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A Rank Constrained LMI Algorithm for the Robust”™HControl of an
Uncertain System via a Stable Output Feedback Controller

Li Li, lan R. Petersen

Abstract— The paper presents a numerical algorithm for
constructing a stable output feedback controller for the rdust
H* control of an uncertain system. The uncertain systems
under consideration contain structured uncertainty descibed
by integral quadratic constraints. The controller is desigied
to achieve absolute stabilization with a specified level ofis
turbance attenuation. The main result gives an algorithm fo
constructing the desired controller in terms of LMIs subjec to
rank constraints.

feedback problem for the new system ensures that the result-
ing controller also absolutely stabilizes the original @rtain
system with a specified level of disturbance attenuatiod, an
simultaneously the controller is forced to be stable. This
gives a procedure for constructing a stable output feedback
controller solving a problem of absolute stabilizationhwt
specified level of disturbance attenuation.

The algorithm proposed in [8] involves the solution of
algebraic Riccati equations dependent on a set of scaling
parameters. However, no indication is given as to how these

Output feedback control design problems for linear timeanknown scaling parameters might be constructed. Indeed,
invariant (LTI) systems have been studied extensively & ththe problem of finding a suitable solution to a pair of Riccati
literature. The three main classes of output feedback abntrequations dependent on a set of scaling parameters is known
design problems are static output feedback (SOF), fuleordto be a difficult numerical problem. In this paper, we relax
output feedback (FOOF) and reduced order output feedbagkd simplify the assumptions used in [8], and propose a
(ROOF). For the LTI systems without uncertainties, it hagumerical algorithm which will enable these scaling parame
been shown that SOF and ROOF involve LMI conditionsers to be constructed. This numerical algorithm involves t
with rank constraints [1], [2], and FOOF can be solved bolution to a rank constrained LMI problem; e.g., see [11]
Riccati or LMI methods [3]. When structured uncertaintiesind the references therein. Although such rank constrained
are present in the system, the convexity of FOOF wilLMI problems may in general be difficult to solve, some of
be destroyed, leading to rank constraints on the scalingle currently available algorithms, such as LMIRank [12],
variables; e.g., see [4]. have been found to lead to solutions to this problem in many

This paper considers the problem of robist control practical situations. The paper concludes with an example
via a full-order stable output feedback controller. It islwe which illustrates the proposed algorithm.
known that the use of stable controllers is preferable to the
use of unstable feedback controllers in many practicalrobnt
problems; e.g., see [5], [6]. Indeed, the use of unstable
controllers can lead to problems with actuator and sensor
failure, sensitivity to plant uncertainties and nonliriges
and implementation problems. Also, it is well known that We consider an output feedbatK® control problem for
issues of robustness and disturbance attenuation are-impan uncertain system of the following form:
tant in control system design. This has motivated a number
researchers to consider problemsHif control via the use
of stable feedback controllers; e.g., see [5]-[7].

The results of this paper build on the results in a recent

I. INTRODUCTION

Il. PROBLEM STATEMENT

k
AX(t) +Baw(t) +Bau(t) +  DsEs(t);
s=1

paper [8] which considers a new approach to the problem  Z(t) = Cix(t)+Da2u(t);

of robustH® control via a stable output feedback controller. Gt) = Kixt)+Guu(t);

As in [8], we consider a class of uncertain systems with

structured uncertainty described by Integral Quadratin-Co :

straints (IQCs); e.g., see [9], [10]. The key idea behind the i (t) = Kgx(t)+ Gku(t);

approach of [8] is to begin with an uncertain system of the y(t) = Cux(t)+Dagw(t) 1)

type considered in [9] and then add an additional uncestaint
to form a new uncertain system. Solving the robust output
wherex(t) € R" is the state w(t) € RP is the disturbance
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Canberra ACT 2600, Australia, | | eel y@t ee. adf a. edu. au, outputs &1 (t) < R™,...,&(t) e Rk are theuncertai_nty i.npUt_S
i rp@e. adf a. edu. au. andy(t) € R' is themeasured outpufThe uncertainty in this



system is described by a set of equations of the form (hencet, =« ) and

&) = @2 2 2 2, < 2
S0 = @t X112+ [1Xe() Iz =+ I ()H2+S;|\Es()|\z
. k
' . < ca[[xO)[1P+ x(O)[|?+ w(-) 15+ st]- (5)
&) = &%)l 2 =
where the following Integral Quadratic Constraintis S&is ~ 2) The followingH* norm bound condition is satisfied: If
Definition 1: (Integral Quadratic Constraint; see [9],  X(0) =0 andxc(0) =0, then
[10].) An uncertainty of the form (2) is an admissible

A2 _ ook
uncertainty for the system (1) if the following conditions J2 sup  sup 1ZC)113 ngtlds <V. (6)
hold: Given any locally square integrable control inpigt) w()#£0  &(-)e= w3
and locally square integrable disturbance ing(+), and any we)ek2l0e)
corresponding solution to the system (1), (2), (eft.) be Here, ||q(-)||2 denotes thé ,[0,) norm of a function

the interval on which this solution exists. Then there exist ; 28 (o 2

). That is,||g(-)||5 = t)]|<dt.
constantg; > 0,...,dx > 0 and a sequendg; };> , such that Le?( ) laC)l2= Jo" la®)l
ti—t,, t >0 and

/ti ||Es(t)||2dt§/tiHZs(t)szters Vi vs=1,...k (3)
0 0

Here]|| - || denotes the standard Euclidean norm &aD, o)
denotes the Hilbert space of square integrable vector @alu

E:l. = [Blv Dla e aDk]; QZ]_ = [D2170I><r1; Tt ;O|><I’k];
G, = [Cé.vKia"' aK((]/a D= [DEI_27 /1a ,G{(]/.

We need the following assumptions about the uncertain sys-

functions defined of0,e0). Note thatt; andt, may be equal fem (1), (3) to derive the proposed robust control algorithm

to infinity. The class of all such admissible uncertaintieséu'?nsesgTgmsoar:i;f;r rlﬁeu?gﬁéﬁl:gsﬁt:énméi)s’ Eﬁ)rovl\jglhglejtiie
&(-)=18("),-...,&(")] is denotecE.

The above definitions expand the class of admissibRAPE"
uncertainties to include a broad class of uncertainties due(i) Di,D12 > 0,D21D5; > 0.
to unknown nonlinearities and uncertainties arising from iy The matrix A—al Bz | o< ull column rank for all
unmodeled dynamics. They also allow for effects of non- C, Dp
zero initial conditions of uncertain dynamics as well asmor a € C such thatRe(a) > 0.
bounded noises in the uncertainty channels. The tems  (jii) The matrix A—al By
the right hand side of the 1QC conditions (3) correspond C D2
to bounds on these effects. Allowing for a wider class a € C such thatRe_(a) 20. .
of uncertainties which satisfy the IQCs (3) enables us to 1N€ above assumptions relax and simplify the assump-
apply the S-procedure for the system (1) to establish thdlons used in [8].. They are ;tandard technical assumptions
equivalence between the robust control problem consider§gMMonly used in the Riccati approachH@ control; e.g.,
in this paper and some parameteriz¢tl control problems. S€€ [13]- This will allow us to apply existingl™ control
Note that the norm bounded uncertainty is a special case '§SUltS tO the class of uncertain systems under considarati
this 1QC uncertainty model; see [10] for more details. These_assum_ptlons W|_II ensure that_ the relat_e_d_pargmedianz
For the uncertain system (1), (3), we consider a probler%'ccat' equations admit posmve definite stabilizing $xpius,
of absolute stabilization with a specified level of disturba  S©_that the corresponding controllers can be derived. We

attenuation. The class of controllers considered arediler  Will show in the next section how these assumptions lead
stable output feedback controllers of the form to the resulting controllers; see Lemmas 3, 4, and 5 in the

Appendix.
X(t) = Ax(t)+Bey(t),
ut) = Cexc(t) (4) I1l. CONTROLLER DESIGN

has full row rank for all

wherex(t) € R" and A is a Hurwitz matrix. A new approach to the robust control of an uncertain

Definition 2: The uncertain system (1), (3) is said to beSYStem (1), (3) via a stable output feedback controller is
absolutely stabilizable with disturbance attenuatigrvia Presented in [8]. The algorithm proposed in [8] involves a
stable output feedback control if there exists a stableutptWo-Step procedure. Firstly, a state feedback version ef th

feedback controller (4) and constasis> 0 andc, > 0 such  @Pproach of [9] is applied to the original uncertain system
that the following conditions hold: (), (3). The resulting state feedback gain is then used to

1) For any initial condition[x(0),x:(0)], any admissible construct a new uncertain system for which the results of

A . ; : . [9] is applied in order to obtain a stable controller which
EZFoer;?mttKégpug( ) and any disturbance inpul(-) € guarantees absolute stabilization with a specified level of

disturbance attenuation. We briefly review this procedore i
[X(-),%e(+),u(-),&1(+)s ..., &k(+)] € L2[0, ) this section.



A. State feedback control of the original system where

Letty >0, ..., Tk > 0 be given constants and consider the
algebraic Riccati equation A = A+}BZK' B, = 152-

= > , 5 Dk41 = B2;
Eay A Ty A S 1 . . S 1 .
(A—BoE; *D},C1) X + X (A— BoE; 'D1,C1) G = Cit35D1K; J=Diz Di12= D1
- —1py ~ 1 ~ 1
TX(Bl?l le%l BAZ)X Ki = Ki+5GiK; Fi=Gy; Gi1= Gy
+Ci (I — D12Ey 'DY5)Cr = 0; @) 2 2
h ? P S S
where Ke = Kt 56K Re=Gi Ge=356q
- 1 = 1
G D12 Kkr1 = EK; Gki1= _élmxm- (11)
R VTiKL | . V1161
G = : ;D12 = : ;
TRKi Nive) Also, th_e IQCs 3) i.il'e extended to include the additional
5, oA uncertainty inpugy.1:
E1 = DiyD1y;

B:I_ = [TlBl \/ﬁilDl \/T_kile]. (8)

o 1
| estldt < [ I2s(t) [t ds i Vs=1,... ke 1
Lemma 1:Suppose that constants > 0,..., T > 0 have 0 0 (12)
been found such that the Riccati equation (7) has a soluti¢fere dy,; is any positive constant.
X >0 and let

Remark The additional uncertaint§y; in the new system
K = —E;Y(ByX 4 D1Ch). (9) (10) has the property that for one specific value of the
uncertainty, the new uncertain system reduces to the atigin
uncertain system and thus any suitable controller for thve ne
uncertain system will also solve the problem of absolute
stabilization with a specified level of disturbance attditn
for the original system. Also, for a different value of theane
BoE; 1D,C1, (I — D1oE; 'DY,)C1 ) is detectable by Lemma uncertainty, the new uncertain system reduces to a certain
3.2.2 of Reference [10]. Thefeforé is the stabilizing ©Pen loop system in such a way that the controller is forced

ThenX is the stabilizing solution of (7), that igy+ BoK is
Hurwitz.

Proof: From Lemma 3-(ii) in the Appendix(A—

solution of (7). m (o be stable. The reader is referred to [8] for more details.
It has been shown in [8] that the uncertain system (1), (3) The Riccati (Equatlons ugder consideration are defined
is absolutely stabilizable with disturbance attenuatjoria ~ as follows: LetT; >0, ..., Tk11 > 0 be given constants
the state feedback controlleft) = Kx(t) whereK is given and consider the following algebraic Riccati equations and
in (9). spectral radius condition:
1 M
B. Output feedback control of the new system (A—BE; D) 2C1)’X+X(AV B2E; 'D1.Ch)
+X(B1B] — BoE; 1B5)X
Now, the_state feedback gz_iin mattk defined in (9) is +é/1(| _ [312Ef1[312)é (13)
used to define a new uncertain system as follows:
- k+1
X(t) = AX{t)+Buw(t) +Bau(t) + Z Ds€s(t)
2t) = Coxt) + Jr + Brault); (A= BiDarB, "GV +Y (A~ BiDoiE, *Co)f
o - V(M E-1A WY
L) = Rax(t) +Fiips +Gaut); (GG -GE, )Y
+B1(1 — D5,E; 'D21)B) = 0; (14)
4t = Kix(t)+ Rk + Geu(t);
Cr1(t) = Kigpax(t) + Gpau(t);

y(t) = Cox(t)+ Daaw(t) (10) p(XY) <1 (15)



where stabilizable with disturbance attenuatipwia a stable linear
controller of the form (4) where

. . g
A = A+ BlD/ll (|q><q — DllDéLl) Ci; . .

< 5= — o\ -1F Ac = Ac—BcD2Ce

B = Bo+BiD}; (Igeg—D11Dhy) D1 ) SR

. _ — -, Z Ac = A+BCc—BLCo+ (B1—BcD21)B1X

¢, = Co+DauDly(lgxg—DuDi;) 'Ci o Lo e g

2 = Gt Dabu{leq~Dubu) Gy Bo = (1-VX) (VS + BuDyyE, !
S _ / o 7\~ . .« o “ “
D22 = |221D11<|q><j Pl]_D::]L_l) D12, Cc — _Efl(B/ZX'i‘DEI_ZCl) (18)

Bi = Bi(lpxp—DiiD11) %;

! 1 (155~ D1:011) IV. A RANK CONSTRAINED LMI APPROACH
D21 = Dot (lpep— DjuD1s) 2

21 = Falpxp— 11 111 : As shown in Theorem 1, the proposed stable output
Ci = (lgxg—DuDy;) 2Cy; feedback controller design involves solving a pair of pa-
. ~ o -is rameterized game-type Riccati equations. Generally, it is
D12 = (Jﬁxg - Dl}Dn)v D1z, difficult to provide a systematic solution to such a problem.
Ex = D1,D12 Ex=D2iDb; In this section, we discuss one possible numerical approach

to address this difficulty. Similar to the technique in [1te

B_:[l o TRV e ; 1O adt >Imik . . .
! V7B Vi Dy Tkr1 Dii idea is to replace the Riccati equations with an equivalent

Ci_ feasibility problem involving rank constrained LMIs. Rirs
_ vike | we introduce a related rank constrained LMI feasibility
G = : ' problem. Next, we prove the equivalence between the two
~ > blems.
V1K bro . . . .
- Tt 1 _ Corresponding to the Riccati equations (13), (14) and the
Ogxp  Ogxry  --- Ogxry \/m‘] spectral radius condition (15) arising in Theorem 1, coasid
Ohixp Ohixrr oo Oposr Vi Fr the following matrix inequalities and the spectral radius
_ R VT Vi condition,
D11 = : ; e
. : . . . (A—BoE; 1D1,C1) X + X(A— BoE; 'D1,C1)
hx p hyxrq ce hi < rg \/ka +X(BlB&* BZEI].B/Z)X
L Omxp  Omxr;  --- Omxry Omxm | +éi(| _ |312éilljiz)él <0, (19)
512~ (A— éléélégléz)? —i—?(A— éléélégléz)/
b = | VUS| GG - G, 1Y
D +By (1 — D5,E, 'D21)B; < 0, (20)
VTkr1Gks1 -
D21 = [y ™21 Oxr; oo Oixre Oum |. (16) p(XY) < 1. (21)
HereG— gt ...+ hetmand f— p+r1... 4 fetm Note that the feasibility of (19-21) is equivalent to that of
q=9+M...krmandp=pry... -+ m 13-15) under certain assumptions, see Theorem 2 given
The following assumption is needed in the next theore
which, (similar to Assumption 1) is a standard technica ReWrite (19) as

assumption used in the Riccati equation solution tokife

control proplem. . . A/XJF)V(AJr)v(élé/ly(Jré/lél
Assumption 2:The uncertain system (1), (3) will be as- Cs N A LoS Sy

sumed to satisfy the following condition for afiy > 0, ..., — (XBz2+C1D12)Ey *(XB2 +C1D12) < 0. (22)

Tke1 > 0 o By left and right multiplying (22) withX = X1, we obtain

DllDéLl <. . . "
Theorem 1: [8] Suppose that the uncertain system (1), XA'+AX+ B1B] + XCiC1X

(3) satisfies Assumptions 1-2 and_ thaF there _eX|st constants _ (|§2 +>A(é/1512)'§1_1(é2 +>261512)’ <0. (23)

11 > 0,...,Tx > 0 such that the Riccati equation (7) has a A

solution X > 0 and let Introducing a matrix variablé € R™" , without changing
o A A the feasibility of (23), we add a quadratic term involviRg

K=—E; "(B2X+D1L1). (17)  to the left-hand side of (23) as follows:
Furthermore, suppose there exist constapts 0, . .., Ty 1 > XA + AX + B1B] 4+ XC;CiX

0 such that the Riccati equations (13) and (14) have solsition B/ 4 (Bo+ XE Do) E-NE B 4+ (Bo + XE D1 E-LY
X >0 andY > 0 and such that the spectral radius condition HIF A+ (B2 + XCiD1)E; B[P+ (B2 1+ XCD12)E, 7]

o e o
(15) holds. Then the uncertain system (1), (3) is absolutely —(B2+XC;D12)E; (B2 + XCiD12)’ <0,



which is

XA + AX +B1B) + BoF +F'B,

+ (él)A( + [312'2)/(61)2 + Dlzﬁ) < 0. (24)
Substituting (16) into (24) and using the property
| +D}4(1 — D11D}4) 'D1a = (I — Dy4D11) 7,

we have

XA + AX + BB} + BoF +F'B,

+ (DllBll +C1X + Dle) (| — 5116’11)_1
X (Dj_lBa_ +C1)2 + D12FA) < O,

which, by Schur complement, is equivalent to

Similarly, by definingY = Y~1 and L € R™!, (20) is

transformed into
{% {‘PO} <0,

. T, (27)

where
k+1
No =AY +YA+LC +CoL' +CICy + Zl KK,
1=

Po=[YBL+LD21,YDy,---,Y Dy,

YD1 +Cl+ Z TiK/F

I—V = dlaqy2| Pafllrla T 7fk|fkafk+l|m>a

~ l ~ . - ~ ~
M1 (D11311+C1X+ Dl_zF)~ r; 2] <0, (25) [ = diag(lg, T1lhy, - Tklhy, Teralm)-
* —r+r 2D11D1 r The spectral radius condition (21) is equivalent to
where N
b re = oA A [ n]>0 (28)
M1 = XA + AX + B1B] + BoF + F'By, *x Y
= diag(lg, Talny, -+, Tklhy, Tkralm)- Furthermore, the conditioristi = 1,T; > 0,i = S k+1
. . o are equivalent to
Here the notatiorx in the above matrix indicates that the .
corresponding elements in the matrix are such that the bvera [Ti }] >0, rank {Ti Nl} <1, i=1--,k+1 (29)
matrix is symmetric. Defindg; =T %i = 1,--- ,k+1, and U]~ ]

note that by (16)
BB} =y °B1B} +11D1D} + - - + Tis 1Dk 1Dy 1,
B1D’; = [tk+1Dks1d, Tk 1Dicr1FY,
i 1Dks1FL, O)F 2

XC; = [RC, XK], - XKL, 4)F 2,
F'D), = D, B'G,,-  B'Gl,)F 2,
F_l |aq|q,Tl|h1, . Tklhk;TkJrllm);
F=2D1D),1 2 = Tt Mae M),
where
Ogxp  Ogxry Ogxry~ J
0h1><p Ohlxrl Ohlxrk F1
Myr = :
Ohkxp Oherl Oherk Fc
0m><p 0m><r1 Om><r;< Omxm
Then (25) is transformed into
[9‘*{0 ?ﬂ <0 (26)
where
k+1

Mo = XA+ AX + BoF +F'B, +y 2B1B] + ZfiDiD{,
i=

Q = [tk1Dks1d +XCi +F'D,
fk+1Dk+1F£ + )ZK:/L + F'é, AR
Tk 1Dk 1P+ XKY + F/Gl, XK 4 + F'Gp 4],
So=—F + e aMirM)E,

M= diag(|q,f1|h1, cee 7fk|hk7fk+l|m)'

Our main result shows that the feasibility problem (13),
(14), (15) in the variableX,Y,%;,i = 1,--- ,k+1 is equiv-
alent to the rank constrained LMIs (26) (27), (28), (29) in
the variablesx F Y L ,3,%,i =1,--- ,k+1. We need the
following Iemma to prove the equwalence between these
problems.

Lemma 2:For anyt; >0, ..., Tx;1 >0,

() (A—BoE;'D),C, (1 — D1y 1[3’12)(51) is detectable.

(i) (A—BiD,E;1C,, (I — Dy E; 1D01)BY ) is stabilizable.
Proof: This result follows directly from Lemma 5 in

the Appendix and Lemma 3.2.2 of Reference [10]. &

Theorem 2:Under Assumptions 1-2, the following state-
ments hold.

(i) If the rank constrained LMIs (26), (27), (28), (29)
admit solutionsX,F,Y,L,%.%,i = 1,--- ,k+ 1, then
there existXg > O,YR > 0, such that (13), (14), (15)
hold for Xg, Yr,Ti,i=1,--- ,k+1.

(i) If (13), (14), (15) admit solutionsr > 0,Yr > 0,T; >
0,i = 1,--- ,k+ 1, then there existX,Y, such that
the rank constrained LMIs_(26), (27) (28), (29)
hold for X, F = —E]1 (Bz—i—XC’Dlz) Y.L=—(C+
YBlD21)E2 d=1"%,1=1,-- k+1

The proof follows a S|m|Iar line to that in [14] (see also [4])
and thus is omitted here. Note that both problems, if feasibl
admit the samd;,i = 1,--- ,k+1, as seen in Theorem 2.
As mentioned in the introduction, to solve this problem in
our numerical experiments, we use the rank constrained LMI
solver LMIRank [12].

Remark In contrast to the ROOF and SOF problems in
which rank constraints are imposed on the Lyapunov vari-
ables [1], [2], the rank constraints (29) are imposed on the



auxiliary Lagrange multipliers. We note here that theséran B1 =diag(B11,B1,1,B11,B14), (31)
constraints are arising from the characterization of outpu C1 = diag(C,1,Cz1,Cz1,Cra),
feedback control and the structured uncertainties in the ne Doy diag(D7 D7 D7 D )
system (10), (12). Similar non-convex conditions can akso b 12 21,721, =21, z4);

found in [4], [14]. Cz = diag(Cy1,Cy1,Cy1,Cya),

We should keep in mind that until now, the state feedback D21 = diag(Dy,1,Dy1,Dy1,Dy 1),

gain K is unknown. Using a similar argument to the above, 01 O
we can show that the existence of a solution to the Riccati Bri= [0,1 0] , Bla=[01 0,
equation (7) is equivalent to the following convex optimiza oo 0.1
tion problem in the variable®/, X, F,1i,i=1,--- ,k: C,1=01x [0212] , Cza= [ 0 ] )
mintr(W) subject to: Dy1—01x [(I)zxz] Dy {001} 7

Ms G| _ (30) =2 '

*  Ss ’ Cy1=[0 1], Cya=1, Dya=[0 0097.

[W h] 0 This example is a modification of the example given in [14].

X ’ Note that in this example, we are considering the special

case in which the original uncertain system contains no

uncertainty and so we are looking ati& strong stabilization

problem; e.g., [5;—[7]. The standartd® central controller

_ _ _ k (e.g., see [13]) for this system (corresijondlnggte: 1)

Ms= XA +AX+BoF +F'B,+y2B1B]+ Y TiDiD}, is unstable and has eigenvalugs- —804.86, 28.84,
i; 9888 — 11854, —11314 —0.24, —0.86. Also, the

corresponding state feedback gain matrix is

where

Qs = [(C1X+D12F)', (KiX+G1F)', -+, (KX + GkF)'],
— —diad(lg.T1lh .- . Telr ). -010 -081 003 013 000 008 —0.00
Ss d(lg; Talhy, -+ 5 Tklh,) 008 035 004 047 006 028  QOL
_ — 4 —q. —003 010 -010 -085 —003 009 —0.00
Letting X =X""1i =1, 7,i =1,--- Kk, then the state feed- K=|007 030 005 053 006 028 QO1|.
K ; —000 008 002 011 -0.09 -083 —0.00
back gainK is pbtamed from (9). _ . 007 031 005 047 007 03 ool
We summarize the proposed control design algorithm as -001 -005 -000 -008 -001 -005 -0.88

follows. We now apply the algorithm outlined in Section IV to this

« Solve the convex optimization problem (30) to obtairsystem. Fort; = 1.0, we find that the conditions of Theorem
Va 1 are satisfied and we construct the corresponding controlle

XT,i=1--k of form (4) where
o LetingX =X"11,=T%i=1,--- Kk calculateK from )
©) YA e i
« Construct new matrices in (11) with the resultikg —-000 002 000 149 -000 Q02 000
« Solve the rank constrained LMIs (26), (27), (28), (29)t0 = | 7002 goo _900 _o0r 000 1ae  o0oo |
obtain a feasible solutiod,F,Y,L,;,%,i=1,--- ,k+1. 001 -031 001 -036 -063 -220 —0.02
« Substitute the constanis,i = 1,---,k-+ 1 which have |-012  -069 006 ~101 —010 -063 11815
been found into the Riccati equations (26), (27) and _2%29 Sgi 823 _&%0
solve them to obtaiX = Xr,Y = Yr. } L _| Qo2 o9 002 -000 )
« Construct the controller (18) using the parameferXgr “ 1000 001 -049 —000|

andYg which have been found. 027 029 194 Q03

1003 003 003 10533
[-0.10 -0.81 003 013 000 008 —0.0
V. ILLUSTRATIVE EXAMPLE 008 035 004 047 006 028 001
. . . . —003 010 -010 -085 -003 Q09 —0.00
In_this section, we consider a problem of absolute stabi- ¢ _ | 007 03 005 053 006 028 001 |.

lization with a specified level disturbance attenuationrien _000 008 002 011 -009 -08 -000
to illustrate the algorithm developed above. We consider a 007 Q31 005 047 007 032 Q01
System of the form (]_), wherke= 0 and |-0.01 -005 -000 -008 -001 -0.05 -0.88
"0 100 0 0 0 0 0 This system is stable and has polessat —11515, —
—%61 _0612 8 180 081 g Ogl 263 —0.32 —0.72 —1.16, —0.92, —0.97. Furthermore,
A—| o 0  -045 -010 Q01 0 ot |, when the controller (32) is applied to the system (31), the
0%1 g 081 8 0061 %30102 Ogl resulting closed loop system ha&g’-norm Q12. From this
| o 0 0 o o o0 _oos we can see that the stable controller (32) does indeed solve
o 0 0 0 0 0 0 the H® strong stabilization problem under consideration.
0.12 -0.07 0 —0.06 0 —0.06 0
0 0 0 0 0 0 0
B,=| 0 -0.07 010 -0.07 0 —0.07 0 VI. CONCLUSIONS
S Ty . In this paper we have presented a numerical algorithm
0 -012 0 -012 0 -012 1000 for the problem of absolute stabilization with a specified

level of disturbance attenuation via the use of a stable



output feedback controller presented in [8]. The key idea of  Proof: (i) Dj2 has full column rank since
our algorithm is to reformulate the parameterized algebraiGy.1 = ——Imxm, therefore E; = Dlz(l — D11D1Q lD12 >
Riccati equation in terms of rank constrained LMIs whicl0. S|m|IarIy, D2; has full row rank sinceDyiD5; =
would be solved to construct the parameters on which thﬁzD21D’212 0 by Assumption 1-(i), therefor&, = D1 (I —
main result depends. (1D11 D’21 > 0.

APPENDIX . «
. Aal B
I._emma 3:For anyt; >0, ..., 7k >0, & Dlj
() E1>0. Aal B _ 1 BiDy(1—Dubiy) M [A—al B,
(i) The matrix é [32 has full column rank for all |0 (I —=D11D};) 2 Ci D2
1 12 - — = ~ ~
a € C such thatRga) > 0. _ [t BiDyy(1 - DD} )_1} {' ~01} {Afo‘l ?2}
Proof: Let I =diag(lq, \/T1lhy, - s /Tklh,)- 0 (I1-Duby)~2 |10 T2 G  Dp

(I) B = QELZFZDZLZ > min(LTla Tt
Assumption 1-(i).

,T) *D1oD12 > 0 by \yheref* = diag(lg, Taln, -+ Tlny, Ter1lm). From Lemma 4,

i It is obvi ion 1-(ii Azal Bl o full col K
_ (i) It is obvious from Assumption 1-(iii) and the fact that &, 1 as 1l column rank.
Cy=TCy,D12=TDy. u (iii)

We define the following notation, which will be used in .

A—al B

the next lemma. { < < }

- . C Doy

By = [B1, D1l D21 = [D21,01xm], _ {A—al 51} [_ e 0 1}

Ci=[CL.KL+ Kiyal, Dio= D156, Gyl C> Do |D),(1 —DyD}y) ' (1—D}yDyy) ¢

Lemma 4:Consider the uncertain system (1), (3). Let the =

{A—al gl} {I 01]
constantst; > 0,...,T¢ > 0 be given as in Lemma 1 and G Dajfo 1y?

consider the matrices defined in (11). Then the following {7 b B 0 1}
conditions are satisfied. _ D;(1-D11D}y) *Cy (1 —DjyD11) 2|
(i) The matrix AEGI DB has full column rank for all wherefy: diangzlp,fllrl, -+, Tilry, Tkr1lm). From Lemma
1541 Do K 3
o € C such thatRe(a) > 0. {Aéal IjBl] has full column rank.
2 21

(i) The matrix A-al Bl has full row rank for all ]

C2 Dy

a € C such thatRea) > 0.
. A—al
(i) Suppose|
Cl
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