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ABSTRACT 

Perfluorooctanoic acid (PFOA) is used in a variety of industries and highly persistent in the 

environment, with potential human health risks. Photocatalysis has been extensively used for 

the decomposition of various organic pollutants, yet its simulation and modelling are 

challenging. This research aimed to establish different machine learning (ML) algorithms 

which can simulate and predict the photocatalytic degradation of PFOA. The published results 

were used to estimate and predict the photocatalytic degradation of PFOA. Statistical criteria 

including the coefficient of determination (R2), mean absolute error (MAE), and mean squared 

error (MSE) were considered in assessing the best method of modeling. Among seven ML 

algorithms pre-screened, Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM) 

and Random Forest (RF) showed the best performance and were chosen for deep modelling 

and analysis. Grid search was used to optimize the models developed by AdaBoost, GBM, and 

RF; and permutation variable importance (PVI) was used to analyze the relative importance of 

different variables. Based on the modeling results, GBM model (R2 = 0.878, MSE = 106.660, 

MAE = 6.009) and RF model (R2 = 0.867, MSE = 107.500, MAE = 6.796) showed superior 

performances compared with AdaBoost model (R2 = 0.574, MSE = 388.369, MAE = 16.480). 

Furthermore, the PVI results suggested that the GBM model provided the best outcome, with 

the light irradiation time, type of catalyst, dosage of catalyst, solution pH, irradiation intensity, 

initial PFOA concentration, oxidizing agents (peroxymonosulfate, ammonium persulfate, and 

sodium persulfate), irradiation wavelength, and solution temperature as the most important 

process variables in decreasing order. 
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Graphic abstract 

 

 

 

Highlights 

• Machine learning models were developed to predict PFOA photocatalytic degradation. 

• The GBM and RF models were more robust than AdaBoost model. 

• The best modeling performance was achieved by GBM based on PVI analysis. 

• PVI analysis showed high importance of irradiation time, catalyst type, catalyst dosage 

and pH in declining order. 
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1. Introduction 

Per- and polyfluoroalkyl substances (PFAS) possess important properties as repellents (of oil, 

dirt, and water), surfactants, and frictions reducers. Thus, they are widely used in a variety of 

consumer products such as carpets and household products to improve stain-proof and water-

proof properties. They are also employed for several other purposes including membranes, 

lubricants (for machinery), firefighting foams, and adjuvants in pesticides.[1,2] Due to their 

toxicity and persistence in the environment, bioaccumulation, and probable health impacts, 

PFAS have recently received increased worldwide attention.[3] It has been reported that human 

exposure to even trace level of PFAS can lead to their bioaccumulation in the blood, with 

correlations between exposure to PFAS and immunotoxicity.[4] Notably, perfluorooctanoic 

acid (PFOA, C7F15COOH) and perfluorooctane sulfonic acid (PFOS, C8F17SO3H) are the most 

frequently reported PFAS in the environment.[3]  

Several processes have been used for PFAS removal such as nanofiltration membranes,[5] 

ion exchange resins,[6] hybrid membrane filtration,[7] biodegradation,[8] and adsorption.[9] In 

adsorption, PFAS are only transferred from one phase to another whereas redox techniques 

could be used for decomposition of PFAS.[10] Photocatalytic degradation is widely used for 

PFOA treatment, resulting in the formation of various intermediates including PFHpA, 

PFHxA, PFPeA, PFBA, PFPrA and TFA [11,12] which are less toxic than PFOA.[13] 

A variety of metal oxides have been used for the photocatalytic decomposition of PFOA. 

TiO2, as the most frequently used photocatalyst, has shown insignificant efficiency for the 

degradation of PFOA. In comparison, In2O3 and β-Ga2O3 have shown good performances[14] 

which are mainly related to their wide band gap energies (4.8 eV and 3.6 eV, respectively)[14,15] 

and appropriate surface properties. Such different performance is mainly due to much lower 

position of the conduction band of TiO2 (-4.21 eV) than that of β-Ga2O3 (-2.95 eV), relative to 

the vacuum energy level. Therefore, the reductive potential of the photoinduced electrons of β-
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Ga2O3 is remarkably higher than that of TiO2.
[16] ZnO is a substantial alternative to TiO2 which 

has been widely used for photocatalytic degradation of various organic pollutants.[17-20] In 

addition to its sufficient electron mobility, abundance and chemical inertness, ZnO absorbs a 

larger fraction of light (compared to TiO2).
[19] Besides, ZnO has shown higher efficiencies than 

TiO2 in some cases.[21,22] CeO2 is another metal oxide which has found applications in 

photodegradation of PFOA.[23] Other than metal oxides, some other materials including BiOCl 

(bismuth oxychloride), BN (boron nitride), NiAl-LDHs (layered double hydroxides), 

Bi3O(OH)(PO4)2 (bismuth oxyhydroxyphosphate or BOHP), and BiFeO3 (bismuth ferrite or 

BFO) have also been used recently for the photocatalytic decomposition of PFOA. It is worth 

mentioning that unlike hydroxyl radicals (•OH) which have been inert to PFOA in some 

reports,[24] persulfates (S2O8
2-) and sulfate radicals (•SO4

-) are highly efficient in the 

photodecomposition of PFOA. Notably, sulfate radials and persulfates could be produced from 

oxidizing agents including ammonium persulfate (APS), sodium persulfate (NaPS), and 

peroxymonosulfate (PMS).[25-27] 

In spite of unique features of photocatalysis, evaluating the feasibility and efficiency of 

semiconductors in photocatalytic applications is often a challenging task, by conducting 

lengthy and carefully designed experiments under controlled conditions. Often, many hours or 

days are needed to determine the degradation efficiency of organic pollutants. In addition, some 

semiconductors are very expensive. For instance, although In2O3 and β-Ga2O3 have been 

widely researched for the degradation of PFOA, they are not cost effective. Furthermore, many 

variables are involved in photocatalysis such as light wavelength and intensity, solution pH, 

pollutant concentration, and catalyst amount, which all need to be carefully assessed. Overall, 

the rapid estimation of degradation efficiency of organic pollutants in photocatalytic reactions 

is a major challenge. As a result, modeling, simulation and prediction of photocatalytic 
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efficiency for organic pollutant degradation are a highly valuable and complimentary tool to 

experimental research.  

The prediction of the photocatalytic degradation of PFOA has not been studied yet. 

Moreover, it is highly valuable to use modelling to support the photocatalytic experiments by 

evaluating the relative importance of process variables which saves experimental time, costs, 

and energy consumption by optimizing and reducing the number of experiments. Mathematical 

modelling has been widely used for photocatalytic applications in both air and water.[28-31] 

Acceptable performances could be achieved by mathematical models. For example, Zekri et 

al. (2013) used mathematical modeling for estimating the degradation performance of a 

photocatalytic reactor, with advantages of no need to introduce adjustment variables and a 

minimum number of experimental data.[29] On the downside, applying these models could be 

accompanied by limitation of the number of effective factors[32] whereas there are several 

effective process variables in photocatalysis, as discussed previously. In addition, increased 

consumption of computational resources is needed to apply these models for complex systems 

with numerous variables.[33,34] More importantly, Afzal et al. (2021) suggested that the 

predictions of mathematical models could be acceptable on the condition of well understanding 

the impacts of underlying assumptions.[35] Due to their potential performances and lack of need 

to consider the scientific background of processes and mechanisms to predict the correlations, 

machine learning (ML) processes are being widely used for modeling the correlations among 

various independent and dependent parameters in different applications.[36] They have been 

highly promising to optimize the quality control in complex manufacturing environments in 

which the causes of problems are hardly detected. The identification of implicit relationships 

in a dataset is a main advantage of ML procedures. The ability of handling high dimensional 

problems and data is another advantage of ML procedures.[37] Notably, ML approaches are 

superior to mathematical models in modeling the complicated correlations among numerous 
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process variables. There are several types of ML processes though with different performances 

in variety of applications.[36] It means that each method of ML has unique advantages and 

disadvantages[37] depending highly on its application. As mentioned, PFOA is one of the most 

frequently observed PFAS in the environment.[3] Despite its vital importance, the application 

of ML processes in predicting the photocatalytic degradation of PFOA as an emerging 

persistent organic pollutant has not been up to now. To bridge this knowledge gap, a systematic 

investigation was carried out to develop the most promising ML algorithms for such a purpose 

followed by analyzing the relative importance of numerous process variables for the first time, 

to the best of our knowledge. In this research, different ML algorithms including Multiple 

Linear Regression (MLR), Random Forest (RF), Ridge Regression (RR), Multilayer 

Perceptron (MLP), Gradient Boosting Machine (GBM), Adaptive Boosting (AdaBoost), and 

Support Vector Machine (SVM) were used to nominate a potential method to estimate the 

photocatalytic decomposition of PFOA over various photocatalysts. The performance of ML 

algorithms is highly dependent on the hyperparameters. Thus, tuning all hyperparameters is 

essential to develop an optimized model.[38] The efficiency of PFOA photocatalysis is 

dependent on various parameters. Among those, nine key variables including solution pH, 

solution temperature, catalyst dosage, light irradiation intensity, irradiation wavelength, 

irradiation duration, initial PFOA concentration, type of catalyst, and oxidizing agents (PMS, 

APS, and NaPS) were used to model the process carefully. Eventually, the performance of the 

developed models was assessed based on both the outcomes and the relative importance of 

process variables. 

 

2. Materials and methods 

2.1. Data collection and processing 
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The published results were used to estimate and predict the percentage of PFOA photocatalytic 

degradation. A detailed literature review was conducted by considering several factors, e.g. 

reporting solution pH and light irradiation intensity (in term of wattage), and using a 

single/distinct irradiation wavelength in the UV region (200-400 nm). Notably, a single/distinct 

irradiation wavelength is not generally used in the visible region (400-800 nm). Furthermore, 

compared to UV light illumination, visible light irradiation has much lower effect on the 

photocatalytic degradation of PFOA. For instance, using Ga2O3 assisted by PMS, the 

photodegradation of PFOA under UV light (254 nm) and visible light (400-800 nm) was 100% 

and <10%, respectively, although the irradiation intensity of visible light was higher than that 

of UV light.[26] In another research, using TiO2 assisted by PMS, PFOA was thoroughly 

degraded after 2 h and 9 h under UV and visible irradiation, respectively, whereas the 

irradiation intensity of visible light was approximately 224 times higher than that of UV 

light.[27] Therefore, in order to consider the effect of irradiation wavelength in the visible region 

(in addition to UV region), the mean wavelength value (i.e. 600 nm) was used in the dataset.  

Due to their potential performances, PMS, APS, and NaPS were selected to evaluate the 

effects of oxidizing agents. Overall, a comprehensive dataset containing 1343 datapoints was 

compiled by considering 18 different categories of catalysts including ZnO, ZnO-rGO, Ga2O3, 

TiO2, TiO2-MWCNT, modified TiO2 by loading metals, metals-doped TiO2, TiO2-Sb2O3, 

BiFeO3-rGO, In2O3, BiOCl, CeO2, NiAl-LDHs, CeO2@NiAl-LDHs, BN, BiPO4, BOHP, and 

BOHP-CS[11,12,23,25-27,39-52] where the effects of several key process variables on the 

photocatalytic decomposition of PFOA have been reported. Plot Digitizer was used to extract 

the datapoints from those publications. The following equation was used to normalize all of 

the input data in the range of 0 to 1 for data processing:[53] 

𝑥𝑖 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =
x𝑖−minimum value of data

maximum value of data−minimum value of data
     (1) 
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where xi is a data point. It is notable that data normalization was performed to reduce 

computational complexity and to prevent over training for the input data (not for output data). 

 

2.2. Selection of ML procedures and modelling generality 

As the performances of various models vary in different applications, appropriate selection of 

the procedures for modeling is critical. Besides, Occam’s Razor principle states that “a model 

should be as simple as possible, and as complex as needed”. Accordingly, RR, LR, MLP, 

AdaBoost, RF, SVR, and GBM algorithms using default hyper-parameters were pre-screened 

from Scikit-learn library. To assess the performances of the mentioned methods, R2 (Eq. 2) and 

mean squared error (MSE) (Eq. 3) were applied.[36,54] The datasets were divided into train 

(80%) and test (20%) datasets. Five-fold cross validation was applied to assess the validity of 

the models developed to prevent overfitting and devastating the data. The test dataset was 

employed to check the prediction strength of the models by unseen data points. A grid search 

was carried out to tune the hyperparameters for each of the models. The outcomes of the grid 

search were employed in all phases of modeling.  

𝑅2 = 1 −
∑ (𝑦𝑝𝑟𝑑,𝑖−𝑦𝐴𝑐𝑡,𝑖)𝑁

𝑖=1

∑ (𝑦𝑝𝑟𝑑,𝑖−𝑦𝑚)𝑁
𝑖=1

                                                (2) 

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑝𝑟𝑑,𝑖 − 𝑦𝐴𝑐𝑡,𝑖)

2𝑁
𝑖=1                                       (3) 

where N is the total number of datapoints, ym is the average value of actual PFOA 

photocatalytic degradation (%), yAct,i is the actual value of PFOA photocatalytic degradation 

(%), and yprd,i is the predicted value of PFOA photocatalytic degradation (%). 

 

2.3. Gradient boosting machine 

GBM is among powerful ML methods developed by Friedman that enables data modeling and 

analysis for either classification problems or regression.[55,56] GBM is an ensemble learning 

algorithm where a series of individual models (generally decision trees) are employed to create 
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the final model. Like neural networks that employ gradient descent for weight optimization, 

the loss function is minimized by the gradient in GBM.[57] The learning process fits new models 

to yield a more accurate prediction of the response in GBMs. Maximizing the correlation 

between the new constructed base-learners and the negative gradient of the loss function 

(correlated with the total ensemble) is the main principle of this algorithm. Although 

nomination of the loss function is optional, considering the classic squared-error loss as the 

error function eventuates in consecutive error-fitting in the learning process. So far, numerous 

loss functions have been derived, and such a high flexibility could result in the promising 

customization of GBMs to different specific data-driven tasks. It allows plenty of flexibility in 

the model design, resulting in a trial-and-error process when it comes to selecting the most 

suitable loss function. GBMs have been successfully used in practical applications to address 

a variety of ML challenges.[58] Available elements in GBMs include additive model, strong and 

weak (base) learners, and loss function. Notably, the weak learners which are the initial 

decision trees are more powerful than the random estimate in prediction. The strong learners 

with their remarkable power in prediction are composed of various weak learners. Boosting the 

weak learners to the strong learners is required for analyzing and modeling the processes in 

GBMs. For such a purpose, training decision trees are used in serial, gradual and additive 

approaches. While maintaining the current base learners, new weak learners could be added to 

the model to reduce either loss function or total error of model.[59,60] The best situation of the 

hyperparameters (in grids) was determined by a grid search for estimation of the photocatalytic 

degradation efficiency of PFOA in GBM.[61] Notably, there were five key hyperparameters in 

this analysis: the minimum number of samples in each leaf (min_samples_leaf), the number of 

gradients boosted trees (n_estimator), the maximum depth of GBM trees (max_depth), the 

minimum number of samples for splitting an internal node (min_samples_split), and the 

maximum number of features for the best split (max_features). All parameters were adapted in 
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the ranges as (2, 3, 4, 5, 6, and 7), (100-1000), (1, 2, 3, 4, and 5), (2, 3, 4, 5, 6, and 7), and (2, 

3, 4, 5, 6, and 7), respectively. In addition, the generality of the GBM model was assessed 

within a grid search as discussed in section 2.2. 

 

2.4. Random forest 

RF is among powerful ML methods that enables modelling both regression and classification 

cases. With RF algorithm, a variety of decision trees are generated, as regression functions, 

where the average of decision trees represents the final proportion of the response variable.[62] 

RF is a combination of tree predictors, whereby each tree is dependent on values of a random 

vector distributed equally and independently across all trees in the forest. Increasing the 

number of trees in the forest causes the generalization error to converge to a limit. An individual 

tree classifier's generalization error relies on the strength of individual trees in the forest as well 

as the correlation between them. Each node is split by using a random selection of features 

which generates error rates that are favorably comparable to those obtained from AdaBoost. 

However, they are more robust in terms of noise. The response to the increased number of 

features, in splitting, is evaluated by strength, error, and correlation monitored by internal 

estimates.[63] Parallel ensembling is used in an RF classifier to fit numerous decision tree 

classifiers, in parallel, on various dataset samples. Overwhelming voting or average is used to 

yield the final result, therefore reducing over-fitting and improving the accuracy of prediction. 

Thus, single decision tree-based models are less accurate than multiple decision tree-based 

models. A combination of bootstrap aggregation and random feature selection is used to 

develop a series of decision trees, and applicable to both regression or classification 

problems.[57] The generality of the RF model was assessed within a grid search as discussed in 

section 2.2. The maximum number of features for the best split (max_features), the minimum 

number of samples in each leaf (min_samples_leaf), the number of gradients boosted trees 
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(n_estimator), and the minimum number of samples for splitting an internal node 

(min_samples_split), i.e. the hyperparameters, were adapted in the ranges as (2, 3, 4, 5, 6, 7 

and 8), (1, 2, 3, 4, 5, 6, 7 and 8), (100-1000), and (0.5, 1 2, 3, 4, 5 and 6), respectively. 

 

2.5. AdaBoost 

The AdaBoost approach can be used for both regression and classification cases.[64] AdaBoost 

is an ensemble learning process where an iterative process is used to improve poor classifiers 

by learning form the relevant errors. Sequential ensembling is employed in AdaBoost, whereas 

parallel ensembling is employed in RF. To achieve a powerful classifier with high accuracy, a 

lot of poor performing classifiers are combined. Although the remarkably improved efficiency 

of the classifier introduces AdaBoost as an adaptive classifier, it could yield overfits. Overall, 

AdaBoost is sensitive to either outliers or noisy data, but it is highly promising for binary 

classification problems in which the performance of decision trees should be boosted.[57] In this 

research, the development of the AdaBoost model has been generalized based on the condition 

discussed in section 2.2. Optimization and tuning the hyperparameters were conducted by a 

grid search to identify the best loss function. There were two key hyperparameters in this 

analysis: learning rate (0.1, 0.5, 1, 2, 3, 4 and 5) and various gradients boosted trees 

(n_estimator) in the range of 20-500. It is notable that goodness of fitness was assessed by the 

learning curve for all GBM, RF, and AdaBoost models.  

 

2.6. Evaluation of variable importance  

Permutation variable importance (PVI) approach is a method for inspection of fitted models 

from tabular data.[63] In general, PVI takes advantage of its generality, ease and rate of 

calculation, and analyzing either interactive or individual effects of variables.[65-67] In such an 

approach, random alteration of the input is used for consideration of the model errors in 
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prediction of the output. Thus, a feature is more important when there are more errors.[68] With 

regard to the errors, the feature importance was measured by MSE. It is notable that input 

variables importance in photocatalytic degradation of PFOA over different photocatalysts was 

evaluated by PVI approach for all models (GBM, RF, and AdaBoost). 

 

2.7. Comparison of model performance and strength  

The strengths and performances of different ML-based models in simulating PFOA 

photodegradation over different photocatalysts were compared by considering key statistical 

indices such as MSE, MAE, and R2 which were calculated using the test datasets. MAE was 

calculated based on equation (4):[36] 

𝑀𝐴𝐸 = 1 −
∑ |𝑦𝑖−𝑧𝑖|𝑛

𝑖=1

𝑛
                       (4) 

where n, yi, and zi are the overall number of data points, predicted and actual values, 

consecutively.  

 

3. Results and discussion 

3.1. Selection of ML algorithms 

The performances of seven ML algorithms used for the estimation of PFOA photocatalytic 

degradation were evaluated (Table 1). According to the statistical indices and in order to 

compare performance and PVI of different algorithms, the first three models with the highest 

prediction strengths, i.e. GBM, RF and AdaBoost, were nominated to deeply model and 

analyze the photocatalytic degradation of PFOA over various photocatalysts. The high 

efficiencies of these three algorithms have been reported in other applications such as the 

prediction of H2 production by fermentation process.[36] 
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Table 1. Performance comparison of seven ML algorithms for photocatalytic decomposition 

of PFOA by different photocatalysts. 

 GBM RR AdaBoost RF LR SVR MLP 

Train MSE 171.14 608.13 444.61 54.86 618.57 627.97 484.82 

Test MSE 189.18 693.48 496.30 178.14 644.62 618.97 552.07 

Total-Train R2 0. 80 0.26 0.458 0.93 0.278 0.267 0.409 

Total-Test R2 0.78 0.28 0.485 0.81 0.211 0.242 0.428 

 

3.2. AdaBoost 

A grid search, with each loss function, was used to tune the various hyperparameters conditions 

in order to nominate the most suitable loss function. The values of tuned hyperparameters along 

with the relevant values of R2 and MSE for various phases of modeling, i.e. exponential, square, 

and linear, are shown in Table 2. As evident, square phase resulted in the best loss function. 

The corresponding learning rate and n_estimator were 2 and 40, respectively. The values of 

MSE for both validation and training phases, i.e. 401.877 and 343.997, and R2 for both 

validation and training phases, i.e. 0.515 and 0.587, were calculated accordingly. The model 

performance in PFOA photocatalytic degradation over several photocatalysts was evaluated by 

providing a test dataset including one fifth of the hidden data points. As evident in Table 2 and 

Fig. 1, a medium strength of prediction (57%) with an MSE of 388.369 was provided by this 

model in the test phase. Figure 1(b) illustrates learning conditions of training and validation for 

the developed AdaBoost model in various epochs.  
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Table 2. Outcomes of AdaBoost model by using several loss functions with adapted hyperparameters. 

 Grid search R2 

Test 

R2 

Total-Train 

R2 

Validation 

R2 

Train 

MSE 

Test 

MSE 

Total-Train 

MSE 

Validation 

MSE 

Train learning rate n-estimator 

Square 2 40 0.574 0.607 0.515 0.587 388.369 327.102 401.877 343.997 

Exponential 5 20 0.444 0.477 0.430 0.496 465.523 

 

445.783 429.341 

 

484.286 

Linear 2 160 0.430 0.465 0.445 0.474 485.895 453.803 466.045 444.846 
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Figure 1. (a) Coefficient of correlation (in test phase), (b) learning curve, and (c) strength of 

prediction (in test phase) of the model developed by AdaBoost. 

 

There is a significant difference between the prediction strength of this model for estimating 

photocatalytic degradation of tetracycline antibiotics[33] and that of PFOA (this research). 

Firstly, another pollutant was considered in the other modeling, so the targets are different. 

Secondly, another type of catalysts (MOFs) was considered in their research. Under these 

circumstances, similar outcomes might not be expected since they are both of crucial 

importance. More importantly, different model performances have been reported in different 

applications although a similar modeling approach was used.[53,69] 

 

3.3. Gradient boosting machine 

Tunning all hyperparameters was performed in a grid search to evolve a GBM model.  The best 

situations of the hyperparameters were obtained consisting of 3 (min_samples_leaf), 100 
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(n_estimator), 5 (max_depth), 6 (min_samples_split), and 6 (max_features). Both cross-

validation and training phases were conducted under the mentioned conditions. The 

corresponding MSE values were 114.061 and 42.750; and R2 values were 0.864 and 0.950 for 

these phases, respectively. In addition, MSE values of 146.90 and 51.485, and R2 values of 

0.840 and 0.937 were derived for the test and total training phases, respectively, signifying the 

remarkable potential of this model with a prediction strength of 84% in the photocatalytic 

degradation of PFOA over various photocatalysts (total training includes both cross-validation 

and train phases). The promising strength of prediction obtained by using this model in the test 

phase can be evidenced in Fig. 2. 

 

 

Figure 2. (a) Coefficient of correlation (in test phase), (b) learning curve, and (c) strength of 

prediction (in test phase) of the model developed by GBM. 
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Overfitting potential and goodness of fitting are among major criteria used for evaluation 

of the model performance. Figure 2(b) depicts the learning curve for cross-validation and 

training conditions of the GBM model developed. As evident, the MSEs obtained were 

sufficiently low and became stable at epochs higher than 600. Moreover, their insignificant 

difference at high epochs represents lack of overfitting and good strength of prediction in the 

GBM model.  

 

3.4. Random forest 

A grid search was employed to adapt the hyperparameters in development of the RF model. 

The optimized conditions of the hyperparameters including the minimum number of samples 

in each split (min_samples_split), the maximum number of features for the best split 

(max_features), the minimum number of samples in each leaf (min_samples_leaf), and the 

number of boosted trees (n_estimators) were 2, 2, 1 and 300, consecutively. The corresponding 

MSE values were 169.457 and 57.950; and R2 values were 0.802 and 0.932 for validation and 

training phases, respectively. Consequently, the MSE values were 107.500 and 58.426; and R2 

values were 0.867 and 0.932 for test and total train phases, respectively, representing a 

remarkable strength of prediction equals to 86.7% in estimation of photocatalytic degradation 

of PFOA over different photocatalysts. 

Considering the test phase, the fitting situations of the test dataset are illustrated in Fig. 3 

where the promising strength of prediction obtained by RF model can be evidenced. Figure 3(b) 

depicts the MSEs of both cross-validation and training phases versus epoch for the model 

developed by RF. It is noteworthy that similar to the model developed by GBM, a decreasing 

trend is observed by increasing epochs in both phases. Furthermore, any significant overfitting 

is not evidenced by the model obtained by RF. Although both phases follow similar patterns, 

their difference became smaller at sufficiently high epochs (≥600) where the MSEs became 

stable. These findings clearly signify an acceptable outcome for the developed model by RF. 
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Figure 3. (a) Coefficient of correlation (in test phase), (b) learning curve, and (c) strength of 

prediction (in test phase) of the model developed by RF. 

 

3.5. Evaluation of variable importance 

PVI approach was employed to evaluate the relative importance of all variables in the three 

models developed by AdaBoost, GBM and RF. As presented in Fig. 4, the relative importance 

values of variables are highly dependent on the methods of modeling. In addition, variables are 

of significantly different importance in each model.  
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Figure 4. Relative importance of variables evaluated by PVI approach for the models developed 

by (a) AdaBoost, (b) GBM, and (c) RF. 
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3.5.1. Light irradiation time 

Among all variables, the light irradiation time showed the most significant effect on the 

photocatalytic degradation of PFOA in the AdaBoost, GBM, and RF models. The results are 

consistent with the experimental findings. For instance, in studying the photocatalytic 

degradation of PFOA using TiO2-MWCNT (mass ratio 2:1) composite catalyst (1.6 g/L), initial 

pH of 5, and initial PFOA concentration of 30 mg/L[51], Song et al. (2012) reported 

approximately 34%, 55%, 67%, 74%, 75%, 80%, 83% and 85% degradation after 1 h, 2 h, 3 h, 

4 h, 5 h, 6 h, 7 h and 8 h, respectively. It is obvious that increasing irradiation time enhances 

the degradation efficiency of PFOA though at varying degrees. Notably, a remarkable 

degradation efficiency of 34% was observed after just 1 h. When it comes to the last interval, 

increasing irradiation time from 7 h to 8 h has slightly improved the degradation efficiency 

from 83% to 85%. Such a remarkable increase of degradation efficiency between the first and 

last intervals signifies the crucial importance of irradiation time on PFOA photocatalytic 

degradation. In addition, increasing irradiation time from 1 h to 8 h drastically enhanced the 

efficiency of PFOA decomposition from 34% to 85%. The photocatalytic process undergoes 

some sequential steps in the liquid phase as follows:[70]  

i. transfer of pollutants to the surface of semiconductor material,  

ii. pollutants adsorption on the surface of photo-activated semiconducting material,  

iii. photogeneration of ROSs such as hydroxyl radicals, followed by the photodegradation 

of organic pollutants,  

iv. products/intermediates desorption from the surface of semiconductor material, and 

v. transfer of the final products/intermediates into the liquid phase.  

It is notable that the rates of these steps change significantly at different irradiation times 

which highly affects the degradation efficiency of organic pollutants. Overall, among all the 

variables, irradiation time can play the most important role in the photocatalytic degradation of 

PFOA which is consistent with the results obtained by the AdaBoost, GBM, and RF models.  
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3.5.2. Type of catalyst 

The type of catalyst is another major variable that highly affects PFOA photocatalysis, which 

could be even more important than that of irradiation time. Although there are various kinds of 

semiconductors, only a few of which could be highly efficient for PFOA photocatalytic 

degradation. In other words, the effect of irradiation time on PFOA degradation efficiency is 

high on the condition of using an appropriate photocatalyst. Otherwise, a negligible effect is 

expected. For instance, Li et al. (2012) have assessed the photocatalytic degradation of PFOA 

over both TiO2 and In2O3 under similar experimental conditions.[12] As shown in Fig. 5(a), 

unlike In2O3, a negligible efficiency was observed for TiO2 whereas increasing irradiation time 

did not affect the degree of degradation significantly. Although TiO2 is the most commonly 

studied catalyst for the degradation of organic pollutants, it has not exhibited high 

photocatalytic activities for PFOA decomposition.[11,12] On the other hand, other catalysts 

including In2O3 and Ga2O3 has shown promising efficiencies for such a purpose.[11,12,26] 

Promising activity of Ga2O3-based semiconductors for the photocatalytic remediation of PFOA 

has been attributed to their high energy sustainability and oxidizing potential.[71]  

Apart from the oxidizing potential, which is related to the position of valence and 

conduction bands of the semiconducting material, surface properties of the catalyst are among 

key parameters affecting PFOA degradation efficacy. The schematic illustration of adsorption 

of PFOA on the surface of TiO2 and In2O3 is shown in Fig. 5(b). In the case of In2O3, PFOA 

strongly coordinates to its surface, in either bridging or bidentate modes, which leads to the 

vertical array of PFOA chain along with a good order on In2O3. As per TiO2, a tilted array is 

observed originated from surface binging between TiO2 and the carboxylate group of PFOA. 

Thus, unlike TiO2, the inner CF2 groups of PFOA may interact rarely with surface of In2O3. In 

addition, the bidentate mode between In2O3 and PFOA facilitates the transfer of electrons from 

PFOA to the holes (in In2O3) which are responsible for superior efficacy of In2O3 than TiO2 for 

photocatalytic decomposition of PFOA.[12]  
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Figure 5. (a) Comparison of the photocatalytic activity of In2O3 and TiO2 for PFOA 

decomposition. Reproduced with permission from .[12] Copyright © 2012, Li et al., ACS 

Publications. (b) Schematic illustration of adsorption of PFOA on the surface of TiO2 and In2O3. 

Reproduced with permission from .[12] Copyright © 2012, Li et al., ACS Publications. (c) Effect 

of various morphologies of In2O3 on the photocatalytic degradation of PFOA. Reproduced with 

permission from .[11] Copyright © 2013, Li et al., Elsevier. (d) Effect of various morphologies 

of Ga2O3 on the photocatalytic degradation of PFOA. Reproduced with permission from .[14] 

Copyright © 2013, Shao et al., Elsevier. (e) In2O3 microspheres. Reproduced with permission 

from .[11] Copyright © 2013, Li et al., Elsevier. (f) In2O3 nanocubes. Reproduced with 
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permission from .[11] Copyright © 2013, Li et al., Elsevier. (g) In2O3 nanoplates. Reproduced 

with permission from .[11] Copyright © 2013, Li et al., Elsevier. and (h) Sheaf-like Ga2O3 

nanostructures. Reproduced with permission from .[14] Copyright © 2013, Shao et al., Elsevier. 

 

Moreover, the morphology of the catalysts could remarkably affect their performance in 

photocatalysis. Li et al. (2013) used nanostructured In2O3 with various morphologies including 

nanoplates, nanocubes, and porous microsphere for photocatalytic decomposition of PFOA.[11] 

As shown in Fig. 5(c), the efficacy of In2O3 highly depends on its morphology. Shao et al. 

(2013) also evaluated the important effects of morphology on the photocatalytic decomposition 

of PFOA over Ga2O3, as shown in Fig. 5(d). The presence of a large number of nanopores along 

with the higher surface area of sheaf-like Ga2O3 than that of commercial Ga2O3 resulted in the 

higher efficacy of sheaf-like Ga2O3 than that of commercial Ga2O3. Notably, enlarged surface 

area could increase the reaction centers and provides more adsorption.[14] Various morphologies 

of In2O3 microspheres, In2O3 nanocubes, In2O3 nanoplates, and sheaf-like nanostructured 

Ga2O3 are shown in Fig. 5(e-h). Various morphologies not only result in different specific 

surface areas, but also influence the light adsorption of catalysts which can significantly affect 

their efficiencies in photocatalysis. For instance, the improved absorption of scattered radiation 

or the reduced loss of photons in solution led to the higher efficiency of titania nanotubes with 

3D structures than those with planar arrays.[24] 

The recombination rate of photo-generated electron-hole pairs is another important factor 

which markedly influences the efficiency of PFOA photodecomposition. Generally, the lower 

the recombination rate, the higher the efficiency is expected. The production of composites, 

loading by metallic particles, and doping are among main methods which can highly reduce the 

recombination rate of charge carriers. For instance, Cu- and Fe-loaded TiO2 catalysts 

significantly increased the decomposition efficiency of PFOA to 91% and 69%, respectively, 

compared with only 14% for unloaded TiO2.
[49] 
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Considering several aspects including nature of the catalyst (position of valence and 

conduction bands), surface properties, morphology, specific surface area, pore size, 

recombination rate of charge carriers and photo-adsorption ability, it is obvious that catalyst 

type is one of the most crucial parameters affecting the photocatalytic decomposition 

percentage of PFOA. This finding is successfully confirmed by the GBM model. 

 

3.5.3. Other variables 

Tang et al. (2021) have evaluated the effects of various parameters including pH, irradiation 

intensity, reaction temperature, initial concentration of PFOA, and catalyst dosage on the 

photocatalytic decomposition of PFOA over different catalysts including CeO2, NiAl-LDHs, 

and CeO2@NiAl-LDHs composites. Among all the variable, the greatest effect has been 

observed for catalyst dosage, pH, and irradiation intensity.[23] As shown in Fig. 4(b), catalyst 

dosage, pH, and irradiation intensity are the most effective parameters after irradiation time and 

catalyst type which clearly confirm the high accuracy of the model developed by GBM in 

estimating the photocatalytic degradation of PFOA. It is noteworthy that the dosage of catalyst 

and initial concentration of pollutant can highly affect decomposition of organic pollutants, 

though at varying degrees, since the rate of the five sequential steps in photocatalysis is strongly 

related to these variables. The initial solution pH is also of high importance since it strongly 

affects the adsorption of PFOA on the surface of catalyst. However, its effect is highly related 

to the type of catalyst. For instance, the optimal pH value was reported to be pH 9 (among pH 

3, 5, 7, 9, 11) for CeO2, NiAl-LDHs and CeO2@NiAl-LDHs composites,[23] and pH 3 for Ga2O3 

(among 3, 5, 7, 10).[26] 

The higher the irradiation intensity, the greater the degradation efficiency is expected. 

Moreover, the photo-adsorption ability of catalysts is strongly dependent on the wavelength. 

Therefore, the source of light, in terms of either intensity or wavelength, can remarkably affect 

the photocatalytic decomposition of PFOA. In addition to the source of light, oxidizing agents 
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(i.e. PMS, APS and NaPS) significantly increase the photocatalytic degradation of PFOA.[25-27] 

Such relative importance of these variables is appropriately demonstrated by the developed 

GBM model.  

Solution temperature is also another major variable affecting the decomposition of PFOA. 

It should be taken into account that solution temperature has been set at room temperature, in 

the overwhelming majority of photocatalytic experiments. The main reason might be the 

challenges associated with increasing or decreasing temperature. On the one hand, increasing 

temperature might result in evaporation of water. On the other hand, decreasing temperature 

necessitates using cooling facilities. Overall, photocatalytic experiments have been mainly 

carried out in a limited range of solution temperature. Furthermore, the maximum degradation 

efficiency of PFOA has been observed at room temperature in some cases.[25,46] However, it 

highly depends on the type of catalyst since Tang et al. (2021) reported higher decomposition 

efficiencies at higher temperatures.[23] Considering the limited temperature range used for 

evaluation of the temperature effect on the decomposition of PFOA, the minimal relative 

importance of variables could be devoted to solution temperature which is evidenced by the 

GBM model (Fig. 4(b)).  

 

3.6. Model comparison  

The strengths of the models developed by AdaBoost, GBM, and RF in predicting the 

photocatalytic decomposition of PFOA were evaluated by different statistical indices (Table 3). 

Compared with the model developed by AdaBoost, those developed by GBM and RF showed 

higher prediction strengths in term of R2. In terms of MAE and MSE, the model developed by 

AdaBoost showed more errors than those developed by GBM and RF. Overall, considering 

both error values and R2, the AdaBoost model showed a much lower performance than RF and 

GBM models. Notably, both RF and GBM models showed approximately similar performances 

in predicting the photocatalytic degradation of PFOA over various photocatalysts. The 
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application of several ML algorithms in estimating the photocatalytic degradation of different 

organic pollutants is provided in Table 3. As evident, the number of datapoints in this research 

is remarkably more than in the other studies demonstrating the diversity of the considered 

experimental conditions in this study. As a result, the prediction strengths of the GBM and RF 

models in this study are similar to those by using other models for estimating the photocatalytic 

degradation of different organic pollutants. The insignificant differences between the prediction 

strengths of current models, i.e. GBM and RF, and the models used for other applications could 

be attributed to the nature of data, e.g. diversity of photocatalysts, number and type of inputs, 

and type of the algorithms. Notably, different algorithms could yield different performances in 

various applications.[36,69] 
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Table 3. Comparing the prediction strengths of models from ML algorithms for photocatalytic degradation of different organic pollutants. 

Model Pollutant Statistical indices Number of data Reference 

R2 MAE MSE RMSE 

CGCNN-MF-ANN Methylene Blue - 0.286 - - 67 [72] 

CGCNN-MF-ANN Rhodamine B - 0.338 - - 50 [72] 

CGCNN-MF-ANN Rose Bengal - 0.095 - - 33 [72] 

CGCNN-MF-ANN Toluidine Blue - 0.127 - - 31 [72] 

CGCNN-MF-ANN Azure B - 0.142 - - 31 [72] 

CGCNN-MF-ANN Carmine Indigo - 0.275 - - 22 [72] 

CGCNN-MF-ANN Phenoxyacetic acid - 0.113 - - 20 [72] 

CatBoost Tetracycline 0.989 - - 3.164 374 [33] 

LightGBM Tetracycline 0.980 - - 4.190 374 [33] 

XGBoost Tetracycline 0.984 - - 3.717 374 [33] 

AdaBoost Tetracycline 0.981 - - 4.086 374 [33] 

AdaBoost PFOA 0.574 16.480 388.369 19.707 1343 This research 

GBDT Tetracycline 0.981 - - 4.112 374 [33] 
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Extra Tree Tetracycline 0.978 - - 4.378 374 [33] 

DT Tetracycline 0.981 - - 4.058 374 [33] 

RF Tetracycline 0.979 - - 4.341 374 [33] 

RF PFOA 0.867 6.796 107.500 10.368 1343 This research 

GBM PFOA 0.878 6.009 106.660 10.328 1343 This research 

CGCNN-MF-ANN: crystal graph convolutional neural network-molecular fingerprint-artificial neural network; RMSE: root mean squared error. 
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4. Conclusions 

The prediction of the photocatalytic degradation of PFOA as an emerging persistent organic 

pollutant is of great importance. Seven ML processes were pre-screened for such a purpose, 

among which AdaBoost, RF and GBM showed more promising performances considering 

statistical criteria including MSE, MAE and R2 values. Being optimized by grid search, the 

models developed by RF and GBM showed superior performances than that developed by 

AdaBoost in predicting the photocatalytic decomposition of PFOA. Considering the relative 

importance of process variables evaluated by PVI, the GMB model resulted in better outcomes 

than RF model with the light irradiation time, type of catalyst, dosage of catalyst, solution pH, 

irradiation intensity, initial PFOA concentration, oxidizing agents (PMS, APS, and NaPS), 

irradiation wavelength, and solution temperature as the most effective process variables in 

decreasing order. 
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