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 2 

Abstract: The consumption of pharmaceuticals and personal care products (PPCPs) has been 16 

widely increasing, yet up to 90-95% of PPCPs consumed by human are excreted unmetabolized. 17 

Moreover, most of PPCPs cannot be fully removed by wastewater treatment plants (WWTPs), 18 

which release PPCPs to natural water bodies, affecting aquatic ecosystems and potentially 19 

humans. This study sought to review the occurrence of PPCPs in natural water bodies globally, 20 

and assess the effects of important factors on the fluxes of pollutants into receiving waterways. 21 

The highest ibuprofen concentration (3738 ng/L) in tap water was reported in Nigeria, and the 22 

highest naproxen concentration (37700 ng/L) was reported in groundwater wells in Penn State, 23 

USA. Moreover, the PPCPs have affected aquatic organisms such as fish. For instance, up to 24 

24.4×103 ng/g of atenolol was detected in P. lineatus. Amongst different technologies to 25 

eliminate PPCPs, algae-based systems are environmentally friendly and effective because of 26 

the photosynthetic ability of algae to absorb CO2 and their flexibility to grow in different 27 

wastewater. Up to 99% of triclosan and less than 10% of trimethoprim were removed by 28 

Nannochloris sp., green algae. Moreover, variable concentrations of PPCPs might adversely 29 

affect the growth and production of algae. The exposure of algae to high concentrations of 30 

PPCPs can reduce the content of chlorophyll and protein due to producing reactive oxygen 31 

species (ROS), and affecting expression of some genes in chlorophyll (rbcL, psbA, psaB and 32 

psbc). 33 

 34 
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1. Introduction 37 

Water resources are increasingly becoming limited, and quality of water bodies has been 38 

seriously threatened by the presence of different contaminants that pose a risk to the human 39 

health and the aquatic environments (Balusamy et al., 2020, Wu et al., 2020). Of current major 40 

concern are emerging organic micropollutants such as pharmaceuticals and personal care 41 

products (PPCPs) (Mojiri et al., 2019a). PPCPs are designed to have the maximum impacts at 42 

low concentrations; consequently, they have a significant effect on environments and humans 43 

at trace concentrations (Patel et al., 2019). Thus, the increasing use of PPCPs has raised 44 

questions regarding their potential risks to human and ecosystems, especially by promoting the 45 

development of antibiotic resistance genes (Zhou et al., 2012). It is therefore important to 46 

critically review the concentrations and treatment of PPCPs in water bodies around the world, 47 

as the aim of this study. 48 

PPCPs are employed for prevention or treatment of diseases in animals and humans, as well as 49 

to enhance the quality of daily life. PPCPs may easily dissolve in water and not evaporate easily 50 

in normal conditions. These properties allow PPCPs to reach water sources over several modes 51 

(Wang et al., 2019). Generally, PPCPs with the concentration varying from ng/L to μg/L have 52 

been found in water and wastewater samples. The occurrence of PPCPs in aquatic 53 

environments leads to the harmful toxicological consequences and different ecological impacts 54 

on the environment and human (Wang et al., 2020). 55 

Most wastewater treatment plants (WWTPs) cannot fully eliminate the emerging 56 

micropollutants (MPs). Therefore, alternative methods have been sought with high 57 

performance in order to overcome this challenge. Several methods for the treatment of MPs 58 

have been investigated, physicochemical (such as advanced oxidation process, AOP) (Kudlek 59 

et al., 2018) and biological methods (such as membrane bioreactor-MBR, moving bed biofilm 60 

bioreactor-MBBR, algae-based methods) (Besha et al., 2017, Abtahi et al., 2018). One of the 61 
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efficient methods in removing PPCPs from water bodies is bioremediation using 62 

algae/microalgae (Larsen et al., 2019). Each method used for the removal of PPCPs has some 63 

advantages and disadvantages (Table A.1 in supplementary file). For instance, while AOPs 64 

have a smaller footprint and a better performance in comparison with conventional methods, 65 

they consume a high amount of energy and produce secondary pollutions. Moreover, MBR 66 

involves a high operation cost, and contains less efficient oxygen transfer. However, MBR has 67 

advantages of enhanced biodegradability of hydrophobic organic micropollutants, and a 68 

smaller footprint in comparison with conventional treatment methods. Of special interest are 69 

algae-based systems with several advantages including generating biomass for producing 70 

biofuel or biochar, absorption of CO2, low-cost, and high efficiency for the removal of PPCPs. 71 

Villar-Navarro et al. (2018) expressed that algae-based systems are considered as an efficient 72 

and eco-friendly technique to clean water and wastewater without threatening human health. 73 

Gentili and Fick (2017) removed 18 emerging micropollutants with removal efficiency 74 

between <10% to >90%, using the algae-based technique during 1 week. However, there is a 75 

demand for further research on the occurrence and removal of PPCPs in water environments 76 

(Al-Mashaqbeh et al., 2019). Therefore, this review paper attempts to present a detailed 77 

assessment of PPCP pollution and treatment in the aquatic systems. 78 

 79 

2. Pharmaceuticals and personal cares products 80 

PPCPs are a group of emerging micropollutants which contain “any product applied for 81 

personal health or cosmetic reasons or used by agribusiness to enhance growth or health of 82 

livestock” (US EPA). PPCPs comprise thousands of chemicals that make up cosmetics, 83 

fragrances, drugs (containing over-the-counter drugs), and veterinary medicines (Dhodapka 84 

and Gandh, 2019). Generally, several thousands of PPCPs are produced per year around the 85 

world, and the discharge and accumulation of PPCPs in the environments are considered as an 86 
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unavoidable by-product of a modern lifestyle (Tran et al., 2015). PPCPs can be simple aromatic 87 

molecules (e.g. anesthetic propofol), simple aliphatic molecules (e.g. vasodilator and 88 

nitroglycerine), or more complex molecules with low molecular weight (e.g. statin and 89 

atorvastatin) and with heavy molecular weight biopharmaceuticals (e.g. hyaluronic acid) 90 

(Taylor and Senac, 2014). 91 

 92 

2.1. Pharmaceuticals  93 

Pharmaceuticals usually comprise over the counter (OTC) or prescription human/veterinary 94 

drugs and nutraceuticals applied for prophylaxis/therapeutic and health supplements reasons 95 

(Cizmas et al., 2015). Pharmaceuticals found in aquatic environments can be divided into five 96 

main groups (Table A.2 in the supplementary file) including antibiotics, analgesic and 97 

antipyretic (counting nonsteroidal anti-inflammatory), cardiovascular agents (blood lipid 98 

regulator (BLR) or antilipemic agents, β-blockers), central nervous drugs (e.g. antipsychotic 99 

and antidepressant), endocrinology treatment (Liu and Wong, 2013). These therapeutic agents 100 

are constantly discharged to the water bodies from point and non-point industrial including 101 

domestic sources (Zhou et al., 2012). 102 

 103 

2.1.1. Antibiotics 104 

There has been a worldwide request for antibiotics during the last decades due to effective 105 

treatment of infectious diseases induced by the fast urbanization and increasing population as 106 

well as for the growth promotion of animals (Bao et al., 2021). Antibiotic usage has increased 107 

by 65% during 2000-2015. Additionally, the total antibiotic consumption for livestock was 108 

63,151 tons in 2015, which is expected to be increased by 15% in 2030. It is estimated that 109 

30% to 90% of antibiotics used by an organism is excreted without metabolism (Mojiri et al., 110 

2021b). Based on the chemical characteristics and mechanisms of action, antibiotics can be 111 
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divided into seven classes as: penicillins/β-lactams, aminoglycosides, tetracyclines, quinolones, 112 

macrolides, and sulfonamides, lincosamides (Bhagat et al., 2020). Penicillins/β-lactams are the 113 

most consumed antibiotics (Carvalho and Santos, 2016). 114 

Because antibiotics are employed to kill or prevent pathogenic bacteria at trace concentrations, 115 

their presence in natural environments may cause a critical risk for the aquatic communities 116 

comprising non-targeted organisms (Serra-Compte et al., 2021). Manzetti and Ghisi (2014) 117 

stated that maximum concentrations of antibiotics in aquatic environments are mostly detected 118 

in wastewater treatment plants. 119 

 120 

2.1.2. Analgesic and antipyretic, and nonsteroidal anti-inflammatory drugs (NSAIDs), 121 

Antipyretic analgesics are a type of diverse substances comprising acidic (nonsteroidal anti-122 

inflammatory drugs, NSAIDs) and nonacidic (pyrazolone and paracetamol) drugs (Hinz and 123 

Burne, 2007). NSAIDs are mostly the derivatives of carboxylic acid that inhibit prostaglandin 124 

synthesis produced by cyclooxygenase enzymes (Derle et al., 2006). NSAIDS reduce the 125 

production of prostaglandins through the blockage of cyclooxygenase (COX) enzymes 126 

controlling inflammation, pain and fever. NSAIDs are the most common OTC medicines to 127 

ease the pain and fever, and control inflammation (Duan and Zhao, 2021; Márta et al., 2018). 128 

For instance, annual NSAIDs prescriptions in the US, Canada, and UK were estimated to be 129 

more than 100 million in 2015 (He et al., 2017). Ibuprofen, aspirin, diclofenac, acetaminophen, 130 

naproxen and ketoprofen are the most consumed NSAIDs (He et al., 2018). The exposure to 131 

NSAIDs causes severe toxicity in aquatic environments even at ng/L or μg/L concentrations 132 

(Thalla and Vannarath, 2020). One of the most widely used analgesic and antipyretic agents is 133 

paracetamol (Shakeel et al., 2013). Paracetamol contains a benzene substituted by a hydroxyl 134 

group and the nitrogen atom of an amide group at the (1,4) para positions (Żur et al., 2018), 135 

which can only be degraded by hydroxylation and cleavage of the aromatic ring. Hence, traces 136 
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of paracetamol can remain untreated in sewage water of various concentrations (Al-Kaf et al., 137 

2017). 138 

 139 

2.1.3. Cardiovascular agents (Blood lipid regulator (BLR) or antilipemic agents, Blood 140 

Pressure, and β-blockers) 141 

Cardiovascular disorders are the second most common cause of deaths around the world. Thus, 142 

consumption of cardiovascular drugs is significantly high. The presence of cardiovascular 143 

compounds in aquatic environments can have a long-term impact even at trace concentrations 144 

(Giebułtowicz et al., 2016). 145 

Blood lipid regulators (BLRs) are highly consumed as a medicine not only for the treatment of 146 

unhealthy cholesterol levels but also for cardiovascular diseases and postmenopausal 147 

complications (Peña-Méndez et al., 2020). Among the prescribed medications around the world, 148 

the cardiovascular drugs and lipid regulating agents are two of the most consumed drugs. For 149 

instance, 24.5% of the most commonly prescribed drugs in the United States are classified as 150 

cardiovascular drugs and lipid regulating agents (Zhang et al., 2020). Most used BLRs are 151 

fenofibrate, bezafibrate, gemfibrozil and clofibrate, which are commonly reported in aquatic 152 

environments (Rosal et al., 2010). These are considered as the resistant drug to biodegradation 153 

with a strong persistence in the environment (Mourid et al., 2020). In Ontario (Canada), Patel 154 

et al. (2019) reported the high concentration (ng/L) of blood pressure drugs (7333600 of 155 

metoprolol, 116000 of diltiazem, 1200000 of furosemide, and 22900 of amlodipine) in water 156 

bodies, which has been resulted by discharges of five manufacturing facilities. Apart from that, 157 

β-blocker drugs stand as the third most common pharmaceuticals recorded in the aquatic 158 

environment (Rezka and Balcerzak, 2015). Rezka and Balcerzak (2015) stated that atenolol, 159 

metoprolol, nadolol, propranolol, sotalol, and timolol are the most common β-blockers detected 160 

in aquatic environments. 161 
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 162 

2.1.4. Central nervous system (CNS) drugs, and antipsychotic and antidepressant 163 

Caffeine and diazepam are the most consumed CNS agents. Due to broad application of 164 

caffeine (presence in coffee, sodas, tea and chocolates as well as in medicaments and appetite 165 

modulators), caffeine has been reported in different water bodies around the world (Zarrelli et 166 

al., 2014). That is considered as a stable compound under different environmental conditions. 167 

Because of small pKa (0.7), high water solubility (21.7 g L-1), low octanol/water partition 168 

coefficient (-0.07), along with insignificant volatility and molecular mass of 194.19 g, caffeine 169 

is considered as highly persistent in aquatic environments (Mizukawa et al., 2019). The 170 

presence of caffeine in water sources reveals that this compound is not completely eliminated 171 

from sewage treatment plants. Benzodiazepines (BDZ) is a group of psychiatric substances 172 

which affect the central nervous system, having anxiolytic, sedative and hypnotic impacts. 173 

Diazepam, alprazolam, oxazepam and lorazepam are the most important agents in this group 174 

(Calisto et al., 2011). 175 

 176 

2.1.5. Endocrinology treatment (ET) drugs 177 

Drugs consumed in endocrine therapy can be remarked as endocrine disruptors and therefore 178 

require consideration because of their specific hormonal or anti-hormonal properties (Besse et 179 

al., 2012). Research demonstrated that hormones are environmentally stable and potentially 180 

deleterious even at very low concentrations (Olatunji et al., 2017). For instance, 17α-181 

ethynylestradiol has the potential to trigger numerous endocrine dysfunctions impacts at 182 

exposure levels as low as 1 ng/L (Wee et al., 2020). The most reported hormones are listed as: 183 

testosterone, estrone, progesterone, 17β-estradiol, and 17α-ethynylestradiol (Wee et al., 2020). 184 

Disruption of the endocrine system can lead to various developmental, neurological, 185 

reproductive, immune and metabolic disorders (Ingre-Khans et al., 2017). 186 
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 187 

2.2. Personal care products 188 

Personal care products are various chemicals applied in soaps, lotions, fragrances, toothpaste, 189 

shampoos and sunscreens (Brausch and Rand, 2011). Liu et al. (2013) reported that the 190 

sunscreen UV filters (e.g. 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC),  4-methyl-191 

benzilidine-camphor (4MBC)), antimicrobial agents (e.g. triclosan,  triclocarban), insect 192 

repellants (e.g. N,N-diethyl-m-toluamide (DEET)), synthetic musks (e.g. nitro musks such as 193 

musk xylene, musk ketone, musk moskene, musk ambrette and musk tibetene) polycyclic 194 

musks (such as galaxolide and toxalide)], and preservatives (e.g. parabens) are the most widely 195 

used personal care products. The US, China and Japan are the top countries in the consumption 196 

of personal care products (Liu et al., 2013). Eriksson et al. (2003) stated that personal care 197 

products are one of the most frequently detected compounds in water bodies in the world. 198 

Peck (2006) stated that sunscreen agents (UV filters) are broadly added to lotions and cosmetics 199 

as protection against harmful UV radiation. The hydrophobicity of these compounds (log Kow 200 

5–8) reveals the potential for bioaccumulation. 201 

Triclocarban and triclosan are the most commonly reported antimicrobial agents, which have 202 

been added in many personal care products (such as hand disinfecting soaps, medical 203 

disinfectants, body wash products, kitchen detergents and toothpastes) (Tsai et al., 2008). Both 204 

have the hydrophobic nature, and are persistent in the environment whether aerobic or 205 

anaerobic (Zhao et al., 2010). 206 

For a long time, DEET, a lipophilic organic compound, has been applied as an insect repellent, 207 

and can be frequently found in aquatic environments (Sun et al., 2016). DEET is mobile and 208 

persistent. In the central east coast of Australia, DEET was reported in 97% of surface-water 209 

samples collected from waterways (Costanzo et al., 2007). 210 
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Synthetic musk fragrances are widely added to several personal care products, such as shampoo, 211 

deodorant and detergents for scent enhancement (Peck, 2006). As mentioned above, two types 212 

of synthetic musk fragrances are nitro musk fragrances and polycyclic musk fragrances. The 213 

nitro substituents can be reduced to the amino metabolites of these compounds (Peck, 2006). 214 

Parabens are also employed as preservatives in products such as food and pharmaceutics. This 215 

group comprises propylparaben, methylparaben, butylparaben, ethyl paraben, and benzyl 216 

paraben (Peck, 2006). 217 

 218 

3. Presence of PPCPs in water bodies 219 

Several studies have reported that up to six million PPCPs are commercially available, and 220 

their consumption is increasing by 3-4% by weight per year (Delgado et al., 2020). PPCPs 221 

reach the environment as components of animal/human wastes, after incomplete absorption 222 

and excretion from the body, as well as emissions of medical, agricultural, industrial or 223 

household wastes (Taylor and Senac, 2014). Environmental pollution with PPCPs has become 224 

a major public concern since these compounds have been approved to have negative effects on 225 

aquatic organisms (Zhang et al., 2021), as well as having a role in increasing antibiotic-resistant 226 

bacteria (Oliveira et al., 2015). Bu et al. (2013) expressed that several PPCPs are persistent or 227 

pseudo-persistent in the environment and hazardous to non-target organisms. PPCPs may 228 

arrive water sources through direct release by wastes from hospitals, industries and households. 229 

(Molina et al., 2020). For emphasis, several studies (Xu et al., 2019; Liu et al., 2021) have 230 

revealed that the presence of PPCPs in aquatic environments has mostly derived from 231 

anthropogenic activities such as the treatment and discharge of different kinds of wastewater, 232 

aquaculture, livestock breeding, and landfill. 233 

The physicochemical properties of PPCPs such as molecular weight, octanol-water partition 234 

coefficient (KOW), octanol-water distribution coefficient (DOW), organic carbon partition 235 
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coefficient (KOC), and ionization constant (pKa) can affect the fate of PPCPs in aquatic 236 

environments (Delgado et al., 2020).  237 

The KOW (equation 1, Gutiérrez et al., 2021) is frequently applied to predict the adsorption of 238 

emerging microcontaminants on solids, with log KOW<2.5 indicating low sorption potential, 239 

2.5<log KOW<4 indicating medium sorption potential, and log KOW>4 showing high sorption 240 

potential (Lou et al., 2014). On the other hand, the KOW specifies pollutant mobility, where the 241 

compounds with KOW<1.5 tend to stay in the dissolved phase (more mobility) and are more 242 

likely to occur in water (Karnjanapiboonwong et al., 2011). Tijani et al. (2013) stated that most 243 

PPCPs are highly hydrophilic with low KOW and partially soluble in aqueous media. 244 

𝐾𝑂𝑊 =  
concentration in 𝑛−octanol

concentration in water
                       (1) 245 

Wells (2007) expressed that DOW, a pH-dependent coefficient, is a better measure of 246 

hydrophilicity. Dubey et al. (2021) stated that DOW can be calculated (equations 2 to 4) based 247 

on the KOW values with consideration the pH value. 248 

Neutral compounds: 249 

log DOW = log KOW                                            (2) 250 

Acidic compounds: 251 

log DOW = log KOW + log 
1

1+ 10𝑝𝐻−𝑝𝐾𝑎
                (3) 252 

Basic compounds: 253 

log DOW= log KOW + log
1

1+10𝑝𝐾𝑎−𝑝𝐻                   (4) 254 

log Koc <1.0 often displays the low sorption potentials, log Koc <3.0 are more likely to show 255 

the medium sorption potentials, and log Koc >3.0 have high sorption potentials onto the 256 

particulate phase (Koumaki et al., 2021). Generally, as the log Kow increases, the log Koc 257 

would also be anticipated to increase (Crookes and Fisk, 2018). 258 

The pKa can affect the mobility, movement of pollutants from one phase to another (e.g., soil-259 

water movement), of the PPCPs (Kim and Zoh, 2016). Several micropollutants, which enter 260 
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wastewater treatment plants, comprise ionizable functional groups with pKa values within pH 261 

range of 6.2 to 8.1. For example, 40% of PPCPs with a dominant substance class in wastewater 262 

influents include at least one functional group with pKa in the range of 5-10 and cationic-263 

neutral speciation, and 10% include at least one functional group with neutral-anionic 264 

speciation in the same pKa range. Hence, the degree of speciation of such ionizable 265 

micropollutants would vary across activated sludge systems with different operational pHs 266 

(Glude et al., 2014). 267 

Usually, the pollution and fate of PPCPs in water bodies are investigated through the analysis 268 

of water samples, which is generally limited to monitoring parent compounds (Wilkinson et 269 

al., 2017). The reported concentration of PPCPs in water bodies worldwide is shown in Table 270 

1, suggesting that the maximum PPCPs was reported for ibuprofen at 3738 ng/L in tap water 271 

in Nigeria. Moreover, ciprofloxacin was found at 10000 – 1100000 ng/L in Isakavagu-272 

Nakkavagu rivers (India). Also, naproxen at 37700 ng/L was reported in a groundwater wells 273 

sample in Penn State (USA). The maximum PPCPs concentration in wastewater samples was 274 

reported for acetaminophen in Penn State's wastewater treatment plant (USA). Therefore, a 275 

significant amount of PPCPs has been reported in water sources worldwide. 276 

 277 

Table 1: Reported PPCPs in water bodies around the world 278 

 279 

PPCPs in water samples can be analyzed with different methods (Table 2), for example gas 280 

chromatography-mass spectrometry (GC-MS), although the most widely used technique 281 

currently is ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) 282 

(Zhou et al., 2012; Mojiri et al., 2019b; Hoi et al., 2021). Cao et al. (2020) and Wang et al. 283 

(2020) employed UHPLC for monitoring the PPCPs in water. The UHPLC applies smaller 284 

particle size chromatographic columns (<2.0 μm) and reaches higher pressure than traditional 285 
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LC. The application of UHPLC leads to observing the peaks in a shorter run time and 286 

consequently consumes less mobile phases (Oliveira et al., 2015).  287 

 288 

Table 2: Techniques employed to analyze PPCPs in aqueous solutions 289 

 290 

3.1. Effects of PPCPs on aquatic environments and microorganisms 291 

Xu et al. (2019) expressed that although the PPCPs are found in water bodies at trace 292 

concentrations (ng/L to μg/L), evidences have suggested that PPCPs are potentially harmful to 293 

environments, organisms and human health, by inducing teratogenicity, mutagenicity, 294 

carcinogenicity, endocrine-disrupting effects as well as reproductive developmental toxicity 295 

(Ebele et al., 2017). Table 3 shows the accumulation of PPCPs in fishes around the world. 296 

Besides bioaccumulation, chronic exposure to PPCPs can occur, which makes them more toxic 297 

to the organisms concerned (Pereira et al., 2015). For instance, Larsson et al. (2000) stated that 298 

the presence of PPCPs in the aquatic environment possibly impairs reproduction and elicits 299 

sexual anomalies in Cyprinus carpio, Rutilus rutilus, and Oryzias latipes. Moreover, Pereira et 300 

al. (2015) expressed that exposure to hormones, such as estrogens, may cause fish feminization 301 

through sexual differentiation. Bolong et al. (2009) listed some problems about exposure of 302 

aquatic organisms to PPCPs as follows: 303 

(A) Reproductive and immune function interference in Baltic Sea fishes affecting population 304 

decline 305 

(B) Eggshell thinning and transformed gonadal development in birds  306 

(C) Changes in reproductive endocrine function in fishes  307 

(D) Masculinization of marine gastropods 308 

 309 

Table 3: Reported PPCPs in fishes 310 
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 311 

4. PPCPs removal via algae-based systems 312 

Using algae in treating wastewater is a clean, environmentally friendly and effective way 313 

because of the photosynthetic capability of algae to absorb CO2 and their adaptability to grow 314 

in different types of wastewater (Villar-Navarrow et al., 2018). Elrayies (2018) reported that 315 

each pound of algae biomass consumed 1.8 pounds of CO2. Furthermore, algae produce 60% 316 

to 75% of the oxygen required for humans and animals even though they represent only 0.5% 317 

of total plant biomass. Moreover, its operation is simple, and diminishes sludge management 318 

issues since it produces algae biomass, which may be employed as biofuel (Bhatt et al., 2014). 319 

Apart from that, algae-based methods for treatment of water and wastewater can consume 320 

lower energy in comparison with several wastewater treatment approaches. For instance, 321 

Yadav et al. (2021) reported that microalgae use 0.2 kW-h/m3, while conventional treatment 322 

methods could consume up to 2 kW-h/m3. Craggs et al. (2013) expressed 50% energy reduction 323 

during treatment of water by using microalgae compared with conventional treatment methods. 324 

Algae include both macroalgae and microalgae, and microalgae are usually better in growth 325 

rate and high lipid content than macroalgae (Elrayies, 2018). Main algae-based systems, 326 

including stirred-tank photobioreactors (STPs), high rate algal ponds (HRAPs), rotating algal 327 

biofilm reactors (RABRs), and membrane photobioreactor (MPBRs) have been reported to 328 

treat water and wastewater, and remove emerging contaminants (Zimmo et al., 2003, Craggs 329 

et al., 2014, Mohammed et al., 2014, Fica and Sims, 2016, Praveen et al., 2016). 330 

STPs have a simple design and are conventional reactors, and usually include a glass tank 331 

continuously stirred by impellers or baffles (Ismail et al., 2017). At the bottom of reactor, CO2-332 

enriched air is bubbled to supply a carbon source for algae growth (Mohan et al., 2014). STPs 333 

are suitable for shear sensitive microalgae cultivation (Verma et al., 2018). Main disadvantage 334 

of STPs is the low surface-area-to-volume ratio, which in turn decreases light-harvesting 335 



 15 

effectiveness (Mohan et al., 2014). Ismail et al. (2017) removed 95% of p-aminophenol (an 336 

intermediate for the manufacture of paracetamol and acetanilide) and COD by a stirred-tank 337 

photobioreactor using microalgal-bacterial consortium (Chlorella sp. was the main microalgal 338 

strain) with hydraulic retention time (HRT) of 4 days. Mojiri et al. (2021a) removed 35.4% of 339 

carbamazepine, 33.1% of sulfamethazine and 36.5% of tramadol with a STP containing 340 

Chaetoceros muelleri. 341 

In comparison with conventional wastewater stabilization ponds (WSPs), HRAPs offer an 342 

enhanced wastewater treatment by overcoming several drawbacks of WSPs (such as limited 343 

nutrient and pathogen removal, and poor and highly variable effluent quality) (Park and Craggs, 344 

2011). The resource recovery of algal biomass and water as effluent treated to a high standard 345 

are other advantages of HRAPs over WSPs (Sutherland et al., 2014). HRAPs are shallow (0.2–346 

0.5 m), continuous raceways around which wastewater is gradually mixed by a paddlewheel 347 

(Mehrabadi et al., 2015). The photosynthesis of algae in HRAPs causes dissolved oxygen 348 

supersaturation (up to 20 g/L), which enhances bacterial oxidation of biodegradable dissolved 349 

and particulate organic matter (Craggs et al., 2012). Hom-Diaz et al. (2017) employed the 350 

HRAPs for the removal of ciprofloxacin. The outdoor batch assays during daytime showed 351 

40.8% of ciprofloxacin removal at initial concentration (Ci) of ciprofloxacin 2.25 mg/L, during 352 

day time. However, the indoor light batch assays indicated 83.7% of ciprofloxacin removal at 353 

Ci of ciprofloxacin 1.11 mg/L. de Godos et al. (2012) removed up to 69% of tetracycline (Ci= 354 

2 mg/L) by HRAPs. Lindberg et al. (2021) investigated the HRAPs (including Nordic 355 

microalgal strains) for removal of 14 Active pharmaceutical ingredients (APIs). 69% of APIs 356 

were removed during 6 days. Matamoros et al. (2014) removed less than 30% of carbamazepine 357 

and 2,4-D, 40-60% of diclofenac and celestolide, 60-90% of ketoprofen, galaxolide and 358 

tonalide, and more than 90% of caffeine, acetaminophen and ibuprofen. 359 
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RABRs provide a very good condition for algal biomass production (Hoh et al., 2016). In the 360 

RABR, a vertically material for the attachment of algae rotates through the water or wastewater 361 

for absorbing nutrients, then rotates out of the water to accelerate CO2/O2 exchanges and light 362 

exposure (Zhao et al., 2018). RABRs have several advantages such as simple installation, 363 

improving growth of biomass, a good gas exchange mechanism, and high nutrient removal 364 

efficiency (Woolsey, 2011). The maximum biomass production rate in a pilot-scale RABRs 365 

reached 19 g m−2 d−1 (Wang et al., 2018). Hassard et al (2015) reported a removal efficiency of 366 

52%-95% for ciprofloxacin, tetracycline and trimethoprim during running a modified RBAR. 367 

Chen et al. (2021) removed 70-100% of five PPCPs (oxybenzone, ibuprofen, bisphenol A, 368 

triclosan, and N, N-diethyl-3-methylbenzamide-DEET), which the elimination of PPCPs was 369 

mostly attributed to the degradation by the algae. 370 

MPBRs with a high potential in removal of nutrients from wastewater, have been considered 371 

as a system that couples the culture of microalgae with a continuous biomass separation using 372 

a membrane filtration system (Novoa et al., 2020). MPBRs enable the system to operate with 373 

a short HRT without the washout of microalgae (Honda et al., 2017). Application of MPBR in 374 

large-scale is limited, which can be considered as the main drawback of MPBRs, because of 375 

membrane fouling and consequent permeate flux reduction (Novoa et al., 2020). Thus, the 376 

application of MPBRs for the removal of emerging contaminants has not been widely reported. 377 

84.3% of an emerging contaminant (atrazine) was removed by a microalgal-bactrial MPBR 378 

under a hydraulic retention time of 12 h and initial pollutant concentration of 0.01 mg/L 379 

(Derakhshan et al., 2019).  380 

In general, several studies (Matamoros and Rodríguez, 2016) expressed that algae-based 381 

treatment methods can increase the removal of emerging contaminants from aquatic 382 

environments. For instance, 28% of levofloxacin was eliminated by Chlorella vulgaris (Xiong 383 

et al., 2017), while 50–64% of clarithromycin was eliminated by Chlamydomonas sp. 384 
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(Escudero et al., 2020). The removal efficiencies of PPCPs with different algae and microalgae 385 

species are shown in Table 4. Liu et al. (2021) stated that four main pathways (Figure 1) to 386 

remove PPCPs from water samples are the biodegradation, biosorption, photodegradation and 387 

volatilization. Matamoros et al. (2015) expressed that although the ability of algae-based 388 

wastewater treatment systems to eliminate nutrients and heavy metals has been studied well, 389 

the removal of PPCPs with the algae still needs more studies. Research (Matamoros et al., 390 

2015; Gruchlik et al., 2018) stated that biodegradation and photodegradation are the main 391 

removal processes during the elimination of PPCPs by algae-based systems. In reality, most 392 

PPCPs can be eliminated by more than one pathway (R. Liu et al., 2021). 393 

 394 

Figure 1: Mechanisms of PPCPs removal by algae-based technique 395 

Table 4: Algae and microalgae to remove PPCPs 396 

 397 

4.1. Biodegradation 398 

Biodegradation is one of the main elimination mechanisms of PPCPs from aqueous solutions 399 

by algae-based systems (Hultberg and Bodi, 2018). Microbial biodegradation comprises varied 400 

and complementary mechanisms, from adsorption of contaminants onto biomass, to 401 

mineralization where final degradation products are inorganics (e.g., CO2 and H2O) and 402 

biomass (Garcia-Becerra and Ortiz, 2018). Papazi et al. (2017) stated that several factors (such 403 

as concentration of organic pollutants, temperature, pH, oxygen content, and light intensity) 404 

can affect the biodegradation. For instance, Papazi et al. (2017) stated that algal cells apply 405 

more energy for biodegradation at the highest concentrations of organic pollutants in 406 

comparison with the energy applied for lower concentrations. Furthermore, Hong et al. (2008) 407 

expressed that when two or more organic pollutants are present in influent, there will be 408 

competition for biodegradation by different compounds. Additionally, Al-Dahhan et al. (2018) 409 
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stated that both biodegradation rate and growth rate of microalgae can be enhanced with 410 

increasing light intensities and adding inorganic carbon sources (such as sodium bicarbonate 411 

and CO2). 412 

The main mechanisms of biodegradation can be categorized as metabolic degradation that 413 

PPCPs serve as the carbon sources or electron donors/acceptors for algae; and co-metabolism 414 

that additional organic substrates serve to both sustain biomass production, and act as an 415 

electron donor for the non-growth substrate (Xiong, 2021). Hena (2021) expressed that 416 

biodegradation depends on the cellular metabolism of microalgae that involves a series of 417 

complex enzymatic acts. Biodegradation quality rate of organic pollutants with algae can be 418 

calculated based on equation 5 (Zhang et al., 2010). In the equation, to exclude non-419 

biodegradation, a blank is set with only a culture medium without algae. 420 

𝐷𝑅 =  [
𝐼𝑞−(𝑀𝑞+𝐶𝑞+𝑁𝑞)

𝐼𝑞
× 100]                  (5) 421 

where DR (%) indicates the biodegradation quality rate, the initial concentration of pollutant 422 

is shown by Iq, the cellular residual amount of pollutant is shown by Cq, Mq defines the 423 

medium residual quantity of contaminant, and the non-biodegradation amount of contaminant 424 

is shown by Mq.  425 

Algae include enzymes that metabolize a range of xenobiotics in three phases (Wang Y et al., 426 

2017): 427 

Phase-I contains oxidation, reduction, or hydrolysis that converts lipophilic xenobiotics into 428 

more hydrophilic compounds to facilitate their excretion. Cytochrome P450s are microsomal 429 

heme-thiolate proteins anchored in the membrane, and usually catalyze the primary step of 430 

detoxification. 431 

Phase-II is characterized by the addition of hydrophilic moieties to accelerate excretion. 432 

Xenobiotics with −COOH, −OH or −NH2 and metabolites from phase-I might be conjugated 433 

with glutathione/glucuronic acid catalyzed by glutathione S-transferases/glucosyltransferases. 434 
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Phase-III comprises compartmentation of xenobiotics in vacuoles or cell walls. The capability 435 

of algae to detoxicate xenobiotics is similar to the mammalian liver and therefore algae are 436 

remarked as “green livers” for the detoxification of pollutants. 54% and 65% removal of 437 

malathion by S. platensis and A. oryzae were attributed to biodegradation (Mustafa et al., 2021). 438 

 439 

4.2. Biosorption, and bioaccumulation and biodegradation 440 

Biosorption, and bioaccumulation and biodegradation (Figure 2) are the interactions and 441 

concentration of organic contaminants in the biomass, either living (bioaccumulation) or non-442 

living (biosorption) (Chojnacka, 2010). This could be divided into three stages: 1) a 443 

physicochemical reaction between the cell surface and contaminants, 2) a fairly slow transfer 444 

of molecules over the cell membrane, and 3) bioaccumulation and biodegradation (Xiong et 445 

al., 2021). 446 

The biosorption of contaminants is a complex procedure containing integration of some active 447 

and passive mechanisms. These mechanisms vary based on the type of biomass, and culture 448 

conditions (Muñoz et al., 2006). Moreover, algae biosorption processes have generally been 449 

attributed to the structure of cell wall comprising functional groups (such as amino, carboxyl, 450 

hydroxyl and sulphate) that can have a role as binding sites for pollutants via electrostatic 451 

attraction, ion exchange and complexation (Tuzen et al., 2009). For instance, hydrogen bonds 452 

were reported as the key mechanism for the elimination of sulfamethoxazole and sulfacetamide 453 

by marine algae (Navarro et al., 2014). Aravindhan et al. (2009) expressed that hydrophobic 454 

and donor acceptor interactions have been remarked as important processes in biosorption of 455 

organic compounds.  456 

Silva et al. (2019) stated that the progress of the biosorption procedure contains four phases: 457 

(I) mass transfer of the sorbate from the bulk liquid to the hydrodynamic boundary layer  458 

around the biosorbent particles;  459 



 20 

(II) film diffusion through the boundary layer to the external surface of the biosorbent; (III) 460 

intraparticle diffusion toward the interior of the biosorbent particle; and (IV) energetic 461 

interaction between the sorbate molecules and the sorption sites. 462 

The biosorption process is usually modeled by the equilibrium distribution via equation 6 463 

(Aravindhan et al., 2009). 464 

𝑞𝑒 = (𝐶0 − 𝐶𝑒)
𝑉

𝑊
         (6) 465 

where initial and equilibrium concentrations of pollutants in water are defined by C0 and Ce, 466 

equilibrium concentration (mg/g) of pollutant in biosorbent is shown by qe, and volume of the 467 

solution (L) and the mass of algae use (g) are shown by V and M, respectively. 468 

Bioaccumulation is described as the intracellular accumulation of sorbate (Chojnacka, 2010). 469 

Although bioadsorption is the first step of bioaccumulation, not all contaminants adsorbed onto 470 

the surface of microalgae can reach into the cell (bioaccumulation) (Xiong et al., 2021). The 471 

bioaccumulation potential of a chemical in aquatic organisms plays an important role in the 472 

evaluation of environmental hazards. A high bioaccumulation potential of a chemical in biota 473 

indicates the possibility of toxic impact being encountered in aquatic organisms (Geyer et al., 474 

2001).  475 

Xiong et al. (2021) stated three main pathways for transporting PPCPs (such as antibiotics) 476 

through the algae cell membrane into the cell interiors: (I)  PPCPs with low molecular weights 477 

and high lipid solubility can diffuse through the cell membrane from a region of high (external) 478 

to low (internal) concentration through passive diffusion. (II) Passive-facilitated diffusion 479 

transfer PPCPs across the cell membrane with transporter proteins. (III) Energy-480 

dependent/active uptake, which is an active transport process using energy. 481 

Li et al. (2009) removed BPA with S. hantzschii, and reported that higher amounts of BPA 482 

could accumulate in cells while increasing the initial concentration of BPA. After eight days, 483 

the accumulation of BPA was 11.53, 35.30 and 45.44 ng BPA/mg fw (fresh weight) at initial 484 
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concentrations of 5.00, 7.00 and 9.00 mg/L BPA, respectively. Wang et al. (2019) stated that 485 

with increasing time, the intracellular absorption is greater than the extracellular adsorption 486 

during removal of nonylphenol by marine algae. 487 

 488 

Figure 2: Bioaccumulation and biosorption of PPCPs in algae 489 

(*ESP (extracellular polymeric substance); **Source: Xiong et al., 2021, the permission for 490 

re-using the figure received on 17 August 2021 from Elsevier) 491 

 492 

4.3. Photodegradation 493 

The photodegradation is a transformation process in which complex molecules are decomposed, 494 

and is categorized into indirect and direct photodegradation (Jiménez-Bambague et al., 2020). 495 

If the PPCPs can absorb light under the deployed irradiation condition, they would have a 496 

potential to undergo direct photolysis. However, if the PPCPs could not absorb the light, then 497 

indirect photodegradation possibly occurs in the presence of photosensitizers (Liu et al., 2021). 498 

Yang et al. (2018) stated that algae, with excretion biopolymers such as polysaccharides and 499 

proteins, can enhance the photodegradation of PPCPs. Additionally, Tian et al. (2018) 500 

expressed that chlorophyll can enhance the photodegradation of emerging contaminant (such 501 

as chlortetracycline). Wei et al. (2021) stated that chlorophyll in the intracellular organic 502 

matters may play a role as photosensitizers since substituted porphyrin ring is one of the 503 

important components of chlorophyll that has a vital role in absorbing energy from light 504 

sources. Norvil et al. (2016) expressed that these biopolymers can increase the 505 

photodegradation in several mechanisms, containing redox cycling, catabolic process, 506 

production of hydroxyl radicals, and inhibiting photo-oxidation by competitive reaction with 507 

radicals (Sutherland and Ralph, 2019). Overall, algae can facilitate photodegradation by 508 

enhancing the free radical yield (equations 7 and 8; Wang et al., 2017). Usually, 509 

photodegradation can be calculated by equation 9 (Matamoros et al., 2016).  510 

O2 + cell organelles o algae + hv           1O2/O2°
-              (7) 511 
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O2 + cell secretion of algae + hv           °OH                     (8) 512 

𝑃ℎ𝑜𝑡𝑜𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 =  
(𝐾1−𝐾2)

𝐾3
 ×  100                           (9) 513 

K1 defines the organic pollutants concentration in uncovered and aerated control reactor, K2 514 

shows the organic pollutants concentrations in covered and aerated control reactors, and K3 515 

indicates the concentration of organic pollutants in reactors fed with microalgae. 516 

40-60% of diclofenac was removed by Chlorella sorokiniana which was mostly attributed to 517 

the photodegradation process (Wilt et al., 2016). 518 

Propranolol, naproxen, ketoprofen, and gemfibrozil are reported to undergo photodegradation 519 

after reaching the aquatic environments. Moreover, paracetamol is remarked as biodegradable 520 

and photodegradable, whereas fenofibric acid is considered as a compound with rapid 521 

photodegradation potential (Jiménez-Bambague et al., 2020). The rapid direct 522 

photodegradation of ketoprofen (and other PPCPs with similar structure) might be justified by 523 

the point that carbonyl moiety is in conjugation with two aromatic rings. When the carbonyl is 524 

highly conjugated, the energy of the n-π* transition is reduced, causing a very reactive triplet 525 

state (Lin and Rienhard, 2009). 526 

In algae-based system, Liu et al. (2021) reported the abatement efficiencies of > 80% for 527 

photodegradation of norfloxacin, ciprofloxacin and enrofloxacin, and abatement efficiencies 528 

62–85% for cephalosporins photodegradation, and removal efficiency of > 90% for 529 

photodegradation of triclosan, metronidazole, chlortetracycline, paracetamol and anilines. The 530 

photodegradation products can be either less or more toxic than the parent compounds; for 531 

instance, photodegradation products from carbamazepine are more toxic (Patel et al., 2019). 532 

Apart from that, Jiménez-Bambague et al. (2020) stated that recalcitrant and highly hydrophilic 533 

PPCPs (such as carbamazepine) are very stable and resistant to biodegradation and 534 

photodegradation. 535 
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The physicochemical properties of the PPCPs, the intensity and wavelength of light, the 536 

physicochemical properties of the water and the algae species can affect the phytodegradation 537 

(Sutherland and Ralph, 2019). For instance, Norvill et al. (2016) expressed that the 538 

photodegradation of PPCPs by algae-based systems is increased in the presence of Fe3+ in water 539 

because of photosensitive organic molecules. Complex of carboxylic acids with iron further 540 

increases the hydroxyl radical production by photosensitive Fe3+. Apart from that, Bai and 541 

Acharya (2019) reported that the presence of nitrate in the waterway could enhance the indirect 542 

photolysis of triclosan and hormone active substances in an algae-based system. Moreover, the 543 

presence of oxygen can affect the photodegradation. For instance, the presence of oxygen 544 

increased the photodecarboxylation of naproxen (Boscá et al., 2001).  545 

 546 

5. Effects of PPCPs concentrations on algae 547 

Several studies showed that PPCPs can affect the algae health (Mojiri et al., 2021a). In terms 548 

of studying the effects of PPCPs on algae, important factors which should be considered are 549 

growth rate, chlorophyll and carotenoid, and protein content (Mojiri et al., 2021b). 550 

Xiong et al. (2020) expressed that low concentration (< 2 mg/L) of PPCPs does not have any 551 

significant effects on growth of tolerant species of algae (such as Scenedesmus obliquus and 552 

Chlamydomonas). However, Li et al. (2020) reported that roxithromycin (in concentration of 553 

0.25 to 2 mg/L) had a significant effect on Chlorella pyrenoidosa. Additionally, they found 554 

that the roxithromycin (in low concentrations <0.2 mg/L) did not have a significant effect on 555 

growth rate of Chlorella pyrenoidosa during a short time (less than 14 days) exposure to 556 

roxithromycin, but it significantly decreased its growth rate after more than 14 days. In general, 557 

several studies (Li et al., 2020, Mojiri et al., 2021a) reported that low concentrations of PPCPs 558 

can improve the growth rate of algae because they can be used by algae as a carbon source, 559 

and they increased the chlorophyll content at the beginning. High concentrations of PPCPs are 560 
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toxic to algae and can decrease their growth rate because they can damage cell structures and 561 

organelles by disturbing the homeostasis of reactive oxygen species (Xiong et al., 2019). Yang 562 

et al (2009) expressed that some antibiotic and antibacterial agents can inhibit the growth of 563 

algae even at environmentally relevant concentrations (μg/L). For instance, 17.5 µg/L of 564 

triclocarban decreased the growth rate of 50% of algae (Yang et al., 2009). Sulfamethazine and 565 

sulfamethoxazole reduced the growth rate of S. obliquus in concentrations of less than 0.05 566 

mg/L (Xiong et al., 2019). 567 

Concentration of chlorophyll is a rational assessment for the activity of algae in aquatic 568 

environments (Tretiach et al., 2007). Additionally, protein content of algae is a vital factor for 569 

algae, especially for using as feed (Chai et al., 2019). Several studies (Xin et al., 2017, Mojiri 570 

et al., 2021a and 2021b) confirmed that low concentrations of PPCPs in a short time can 571 

increase the concentration of chlorophyll and carotenoid, and protein because of two main 572 

reasons (Mojiri et al., 2021a): an increase in chlorophyll and protein content can support algae 573 

to decrease the accumulated reactive oxygen species in chloroplasts; low concentration of 574 

PPCP causes inductive impact of pharmaceutically active compounds on cells. Moreover, Chen 575 

et al. (2020b) expressed that increasing the content of protein during exposed to low 576 

concentrations of PPCPs can be justified by an increase in enzymes synthesis or other energy-577 

producing fractions. 578 

High concentrations of PPCPs can reduce the content of chlorophyll and protein. For instance, 579 

more than 50% of protein content and chlorophyll of microalgae was reduced by exposure to 580 

50 mg/L of antibiotics (Mojiri et al., 2021b). High concentrations of PPCPs may inhibit the 581 

protein synthesis by binding to the 50S subunit of the ribosome. Moreover, oxidative damage 582 

resulted by PPCPs exposure may cause DNA damage (Li et al., 2020). Reducing the 583 

chlorophyll content can be explained with the reactive oxygen species (ROS)-mediated damage 584 
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to the photosystem and chlorophyll biosynthesis. Chlorophyll in cells might be used as a 585 

protective way to reduce the ROS in chloroplasts (Mojiri et al., 2021b). 586 

 587 

6. Effects of other abiotic factors on algae 588 

Several abiotic factors such as HRT, temperature, and light intensity can affect the algae-based 589 

systems in terms of PPCPs removal (Miazek et al., 2015, Fang et al., 2015). HRT, as a key 590 

operating parameter in treatment of wastewater, is the time taken for which raw wastewater 591 

stays in a reactor before its discharge as effluent; thus, it determines the quantity of organic 592 

matter and volatile solids to be fed into the digester (Ogwueleka and Samson, 2020). Gao et al. 593 

(2016) stated that a long HRT is generally needed for nutrients uptake by algae. Valigire et al. 594 

(2012) reported that HRAPs are mostly operated at 2-8 days of HRTs, while longer HRTs have 595 

inhibited microalgal growth due to excess DO (Valigore et al., 2012). Kang and Kim (2021) 596 

stated that a short HRT combined with a long solids retention time (SRT), have provided a 597 

greatest productivity and settleability of algal–bacterial consortia. 598 

Other important factors are the light intensity and temperature. The influence of light 599 

availability may affect the growth of microalgae as well as production of oxygen through the 600 

photosynthesis of the microalgae (Bazdar et al., 2018). Normally, an increase in light intensity 601 

promotes algal growth up to a photoinhibitory threshold; however, both the strength of this 602 

impact and the threshold differ among species (Nzayisenga et al., 2020). At full-scale outdoor 603 

conditions, current algae-based treatment systems suffer from low natural lighting for effective 604 

nutrient conversion due to the shortage of light during the rainy days. In addition, excessive 605 

light at noontime inhibits photosynthesis of algae (Yan et al., 2013). Xu et al. (2021) expressed 606 

that very low and high temperatures can considerably decrease the algal growth rate, and 607 

negatively affect wastewater treatment using algae. In high temperature serious inhibition 608 

occurs because of inactivation and denaturation of enzymes (Zhang et al., 2021). 609 
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 610 

7. Genes involved in microalgae system during exposure to PPCPs 611 

Algae, bacteria, and fungi have catabolic genes for degrading several pollutants in water and 612 

soil (Subashchandrabose et al., 2013). Several studies (Zuo, 2019, Das and Roychoudhury, 613 

2014) reported that reactive oxygen species (ROS) increase with increasing exposure to organic 614 

contaminants. Many genes are involved in defense mechanisms of oxidative stress, including 615 

glutaredoxin (GRX), ascorbate peroxidase (APX), and glutathione-S-transferase (GST) 616 

(Jamers and Coen, 2010). 617 

In photosynthetic eukaryotes (such as algae), the range of glutaredoxin proteins is larger than 618 

other organisms, which may have vital roles regulating processes related to photosynthesis 619 

(Couturier et al., 2009). Chloroplast APXs are very sensitive to H2O2 at low ascorbate levels. 620 

During the stress, the thylakoid membrane-bound ascorbate peroxidase decreases H2O2 back 621 

into water with ascorbate as an electron donor (Maruta et al., 2016). A potential mechanism 622 

decreasing the toxic impacts involves GST, which catalyzes the conjugation of microcystin-623 

leucine arginine (MC-LR) with glutathione; this procedure is generally remarked as the first 624 

step in the detoxification in various aquatic organisms (Lyu et al., 2016). 625 

 Chen et al. (2015) stated that inhibition of chlorophyll by PPCPs (such as antibiotics) was 626 

detected as an interruption of gene expression, which finally affected protein synthesis. The 627 

rbcL (RuBisCO large subunit) and psbA (PSII D1 protein) are photosynthetic genes. 628 

Expression of both genes decreases during the exposure of cyanobacteria to organic pollutants 629 

(Fernández-Pinos et al., 2017). Additionally, Wu et al. (2014) expressed that the transcript 630 

abundance of psaB gene increased with exposure to organic pollutants over a short time (6-12 631 

h), then reduced with longer exposure. Furthermore, they expressed that organic pollutants 632 

could decrease the transcript abundance of psbc by up to 30%. 633 

 634 
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8. Conclusions 635 

The occurrence of PPCPs has been widely reported in aquatic environments globally. Thus, 636 

the monitoring of PPCPs and their elimination using green techniques are of great importance. 637 

Algae-based treatment methods are fully reviewed in the removal of PPCPs, with key findings 638 

as follows: 639 

 The most common pharmaceuticals are ibuprofen with the highest concentrations of 3738 640 

ng/L in tap water in Nigeria, and caffeine at 3068 ng/L in Aegean Sea and Dardanelle in 641 

Turkey and Greece. 642 

 The PPCPs can be found in aquatic organisms such as fish, with 24.4×103 ng/g of atenolol 643 

detected in P. lineatus. 644 

 Algae-based systems could remove PPCPs from up to 99%. 645 

 In comparison with STPBs, RABRs and HRAPs, algal bioreactors have demonstrated 646 

better performance in PPCPs removal. 647 

 Short term exposure to low concentration of PPCPs can increase chlorophyll and protein 648 

contents in algae, which are however reduced by increasing PPCPs concentrations and 649 

exposure time. 650 
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