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A Rank Constrained LMI Algorithm for the Robust H∞ Control of an
Uncertain System via a Stable Output Feedback Controller

Li Li, Ian R. Petersen

Abstract— The paper presents a numerical algorithm for
constructing a stable output feedback controller for the robust
H∞ control of an uncertain system. The uncertain systems
under consideration contain structured uncertainty described
by integral quadratic constraints. The controller is designed
to achieve absolute stabilization with a specified level of dis-
turbance attenuation. The main result gives an algorithm for
constructing the desired controller in terms of LMIs subject to
rank constraints.

I. I NTRODUCTION

Output feedback control design problems for linear time-
invariant (LTI) systems have been studied extensively in the
literature. The three main classes of output feedback control
design problems are static output feedback (SOF), full-order
output feedback (FOOF) and reduced order output feedback
(ROOF). For the LTI systems without uncertainties, it has
been shown that SOF and ROOF involve LMI conditions
with rank constraints [1], [2], and FOOF can be solved by
Riccati or LMI methods [3]. When structured uncertainties
are present in the system, the convexity of FOOF will
be destroyed, leading to rank constraints on the scaling
variables; e.g., see [4].

This paper considers the problem of robustH∞ control
via a full-order stable output feedback controller. It is well
known that the use of stable controllers is preferable to the
use of unstable feedback controllers in many practical control
problems; e.g., see [5], [6]. Indeed, the use of unstable
controllers can lead to problems with actuator and sensor
failure, sensitivity to plant uncertainties and nonlinearities
and implementation problems. Also, it is well known that
issues of robustness and disturbance attenuation are impor-
tant in control system design. This has motivated a number
researchers to consider problems ofH∞ control via the use
of stable feedback controllers; e.g., see [5]–[7].

The results of this paper build on the results in a recent
paper [8] which considers a new approach to the problem
of robustH∞ control via a stable output feedback controller.
As in [8], we consider a class of uncertain systems with
structured uncertainty described by Integral Quadratic Con-
straints (IQCs); e.g., see [9], [10]. The key idea behind the
approach of [8] is to begin with an uncertain system of the
type considered in [9] and then add an additional uncertainty
to form a new uncertain system. Solving the robust output
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feedback problem for the new system ensures that the result-
ing controller also absolutely stabilizes the original uncertain
system with a specified level of disturbance attenuation, and
simultaneously the controller is forced to be stable. This
gives a procedure for constructing a stable output feedback
controller solving a problem of absolute stabilization with a
specified level of disturbance attenuation.

The algorithm proposed in [8] involves the solution of
algebraic Riccati equations dependent on a set of scaling
parameters. However, no indication is given as to how these
unknown scaling parameters might be constructed. Indeed,
the problem of finding a suitable solution to a pair of Riccati
equations dependent on a set of scaling parameters is known
to be a difficult numerical problem. In this paper, we relax
and simplify the assumptions used in [8], and propose a
numerical algorithm which will enable these scaling parame-
ters to be constructed. This numerical algorithm involves the
solution to a rank constrained LMI problem; e.g., see [11]
and the references therein. Although such rank constrained
LMI problems may in general be difficult to solve, some of
the currently available algorithms, such as LMIRank [12],
have been found to lead to solutions to this problem in many
practical situations. The paper concludes with an example
which illustrates the proposed algorithm.

II. PROBLEM STATEMENT

We consider an output feedbackH∞ control problem for
an uncertain system of the following form:

ẋ(t) = Ax(t)+B1w(t)+B2u(t)+
k

∑
s=1

Dsξs(t);

z(t) = C1x(t)+D12u(t);

ζ1(t) = K1x(t)+G1u(t);
...

ζk(t) = Kkx(t)+Gku(t);

y(t) = C2x(t)+D21w(t) (1)

where x(t) ∈ Rn is the state, w(t) ∈ Rp is the disturbance
input, u(t) ∈ Rm is the control input, z(t) ∈ Rq is the
error output, ζ1(t) ∈ Rh1, . . . ,ζk(t) ∈ Rhk are theuncertainty
outputs, ξ1(t)∈Rr1, . . . ,ξk(t)∈Rrk are theuncertainty inputs
andy(t)∈ Rl is themeasured output. The uncertainty in this



system is described by a set of equations of the form

ξ1(t) = φ1(t,ζ1(·)|t0)
ξ2(t) = φ2(t,ζ2(·)|t0)

...

ξk(t) = φk(t,ζk(·)|t0) (2)

where the following Integral Quadratic Constraint is satisfied.
Definition 1: (Integral Quadratic Constraint; see [9],

[10].) An uncertainty of the form (2) is an admissible
uncertainty for the system (1) if the following conditions
hold: Given any locally square integrable control inputu(·)
and locally square integrable disturbance inputw(·), and any
corresponding solution to the system (1), (2), let(0,t∗) be
the interval on which this solution exists. Then there exist
constantsd1 ≥ 0, . . . ,dk ≥ 0 and a sequence{ti}∞

i=1 such that
ti → t∗, ti ≥ 0 and
∫ ti

0
‖ξs(t)‖2dt ≤

∫ ti

0
‖ζs(t)‖2dt+ds ∀i ∀s= 1, . . . ,k. (3)

Here‖ ·‖ denotes the standard Euclidean norm andL2[0,∞)
denotes the Hilbert space of square integrable vector valued
functions defined on[0,∞). Note thatti andt? may be equal
to infinity. The class of all such admissible uncertainties
ξ(·) = [ξ1(·), . . . ,ξk(·)] is denotedΞ.

The above definitions expand the class of admissible
uncertainties to include a broad class of uncertainties due
to unknown nonlinearities and uncertainties arising from
unmodeled dynamics. They also allow for effects of non-
zero initial conditions of uncertain dynamics as well as norm
bounded noises in the uncertainty channels. The termsds in
the right hand side of the IQC conditions (3) correspond
to bounds on these effects. Allowing for a wider class
of uncertainties which satisfy the IQCs (3) enables us to
apply the S-procedure for the system (1) to establish the
equivalence between the robust control problem considered
in this paper and some parameterizedH∞ control problems.
Note that the norm bounded uncertainty is a special case of
this IQC uncertainty model; see [10] for more details.

For the uncertain system (1), (3), we consider a problem
of absolute stabilization with a specified level of disturbance
attenuation. The class of controllers considered are full-order
stable output feedback controllers of the form

ẋc(t) = Acxc(t)+Bcy(t),

u(t) = Ccxc(t) (4)

wherexc(t) ∈ Rn andAc is a Hurwitz matrix.
Definition 2: The uncertain system (1), (3) is said to be

absolutely stabilizable with disturbance attenuationγ via
stable output feedback control if there exists a stable output
feedback controller (4) and constantsc1 > 0 andc2 > 0 such
that the following conditions hold:

1) For any initial condition[x(0),xc(0)], any admissible
uncertainty inputsξ(·) and any disturbance inputw(·) ∈
L2[0,∞), then

[x(·),xc(·),u(·),ξ1(·), . . . ,ξk(·)] ∈ L2[0,∞)

(hence,t∗ = ∞ ) and

‖x(·)‖2
2 +‖xc(·)‖2

2 +‖u(·)‖2
2+

k

∑
s=1

‖ξs(·)‖2
2

≤ c1[‖x(0)‖2 +‖xc(0)‖2 +‖w(·)‖2
2+

k

∑
s=1

ds]. (5)

2) The followingH∞ norm bound condition is satisfied: If
x(0) = 0 andxc(0) = 0, then

J
∆
= sup

w(·) 6≡0
w(·)∈L2[0,∞)

sup
ξ(·)∈Ξ

‖z(·)‖2
2−c2∑k

s=1ds

‖w(·)‖2
2

< γ2
. (6)

Here,‖q(·)‖2 denotes theL2[0,∞) norm of a function

q(·). That is,‖q(·)‖2
2

∆
=

∫ ∞
0 ‖q(t)‖2dt.

Let

B1 = [B1,D1, · · · ,Dk], D21 = [D21,0l×r1, · · · ,0l×rk],

C1 = [C′
1,K

′
1, · · · ,K′

k]
′
, D12 = [D′

12,G
′
1, · · · ,G′

k]
′
.

We need the following assumptions about the uncertain sys-
tem (1), (3) to derive the proposed robust control algorithm.

Assumption 1:The uncertain system (1), (3) will be as-
sumed to satisfy the following conditions throughout the
paper:

(i) D′
12D12 > 0,D21D′

21 > 0.

(ii) The matrix

[

A−αI B2

C1 D12

]

has full column rank for all

α ∈ C such thatRe(α) ≥ 0.

(iii) The matrix

[

A−αI B1
C2 D21

]

has full row rank for all

α ∈ C such thatRe(α) ≥ 0.
The above assumptions relax and simplify the assump-

tions used in [8]. They are standard technical assumptions
commonly used in the Riccati approach toH∞ control; e.g.,
see [13]. This will allow us to apply existingH∞ control
results to the class of uncertain systems under consideration.
These assumptions will ensure that the related parameterized
Riccati equations admit positive definite stabilizing solutions,
so that the corresponding controllers can be derived. We
will show in the next section how these assumptions lead
to the resulting controllers; see Lemmas 3, 4, and 5 in the
Appendix.

III. C ONTROLLER DESIGN

A new approach to the robust control of an uncertain
system (1), (3) via a stable output feedback controller is
presented in [8]. The algorithm proposed in [8] involves a
two-step procedure. Firstly, a state feedback version of the
approach of [9] is applied to the original uncertain system
(1), (3). The resulting state feedback gain is then used to
construct a new uncertain system for which the results of
[9] is applied in order to obtain a stable controller which
guarantees absolute stabilization with a specified level of
disturbance attenuation. We briefly review this procedure in
this section.



A. State feedback control of the original system

Let τ1 > 0, . . ., τk > 0 be given constants and consider the
algebraic Riccati equation

(A−B2E
−1
1 D̂′

12Ĉ1)
′X +X(A−B2E

−1
1 D̂′

12Ĉ1)

+X(B̂1B̂′
1−B2E

−1
1 B′

2)X

+Ĉ′
1(I − D̂12E

−1
1 D̂′

12)Ĉ1 = 0; (7)

where

Ĉ1 =











C1√
τ1K1
...√

τkKk











;D̂12 =











D12√
τ1G1
...√

τkGk











;

E1 = D̂′
12D̂12;

B̂1 =
[

γ−1B1
√

τ1
−1D1 . . .

√
τk

−1Dk
]

. (8)

Lemma 1:Suppose that constantsτ1 > 0, . . . ,τk > 0 have
been found such that the Riccati equation (7) has a solution
X > 0 and let

K = −E−1
1 (B′

2X + D̂′
12Ĉ1). (9)

ThenX is the stabilizing solution of (7), that is,A+B2K is
Hurwitz.

Proof: From Lemma 3-(ii) in the Appendix,
(

A−
B2E−1

1 D̂′
12Ĉ1, (I − D̂12E

−1
1 D̂′

12)Ĉ1

)

is detectable by Lemma
3.2.2 of Reference [10]. Therefore,X is the stabilizing
solution of (7).

It has been shown in [8] that the uncertain system (1), (3)
is absolutely stabilizable with disturbance attenuationγ via
the state feedback controlleru(t) = Kx(t) whereK is given
in (9).

B. Output feedback control of the new system

Now, the state feedback gain matrixK defined in (9) is
used to define a new uncertain system as follows:

ẋ(t) = Ãx(t)+B1w(t)+ B̃2u(t)+
k+1

∑
s=1

Dsξs(t);

z(t) = C̃1x(t)+Jξk+1+ D̃12u(t);

ζ1(t) = K̃1x(t)+F1ξk+1 + G̃1u(t);
...

ζk(t) = K̃kx(t)+Fkξk+1 + G̃ku(t);

ζk+1(t) = K̃k+1x(t)+ G̃k+1u(t);

y(t) = C2x(t)+D21w(t) (10)

where

Ã = A+
1
2

B2K; B̃2 =
1
2

B2; Dk+1 = B2;

C̃1 = C1 +
1
2

D12K; J = D12; D̃12 =
1
2

D12;

K̃1 = K1 +
1
2

G1K; F1 = G1; G̃1 =
1
2

G1;

...

K̃k = Kk +
1
2

GkK; Fk = Gk; G̃k =
1
2

Gk;

K̃k+1 =
1
2

K; G̃k+1 = −1
2

Im×m. (11)

Also, the IQCs (3) are extended to include the additional
uncertainty inputξk+1:

∫ ti

0
‖ξs(t)‖2dt ≤

∫ ti

0
‖ζs(t)‖2dt+ds ∀i ∀s= 1, . . . ,k+1.

(12)
Heredk+1 is any positive constant.

Remark The additional uncertaintyξk+1 in the new system
(10) has the property that for one specific value of the
uncertainty, the new uncertain system reduces to the original
uncertain system and thus any suitable controller for the new
uncertain system will also solve the problem of absolute
stabilization with a specified level of disturbance attenuation
for the original system. Also, for a different value of the new
uncertainty, the new uncertain system reduces to a certain
open loop system in such a way that the controller is forced
to be stable. The reader is referred to [8] for more details.

The Riccati equations under consideration are defined
as follows: Let τ̃1 > 0, . . ., τ̃k+1 > 0 be given constants
and consider the following algebraic Riccati equations and
spectral radius condition:

(Ǎ− B̌2Ě
−1
1 Ď′

12Č1)
′X̌ + X̌(Ǎ− B̌2Ě

−1
1 Ď′

12Č1)

+X̌(B̌1B̌′
1− B̌2Ě−1

1 B̌′
2)X̌

+Č′
1(I − Ď12Ě

−1
1 Ď′

12)Č1 = 0; (13)

(Ǎ− B̌1Ď′
21Ě

−1
2 Č2)Y̌+ Y̌(Ǎ− B̌1Ď′

21Ě
−1
2 Č2)

′

+Y̌(Č′
1Č1−Č′

2Ě−1
2 Č2)Y̌

+B̌1(I − Ď′
21Ě

−1
2 Ď21)B̌

′
1 = 0; (14)

ρ(X̌Y̌) < 1 (15)



where

Ǎ = Ã+ B̄1D̄′
11

(

Iq̃×q̃− D̄11D̄
′
11

)−1
C̄1;

B̌2 = B̃2 + B̄1D̄′
11

(

Iq̃×q̃− D̄11D̄
′
11

)−1
D̄12;

Č2 = C2 + D̄21D̄
′
11

(

Iq̃×q̃− D̄11D̄
′
11

)−1
C̄1;

Ď22 = D̄21D̄
′
11

(

Iq̃×q̃− D̄11D̄
′
11

)−1
D̄12;

B̌1 = B̄1
(

I p̃× p̃− D̄′
11D̄11

)− 1
2 ;

Ď21 = D̄21
(

I p̃× p̃− D̄′
11D̄11

)− 1
2 ;

Č1 =
(

Iq̃×q̃− D̄11D̄
′
11

)− 1
2 C̄1;

Ď12 =
(

Iq̃×q̃− D̄11D̄
′
11

)− 1
2 D̄12;

Ě1 = Ď′
12Ď12; Ě2 = Ď21Ď

′
21;

B̄1 =
[

γ−1B1
√

τ̃1
−1

D1 . . .
√

τ̃k+1
−1Dk+1

]

;

C̄1 =











C̃1√
τ̃1K̃1
...√

τ̃k+1K̃k+1











;

D̄11 =





















0q×p 0q×r1 . . . 0q×rk
1√
τ̃k+1

J

0h1×p 0h1×r1 . . . 0h1×rk

√
τ̃1√

τ̃k+1
F1

...

0hk×p 0hk×r1 . . . 0hk×rk

√
τ̃k√

τ̃k+1
Fk

0m×p 0m×r1 . . . 0m×rk 0m×m





















;

D̄12 =











D̃12√
τ̃1G̃1
...√

τ̃k+1G̃k+1











;

D̄21 =
[

γ−1D21 0l×r1 . . . 0l×rk 0l×m
]

. (16)

Here q̃ = q+h1 . . .+hk +m and p̃ = p+ r1 . . .+ rk +m.
The following assumption is needed in the next theorem

which, (similar to Assumption 1) is a standard technical
assumption used in the Riccati equation solution to theH∞

control problem.
Assumption 2:The uncertain system (1), (3) will be as-

sumed to satisfy the following condition for anyτ̃1 > 0, . . .,
τ̃k+1 > 0:

D̄11D̄
′
11 < I .

Theorem 1: [8] Suppose that the uncertain system (1),
(3) satisfies Assumptions 1-2 and that there exist constants
τ1 > 0, . . . ,τk > 0 such that the Riccati equation (7) has a
solutionX > 0 and let

K = −E−1
1 (B′

2X + D̂′
12Ĉ1). (17)

Furthermore, suppose there exist constantsτ̃1 > 0, . . . , τ̃k+1 >

0 such that the Riccati equations (13) and (14) have solutions
X̌ > 0 andY̌ > 0 and such that the spectral radius condition
(15) holds. Then the uncertain system (1), (3) is absolutely

stabilizable with disturbance attenuationγ via a stable linear
controller of the form (4) where

Ac = Ǎc−BcĎ22Cc

Ǎc = Ǎ+ B̌2Cc−BcČ2 +(B̌1−BcĎ21)B̌
′
1X̌

Bc = (I − Y̌X̌)−1(Y̌Č′
2 + B̌1Ď

′
21)Ě

−1
2

Cc = −Ě−1
1 (B̌′

2X̌ + Ď′
12Č1). (18)

IV. A RANK CONSTRAINED LMI APPROACH

As shown in Theorem 1, the proposed stable output
feedback controller design involves solving a pair of pa-
rameterized game-type Riccati equations. Generally, it is
difficult to provide a systematic solution to such a problem.
In this section, we discuss one possible numerical approach
to address this difficulty. Similar to the technique in [14],the
idea is to replace the Riccati equations with an equivalent
feasibility problem involving rank constrained LMIs. First
we introduce a related rank constrained LMI feasibility
problem. Next, we prove the equivalence between the two
problems.

Corresponding to the Riccati equations (13), (14) and the
spectral radius condition (15) arising in Theorem 1, consider
the following matrix inequalities and the spectral radius
condition,

(Ǎ− B̌2Ě
−1
1 Ď′

12Č1)
′X̌ + X̌(Ǎ− B̌2Ě

−1
1 Ď′

12Č1)

+X̌(B̌1B̌′
1− B̌2Ě−1

1 B̌′
2)X̌

+Č′
1(I − Ď12Ě

−1
1 Ď′

12)Č1 < 0, (19)

(Ǎ− B̌1Ď′
21Ě

−1
2 Č2)Y̌+ Y̌(Ǎ− B̌1Ď′

21Ě
−1
2 Č2)

′

+Y̌(Č′
1Č1−Č′

2Ě−1
2 Č2)Y̌

+B̌1(I − Ď′
21Ě

−1
2 Ď21)B̌

′
1 < 0, (20)

ρ(X̌Y̌) < 1. (21)

Note that the feasibility of (19-21) is equivalent to that of
(13-15) under certain assumptions, see Theorem 2 given
below.

Rewrite (19) as

Ǎ′X̌ + X̌Ǎ+ X̌B̌1B̌′
1X̌ +Č′

1Č1

− (X̌B̌2 +Č′
1Ď12)Ě

−1
1 (X̌B̌2 +Č′

1Ď12)
′
< 0. (22)

By left and right multiplying (22) withX̂ = X̌−1, we obtain

X̂Ǎ′ + ǍX̂ + B̌1B̌
′
1 + X̂Č′

1Č1X̂

− (B̌2+ X̂Č′
1Ď12)Ě

−1
1 (B̌2 + X̂Č′

1Ď12)
′
< 0. (23)

Introducing a matrix variablêF ∈ Rm×n , without changing
the feasibility of (23), we add a quadratic term involvingF̂
to the left-hand side of (23) as follows:

X̂Ǎ′ + ǍX̂ + B̌1B̌′
1 + X̂Č′

1Č1X̂

+[F̂ ′ +(B̌2+ X̂Č′
1Ď12)Ě

−1
1 ]Ě1[F̂

′ +(B̌2+ X̂Č′
1Ď12)Ě

−1
1 ]′

−(B̌2 + X̂Č′
1Ď12)Ě

−1
1 (B̌2 + X̂Č′

1Ď12)
′
< 0,



which is

X̂Ǎ′ + ǍX̂ + B̌1B̌
′
1 + B̌2F̂ + F̂ ′B̌′

2

+(Č1X̂ + Ď12F̂)′(Č1X̂ + Ď12F̂) < 0. (24)

Substituting (16) into (24) and using the property

I + D̄′
11(I − D̄11D̄

′
11)

−1D̄11 = (I − D̄′
11D̄11)

−1
,

we have

X̂Ã′ + ÃX̂ + B̄1B̄
′
1 + B̃2F̂ + F̂ ′B̃′

2

+(D̄11B̄
′
1 +C̄1X̂ + D̄12F̂)′(I − D̄11D̄

′
11)

−1

× (D̄11B̄
′
1 +C̄1X̂ + D̄12F̂) < 0,

which, by Schur complement, is equivalent to
[

M11 (D̄11B̄′
1 +C̄1X̂ + D̄12F̂)′Γ̃− 1

2

? −Γ̃−1 + Γ̃− 1
2 D̄11D̄′

11Γ̃− 1
2

]

< 0, (25)

where

M11 = X̂Ã′ + ÃX̂ + B̄1B̄
′
1 + B̃2F̂ + F̂ ′B̃′

2,

Γ̃ = diag(Iq, τ̃1Ih1, · · · , τ̃kIhk, τ̃k+1Im).

Here the notation? in the above matrix indicates that the
corresponding elements in the matrix are such that the overall
matrix is symmetric. Definêτi = τ̃−1

i , i = 1, · · · ,k+ 1, and
note that by (16)

B̄1B̄′
1 = γ−2B1B′

1 + τ̂1D1D′
1 + · · ·+ τ̂k+1Dk+1D′

k+1,

B̄1D̄′
11 = [τ̂k+1Dk+1J′, τ̂k+1Dk+1F ′

1,

· · · , τ̂k+1Dk+1F ′
k,0]Γ̃

1
2 ,

X̂C̄′
1 = [X̂C̃′

1, X̂K̃′
1, · · · , X̂K̃′

k+1]Γ̃
1
2 ,

F̂ ′D̄′
12 = [F̂ ′D̃′

12, F̂
′G̃′

1, · · · , F̂ ′G̃′
k+1]Γ̃

1
2 ,

Γ̃−1 = diag(Iq, τ̂1Ih1, · · · , τ̂kIhk, τ̂k+1Im),

Γ̃− 1
2 D̄11D̄

′
11Γ̃− 1

2 = τ̂k+1MJFM′
JF ,

where

MJF =















0q×p 0q×r1 . . . 0q×rk J
0h1×p 0h1×r1 . . . 0h1×rk F1

...
0hk×p 0hk×r1 . . . 0hk×rk Fk

0m×p 0m×r1 . . . 0m×rk 0m×m















.

Then (25) is transformed into
[

Mo Qo

? So

]

< 0, (26)

where

Mo = X̂Ã′ + ÃX̂ + B̃2F̂ + F̂ ′B̃′
2 + γ−2B1B′

1 +
k+1

∑
i=1

τ̂iDiD
′
i ,

Qo = [τ̂k+1Dk+1J′ + X̂C̃′
1 + F̂ ′D̃′

12,

τ̂k+1Dk+1F ′
1 + X̂K̃′

1 + F̂ ′G̃′
1, · · · ,

τ̂k+1Dk+1F ′
k + X̂K̃′

k + F̂ ′G̃′
k, X̂K̃′

k+1 + F̂ ′G̃′
k+1],

So = −Γ̂ + τ̂k+1MJFM′
JF ,

Γ̂ = diag(Iq, τ̂1Ih1, · · · , τ̂kIhk
, τ̂k+1Im).

Similarly, by defining Ŷ = Y̌−1 and L̂ ∈ Rn×l , (20) is
transformed into

[

No Po

? To

]

< 0, (27)

where

No = Ã′Ŷ+ ŶÃ+ L̂C2 +C′
2L̂′ +C̃′

1C̃1 +
k+1

∑
i=1

τ̃i K̃
′
i K̃i ,

Po = [ŶB1 + L̂D21,ŶD1, · · · ,ŶDk,

ŶDk+1 +C̃′
1J+

k

∑
i=1

τ̃iK̃
′
i Fi ],

To = −Γ̃γ +M′
JF ∗ Γ̃∗MJF,

Γ̃γ = diag(γ2Ip, τ̃1Ir1, · · · , τ̃kIrk, τ̃k+1Im),

Γ̃ = diag(Iq, τ̃1Ih1, · · · , τ̃kIhk, τ̃k+1Im).

The spectral radius condition (21) is equivalent to
[

X̂ In
? Ŷ

]

> 0. (28)

Furthermore, the conditionŝτi τ̃i = 1, τ̃i > 0, i = 1, · · · ,k+1
are equivalent to

[

τ̂i 1
1 τ̃i

]

≥ 0, rank

[

τ̂i 1
1 τ̃i

]

≤ 1, i = 1, · · · ,k+1. (29)

Our main result shows that the feasibility problem (13),
(14), (15) in the variablešX,Y̌, τ̃i , i = 1, · · · ,k+ 1 is equiv-
alent to the rank constrained LMIs (26), (27), (28), (29) in
the variablesX̂, F̂ ,Ŷ, L̂, τ̂i , τ̃i , i = 1, · · · ,k+ 1. We need the
following lemma to prove the equivalence between these
problems.

Lemma 2:For anyτ̃1 > 0, . . ., τ̃k+1 > 0,

(i)
(

Ǎ− B̌2Ě−1
1 Ď′

12Č1,(I − Ď12Ě
−1
1 Ď′

12)Č1

)

is detectable.

(ii)
(

Ǎ− B̌1Ď′
21Ě

−1
2 Č2,(I − Ď′

21Ě
−1
2 Ď21)B̌′

1

)

is stabilizable.
Proof: This result follows directly from Lemma 5 in

the Appendix and Lemma 3.2.2 of Reference [10].
Theorem 2:Under Assumptions 1-2, the following state-

ments hold.
(i) If the rank constrained LMIs (26), (27), (28), (29)

admit solutionsX̂, F̂ ,Ŷ, L̂, τ̂i , τ̃i , i = 1, · · · ,k + 1, then
there existX̌R > 0,Y̌R > 0, such that (13), (14), (15)
hold for X̌R,Y̌R, τ̃i , i = 1, · · · ,k+1.

(ii) If (13), (14), (15) admit solutionsX̌R > 0,Y̌R > 0, τ̃i >

0, i = 1, · · · ,k + 1, then there existX̂,Ŷ, such that
the rank constrained LMIs (26), (27), (28), (29)
hold for X̂, F̂ = −Ě−1

1 (B̌2 + X̂Č′
1Ď12)

′,Ŷ, L̂ = −(Č′
2 +

ŶB̌1Ď′
21)Ě

−1
2 , τ̂i = τ̃−1

i , τ̃i , i = 1, · · · ,k+1.
The proof follows a similar line to that in [14] (see also [4]),
and thus is omitted here. Note that both problems, if feasible,
admit the samẽτi , i = 1, · · · ,k+ 1, as seen in Theorem 2.
As mentioned in the introduction, to solve this problem in
our numerical experiments, we use the rank constrained LMI
solver LMIRank [12].
Remark In contrast to the ROOF and SOF problems in
which rank constraints are imposed on the Lyapunov vari-
ables [1], [2], the rank constraints (29) are imposed on the



auxiliary Lagrange multipliers. We note here that these rank
constraints are arising from the characterization of output
feedback control and the structured uncertainties in the new
system (10), (12). Similar non-convex conditions can also be
found in [4], [14].

We should keep in mind that until now, the state feedback
gain K is unknown. Using a similar argument to the above,
we can show that the existence of a solution to the Riccati
equation (7) is equivalent to the following convex optimiza-
tion problem in the variablesW, X̄, F̄ , τ̄i , i = 1, · · · ,k:

min tr(W) subject to:
[

Ms Qs

? Ss

]

< 0, (30)
[

W In
? X̄

]

> 0,

where

Ms = X̄A′ +AX̄ +B2F̄ + F̄ ′B′
2 + γ−2B1B′

1 +
k

∑
i=1

τ̄iDiD
′
i ,

Qs = [(C1X̄ +D12F̄)′,(K1X̄ +G1F̄)′, · · · ,(KkX̄ +GkF̄)′],
Ss = −diag(Iq, τ̄1Ih1, · · · , τ̄kIhk

).

Letting X = X̄−1
,τi = τ̄−1

i , i = 1, · · · ,k, then the state feed-
back gainK is obtained from (9).

We summarize the proposed control design algorithm as
follows.

• Solve the convex optimization problem (30) to obtain
X̄, τ̄i , i = 1, · · · ,k.

• Letting X = X̄−1
,τi = τ̄−1

i , i = 1, · · · ,k, calculateK from
(9).

• Construct new matrices in (11) with the resultingK.
• Solve the rank constrained LMIs (26), (27), (28), (29) to

obtain a feasible solution̂X, F̂ ,Ŷ, L̂, τ̂i , τ̃i , i = 1, · · · ,k+1.
• Substitute the constants̃τi , i = 1, · · · ,k+ 1 which have

been found into the Riccati equations (26), (27) and
solve them to obtaiňX = X̌R,Y̌ = Y̌R.

• Construct the controller (18) using the parametersτ̃i , X̌R

andY̌R which have been found.

V. I LLUSTRATIVE EXAMPLE

In this section, we consider a problem of absolute stabi-
lization with a specified level disturbance attenuation in order
to illustrate the algorithm developed above. We consider a
system of the form (1), wherek = 0 and

A =



















0 1.00 0 0 0 0 0
−0.61 −0.12 0 0 0.01 0 0.01

0 0 0 1.00 0 0 0
0 0 −0.45 −0.10 0.01 0 0.01
0 0 0 0 0 1.00 0

0.01 0 0.01 0 −0.61 −0.12 0.01
0 0 0 0 0 0 −0.98



















,

B2 =



















0 0 0 0 0 0 0
0.12 −0.07 0 −0.06 0 −0.06 0

0 0 0 0 0 0 0
0 −0.07 0.10 −0.07 0 −0.07 0
0 0 0 0 0 0 0
0 −0.06 0 −0.05 0.12 −0.06 0
0 −0.12 0 −0.12 0 −0.12 10.00



















,

B1 = diag(B1,1,B1,1,B1,1,B1,4), (31)

C1 = diag(Cz,1,Cz,1,Cz,1,Cz,4),

D12 = diag(Dz,1,Dz,1,Dz,1,Dz,4),

C2 = diag(Cy,1,Cy,1,Cy,1,Cy,4),

D21 = diag(Dy,1,Dy,1,Dy,1,Dy,1),

B1,1 =

[

0.1 0
0.1 0

]

, B1,4 =
[

0.1 0
]

,

Cz,1 = 0.1×
[

I2×2

02×2

]

, Cz,4 =

[

0.1
0

]

,

Dz,1 = 0.1×
[

02×2

I2×2

]

, Dz,4 =

[

0
0.1

]

,

Cy,1 =
[

0 1
]

, Cy,4 = 1, Dy,1 =
[

0 0.091
]

.

This example is a modification of the example given in [14].
Note that in this example, we are considering the special
case in which the original uncertain system contains no
uncertainty and so we are looking at aH∞ strong stabilization
problem; e.g., [5]–[7]. The standardH∞ central controller
(e.g., see [13]) for this system (corresponding toγ = 1)
is unstable and has eigenvaluess = −804.86, 28.84, −
98.88, − 118.54, − 113.14, − 0.24, − 0.86. Also, the
corresponding state feedback gain matrix is

K =



















−0.10 −0.81 0.03 0.13 0.00 0.08 −0.00
0.08 0.35 0.04 0.47 0.06 0.28 0.01
−0.03 0.10 −0.10 −0.85 −0.03 0.09 −0.00
0.07 0.30 0.05 0.53 0.06 0.28 0.01
−0.00 0.08 0.02 0.11 −0.09 −0.83 −0.00
0.07 0.31 0.05 0.47 0.07 0.32 0.01
−0.01 −0.05 −0.00 −0.08 −0.01 −0.05 −0.88



















.

We now apply the algorithm outlined in Section IV to this
system. For̃τ1 = 1.0, we find that the conditions of Theorem
1 are satisfied and we construct the corresponding controller
of form (4) where

Ac =



















0.00 1.49 −0.00 −0.02 −0.00 −0.00 0.00
−0.64 −2.34 −0.00 −0.42 −0.01 −0.31 −0.02
−0.00 0.02 0.00 1.49 −0.00 0.02 0.00
−0.02 −0.39 −0.47 −2.18 −0.01 −0.34 −0.02
−0.00 0.00 −0.00 −0.01 0.00 1.49 0.00
−0.01 −0.31 0.01 −0.36 −0.63 −2.20 −0.02
−0.12 −0.69 −0.06 −1.01 −0.10 −0.63 −115.15



















,

Bc =



















−0.49 0.02 0.00 −0.00
2.06 0.34 0.27 0.03
−0.02 −0.49 −0.02 −0.00
0.34 1.91 0.29 0.03
−0.00 0.01 −0.49 −0.00
0.27 0.29 1.94 0.03
0.03 0.03 0.03 105.33



















, (32)

Cc =



















−0.10 −0.81 0.03 0.13 0.00 0.08 −0.00
0.08 0.35 0.04 0.47 0.06 0.28 0.01
−0.03 0.10 −0.10 −0.85 −0.03 0.09 −0.00
0.07 0.30 0.05 0.53 0.06 0.28 0.01
−0.00 0.08 0.02 0.11 −0.09 −0.83 −0.00
0.07 0.31 0.05 0.47 0.07 0.32 0.01
−0.01 −0.05 −0.00 −0.08 −0.01 −0.05 −0.88



















.

This system is stable and has poles ats = −115.15, −
2.63, −0.32, −0.72, −1.16, −0.92, −0.97. Furthermore,
when the controller (32) is applied to the system (31), the
resulting closed loop system hasH∞-norm 0.12. From this
we can see that the stable controller (32) does indeed solve
the H∞ strong stabilization problem under consideration.

VI. CONCLUSIONS

In this paper we have presented a numerical algorithm
for the problem of absolute stabilization with a specified
level of disturbance attenuation via the use of a stable



output feedback controller presented in [8]. The key idea of
our algorithm is to reformulate the parameterized algebraic
Riccati equation in terms of rank constrained LMIs which
would be solved to construct the parameters on which the
main result depends.

APPENDIX

Lemma 3:For anyτ1 > 0, . . ., τk > 0,
(i) E1 > 0.

(ii) The matrix

[

A−αI B2

Ĉ1 D̂12

]

has full column rank for all

α ∈ C such thatRe(α) ≥ 0.
Proof: Let Γ = diag(Iq,

√
τ1Ih1, · · · ,

√
τkIhk).

(i) E1 = D′
12Γ2D12 ≥ min(1,τ1, · · · ,τk) ∗D′

12D12 > 0 by
Assumption 1-(i).

(ii) It is obvious from Assumption 1-(iii) and the fact that
Ĉ1 = ΓC1,D̂12 = ΓD12.

We define the following notation, which will be used in
the next lemma.

B̃1 = [B1,Dk+1], D̃21 = [D21,0l×m],

C̃1 = [C̃′
1, K̃

′
1, · · · , K̃′

k+1]
′
, D̃12 = [D̃′

12,G̃
′
1, · · · ,G̃′

k+1]
′
.

Lemma 4:Consider the uncertain system (1), (3). Let the
constantsτ1 > 0, . . . ,τk > 0 be given as in Lemma 1 and
consider the matrices defined in (11). Then the following
conditions are satisfied.

(i) The matrix

[

Ã−αI B̃2

C̃1 D̃12

]

has full column rank for all

α ∈ C such thatRe(α) ≥ 0.

(ii) The matrix

[

Ã−αI B̃1
C2 D̃21

]

has full row rank for all

α ∈ C such thatRe(α) ≥ 0.

Proof: (i) Suppose

[

Ã−αI B̃2

C̃1 D̃12

][

x
y

]

= 0 for some

α ∈ C such thatRe(α) ≥ 0, then
{

K̃k+1x+ G̃k+1y = 0 ⇒ y = Kx;
(Ã−αI)x+ B̃2y = 0 ⇒ (A+B2K −αI)x = 0.

Thereforex= 0,y= 0 sinceA+B2K is Hurwitz from Lemma
1.

(ii) Suppose
[

x′ y′
]

[

Ã−αI B̃1
C2 D̃21

]

= 0 for someα ∈ C

such thatRe(α) ≥ 0, then






x′(Ã−αI)+y′C2 = 0;
x′B1 +y′D21 = 0;
x′Dk+1 = 0 ⇒ x′B2 = 0.

Therefore
[

x′ y′
]

[

A−αI B1
C2 D21

]

= 0. Then x = 0,y = 0

from Assumption 1-(iii).
Lemma 5:For anyτ̃1 > 0, . . ., τ̃k+1 > 0,
(i) Ě1 > 0, Ě2 > 0.

(ii) The matrix

[

Ǎ−αI B̌2

Č1 Ď12

]

has full column rank for all

α ∈ C such thatRe(α) ≥ 0.

(iii) The matrix

[

Ǎ−αI B̌1

Č2 Ď21

]

has full row rank for all

α ∈ C such thatRe(α) ≥ 0.

Proof: (i) D̄12 has full column rank since
G̃k+1 = − 1

2Im×m, therefore,Ě1 = D̄′
12(I − D̄11D̄′

11)
−1D̄12 >

0. Similarly, D̄21 has full row rank sinceD̄21D̄′
21 =

γ−2D21D′
21 > 0 by Assumption 1-(i), therefore,̌E2 = D̄21(I −

D̄′
11D̄11)

−1D̄′
21 > 0.

(ii)
[

Ǎ−αI B̌2
Č1 Ď12

]

=

[

I B̄1D̄′
11(I − D̄11D̄′

11)
−1

0 (I − D̄11D̄′
11)

− 1
2

][

Ã−αI B̃2
C̄1 D̄12

]

=

[

I B̄1D̄′
11(I − D̄11D̄′

11)
−1

0 (I − D̄11D̄′
11)

− 1
2

][

I 0
0 Γ̃

1
2

][

Ã−αI B̃2
C̃1 D̃12

]

,

whereΓ̃ = diag(Iq, τ̃1Ih1, · · · , τ̃kIhk, τ̃k+1Im). From Lemma 4,
[

Ǎ−αI B̌2

Č1 Ď12

]

has full column rank.

(iii)
[

Ǎ−αI B̌1
Č2 Ď21

]

=

[

Ã−αI B̄1
C2 D̄21

][

I 0
D̄′

11(I − D̄11D̄′
11)

−1C̄1 (I − D̄′
11D̄11)

− 1
2

]

=

[

Ã−αI B̃1
C2 D̃21

]

[

I 0

0 Γ̃− 1
2

γ

]

×
[

I 0
D̄′

11(I − D̄11D̄′
11)

−1C̄1 (I − D̄′
11D̄11)

− 1
2

]

,

whereΓ̃γ = diag(γ2Ip, τ̃1Ir1, · · · , τ̃kIrk, τ̃k+1Im). From Lemma

4,

[

Ǎ−αI B̌1

Č2 Ď21

]

has full column rank.
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