al. Motor and sensitive recovery after injection of a physically cross-linked PNIPAAm-g-PEG hydrogel in rat hemisectioned spinal cord. *Mater Sci Eng C Mater Biol Appl.* 2020;**107**:110354.

65. Jeffery ND, Hamilton L, Granger N. Designing clinical trials in canine spinal cord injury as a model to translate successful laboratory interventions into clinical practice. *Vet Rec.* 2011;**168**(4):102-7.

66. Hara M, Kobayakawa K, Ohkawa Y, Kumamaru H, Yokota K, Saito T, et al. Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. *Nat Med.* 2017;**23**(7):818-28.

67. Suzuki H, Kanchiku T, Imajo Y, Yoshida Y, Nishida N, Gondo T, et al. Artificial collagenfilament scaffold promotes axon regeneration and long tract reconstruction in a rat model of spinal cord transection. *Medical molecular morphology*. 2015;**48**(4):214-24.

68. Fan C, Li X, Xiao Z, Zhao Y, Liang H, Wang B, et al. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. *Acta biomaterialia*. 2017;**51**:304-16.

69. McCreedy DA, Margul DJ, Seidlits SK, Antane JT, Thomas RJ, Sissman GM, et al. Semi-automated counting of axon regeneration in poly(lactide co-glycolide) spinal cord bridges. *J Neurosci Methods*. 2016;**263**:15-22.

70. Willerth SM, Sakiyama-Elbert SE. Approaches to neural tissue engineering using scaffolds for drug delivery. *Adv Drug Deliv Rev.* 2007;**59**(4-5):325-38.

71. Li X, Han J, Zhao Y, Ding W, Wei J, Li J, et al. Functionalized collagen scaffold implantation and cAMP administration collectively facilitate spinal cord regeneration. *Acta biomaterialia*. 2016;**30**:233-45.

72. Hassannejad Z, Zadegan SA, Vaccaro AR, Rahimi-Movaghar V, Sabzevari O. Biofunctionalized peptide-based hydrogel as an injectable scaffold for BDNF delivery can improve regeneration after spinal cord injury. *Injury*. 2019;**50**(2):278-85.

73. Tavakol S, Saber R, Hoveizi E, Aligholi H, Ai J, Rezayat SM. Chimeric Self-assembling Nanofiber Containing Bone Marrow Homing Peptide's Motif Induces Motor Neuron Recovery in Animal Model of Chronic Spinal Cord Injury; an In Vitro and In Vivo Investigation. *Mol Neurobiol.* 2016;**53**(5):3298-308.

74. Lin H, Chen B, Wang B, Zhao Y, Sun W, Dai J. Novel nerve guidance material prepared from bovine aponeurosis. *J Biomed Mater Res A*. 2006;**79**(3):591-8.

75. Xiao Z, Tang F, Zhao Y, Han G, Yin N, Li X, et al. Significant Improvement of Acute Complete Spinal Cord Injury Patients Diagnosed by a Combined Criteria Implanted with NeuroRegen Scaffolds and Mesenchymal Stem Cells. *Cell Transplant*. 2018;**27**(6):907-15.

76. Sitoci-Ficici KH, Matyash M, Uckermann O, Galli R, Leipnitz E, Later R, et al. Non-functionalized soft alginate hydrogel promotes locomotor recovery after spinal cord injury in a rat hemimyelonectomy model. *Acta Neurochir (Wien)*. 2018;**160**(3):449-57.

77. Chen W, Zhang Y, Yang S, Sun J, Qiu H, Hu X, et al. NeuroRegen Scaffolds Combined with Autologous Bone Marrow Mononuclear Cells for the Repair of Acute Complete Spinal Cord Injury: A 3-Year Clinical Study. *Cell Transplant*. 2020;**29**:963689720950637.

78. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, et al. Traumatic spinal cord injury. *Nat Rev Dis Primers*. 2017;**3**:17018.

79. LaPlaca MC, Simon CM, Prado GR, Cullen DK. CNS injury biomechanics and experimental models. *Prog Brain Res.* 2007;**161**:13-26.

80. Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR. Pathophysiology and pharmacologic treatment of acute spinal cord injury. *Spine J.* 2004;**4**(4):451-64.

81. Ramirez FD, Jung RG, Motazedian P, Perry-Nguyen D, Di Santo P, MacDonald Z, et al. Journal Initiatives to Enhance Preclinical Research: Analyses of Stroke, Nature Medicine, Science Translational Medicine. *Stroke.* 2020;**51**(1):291-9.

82. Minnerup J, Zentsch V, Schmidt A, Fisher M, Schabitz WR. Methodological Quality of Experimental Stroke Studies Published in the Stroke Journal: Time Trends and Effect of the Basic Science Checklist. *Stroke.* 2016;**47**(1):267-72.

83. Suzuki H, Kanchiku T, Imajo Y, Yoshida Y, Nishida N, Gondo T, et al. Artificial collagenfilament scaffold promotes axon regeneration and long tract reconstruction in a rat model of spinal cord transection. *Med Mol Morphol.* 2015;**48**(4):214-24.

84. Luo L, Albashari AA, Wang X, Jin L, Zhang Y, Zheng L, et al. Effects of transplanted heparinpoloxamer hydrogel combining dental pulp stem cells and bFGF on spinal cord injury repair. *Stem Cells International*. 2018;**2018**.

85. Grant RL. The uptake of Bayesian methods in biomedical meta-analyses: A scoping review (2005-2016). *J Evid Based Med.* 2019;**12**(1):69-75.

86. Ward RE, Huang W, Kostusiak M, Pallier PN, Michael-Titus AT, Priestley JV. A characterization of white matter pathology following spinal cord compression injury in the rat. *Neuroscience*. 2014;**260**:227-39.

87. Song W, Song G, Zhao C, Li X, Pei X, Zhao W, et al. Testing Pathological Variation of White Matter Tract in Adult Rats after Severe Spinal Cord Injury with MRI. *Biomed Res Int.* 2018;**2018**:4068156.

88. Dumont CM, Carlson MA, Munsell MK, Ciciriello AJ, Strnadova K, Park J, et al. Aligned hydrogel tubes guide regeneration following spinal cord injury. *Acta Biomater*. 2019;**86**:312-22.

89. Chedly J, Soares S, Montembault A, von Boxberg Y, Veron-Ravaille M, Mouffle C, et al. Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. *Biomaterials.* 2017;**138**:91-107.

90. Zhu J, Lu Y, Yu F, Zhou L, Shi J, Chen Q, et al. Effect of decellularized spinal scaffolds on spinal axon regeneration in rats. *J Biomed Mater Res A*. 2018;**106**(3):698-705.

91. Kushchayev SV, Giers MB, Hom Eng D, Martirosyan NL, Eschbacher JM, Mortazavi MM, et al. Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury. *Journal of neurosurgery Spine*. 2016;**25**(1):114-24.

92. Imani S, Zagari Z, Rezaei Zarchi S, Jorjani M, Nasri S. Functional Recovery of Carbon Nanotube/Nafion Nanocomposite in Rat Model of Spinal Cord Injury. *Artificial cells, nanomedicine, and biotechnology.* 2016;**44**(1):144-9.

93. Kaneko A, Matsushita A, Sankai Y. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats. *Biomedical Materials (Bristol)*. 2015;**10**(1).

94. Tamosaityte S, Galli R, Uckermann O, Sitoci-Ficici KH, Later R, Beiermeister R, et al. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy--Effects of Therapeutic Alginate Implant in Rat Models. *PloS one.* 2015;**10**(11):e0142660-e.

95. Cho Y, Shi R, Borgens RB. Chitosan produces potent neuroprotection and physiological recovery following traumatic spinal cord injury. *J Exp Biol.* 2010;**213**(Pt 9):1513-20.

96. Yoshii S, Ito S, Shima M, Taniguchi A, Akagi M. Functional restoration of rabbit spinal cord using collagen-filament scaffold. *J Tissue Eng Regen Med.* 2009;**3**(1):19-25.

97. Fan L, Liu C, Chen X, Zou Y, Zhou Z, Lin C, et al. Directing Induced Pluripotent Stem Cell

Derived Neural Stem Cell Fate with a Three-Dimensional Biomimetic Hydrogel for Spinal Cord Injury Repair. *ACS applied materials & interfaces*. 2018;**10**(21):17742-55.

98. Zaviskova K, Tukmachev D, Dubisova J, Vackova I, Hejcl A, Bystronova J, et al. Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair. *J Biomed Mater Res A*. 2018;**106**(4):1129-40.

99. Raynald, Li Y, Yu H, Huang H, Guo M, Hua R, et al. The hetero-transplantation of human bone marrow stromal cells carried by hydrogel unexpectedly demonstrates a significant role in the functional recovery in the injured spinal cord of rats. *Brain Research.* 2016;**1634**:21-33.

100. Gao M, Lu P, Bednark B, Lynam D, Conner JM, Sakamoto J, et al. Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection. *Biomaterials.* 2013;**34**(5):1529-36.

101. Kang KN, Kim DY, Yoon SM, Lee JY, Lee BN, Kwon JS, et al. Tissue engineered regeneration of completely transected spinal cord using human mesenchymal stem cells. *Biomaterials*. 2012;**33**(19):4828-35.

102. Yang JT, Kuo YC, Chiu KH. Peptide-modified inverted colloidal crystal scaffolds with bone marrow stromal cells in the treatment for spinal cord injury. *Colloids Surf B Biointerfaces*. 2011;**84**(1):198-205.

103. Du B-L, Xiong Y, Zeng C-G, He L-M, Zhang W, Quan D-P, et al. Transplantation of artificial neural construct partly improved spinal tissue repair and functional recovery in rats with spinal cord transection. *Brain research.* 2011;**1400**:87-98.

104. Kim BG, Kang YM, Phi JH, Kim Y-H, Hwang DH, Choi JY, et al. Implantation of polymer scaffolds seeded with neural stem cells in a canine spinal cord injury model. *Cytotherapy*. 2010;**12**(6):841-5.

105. Pritchard CD, Slotkin JR, Yu D, Dai H, Lawrence MS, Bronson RT, et al. Establishing a model spinal cord injury in the African green monkey for the preclinical evaluation of biodegradable polymer scaffolds seeded with human neural stem cells. *Journal of neuroscience methods*. 2010;**188**(2):258-69.

106. Maeda K, Kanno H, Yamazaki Y, Kubo A, Sato F, Yamaguchi Y, et al. Transplantation of Von Hippel-Lindau peptide delivered neural stem cells promotes recovery in the injured rat spinal cord. *Neuroreport.* 2009;**20**(17):1559-63.

107. Bighinati A, Focarete ML, Gualandi C, Pannella M, Giuliani A, Beggiato S, et al. Improved Functional Recovery in Rat Spinal Cord Injury Induced by a Drug Combination Administered with an Implantable Polymeric Delivery System. *J Neurotrauma*. 2020;**37**(15):1708-19.

108. Liu XY, Liang J, Wang Y, Zhong L, Zhao CY, Wei MG, et al. Diffusion tensor imaging predicting neurological repair of spinal cord injury with transplanting collagen/chitosan scaffold binding bFGF. *J Mater Sci Mater Med.* 2019;**30**(11):123.

109. Oudega M, Hao P, Shang J, Haggerty AE, Wang Z, Sun J, et al. Validation study of neurotrophin-3-releasing chitosan facilitation of neural tissue generation in the severely injured adult rat spinal cord. *Exp Neurol.* 2019;**312**:51-62.

110. Pan Q, Guo Y, Kong F. Poly(glycerol sebacate) combined with chondroitinase ABC promotes spinal cord repair in rats. *Journal of biomedical materials research Part B, Applied biomaterials.* 2018;**106**(5):1770-7.

111. Rao JS, Zhao C, Zhang A, Duan H, Hao P, Wei RH, et al. NT3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury. *Proc Natl Acad Sci U S A*. 2018;**115**(24):E5595-E604.

112. Yin W, Li X, Zhao Y, Tan J, Wu S, Cao Y, et al. Taxol-modified collagen scaffold implantation

promotes functional recovery after long-distance spinal cord complete transection in canines. *Biomater Sci.* 2018;**6**(5):1099-108.

113. Li X, Zhao Y, Cheng S, Han S, Shu M, Chen B, et al. Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair. *Biomaterials.* 2017;**137**:73-86.

114. Chen B, He J, Yang H, Zhang Q, Zhang L, Zhang X, et al. Repair of spinal cord injury by implantation of bFGF-incorporated HEMA-MOETACL hydrogel in rats. *Sci Rep.* 2015;**5**:9017.

115. Grulova I, Slovinska L, Blaško J, Devaux S, Wisztorski M, Salzet M, et al. Delivery of Alginate Scaffold Releasing Two Trophic Factors for Spinal Cord Injury Repair. *Scientific reports*. 2015;**5**:13702.

116. Ni S, Xia T, Li X, Zhu X, Qi H, Huang S, et al. Sustained delivery of chondroitinase ABC by poly(propylene carbonate)-chitosan micron fibers promotes axon regeneration and functional recovery after spinal cord hemisection. *Brain Res.* 2015;**1624**:469-78.

117. Fouad K, Pearse DD, Tetzlaff W, Vavrek R. Transplantation and repair: combined cell implantation and chondroitinase delivery prevents deterioration of bladder function in rats with complete spinal cord injury. *Spinal Cord.* 2009;**47**(10):727-32.

118. Johnson PJ, Parker SR, Sakiyama-Elbert SE. Controlled release of neurotrophin-3 from fibrinbased tissue engineering scaffolds enhances neural fiber sprouting following subacute spinal cord injury. *Biotechnol Bioeng.* 2009;**104**(6):1207-14.

119. Xu HL, Tian FR, Xiao J, Chen PP, Xu J, Fan ZL, et al. Sustained-release of FGF-2 from a hybrid hydrogel of heparin-poloxamer and decellular matrix promotes the neuroprotective effects of proteins after spinal injury. *Int J Nanomedicine*. 2018;**13**:681-94.

120. Li G, Che MT, Zhang K, Qin LN, Zhang YT, Chen RQ, et al. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. *Biomaterials*. 2016;**83**:233-48.

121. Xu H-L, Tian F-R, Lu C-T, Xu J, Fan Z-L, Yang J-J, et al. Thermo-sensitive hydrogels combined with decellularised matrix deliver bFGF for the functional recovery of rats after a spinal cord injury. *Scientific reports.* 2016;**6**:38332-.

122. Li X, Han J, Zhao Y, Ding W, Wei J, Han S, et al. Functionalized Collagen Scaffold Neutralizing the Myelin-Inhibitory Molecules Promoted Neurites Outgrowth in Vitro and Facilitated Spinal Cord Regeneration in Vivo. *ACS applied materials & interfaces.* 2015;**7**(25):13960-71.

123. Lowry N, Goderie SK, Lederman P, Charniga C, Gooch MR, Gracey KD, et al. The effect of long-term release of Shh from implanted biodegradable microspheres on recovery from spinal cord injury in mice. *Biomaterials.* 2012;**33**(10):2892-901.

124. Conova L, Vernengo J, Jin Y, Himes BT, Neuhuber B, Fischer I, et al. A pilot study of poly(N-isopropylacrylamide)-g-polyethylene glycol and poly(N-isopropylacrylamide)-g-methylcellulose branched copolymers as injectable scaffolds for local delivery of neurotrophins and cellular transplants into the injured spinal cord. *J Neurosurg Spine*. 2011;**15**(6):594-604.

125. Johnson PJ, Tatara A, Shiu A, Sakiyama-Elbert SE. Controlled release of neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI. *Cell Transplant*. 2010;**19**(1):89-101.

126. Deng WS, Ma K, Liang B, Liu XY, Xu HY, Zhang J, et al. Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. *Neural Regen Res.* 2020;**15**(9):1686-700.

Table 1. Summary of included studies on testing tissue engineering strategies in animal models of SCI.

aFGF: acidic fibroblast growth factor; BDNF: brain-derived neurotrophic factor; bFGF: basic fibroblast growth factor; BMHP1: bone marrow homing peptide; BMSC: bone marrow stromal cells; ChABC: chondroitinase ABC; CNTF: ciliary neurotrophic factor; DTX: docetaxel; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EnSC: endometrial-derived stromal cells; ESNPC: embryonic stem cell-derived neural progenitor cell; FHPS: fragmented physical hydrogel suspension; HA: hyaluronic acid; HEMA-MOETACL: hydroxyl ethyl methacrylate [2-(methacryloyloxy)ethyl] trimethylammonium chloride; HP: heparin-poloxamer; IKVAV-PA: IKVAV-functionalised peptide amphiphile; iPSC: induced pluripotent stem cell; MSC: mesenchymal stem cell; NPC: neural progenitor cells; NSC: neural stem cell; NT-3: neurotrophin-3; OEC: olfactory ensheathing cell; PDGF: plateletderived growth factor; PEG: polyethylene glycol; PLGA: poly (lactic-co-glycolic acid); PLL: poly-L-Lysine; PNIPAAm: poly(N-isopropylacrylamide); PGS: poly(glycerol sebacate)

Study	Analogous	Animal	Injury	Timing of	Type of	Main findings	Likely effects of
	clinical	species	pattern	intervention /	intervention		the biomaterial
	study			outcome			
	design			measurement			
Dumont 2019	Prospective	Mouse	Hemisection	Immediately	Porous PEG	Reduced glial scar and	Axon guidance

Biomaterials alone

cohort study		(T9)	after injury / 8	hydrogel tubes with	robust axon growth along	
			weeks	intermediate	tube surface; axon density	
				microsphere phase	was 3-fold higher compared	
					to control and 30% of	
					axons within the tube were	
					myelinated; enhanced	
					functional recovery	
Prospective	Rat and	Contusion	Rat: 6 hours	PLGA	Dose-dependent increase	Carrier for drug
cohort study	pig	(T10)	post-injury /	nanoparticles	and significantly greater	delivery
			24 hours or 1		localisation of nanoparticles	
			week after		at lesion site than uninjured	
			intervention		regions, which was not seen	
			Pig: 3 hours		in sham animals;	
			post-injury / 2		nanoparticles were retained	
	Prospective	Prospective Rat and	Prospective Rat and Contusion	Prospective Rat and Contusion Rat: 6 hours cohort study pig (T10) post-injury / 24 hours or 1 week after intervention Pig: 3 hours	ProspectiveRat andContusionRat: 6 hoursPLGAcohort studypig(T10)post-injury /nanoparticles24 hours or 124 hours or 1veck afterinterventioninterventionPig: 3 hoursPig: 3 hours	weeksintermediatetube surface; axon densitymicrosphere phasewas 3-fold higher comparedto control and 30% ofaxons within the tube weremyelinated; enhancedfunctional recoveryProspectiveRat andContusionRat: 6 hourspost-injury /nanoparticlesand significantly greaterlocalisation of nanoparticlesweek afterat lesion site than uninjuredinterventionregions, which was not seenPig: 3 hoursin sham animals;

				intervention			
				(n=1) and 30			
				min post			
				injury / 5			
				hours after			
				intervention			
				(n=1)			
Hejčl 2018 ⁴⁶	Prospective	Rat	Hemisection	Immediately	Modified	Hydrogels significantly	Axon guidance;
	cohort study		(T8)	after injury /	methacrylate	increased connective tissue	Neuronal
				12 weeks	hydrogels	infiltration, blood vessel	regeneration
						ingrowth, axonal ingrowth	
						and formation of some	
						neurofilaments	

Sitoci-Ficici	Prospective	Rat	Hemisection	Immediately	Non-functionalised	Significantly improved	Axon guidance
2018 ⁷⁶	cohort study		(T9-10)	after injury /	soft alginate	locomotor recovery in	
				20 weeks	hydrogel	animals with 2 mm lesions	
						but not 4 mm lesions;	
						reduced fibrous scarring in	
						spinal cord	
Chedly 2017 89	Prospective	Rat	Hemisection	Immediately	Chitosan	Promoted reconstitution of	Axon guidance;
	cohort study		(T8-9)	after injury /	microhydrogels	spinal tissue and	Alleviate the
				12 weeks	with FPHS $(3\mu L)$	vasculature, and reduced	secondary response
						fibrous glial scarring	
Zhu 2017 90	Randomised	Rat	Complete	Immediately	Decellularised	Scaffold provided contact	Axon guidance
	controlled		transection	after injury /	spinal cord scaffold	guidance for axonal	
	study		(T9-10)	12 weeks		regrowth, and allowed	
						better recovery of motor	
						function	

Kushchayev	Randomised Rat	Complete	Immediately	Hyaluronic acid	Smaller lesion size,	Alleviate the
2016 ⁹¹	controlled	transection	after injury /	hydrogel	decreased fibrous scarring	secondary response
	study	(T9-10)	16 weeks		and presence of	
					inflammatory cells; no	
					differences in behavioural	
					assessments; no axonal or	
					neuronal regeneration	
Imani 2015 ⁹²	Randomised Rat	Complete	1 week post-	Carbon nanotubes	Decreased lesion volume,	Alleviate the
	controlled	transection	injury / 4	functionalised with	increased neurofilament-	secondary response
	study	(T9-10)	weeks after	a sulfonated	positive fibres and	
			intervention	tetrafluoroethylene	corticospinal tract fibres in	
				copolymer (Nafion)	the lesion, and no increase	
					in gliosis; modest	
					improvement in hind limb	
					locomotor recovery	

neuronal ation, spinal repair omotor recovery; ed differentiation uration of neurons	Neuronal regeneration
omotor recovery;	regeneration
d differentiation	
uration of neurons	
ocytes	
ted nerve fibres	Axon guidance
the scaffold and	
of rubrospinal	
ere repaired; the	
uld function as a	
act and might	
a permissive	
vironment for axon	
on	
	ated nerve fibres n the scaffold and 6 of rubrospinal 7 ere repaired; the ould function as a ract and might e a permissive nvironment for axon ion

Tamosaityte	Randomised Rat	Hemisection	Immediately	Non-functionalised	Significantly reduced	Alleviate the
2015 94	controlled	(T9)	after injury /	soft calcium	injury-induced	secondary response
	study		24 weeks	alginate hydrogel	demyelination and fibrotic	
					scarring; hydrogel had	
					long-term persistence in	
					vivo	
Roman 2011 ²⁹	Randomised Rat	Complete	1week post-	Single-walled	Decreased lesion volume,	Axon guidance
	controlled	transection	injury / 4	carbon nanotubes	increased neurofilament-	
	study	(T9)	weeks after	functionalised with	positive fibres and	
			intervention	PEG	corticospinal tract fibres in	
					the lesion, and did not	
					increase reactive gliosis;	
					modest improvement in	
					hind limb locomotor	
					recovery	

Cho 2010 95	Prospective	Guinea	Contusion	Immediately	Chitosan solution	Restored the conduction of	Alleviate the
	cohort study	pig	(midthoracic)	after injury / 2		nerve impulses through the	secondary response
				weeks		length of the spinal cord	
Johnson 2010	Prospective	Rat	Hemisection	2 weeks post-	Fibrin scaffold	Fibrin was conducive to	Alleviate the
58	cohort study		(T9)	injury / 4		regeneration and cellular	secondary response
				weeks after		migration; higher levels of	
				intervention		neural fibre staining and	
						delayed accumulation of	
						reactive astrocytes in the	
						lesion	
Tysseling 2010	Prospective	Rat and	Contusion	1 day post-	Self-assembling	Improved functional	Axon guidance
54	cohort study	mouse	(T13 for rat,	injury / 9	IKVAV-PA scaffold	recovery required the	
			T10 for	weeks after		bioactive sequence; may be	
			mouse)	intervention		due to increased	
						serotonergic innervation	

	study			outcome			
	clinical	species	pattern	intervention /	intervention		the biomateria
Study	Analogous	Animal	Injury	Timing of	Type of	Main findings	Likely effects o
Biomaterials	with cells						
						permanent	
						restoration appeared to be	
						locomotion; functional	
						improvement in	
						regeneration and	
			(T10)	24 weeks	6000 filaments	supported axonal	
	cohort study		transection	after injury /	(5 mm length) with	the axis of the spinal cord	
Yoshii 2009 ⁹⁶	Prospective	Rabbit	Complete	Immediately	Collagen scaffold	Scaffold grafted parallel to	Axon guidance
						sensory axons	
						regeneration of motor and	
						caudal to the lesion, and	

	design			measurement			
Koffler 2019 ²⁸	Prospective	Rat	Complete	Immediately	Polyethylene glycol	Channelled scaffolds	Axon guidance
	cohort study		transection	after injury /	gelatin	produced using 3D printing	
			(T3)	20 weeks	methacrylate loaded	supported axon	
					with rat NPCs	regeneration and formation	
						of new 'neural relays'	
						between host and	
						transplanted cells; restored	
						synaptic transmission and	
						significantly improved	
						functional outcomes	
Marchini 2019	Randomised	Rat	Hemisection	1 week post-	Self-assembling	Decreased astrogliosis and	Alleviate the
42	controlled		(T9 - 10)	injury / 8	peptide hydrogel	immune response; scaffolds	secondary response;
	study			weeks after	with human NSCs	with pre-differentiated cells	Axon guidance;

			intervention		showed higher percentages	Cell homing
					of neuronal markers, better	
					engraftment, and improved	
					behavioural recovery	
Fan 2018 ⁹⁷	Randomised Mouse	Complete	Immediately	Gelatin	More robust neurite	Induce
	controlled	transection	after injury / 6	methacrylate	outgrowth and neuronal	neurodifferentiation;
	study	(T9 - 10)	weeks	(GelMA) hydrogel	differentiation; greater	Cell homing;
				with mouse iPSC-	functional recovery;	Axon guidance;
				derived NSCs	reduced cavity area,	Alleviate the
					inflammation and glial scar	secondary response
					formation	
Han 2018 ⁴¹	Randomised Dog	Complete	Immediately	Linear-ordered	Better hind limb locomotor	Axon guidance;
	controlled	transection	after injury /	collagen scaffold	recovery; regenerated tissue	Cell homing
	study	(T8)	36 weeks	with human	well integrated with host	
				placenta-derived	tissue; more neurons,	

					MSCs	axonal regeneration,	
						remyelination and synapse	
						formation in lesion site;	
						enhanced sprouting of	
						motor and sensory fibres in	
						lesion site	
Zaviskova	Prospective	Rat	Hemisection	1 week post-	Modified	Promoted axonal ingrowth	Axon guidance;
2018 98	cohort study		(T8)	injury / 8	hyaluronic acid	into the lesion; no effect on	Cell homing
				weeks after	hydrogel with	locomotor recovery, blood	
				intervention	human Wharton's	vessel ingrowth or density	
					jelly-derived MSCs	of glial scar around the	
						lesion	
Wang 2017 63	Randomised	Rat	Complete	Immediately	PLGA scaffold with	Enhanced locomotor	Extracellular matrix
	controlled		transection	after injury / 8	rat OECs	recovery, axon myelination	substitution;
	study		(T9-10)	weeks		and better protected	Cell homing

						neurons compared with	
						scaffold alone	
Raynald 2016	Randomised	Rat	Hemisection	Immediately	HA-PLL hydrogel	Improved survival of	Axon guidance;
99	controlled		(T9)	after injury / 8	with human	transplanted cells, axonal	Cell homing
	study			weeks	BMSCs	growth and functional	
						recovery	
Gao 2013 ¹⁰⁰	Randomised	Rat	Complete	Immediately	Agarose scaffold	Templated scaffold	Axon guidance;
	controlled		transection	after injury / 4	with bone marrow	supported motor axon	Extracellular matrix
	study		(T3)	weeks	stromal cells	regeneration and organised	substitution;
					secreting BDNF	axons into highly linear	Cell homing
						fascicles; BDNF	
						significantly enhanced	
						axonal growth	
Kang 2012 ¹⁰¹	Randomised	Rat	Complete	Immediately	PLGA scaffold with	Improved recovery of hind	Axon guidance;
	controlled		transection	after injury / 8	human MSCs	limb locomotion, with	Cell homing

	study		(T8-9)	weeks		higher amplitude of motor	
						evoked potentials; cells	
						survived in implant site at 8	
						weeks and differentiated	
						into nerve cells	
Yang 2011 102	Prospective	Rat	Contusion	Immediately	Inverted colloidal	Neuronal survival and	Alleviate the
	cohort study		(T10)	after injury / 4	crystal scaffold	axonal growth were highest	secondary response;
				weeks	grafted with two	in scaffold with peptide,	Axon guidance;
					defined peptides,	and higher in scaffold	Cell homing
					with rat bone	compared to cells alone;	
					marrow stromal	construct inhibited	
					cells	formation of glial scar	
						tissue and inflammatory	
						cytokines	

Du 2011 ¹⁰³	Randomised Rat	Complete	Immediately	Macroporous	Significantly improved	Induce
	controlled	transection	after injury / 8	PLGA scaffold with	locomotion recovery;	neurodifferentiation;
	study	(T9)	weeks	rat NSCs	grafted cells had higher	Axon guidance;
					survival rate and could	Cell homing
					differentiate into neuronal	
					phenotype; higher nerve	
					fibre regrowth but limited	
					corticospinal tract axon	
					regeneration	
Kim 2010 ¹⁰⁴	Prospective Dog	Hemisection	Immediately	PLGA scaffold with	Scaffold bridged tissue	Cell homing
	cohort study	(T11)	after injury /	human NSCs	defects and integrated with	
			12 weeks		host tissue; grafted cells	
					survived implantation and	
					showed migratory	
					behaviour	

Pritchard 2010	Prospective	Non-	Hemisection	Immediately	PLGA scaffold with	Scaffold persisted for >40	Cell homing;
105	cohort study	human	(T9-10)	after injury /	human NSCs	days and degraded within	Axon guidance
		primate		up to 16		82 days; differences in	
				weeks		structural and functional	
						improvements were not	
						significant between	
						animals, but only one	
						animal per treatment was	
						used	
Maeda 2009 106	Randomised	Rat	Contusion	1 week post-	Von Hippel–Lindau	Improved behavioural	Induce
	controlled		(T10)	injury / 6	peptide with rat	recovery and increased	neurodifferentiation;
	study			weeks after	NSCs	differentiation of engrafted	Cell homing
				intervention		NSCs into neuronal marker	
						positive cells	

Biomaterials with drugs or biomolecules

Study	Analogous	Animal	Injury	Timing of	Type of	Main findings	Likely effects of
	clinical	species	pattern	intervention /	intervention		the biomaterial
	study			outcome			
	design			measurement			
Bighinati 2020	Randomised	Rat	Contusion	Immediately	Poly (l-lactic acid)	Reduced lesion volume and	Alleviate the
107	controlled		(T9)	after injury / 8	scaffold loaded	percentage of astrocytes;	secondary response;
	study			weeks	with ibuprofen and	increased locomotion	Drug delivery
					triiodothyronine	recovery, myelin and	
						neurofilament formation	
Hassannejad	Randomised	Rat	Contusion	1 day post-	IKVAV-PA	Axon preservation and	Alleviate the
2019 72	controlled		(T7-8)	injury / 6	hydrogel loaded	reduction of astrogliosis; no	secondary response;
	study			weeks	with BDNF (20 μL	difference in locomotor	Axon guidance
					of 0.05 mg/mL)	functional recovery	
						compared to control	

Liu 2019 ¹⁰⁸	Randomised	Rat	Complete	Immediately	Collagen/chitosan	Significantly improved	Axon guidance
	controlled		transection	after injury / 8	mixture adsorbed	locomotor function, axonal	
	study		(T10)	weeks	with bFGF (50 ng)	repair and regeneration of	
						nerve fibre tracts	
Oudega 2019	Randomised	Rat	Complete	Immediately	Chitosan tubes	Neural tissue bridged the	Axon guidance;
109	controlled		transection	after injury /	containing chitosan	transection gap; hind limb	Alleviate the
	study		(T7-8)	12 weeks	carriers loaded with	movement was significantly	secondary response
					NT-3 (100 ng)	improved	
Pan 2018 ¹¹⁰	Randomised	Rat	Complete	Immediately	PGS scaffold with	Improved nerve	Alleviate the
	controlled		transection	after injury /	ChABC (6 µL of 10	regeneration and recovery	secondary response;
	study		(T10)	12 weeks	U/mL) injected	of movement function,	Axon guidance;
					separately	compared to scaffold alone	Drug delivery
						or biomolecule alone	
Rao 2018 111	Randomized	Non-	Hemisection	Immediately	Chitosan tube	Enabled robust neural	Axon guidance
	controlled	human	(T8)	after injury / 1	scaffold with NT-3	regeneration accompanied	

	study	primate		month to >3	(100 ng)	by motor and sensory	
				years		functional recovery; motor	
						axons in the corticospinal	
						tract entered the injury site	
						within the biomaterial and	
						also grew across the lesion	
						area into the distal spinal	
						cord	
Tom 2018 ²⁷	Prospective	Rat	Contusion	1 week post-	PNIPAAm-g-PEG	Significant restoration in	Drug delivery;
	cohort study		(T9-10)	injury / 10	scaffold loaded	the rate depression property	Extracellular matrix
				weeks after	with BDNF and	of H-reflex for animals with	substitution
				intervention	NT-3	treadmill training, with or	
						without the implant;	
						implant alone was	
						ineffective	

Yin 2018 112	Prospective	Dog	Complete	Immediately	Linear-ordered	Significantly promoted	Alleviate the
	cohort study		transection	after injury /	collagen scaffold	motor evoked potentials	secondary response;
			(T8)	24 weeks	with Taxol (0.24	and locomotion recovery;	Axon guidance;
					mg)	significantly increased	Drug delivery
						neurogenesis and axon	
						regeneration to reconnect	
						the spinal cord stumps;	
						reduced glial scar formation	
Li 2017 ¹¹³	Randomised	Rat and	Complete	Immediately	Linear ordered	Neuronal regeneration in	Neuronal
	controlled	dog	transection	after injury /	collagen scaffold	both rodent and canine	regeneration;
	study		(T8)	36 weeks	with PBS	models, including neuronal	Alleviate the
					containing	differentiation, maturation,	secondary response;
					cetuximab	myelination, and synapse	Drug delivery
						formation leading to	
						significant locomotion	

					recovery	
Chen 2015 ¹¹⁴	Prospective Rat	Complete	5 days post-	HEMA-MOETACL	Allowed ingrowth of	Alleviate the
	cohort study	transection	injury / 8	hydrogel loaded	regenerating tissue;	secondary response;
		(T9)	weeks after	with bFGF (2 μ g)	promoted nerve tissue	Axon guidance
			intervention		regeneration and functional	
					recovery	
Grulova 2015	Randomised Rat	Contusion	1 week post-	Alginate scaffold	Enhanced sparing of spinal	Extracellular matrix
115	controlled	(T8)	injury / 7	loaded with EGF	cord tissue and outgrowth	substitution;
	study		weeks post-	and bFGF	of corticospinal tract axons,	Alleviate the
			injury		and increased number of	secondary response
					surviving neurons and	
					sensory fibres; improved	
					functional recovery	

Ni 2015 ¹¹⁶	Prospective	Rat	Hemisection	Immediately	Polypropylene	Promoted axon sprouting	Drug delivery;
	cohort study		(T7-9)	after injury / 4	carbonate	and functional recovery,	Alleviate the
				weeks	electrospun fibres	and reduced glial scarring;	secondary response;
					with chitosan	fibres without ChABC did	Axon guidance
					microspheres	not have the same effects	
					loaded with		
					ChABC		
Wang 2014 ¹⁴	Randomised	Rat	Complete	Immediately	Sodium hyaluronate	Powerful functional	Axon guidance;
	controlled		transection	after injury /	gelatinous particles	recovery (open-field	Extracellular matrix
	study		(T8)	15 weeks	containing CNTF	locomotion, cortical	substitution
						motor/somatosensory	
						evoked potentials), possibly	
						due to increased axonal	
						regrowth and neuron-like	
						cells	

Fouad 2009 ¹¹⁷	Prospective	Rat	Complete	Immediately	Matrigel-filled	Prevented collagen	Axon guidance;
	cohort study		transection	after injury /	guidance channels	deposition in bladder walls	Drug delivery
			(T8)	12 weeks	with rat Schwann	and maintained the	
					cells, olfactory	animal's ability to void	
					ensheathing glia	efficiently; controls with	
					and ChABC (2 μL	Matrigel only had thicker	
					of 10 µg/mL)	bladder walls	
Johnson 2009	Prospective	Rat	Hemisection	2 weeks post-	Fibrin scaffold with	500 ng/mL NT-3 increased	Axon guidance;
118	cohort study		(T9)	injury / 2	NT-3 (500 or 1000	neural fibre density	Extracellular matrix
				weeks after	ng/mL)	compared to scaffold alone;	substitution
				intervention		scaffolds with or without	
						NT-3 had lower astrocyte	
						density compared to control	
Biomaterials	with a comb	oination o	of additional t	factors			

Study	Analogous	Animal	Injury	Timing of	Type of	Main findings	Likely effects of
	clinical	species	pattern	intervention /	intervention		the biomaterial
	study			outcome			
	design			measurement			
Luo 2018 ⁸⁴	Randomised	Rat	Contusion	Immediately	HP hydrogel	Improved neuronal repair,	Induce
	controlled		(T10)	after injury / 4	combining human	functional recovery and	neurodifferentiation;
	study			weeks	dental pulp stem	tissue regeneration	Neuronal
					cells and bFGF		regeneration;
							Cell homing
Wang 2018 48	Randomised	Rat	Contusion	Immediately	HP hydrogel	The multiple drugs were	Drug delivery;
	controlled		(T9-10)	after injury / 8	containing	effectively delivered to the	Axon guidance;
	study			weeks	liposomes with	injury site, where their	Alleviate the
					aFGF, BDNF and	combined application	secondary response
					DTX	improved neuronal survival	
						and plasticity, and	

					promoted axonal	
					regeneration	
Xu 2018 ¹¹⁹	Randomised Rat	Hemisection	Immediately	HP hydrogel with	Scaffold promoted better	Axon guidance;
	controlled	(T9-10)	after injury / 4	decellularised	recovery of neuron	Extracellular matrix
	study		weeks	matrix and FGF2	functions and tissue	substitution;
				(20 µL of 3 µg/µL)	morphology compared to	Alleviate the
					free FGF2; increased	secondary response
					expression of neurofilament	
					protein and axon density in	
					scaffolds	
Fan 2017 ⁶⁸	Randomised Rat	Complete	Immediately	Linear-ordered	Promoted neurogenesis of	Axon guidance;
	controlled	transection	after injury /	collagen scaffold	endogenous injury-	Induce
	study	(T8)	12 weeks	modified with a	activated NSCs, which	neurodifferentiation
				collagen-binding	matured into functional	
				EGFR antibody	neurons to reconnect the	

					fragment	injured gap	
Li 2016 ⁷¹	Randomised	Rat	Complete	Immediately	Collagen scaffold	Designed to antagonise	Axon guidance;
	controlled		transection	after injury /	functionalised with	myelin inhibitory molecules	Neuronal
	study		(T9-10)	12 weeks	a cocktail of	while providing	regeneration;
					neutralising	neurotrophic protection;	Alleviate the
					proteins and	reduced the volume of	secondary response
					collagen-binding	cavitation, facilitated	
					neurotrophic factors	axonal regeneration, and	
						promoted neuronal	
						regeneration; new neurons	
						in the lesion enhanced	
						locomotion recovery	
Li 2016 ¹²⁰	Prospective	Rat and	Hemisection	Immediately	Gelatin sponge	Significantly reduced cavity	Axon guidance;
	cohort study	dog	(T10)	after injury / 4	scaffold coated with	areas in the injury site, due	Extracellular matrix

			weeks	NT-3/fibroin, with	to tissue regeneration and	substitution;
				rat bone marrow-	axonal extensions with	Alleviate the
				derived MSCs	myelin sheath through the	secondary response
					glial scar into the implant;	
					decreased inflammation	
Tavakol 2016	Randomised Rat	Contusion	10 days post-	Injectable self-	Improved axon	Axon guidance;
73	controlled	(T9-10)	injury / 6	assembling peptide	regeneration and	Extracellular matrix
	study		weeks after	nanofibre scaffold	myelination, and motor	substitution;
			intervention	containing BMHP1,	neuron function with less	Cell homing
				with human EnSCs	inflammatory response	
Xu 2016 ¹²¹	Randomised Rat	Hemisection	Immediately	Acellular spinal	Enhanced inhibition of glial	Axon guidance;
	controlled	(T9-10)	after injury / 4	cord scaffold	scars and improved	Induce
	study		weeks	loaded with bFGF	functional recovery through	neurodifferentiation;
				and encapsulated	regeneration of nerve axons	Alleviate the
				into a HP hydrogel	and differentiation of neural	secondary response

					stem cells	
Li 2015 ¹²²	Randomised Rat	Complete	Immediately	Collagen scaffolds	The proteins were used to	Axon guidance
	controlled	transection	after injury /	loaded with two	neutralise axon guidance	
	study	(T9-10)	12 weeks	collagen-binding	molecules that inhibit nerve	
				proteins	fibre regeneration;	
					constructs improved axonal	
					regeneration and	
					locomotion recovery	
Shi 2014 ⁶²	Randomized Rat	Hemisection	Immediately	Collagen scaffold	Improved survival rates;	Axon guidance
	controlled	(T9)	after injury / 8	with collagen	higher improvement in	
	study		weeks	binding bFGF	motor function compared to	
					scaffold alone; guided	
					fibres to growth through the	
					implant	

Lowry 2012 ¹²³	Prospective	Mouse	Partial	Immediately	PLGA	Increased proliferation of	Axon guidance;
	cohort study		transection	after injury / 7	microspheres	endogenous	Extracellular matrix
			or contusion	weeks	loaded with Shh	oligodendrocyte lineage	substitution;
			(T9-10)		protein	cells, decreased astrocytic	Alleviate the
						scar formation, and	secondary response
						increased sprouting and	
						growth of corticospinal and	
						raphespinal tract fibres	
Conova 2011	Prospective	Rat	Hemisection	3 days post-	Injectable	Scaffolds did not contribute	Axon guidance;
124	cohort study		(C4-5)	injury / 2	PNIPAAm scaffold	to injury-related	Extracellular matrix
				weeks after	lightly crosslinked	inflammatory response;	substitution
				intervention	with PEG or	both were permissive to	
					methylcellulose,	axonal growth and allowed	
					loaded with BDNF	local BDNF delivery	

Johnson 2010	Prospective	Rat	Hemisection	2 weeks post-	Fibrin scaffold with	Fibrin scaffold with NT-3	Axon guidance;
125	cohort study		(T9)	injury / 2	ESNPCs	and PDGF increased total	Induce
				weeks after	transplanted as	number of ESNPCs in the	neurodifferentiation;
				intervention	embryoid bodies,	lesion; inclusion of heparin-	Extracellular matrix
					containing a	binding delivery system	substitution
					heparin-binding	with growth factor	
					delivery system,	increased number of	
					NT-3 and PDGF	ESNPC-derived neurons	

Study	Type of SCI	Biomaterial composition	Trial registration information
Deng 2020 ¹²⁶	Acute complete	Collagen scaffold combined with human	Ethics Committee of the Characteristic Medical
	SCI	umbilical cord mesenchymal stem cells	Center of Chinese People's Armed Police Force
		(MSCs)	on 3 February 2016 (Approval No. PJHEC-2016-
			A8)
Chen 2020 77	Acute complete	NeuroRegen scaffold (bovine aponeurosis)	National Institutes of Health database
	SCI	combined with autologous bone marrow	(ClinicalTrials.gov: NCT02510365)
		mononuclear cells (BMMCs)	
Xiao 2018 ⁷⁵	Acute complete	NeuroRegen scaffold combined with	National Institute of Health database
	SCI	allogeneic umbilical cord MSCs	(ClinicalTrials.gov: NCT02510365)
Xiao 2016 ²¹	Chronic complete	NeuroRegen scaffold combined with	National Institutes of Health database
	SCI	autologous BMMCs	(ClinicalTrials.gov: NCT02352077)
Theodore 2016 ²²	Acute traumatic	Neuro-Spinal Scaffold (poly(lactic-co-	National Institute of Health database
	SCI	glycolic acid) covalently conjugated to	(ClinicalTrials.gov: NCT02138110)

Table 2. Biomaterials that have been tested in clinical trials for spinal cord injury (SCI) repair.

poly(L-lysine))

UC Davis Medical Center	Complete thoracic	Neuro-Spinal Scaffold	National Institutes of Health database
Sacramento, California,	SCI		(ClinicalTrials.gov: NCT03762655)
United States			
Affiliated Hospital of	Acute or chronic	Functional neural regeneration scaffold	National Institutes of Health database
Logistics, University of	complete SCI		(ClinicalTrials.gov: NCT03966794)
CAPF, Tianjin, China			
Affiliated Hospital of	Chronic complete	NeuroRegen scaffold combined with	National Institutes of Health database
Logistics, University of	SCI	mesenchymal stem cells or neural stem cells	(ClinicalTrials.gov: NCT02688049)
CAPF, Tianjin, China			
First Affiliated Hospital of	Complete thoracic	NeuroRegen scaffold combined with BMMCs	National Institutes of Health database
PLA General Hospital,	SCI		(ClinicalTrials.gov: NCT02688062)
Beijing, China			
Toronto Western Hospital,	Traumatic acute	Neuro-Spinal Scaffold	National Institutes of Health database

Toronto, Ontario, Canada cervical SCI

(withdrawn)

(ClinicalTrials.gov: NCT03105882)