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Abstract:   27 
Rice is the staple food in many countries including Bangladesh. In Bangladesh, >80% of the total 28 

irrigated area is planted with rice. This leads to generate a huge amount of rice husk (RH) as a 29 

solid waste which requires proper management. This study, therefore, aimed to extract amorphous 30 

silica from openly burned rice husk ash (RHA) using a low-cost energy-saving method by avoiding 31 

calcination or combustion processes. The extracted silica was then applied for the removal of 32 

environmental contaminants i.e., methylene blue dye from an aqueous solution. It was found that 33 

the yield of silica produced from sulfuric acid-pretreated RHA was 72.4%. The FTIR absorption 34 

peaks in 1057 and 783 cm-1 indicate the presence of a highly condensed silica-containing 35 

asymmetric and symmetric siloxane (Si-O-Si) network mixture. The broad maximum bond peak 36 

intensity at 2θ = 22° by x-ray diffraction analysis also indicates that the produced silica was 37 

amorphous with a mesoporous structure. The sulfuric acid treated RHA-based silica surface area 38 

was 182 m2/g. This silica resulted in a maximum adsorption capacity of 107 mg/g of methylene 39 

blue at pH 8 with a faster equilibrium of 60 minutes. The mechanistic study indicated that 40 

Langmuir's and Freundlich both adsorption isotherms were fitted well which indicated 41 

homogeneous adsorbent surfaces involving monolayer and multilayer adsorption processes. 42 

Keywords: Rice husk ash; Acid-pretreatment; Mesoporous silica; Methylene blue; Adsorption 43 

 44 
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1. Introduction  45 

Bangladesh is an agricultural country, and approximately 80% of the total irrigated lands 46 

are used for rice production (BRRI, 2021). Consequently, the rice processing industries produce 47 

large amounts of rice husk waste. The milling of paddy rice generates about 70% yield of rice as 48 

the principal product together with unconsumed portions of rice husk (RH, 20%), rice bran (8%), 49 

and rice germ (2%) (Me and Bee Ling, 2016; Van Hoed et al., 2006). As significant amounts of 50 

RH are produced during the milling of paddy rice, RH has been utilized for different purposes 51 

including activated carbon production (He et al., 2021; Wazir et al., 2020), electricity generation 52 

(Ejiofor et al., 2020; Silva et al., 2021), nitrates, and heavy metal removal from wastewater (Ag et 53 

al., 2018; Sadeghi Afjeh et al., 2020). However, most RH in Bangladesh is being utilized for energy 54 

production. Hence, a significant amount of rice husk ash (RHA) is generated by those small-scale 55 

industries enriched with a high portion of silica content (Zareihassangheshlaghi et al., 2020). The 56 

silica content in RHA depends on various factors including climate, soil types, harvesting season, 57 

the amounts of fertilizers used during cultivation, and geographical and environmental aspects 58 

(Beidaghy Dizaji et al., 2019; Singh et al., 2022). This RHA is often dumped on land leading to 59 

pollution of the soil environment. Therefore, recycling of such RHA into valuable products or use 60 

as adsorbent (Silvalingam and Sen, 2020; Costa and Paranhos, 2019; Mor et al., 2016; Lakshmi et 61 

al., 2009; Mane et al., 2007) has great demand as RHA contains more than 90% silica with small 62 

fractions of other inorganic oxides such as sodium, potassium, iron, and magnesium (Alam et al., 63 

2020). Among these constituents, silica is the crucial element forming the inorganic compound 64 

silicon dioxide (SiO2). Although silica is found in nature, mainly as sand or sand quartz, RHA 65 

represents another potential source. Silica is industrially used for many purposes e.g., as an 66 

additive for catalyst, insulation, toothpaste, coating solutions, and cosmetics (Park et al., 2021). 67 

https://www.omicsonline.org/searchresult.php?keyword=rice-bran
https://www.omicsonline.org/searchresult.php?keyword=rice-bran
https://www.omicsonline.org/searchresult.php?keyword=rice-bran
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Furthermore, rice husk-derived silica is used as an adsorbent for organic dye removal (Niculescu 68 

and Raboaca, 2021), for the removal of phosphates and heavy metals (Dutta Gupta et al., 2021; 69 

Suzaimi et al., 2020), filler in plastics and rubber compounding (Karthigairajan et al., 2020), 70 

wastewater treatment (Mohamed and Alfalous, 2020), gas purification (Bakdash et al., 2020), 71 

ceramics processing (Sobrosa et al., 2017), thermal insulators (Hossain et al., 2017; Sembiring et 72 

al., 2016), concrete (Zareei et al., 2017), steel, and refractory bricks (Shen, 2017).   73 

Recently, several studies suggested that pure silica can be effectively extracted from RHA 74 

through a combination of extraction and purification methods such as alkali leaching (Ma et al., 75 

2012), acid leaching (Sankar et al., 2016; Schliermann et al., 2018) and thermal treatment (Bakar 76 

et al., 2016; Beidaghy Dizaji et al. 2022a; Beidaghy Dizaji et al., 2022b). Singh et al., (2022) 77 

reported that if rice husk is calcined below 900℃, then amorphous silica is produced; whereas if 78 

calcination temperature rises above 900℃, crystalline silica is produced. Chun et al., (2020) 79 

burned RHA at 900℃ for 12 h after sulfuric acid pretreatment to produce ordered mesoporous 80 

nano-silica particles with 5.0 M NaOH. Azat et al., (2019) produced 98.7% pure silica with 625 81 

m2/g surface area from RHA by leaching with 2.0 M NaOH at 90  for 2 h. 89% silica yield was 82 

found with two-stage continuous processes and 79% with a single-stage when RHA was treated 83 

with 0.2 M NaOH at 80℃ for 3 h (Park et al., 2021). After extraction, the precipitate was calcined 84 

at 900℃ for 6 h to produce 98.5% pure silica with a surface area of 1.973 m2/g. Another study 85 

reported a 91% yield with 93% purity of silica obtained from RHA with 1.0 M NaOH for 1 h 86 

(Kalapathy et al., 2000). They used 660℃ temperatures for 8 h to convert rice husk to ash. 87 

Similarly, Ma et al., (2012) prepared silica powder when RHA collected from a power plant was 88 

heated at 120℃ with 4.0 M NH4F for 3 h with a conversion yield of 94.6%. Therefore, all processes 89 

used pre-calcination or post-calcination techniques to extract and purify silica from RHA.   90 
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Literature shows that controlled burning or calcination processes were carried out by 91 

changing the temperature (post calcination) as well as the use of alkali before or after extraction. 92 

Therefore, this study aims to extract silica from RHA via a non-post calcination or carbonization 93 

method by collecting the RHA from a local rice processing mill. This process leads to the low-cost 94 

and less energy-intensive and sustainable production of pure silica from RHA. In addition, the 95 

extracted silica was then applied as a natural adsorbent to remove organic pollutants such as 96 

methylene blue dye from the aqueous solution.  97 

 98 

2. Materials and Methods  99 

2.1. Materials  100 

Rice husk ash (RHA) was collected from the Tungipara Rice Processing Mill, Gopalganj, 101 

Bangladesh. All the reagents used in this study were of analytical grade. Sulfuric acid (98%) and 102 

sodium hydroxide pellets were purchased from Merck Specialties Private Limited, India.  103 

2.2. Pretreatment of RHA  104 

Incompletely burned RHA is separated using a 45-mesh sieve, and there present no visible slag 105 

in the collected sample. After sieving, half of the total ash was washed using water, and another 106 

half was washed with 0.5N H2SO4 acid with constant stirring at 40℃. A magnetic stirrer hotplate 107 

(Scilogex Magnetic Stirrer with hot plate, model MS7-H550-Pro, USA) was used for heating and 108 

stirring. After acid washing, RHA samples were neutralized to pH 7 by washing them with distilled 109 

water. Washed samples were dried at 80℃ for 12 h, and stored in zip-lock bags at room 110 

temperature (Figure 1). Silica produced from water-washed RHA was denoted as WW_RHA, and 111 

silica produced from acid-washed RHA was denoted as AW_RHA.  112 
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2.3. Silica preparation from RHA   113 

Pretreated RHA was leached at a constant temperature (105°C) and varying the time from 0.5 114 

h to 3.0 h in the presence of 3.0 M NaOH. To do so, 5 g ash was weighed and placed in a flat-115 

bottomed flask with 100 ml 3 M NaOH. At the end of the experiments, the sodium silicate and 116 

leachate solution were separated from insoluble residue using Whatman filter paper 125 mm 117 

Grade-1. Then the separated solution was neutralized to pH 7 with 3 M H2SO4 solution with 118 

continuous stirring, and allowed to stand overnight to precipitate silicic acid (Figure 1). The 119 

precipitated product was collected and washed thoroughly with distilled water to remove any 120 

unwanted water-soluble salt and clouds of dust. After washing, the final product was dried at 80°C 121 

for 24 h for converting silicic acid to pure silica; and stored in an airtight sample holder for further 122 

use.  123 

  124 

“Figure 1”  125 

  126 

2.4. Characterizations of silica  127 

The surface morphology of produced silica was observed by employing field emission 128 

scanning electron microscopy (FESEM, JSM-7610F, JEOL, Japan). Energy dispersive 129 

spectroscopy (EDS; 7610F, JEOL, Japan) coupled with FESEM was used to identify the presence 130 

of corresponding elements in silica samples. SEM-EDS analysis was performed under a low-131 

pressure vacuum with a processing time of 3.25 s, beam accelerating voltage of 15 kV at beam 132 

aperture of 6 mm, with a working distance of 7.6 mm, magnification of 2000, probe current of 1.0 133 

nA, and EDX count rate at 1400 ± 200 cps. X-ray fluorescence (XRF) was done using SHIMADZU 134 

ED-XRF (EDX-8000, Japan) to determine the chemical compositions of the initial RHA and 135 
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Rigaku WD-XRF (ZSX Primus IV, Japan) to determine the chemical compositions of the produced 136 

silica. XRF was done taking a 0.2 g sample, pressing pressure of 10 lb, and 3 minutes of 137 

palletization time. X-ray diffraction (XRD) patterns of silica from WW_RHA and silica from 138 

AW_RHA were recorded using Rigaku AC 2021 (Japan) X-Ray diffractometer using Kβ filter 1D 139 

for Cu and HyPix-400 (horizontal) detector operated at 50 mA and 40 kV at a scan rate of 20 °/min 140 

in the 2θ range of 5-30°. FTIR spectra identified the functional groups present in SiO2 precipitate. 141 

An IR Prestige 21 FTIR (SHIMADZU, Japan) spectrometer was used with the ATR technique at 142 

a spectral range from 700 to 1400 cm-1 for 30 scans at a speed of 4 cms-1. The Brunauer-Emmett-143 

Teller (BET) surface area of silica was determined from N2 adsorption measurements using BET-144 

201-A Sorptometer (PMI, USA). N2 adsorption/desorption isotherms were recorded in the range 145 

of relative pressures, P/P0, from 0.0 to 0.977. To remove any moisture or adsorbed contaminants, 146 

samples were outgassed to 20 microns vacuum overnight at 120℃ before measurements.  147 

2.5. Adsorption of organic dye using extracted silica  148 

The stock solution of methylene blue (MB) was prepared with distilled water. Firstly, we 149 

studied the effect of pH on dye adsorption. To do so, the pH was adjusted from 2 to 12, using 0.1 150 

M HCl and 0.1 M NaOH solutions at room temperature before adsorption experiments were carried 151 

out for 6 h to determine sorption capacity at equilibrium. HI-2211 Bench-type pH meter was used 152 

for measuring the pH of the solution. Before measuring the pH of the solution, the pH meter was 153 

calibrated using buffer solutions of pH 4 and 7 (BDH). The effect of pH on adsorption was studied 154 

for both acid-washed and water-washed silica. The absorbance of each test solution was measured 155 

before and after performing the adsorption at 660 nm using T 92+ Double Beam UV-Vis 156 

Spectrophotometer (PG Instrument, UK).  Then we carried out the kinetics experiment to 157 

determine the equilibrium time of adsorption for both acid-washed and water-washed silica. The 158 
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kinetics studies were carried out for up to 240 minutes. For each type of silica, the initial 159 

concentration of MB was 1000 mg/L, and the adsorbent amount was 0.25 g. Starting from 5 160 

minutes, the sample was taken at regular intervals, and absorbance was measured to determine the 161 

equilibrium concentration and amount adsorbed at equilibrium. The adsorption process reached an 162 

equilibrium around 60 minutes. The pseudo-first-order (PFO) kinetic model (equation 1) and the 163 

pseudo-second-order (PSO) (equation 2) were fitted to the experimental data. 164 

PFO: Q1 =  Qe (1 − e−K1t) … … … … … (1) 165 

PSO: Q2 =  
K2Qe

2t

1 + K2Qe
2t

  … … … … … (2) 166 

where Qe (mg/g) is the adsorption amount at equilibrium, and K1 (min-1) and K2 (mg-1min-1) 167 

are PFO and PSO kinetic rate constant, respectively. These parameters were estimated by nonlinear 168 

regression weighted by the dependent variables.  169 

Then adsorption isotherm experiments were conducted by adding 0.25 g of silica to 100 ml of 170 

MB solution in a conical flask. The initial concentrations of MB were kept within 100 to 500 mg/L. 171 

The mixtures were kept at room temperature with constant stirring for 60 minutes at pH 8 (as 172 

higher adsorption capacity was found at this pH). Two standard sorption models called Langmuir 173 

and Freundlich isotherm models were used to fit the experimental data.  174 

The apparent sorption distribution coefficient (Kd, L/kg) is defined as the ratio of adsorbate 175 

sorbed per unit sorbent mass (Qe, mg/g) to adsorbate concentration in solution (Ce, mg/L) at 176 

equilibrium and was calculated using Eq. (3):   177 

Kd = 1000 
Qe

Ce

= 1000 
V

M
 (

C0 − Ce

Ce

)  … … … … … (3) 178 
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where V is the solution volume (L), Co is the initial adsorbate concentration in water (mg/L), 179 

and M (g) is the sorbent mass. The Langmuir and Freundlich isotherm models can be represented 180 

as follows:   181 

Freundlich model: Qe =  KFCe

1
n⁄

  … … … … … (4) 182 

Langmuir model: Qe =  
QmaxKLCe

1 + KLCe

  … … … … … (5) 183 

 where Qmax is the maximum adsorption capacity (mg/gm), KF is the Freundlich capacity-184 

affinity coefficient (mg1−nLng−1), 1/n is a dimensionless number related to surface heterogeneity, 185 

and KL is the Langmuir fitting parameter (Lmg−1). Parameters were estimated using the above 186 

equations and fitting in Origin pro software by nonlinear regression weighted by the dependent 187 

variable.  188 

 189 

3. Results and discussion  190 

3.1. Mechanism of silica extraction from RHA  191 

The silica production process from RHA involves two steps (Chun and Lee, 2020). Firstly, the 192 

leaching of silica from RHA to the solution, and secondly, silica precipitation. Previous studies 193 

indicate that amorphous silica is soluble in an alkaline medium when pH was increased above pH 194 

9 (Alexander et al., 1954). As the average process temperature for the production of RHA in the 195 

rice processing mill is below 650℃, therefore according to the literature it contained mainly 196 

amorphous silica. When RHA is treated with NaOH solution, silica from RHA dissolves by 197 

forming Na2SiO3 according to the following chemical reaction 6: 198 

2NaOH + SiO2(ash)  →  Na2SiO3 + H2O  … … … … … (6) 199 
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The solubility of silica increases with the increase in pH; therefore, lowering the pH or 200 

neutralizing the alkaline silicate solution is the essential requirement for precipitating silica from 201 

the solution. Sulfuric acid is a standard method for neutralizing the sodium silicate solution for 202 

silica precipitation (Soltani et al., 2015). Following reaction-7 involves this process:  203 

Na2SiO3 + H2SO4  →  SiO2 ↓  + Na2SO4 + H2O  … … … … … (7) 204 

3.2. Chemical composition of initial RHA  205 

The chemical composition of the initial RHA and extracted silica was examined by Energy 206 

Dispersive X-ray Fluorescence (ED-XRF) spectroscopic measurement. The RHA used in this 207 

study contains: SiO2 (90.990%), Al2O3 (3.982%), K2O (1.864%), CaO (1.811%), Fe2O3 (0.496%), 208 

SO3 (0.307%), Cl (0.302%), MgO (0.140%), and ZnO (0.029%); and it undergoes 3.103% weight 209 

loss on ignition. The results from ED-XRF analysis (Table 1) show that SiO2 was the main 210 

component of the siliceous precipitate, and the contents of various metal oxide impurities were 211 

low. In our case, the purity of silica produced from RHA by avoiding calcination was 96.3% and 212 

94.0% for silica from WW_RHA and silica from AW_RHA, respectively. The obtained silica 213 

masses were 94-96.3% for silica extracted via acid and water washed. It is noticeable that although 214 

pre-carbonization or post-carbonization was not used, our results showed a higher amount of silica 215 

present in the final composition. Whereas, many studies of silica extraction from RHA were 216 

carried out using pre- or post-calcination methods involving high temperature (above 600℃), with 217 

a slightly better percentage of silica content in the final products (i.e., 93-98%) (Azat et al., 2019; 218 

Bakar et al., 2016; Chun et al., 2020). For example, Park et al., (2021) obtained 98.5% silica from 219 

RHA, but they calcined their samples after the extraction process to obtain the final product. More 220 

comparison is listed in Table 1. In contrast, we used RHA produced from burning rice husk in an 221 

open environment to heat the boiler in local rice processing mills and avoid further calcination 222 
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steps before or after the extraction process. Therefore, our process significantly reduces the cost 223 

of silica production by avoiding further calcination.  In addition, the presence of other metallic 224 

oxides was minimal in quantities. The result shows no Na2O present in the initial RHA but presents 225 

~1.78-3.09% of Na2O in the final product. This might come as a precipitant from the NaOH 226 

solution, and can be reduced by applying stringent washing steps (Park et al., 2021).  227 

  228 

“Table 1”  229 

  230 

3.3. SEM and EDS analysis of produced silica  231 

The surface morphology of the produced silica was observed by scanning electron microscopy 232 

(SEM) and shown in Figures 2a and 2b. The results show that WW_RHA silica appears to be 233 

more porous with a rough surface (Figure 2a), whereas AW_RHA surface is more uniform with 234 

a well-distributed structure (Figure 2b). Energy dispersive spectroscopy (EDS) analysis showed 235 

that oxygen element was more abundant for AW_RHA compared to WW_RHA, and silicon 236 

composition was lower for AW_RHA (Figure 2c). These eventually resulted in lower content of 237 

silica in AW_RHA compared to WW_RHA (Figure 2d). In addition, EDS results showed a similar 238 

profile as obtained by XRF studies.   239 

 240 

“Figure 2” 241 

 242 

3.4. Effect of time on the extraction of silica from RHA  243 

The percentage yield of the produced silica from the hydrolysis of RHA is plotted graphically 244 

(Figure 3a). The results show that the yield percentage of produced silica increased with the 245 
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increase in dissolution time up to 2 h for both water-washed and sulfuric acid-washed RHA. Over 246 

2 h of reaction time, the percentage yield does not increase significantly. The yield percentage of 247 

silica produced from water-washed and acid-washed RHA was 71.71% and 72.44%, respectively 248 

for 2 h reaction time and without further calcination. Therefore, the optimum time of silica 249 

extraction from RHA was 2 h at 105℃ by using 3.0 M NaOH solution and constant stirring. On 250 

the other hand, Park et al., (2021) reported 79.9% silica yield by using 0.5 M NaOH for 3 h reaction 251 

time in 80℃, but they calcined the precipitated silica at 900℃ for 6 h for the final product. 252 

Similarly, Azat et al., (2019) extracted silica from RHA after 2 h of reaction time with 2 M NaOH 253 

at 90℃, but they calcined the sample at 600℃ before alkali extraction. Therefore, our method of 254 

silica extraction from RHA involves lower energy consumption than other methods.   255 

3.5. FTIR analysis of produced silica  256 

Figure 3(b) presents the FTIR-ATR spectra to identify functional groups of produced SiO2 257 

from RHA data between 700 to 1400 cm-1 for silica from WW_RHA and silica from AW_RHA. 258 

The literature shows that the absorption band for SiO2 is known to be within the wavenumber 259 

range of 1000-1100 cm-1 (Post et al., 2018). The IR spectra at the ranges 778-799 and 1035-1125 260 

cm-1 could be attributed to stretching, and asymmetrical stretching vibration of Si-O-Si (Prempeh 261 

et al., 2021). For example, Melendez et al., (2014) reported Si-O-Si stretching and bending 262 

vibration peaks at 1058 cm-1 and 800 cm-1. RHA-derived amorphous silica shows absorption 263 

stretching vibration peaks at 1055 cm-1 (Azat et al., 2019); and 1051 cm-1 (Umeda and Kondoh, 264 

2010). Widjonarko and Kartini (2014), found the presence of both asymmetric siloxane (Si-O-Si) 265 

and symmetric siloxane (Si-O-Si) in pure silica gel, confirmed by FTIR absorption peaks at 1087 266 

cm-1 and 802 cm-1
, respectively. Singh et al., (2022) found the symmetric and asymmetric 267 

stretching vibration of the Si-O-Si bond at 794 cm-1 and 1109 cm-1 for amorphous silica 268 
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nanoparticles. Figure 3(b) shows the absorption peaks in this study are found at 1057 cm-1 and 269 

783 cm-1 for silica from WW_RHA; and 1053 cm-1 and 802 cm-1 for silica from AW_RHA, 270 

respectively. These peaks indicate a highly condensed silica network containing mainly 271 

asymmetric siloxane (Si-O-Si) together with some symmetric siloxane (Si-O-Si) in the produced 272 

silica from RHA without calcination. Due to removing acid-soluble impurities, silica from 273 

AW_RHA possesses much higher absorbance than silica from WW_RHA in the asymmetric 274 

siloxane region, where both possess approximately the same absorbance in the symmetric siloxane 275 

region. Therefore, it is clear that acid pretreatment affects mainly the asymmetric siloxane network 276 

in silica. 277 

  278 

“Figure 3”  279 

 280 

3.6. XRD analysis of produced silica  281 

The crystallinity of produced silica from WW_RHA and silica from AW_RHA was 282 

investigated using XRD spectra, and corresponding data were plotted in Figure 3(c). Beidaghy 283 

Dizaji et al. (2019) summarized that the crystallization temperature shifts to higher values from 284 

600℃ to about 1000℃ when RHA is pretreated with different chemicals. The removal of alkali 285 

metal content in pre-treatment is the reason for this shift. Azat et al., (2019) found a broad diffused 286 

peak in XRD with a maximum intensity at 2θ=22⁰ with the corresponding d-spacing value of 0.36 287 

nm which confirmed the amorphous nature of produced silica from RHA when calcined at 600℃. 288 

Park et al., (2021) found broad diffraction at 2θ=20⁰ for RH-derived silica while calcined at 900℃. 289 

In this study, without any calcination, we found broad diffused peaks with a maximum intensity 290 

at 2θ = 21.7° for silica from WW_RHA, and at 2θ=22⁰ for silica from AW_RHA, respectively. 291 
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These broad peaks indicate the amorphous nature of the produced silica and confirm the absence 292 

of any crystalline silica. However, the peak for WA_RHA is slightly sharper than the peak for 293 

silica from WW_RHA. This was due to sulfuric acid pretreatment before leaching with NaOH 294 

which removed organic compounds from the RHA. Therefore, without post calcination, our 295 

extracted silica gives similar peaks as reported in other studies.  296 

3.7. Nitrogen adsorption isotherms and BET surface areas  297 

The nitrogen adsorption-desorption isotherms for silica from WW_RHA and AW_RHA are 298 

shown in Figures 3(d) and 3(e). The isotherms of silica produced from untreated and acid 299 

pretreated RHA are closer to type III isotherms, similar to the isotherms derived by Azat et al. 300 

(2019). The results were almost similar to the findings of Beidaghy Dizaji et al., (2022) and Singh 301 

et al., (2022). They found that the porosity of silica-rich ashes diminishes, once the crystallinity 302 

fraction is higher than 10 wt.%. The results show that N2 adsorption on silica from AW_RHA is 303 

higher than on silica from WW_RHA; which is supported by the BET surface area and pore 304 

volume data. The weak hysteresis loop and curvature in low pressures indicate a mixture of 305 

mesoporous-macroporous materials. It indicates the formation of monolayers, bilayers, trilayers, 306 

and so on at the same time, resulting in an almost exponential increase in the amount of adsorption. 307 

The Brunauer-Emmett-Teller (BET) specific surface area of silica was determined from N2 308 

adsorption-desorption measurements and pore volume and pore diameter (pore size distribution) 309 

were calculated using Pierce and Barret-Joyner-Halenda (BJH) desorption methods. The specific 310 

surface area, pore volume, and average pore diameter of the produced silica from RHA are shown 311 

in Table 2 and Figure 3f. The R2 of BET transfer plots are 0.9998 and 0.9997, and the BET C 312 

values are 154.45 and 142.91 for AW_RHA silica and WW_RHA silica respectively. The BET 313 

surface area (182 m2/g) found in this study was lower than that found by Bakar et al., (2016), but 314 
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higher than that found (88 m2/g) by Chun et al., (2020) for RHA-derived silica. Bakar et al., 315 

calcined RHA at 600℃, and Chun et al., calcined RHA at 900℃ before silica extraction. We found 316 

a higher surface area than Chun’s study, though we avoided calcination. More comparison is listed 317 

in Table 2. However, the BET surface area and pore volume of silica from AW_RHA are higher 318 

than silica from WW_RHA. This higher value in AW_RHA is supported by Beidaghy Dizaji et 319 

al., (2021). They mentioned that at a lower temperature (<900℃), BET surface area is influenced 320 

by the chemical pre-treatment and high when acid is used for pre-treatment. The hydrolysis of any 321 

organic compounds present in small quantities in RHA is the reason for this increase in surface 322 

area for silica from AW_RHA. Therefore, highly porous SiO2 is found when pretreated with 323 

sulfuric acid before silica extraction, supported by higher pore volume for silica from AW_RHA. 324 

The average pore diameter data indicates that silica produced from RHA is mesoporous. Therefore, 325 

sulfuric acid pretreatment slightly increased the surface area and pore volume and reduced the pore 326 

diameter.   327 

  328 

“Table 2”  329 

  330 

3.8. Mechanism and effect of pH on MB removal by RHA-derived silica  331 

The solution pH affects the charge distribution of the adsorbent surface and the interactions 332 

between the adsorbent and the dye molecules. To determine the effect of pH on the Kd values for 333 

MB removal from aqueous solution by rice husk-derived silica, we studied the effect of pH ranging 334 

from 2 to 12 by taking 100 mg/L initial MB concentration at room temperature with 0.25 g 335 

adsorbent loading, and the results are depicted in Figure 4(a).   336 

  337 
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“Figure 4”  338 

  339 

The figure shows that the increase in pH from 2 to 8 caused a substantial increase in the Kd 340 

values for MB removal for both water-washed and acid-washed silica. The adsorbent surface 341 

became negative, which enhanced the adsorption of positively charged MB dye by electrostatic 342 

attraction force, which might cause these increased Kd values with increasing initial pH. But, after 343 

pH 8, the Kd values decreased with an increase in pH. Because above pH 8, the adsorbent surface 344 

will hold the more partial negative charge as O- in Figure 5. So, a repulsive force arises between 345 

the adsorbent surface and the presence of a partial negative charge of chloride ions on MB. 346 

Therefore, pH 8 is chosen as the optimum pH for further study. Literature shows that with the 347 

modification of silica adsorbent surface, the optimum pH can be between 6.8 to 11 (Adam et al., 348 

2013; Alver et al., 2020; Hongo et al., 2021; Sharma et al., 2010). 349 

  350 

“Figure 5”  351 

  352 

Adsorption of MB on silica surfaces can occur in three cases (Figure 5). In cases 1 and 2, 353 

electrostatic attraction between partially charged nitrogen-oxygen and partially charged sulfur-354 

oxygen. Case 3 represents hydrogen bonding. In lower pH values, the adsorption occurs mainly 355 

by hydrogen bonding. These hydrogen bonds would be expected to occur between amino groups 356 

in the dye molecule and the silica surface hydroxyl groups. The surface becomes more ionic on 357 

the increasing pH value to neutral pH. Deprotonation starts when the cationic methylene blue 358 

reacts with the -OH group, eliminating HCl and increasing the adsorption capacity. This 359 



 

17  

  

mechanism is also supported by previous studies on pH-dependent data (Adam et al., 2013; 360 

Chandrasekhar and  361 

Pramada, 2006; Hongo et al., 2021).  362 

3.9. Adsorption kinetics for MB removal by RHA-derived silica  363 

The contact time is an essential parameter for the dye adsorption process. The effect of time 364 

on MB removal by RHA-derived silica and corresponding PFO and PSO kinetics model fitting are 365 

shown in Figure 4(b). It can be seen from the figure that the maximum uptake of MB reached 366 

maximum approximately in equilibrium time of 60 minutes for both water-washed and acid-367 

washed RHA silica which is consistent with previous studies (Azevedo et al., 2017; Chen et al., 368 

2012). Modifying RHA with alginate increased the equilibration time to 90 minutes (Alver et al., 369 

2020). Singh et al., (2022) used UV-C irradiation with silica nanoparticles for the degradation of 370 

methylene blue dye, and they found ~100% of degradation within the initial 30 minutes of the 371 

adsorption onto silica-nanoparticles. 372 

The nature of the adsorption process can be identified from the adsorption kinetics models. 373 

pseudo-first-order (PFO) and pseudo-second-order (PSO) models were used in this study to 374 

determine the adsorption process, and the calculated data were given in Table 3. The PFO and 375 

PSO kinetic models are well-fitted for both silica. Therefore, water-washed silica and acid-washed 376 

silica both followed PSO and PFO models indicating the role of the physisorption and the 377 

chemisorption processes (Agbovi and Wilson, 2021).   378 

  379 

“Table 3”  380 

  381 
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3.10. Sorption isotherm for MB removal by RHA-derived silica  382 

The Langmuir and Freundlich isotherms models were fitted for MB adsorption by RHA-383 

derived silica. The sorption data were plotted in Figure 4(c) to find the best-fitted model, and 384 

corresponding data were given in Table 4. Figure and the corresponding R2 values from table 4 385 

indicate that sorption data were well fitted with both the Langmuir isotherm model and the 386 

Freundlich isotherm model. Fitting to the Langmuir isotherm means that RHA-derived silica has 387 

homogeneous adsorbent surfaces involving monolayer adsorption processes with similar 388 

adsorption sites whereas fitting to Freundlich isotherms indicated surfaces were multilayer 389 

coverings. Anyway, the Qm values were in little agreement with the Qe values (Tables 3 and 4). 390 

Previous studies of MB adsorption by RHA have found similar characteristics (Chen et al., 2012; 391 

Hongo et al., 2021), but if RHA is modified with alginate, it is better fitted with Freundlich 392 

isotherm (Alver et al., 2020).  393 

  394 

“Table 4”  395 

  396 

We further then calculated the sorption distribution coefficient Kd values. The Kd values 397 

decreased with the increase in MB concentration and were plotted with the equilibrium MB 398 

concentration in Figure 4(d). The observed values of Qm and Kf for MB for both cases were higher 399 

than the values reported by Chen et al., (2012), Moeinian and Mehdinia (2019), and Hongo et al., 400 

(2021). Qm and Kf values were lower than reported by Peres et al., (2018) and Chandrasekhar and 401 

Pramada (2006), who both used RHA directly without separating the silica. Therefore, there may 402 

also be many carbon-containing compounds that adsorb MB molecules.  403 

  404 
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4. Conclusions  405 

This study reported a low-cost method for extracting silica from RHA, with > 94% pure 406 

mesoporous amorphous silica and a high yield conversion of > 72.3% without further calcination. 407 

XRF and FTIR results show that SiO2 is the major component of the siliceous precipitate with a 408 

highly condensed siloxane (Si-O-Si) network structure with a surface area ranging from 165 m2/g 409 

to 183 m2/g. Adsorption studies showed that 107 mg of methylene blue can be adsorbed by 1.0 g 410 

of silica produced from acid-washed RHA at pH 8 within 60 minutes. Therefore, the results 411 

demonstrate the feasibility of environment-friendly extraction of silica from RHA with a high 412 

adsorption capacity for methylene blue. This research has proved the conversion of a waste 413 

material (i.e. RHA) to a valuable product (i.e. silica) as a natural element and effective adsorbent 414 

of contaminants. As a result, this method can prevent the dumping of RHA on land and subsequent 415 

environmental pollution.   416 
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Figure 1: Schematic representation of silica production process. 
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Figure 2: SEM images and EDX analysis of the produced silica with their chemical composition. 
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Figure 3: (a) Effect of time on the extraction of silica from RHA. (b) FTIR spectra of produced 

silica. (c) X-ray diffraction spectra of produced silica. (d)  Adsorption-desorption isotherm for 

silica from water-washed RHA. (e) Adsorption-desorption isotherm for silica from acid-washed 



 

 

RHA. (f) BJH desorption pore size distribution by volume. In the figure, WW_RHA= Water 

washed Rice Husk Ash; and AW_RHA= Acid washed Rice Husk Ash.  
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Figure 4: (a) Effect of pH on the distribution coefficient (Kd) for methylene blue removal. (b) 

Sorption kinetics data with PFO and PSO kinetics model fitting. (c) Sorption isotherm plots and 

model fitting. (d) Change of Kd values against equilibrium concentrations from isotherm studies. 

  

  



 

 

 Figure 5: 

 

Figure 5: Schematic representation of the proposed mechanism of adsorption of MB on the silica 

surface. 
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Table 1:   

Chemical compositions of silica from different rice husk and rice husk ash samples.  

Product 

Calcination 

before or after 

alkali 
extraction 

Mass percentage (%) 

SiO2 Na2O MgO Al2O3 CaO Reference 

SiO2 from water 

washed RHA 
No 

96.30 1.78 0.030 0.456 0.062 This study 

SiO2 from H2SO4 

washed RHA 
94.0 3.09 --- 0.432 0.025 This study 

SiO2 from 

unwashed RHA 
No 93.00 4.486 <1 ppm - 0.047 

(Kalapath 

y et al., 
2000) 

SiO2 from H2SO4 

leached RHA 
Before 99.08 NA 0.035 0.61 0.05 

(Bakar et 

al., 2016) 

SiO2 from HCl 

washed RHA 
Before 99.58 NA 0.016 0.168 0.043 

(Bakar et 

al., 2016) 

SiO2 from Citric 

acid-treated RH 
Before 98.67 - - - 0.11 

(Azat et 

al., 2019) 

SiO2 from HCl 
acid-treated RH 

Before 99.67 - - - 0.20 
(Azat et 

al., 2019) 

SiO2 from water-

washed RH 
After 98.50 0.96 0.01 0.07 0.01 

(Park et 

al., 2021) 

SiO2 from H2SO4 

washed RH 
After 99.80 0.01 0.01 0.04 0.02 

(Chun et 

al., 2020) 

SiO2 from HCl 

washed RH 
Before 96.44 1.38 - 0.18 0.10 

(Steven et 

al., 2021) 

SiO2 from HCl-

H2SO4 washed 

RH 

Before 97.35 - - - 0.27 

(Moeinian 
and 

Mehdinia, 

2019) 

SiO2 from HCl 

leached 

Agulhinha RH 

Before 98.34 0.32 0.02 1.15 0.02 

(Costa and 

Paranhos, 

2018) 

SiO2 from HCl 

leached Cateto 

RH 

Before 98.24 0.14 0.03 1.31 0.01 

(Costa and 

Paranhos, 

2018)  



 

 

Nano SiO2 from 

RHA 
After >98 - - - - 

(Jung et 

al., 2021) 

SiO2 from water-
washed RH 

Before 93.4 - 0.70 0.21 2.08 
(Yan et 

al., 2022) 

SiO2 from water-

washed RH-900 
Before 95.73 - 2.38 - 1.88 

(Zareihass

angheshla

ghi et al., 

2020) 

SiO2 from Citric 

acid-treated RH-

900 

Before 100 - - - - 

(Zareihass

angheshla

ghi et al., 

2020) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 2:   

BET specific surface area of silica produced from RHA.  

Product 

Calcination 

before or 

after alkali 

extraction 

Specific surface 

area, 

m
2
/g 

Total 

Pore 
volume, 

cm
3
/g 

Average 
pore 

diameter 

(4V/A by 

BET), Å 

Reference 

SP MP 

SiO2 from water-

washed RHA 
No 

165.74 177.55 1.1727 277.1612 
This work 

SiO2 from H2SO4 

washed RHA 
170.60 182.68 1.0618 233.3785 

SiO2 from Citric 

acid-treated RH 
Before 625.00 0.770 16.20 

(Azat et 

al., 2019) 

SiO2 from HCl 

acid-treated RH 
Before 150.00 0.750 1840 

(Azat et 

al., 2019) 

SiO2 from H2SO4 

leached RHA 
Before 208.00 0.310 56.80 

(Bakar et 

al., 2016) 
SiO2 from HCl 

leached RHA 
Before 218.00 0.320 55.60 

(Bakar et 

al., 2016) 
SiO2

 
from water-

washed RH 
After 1.973 0.004 - 

(Park et 

al., 2021) 
SiO2 from H2SO4 

washed RH 
After 88.00 0.180 - 

(Chun et 

al., 2020) 

SiO2 from HCl 

leached 

Agulhinha RH 

Before 293.89 0.200 - 

(Costa 

and 

Paranhos, 

2018) 

SiO2 from HCl 

leached Cateto 

RH 

Before 173.57 0.100 - 

(Costa 
and 

Paranhos, 

2018) 

SiO2 from HNO3 

leached RH 
Before 315.00 0.367 73.30 

(Adam et 

al., 2013) 
SiO2 from HCl 

leached RHA 
Before 400.69 - - 

(Steven et 

al., 2021) 

SiO2 from HCl-

H2SO4 washed 

RH 

Before 226.30 - - 

(Moeinian 

and 

Mehdinia, 

2019) 
Nano SiO2 from 

HCl leached RH 
Before 71.97 0.2005 84.40 

(Peres et 

al., 2018) 



 

 

Nano SiO2 from 

water-washed 

RHA 

Before 226.811 1.144 - 
(Singh et al., 

2022) 

Nano SiO2 from 

RHA 
After 328 0.61 - 

(Jung et al., 

2021) 
SiO2 from water-

washed RH 
Before 164.9 - - (Yan et al., 2022) 

SiO2 from water-

washed RH-900 
Before 77 0.16 - 

(Zareihassanghes

hlaghi et al., 

2020) 

SiO2 from Citric 

acid-treated RH-

900 

Before 139 0.19 - 

(Zareihassanghes

hlaghi et al., 

2020) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 3:   

PFO and PSO kinetics data for MB adsorption on RHA. 

Adsorbent 
Pseudo first order Pseudo second order 

Reference 
Qe K1 R2 Qe K2 R2 

SiO2 from water-

washed RHA 
90.19 0.151 0.997 95.48 0.003 0.976 This work 

SiO2 from H2SO4 

washed RHA 
96.89 0.166 0.989 102.49 0.003 0.995 This work 

Nano SiO2 from HCl 

leached RH 
118.30 1.270 0.903 124.80 0.015 0.946 

(Peres et 

al., 2018) 

RHA at 450℃ in air 

atmosphere 
48.04 - 0.911 48.10 0.069 1.000 

(Chen et 

al., 2012) 

RHA at 750℃ in a 

nitrogen atmosphere 
44.99 - 0.891 45.91 0.005 0.999 

(Chen et 

al., 2012) 
Kerala RHAed at 

500℃ 
- - 0.926 - - 0.999 

(Hongo et 

al., 2021) 

Andhra Pradesh 

RHAed at 500℃ 
- - 0.636 - - 0.999 

(Hongo et 

al., 2021) 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4:   



 

 

Adsorption isotherm data for MB removal.  

Adsorbent 

Langmuir isotherm 

parameter 

Freundlich isotherm 

parameter References 

Qmax KL R2 KF 1/n R2 

SiO2 from water-

washed RHA 
107.73 0.045 0.984 24.815 0.2578 0.937 This work 

SiO2 from H2SO4 

washed RHA 
101.83 0.034 0.990 21.043 0.2697 0.938 This work 

Nano SiO2 from HCl 

leached RH 
250.20 0.009 0.994 11.02 0.496 0.998 

(Peres et 

al., 2018) 

RHA at 450℃ in air 

atmosphere 
50.51 0.242 0.993 10.904 0.367 0.864 

(Chen et 

al., 2012) 

RHA at 750℃ in a 

nitrogen atmosphere 
46.30 0.469 0.999 13.237 0.310 0.943 

(Chen et 

al., 2012) 

RHA from the 

power plant 
3.51 1.210 0.999 1.690 0.281 0.864 

(Hongo et 

al., 2021) 

Kerala RHAed at 

500 ℃ 
689.66 0.360 0.929 501.65 0.76 0.999 

(Chandrase

khar and 

Pramada, 
2006) 

Andhra Pradesh 

RHAed at 500℃ 
263.16 0.020 1.000 122.78 0.89 0.952 

(Chandrase

khar and 

Pramada, 

2006) 

SiO2 from HCl-

H2SO4 washed RH 
103.11 4.400 0.996 20.30 0.621 0.983 

(Moeinian 

and 

Mehdinia, 

2019) 
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