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Abstract This chapter presents a methodology of bus travel time prediction, which
is driven by the state-of-the-art machine learning technologies and involves real-
time bus GPS location data collection and processing. Public transport plays a vital
role in the development of our societies, providing the mobility to access to jobs,
education, housing, services and recreation. Due to the rapid global urbanization
trend, public transport suffers from the increasing traffic congestion and delay. The
proposed methodology can predict bus travel time in real time to help mitigate the
impact of traffic congestion by providing timely information of bus arrival time
and delay. A case study of prediction of bus travel time in an area of Sydney
has been carried out to evaluate our approach. The results show that our approach
can effectively predict bus travel time and consistently outperforms the benchmark
methods in a variety of scenarios. This research work demonstrates the power of AI
technologies to promote productivity in traffic congestion management.

1 Introduction

1.1 Urbanization and Traffic Congestion

According to a report [37] by United Nations, in 1990 there were 2.3 billion
people - 43% of the world’s population - living in urban area. In 2018, the urban
population has increased to 4.2 billion, which was 55% of the world’s population.
This urbanization trend is expected to continue. In 2050, the global urban population
is projected to 6.7 billion. In other words, in mid-century, about 68% of the world’s
population will be living in urban area. The rapid urbanization brings opportunities
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as well as challenges to us. If managing it well by improving productivity and
allowing innovation, we can benefit from the urbanization and enjoy the sustainable
growth as more than 80% of global GDP is generated in cities. However, the
urbanization also imposes the challenges to meet the accelerated demands such as
affordable housing, more jobs and efficient transport systems.

Transport is vital to urban development. Transport systems provide essential
mobility for citizens to access to jobs, education, housing, services and recreational
facilities. Transport systems also move goods in the cities and significantly contribute
to the economic growth. Urban growth and transport are strongly related to each
other. Transport has a big influence on urban development. Efficient transport
systems can attract more people and boost the urbanization. On the other hand,
population growth can cause an increase in travel demand and thereby an increase
in the need for transport infrastructure.

With the rapid urbanization trend, one critical problem in transport systems is
traffic congestion. Traffic congestion has significantly negative impact on economy.
It imposes additional costs to the communities and businesses by longer and less
predictable travel times, reduces economic opportunities and lowers quality of life.
It is shown that traffic congestion has been increasing over the world in the past
decades. Effectively and efficiently managing traffic congestion is a pressing need
for many cities.

1.2 Significance of Bus Travel Time Prediction

In the modern cities, public transport systems play the key role of moving people,
increasing business productivity and improving air quality. It is the most popular
transport means for commuters who regularly travel to work in the rush hour. Public
transport can help riders avoid the stress that results from the daily driving in
highly congested areas. Conveying more people in much less space than individual
cars, public transport also helps to lower traffic congestion and reduce harmful air
emission. Public transport provides an economical and environmentally friendly
way of travel in cities.

However, public transport is also impacted by the congestion and suffering
from traffic delay. In order to enhance the satisfaction of transit users and attract
more people to use public transport, it is significant to improve public transport
services, for example, by reducing delays and timely updating passengers with
useful information when delays happen.

Timely and accurate bus travel time prediction is important to the public transport
operations. It helps the transit operators to plan effective and robust schedules
resulting in less congestion and delay. Early knowing the delay can enable transit
operators to promptly respond and take action to the unexpected events. For the
transit users, this type of information is also of importance. By keeping the passengers
well-informed, the impact of delay and the consequent anxieties are largely relieved.
The travellers can optimize their travel plans, mitigate traffic delay, and avoid traffic
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congestion as much as possible based on the up-to-date information. Therefore, the
overall quality of transit services can be improved by providing such information to
the transit users.

1.3 Research Problem

The research problem of this study is to predict bus travel time in real time. Bus
travel time is the time for a bus to travel from one place to another place, which
usually means bus stops. Technically, travel time, arrival time and delay have the
same meaning in the context of public transport as any of them can be easily inferred
by others. In this chapter, we use these three terms and they are interchangeable if
not specified.

Bus travel time prediction has always been an active research topic over the past
decades due to its importance to our real-life applications. With the advance of
technologies, the methods for bus travel time prediction are progressing. Nowadays,
Automatic Vehicle Location (AVL) systems have been widely adopted by many
transit agencies, which make use of the Global Positioning System (GPS) automatically
determining and transmitting the geographic location of a vehicle in a real-time
fashion. This technology advance provides the transit agencies with an effective
way to track their transit vehicles. Thanks for the AVL systems, a wealth of real-
time information about the movements of vehicles is available and can be used for
travel time prediction.

Artificial Intelligence (AI), particularly Machine Learning technologies can provide
solutions to this problem. Utilising Machine Learning technologies, we can build
prediction models on the historical vehicle movement data collected by the AVL
systems, and then make predictions by feeding latest data into the models.

In this chapter, we propose an AI-based approach to address the research problem.
The proposed approach is an end-to-end solution including real-time data retrieving
and parsing, GPS data map matching, and travel time prediction. Our approach can
be used in the systems that provide real-time bus arrival time and delay information.

1.4 Research Challenges

Accurately predicting bus travel time in real time is a very challenging task. Firstly,
as the nature of transport systems, there are so many stochastic variables that can
affect the travel time. For instance, travel speed fluctuates over time due to the ever
change of traffic conditions. A broken vehicle or a major car incident can block a
road and cause the congestion on the upstream road segments. Traffic signals can
impact the traffic flow and cause intersection delays if they are not well configured.
It is expected to take a longer travel time if the weather is bad.
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Secondly, the dwell time depending on travel demand also affect the travel time.
The unexpected surge of travel demand caused by events such as concerts and sports
can largely increase the dwell time and result in delays. The stochastic passenger
arrival at the the bus stops makes the prediction more difficult.

Thirdly, it requires a real-time prediction for providing timely bus arrival information.
This means that the real-time data needs to be retrieved, processed and fed into the
prediction model for quickly responding to the new situations within a short period
of time window.

1.5 Organization of the Chapter

The rest of this chapter is organized as follows. The related work will be introduced
in Section 2, in which five categories of methods for travel time prediction will
be presented. Section 3 will propose the overall framework of bus travel time
prediction. The data used in this study and the method to collect the data will be
introduced in Section 4. Section 5 will present the problem formulation with a
number of definitions, the approach to correct GPS location data, and our proposed
method for travel time prediction. The case study that we have applied our approach
to predict bus travel time in an area of Sydney will be introduced in Section 6. The
discussion about the implication of our proposed approach to the humanity will be
given in Section 7. Finally, Section 8 will conclude this chapter.

2 Related Work

Over the past decades, many pieces of research have been conducted to address
the problem of bus travel time prediction due to its significance. A variety of
approaches have been proposed, which can be categorized into the following five
types: 1) historical average methods, 2) time series methods, 3) regression methods,
4) Kalman filter methods, and 5) machine learning methods. The five categories of
approaches are introduced in the following subsections..

2.1 Historical Average Methods

As pointed out in [53], traffic conditions normally follow consistent daily and
weekly patterns, which indicates that a reasonable forecast of future traffic conditions
at a particular time of day and day of week can be given by the historical average of
conditions at the same time of day and day of week. Based on this finding, historical
average methods assume that the future traffic condition is consistent with previous
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journeys in the same time period and then predict the future travel time by observed
historical travel time.

The basic idea of this type of methods is to find the previous journeys under
similar traffic conditions and then use historical average travel time of previous
journeys to predict the future travel time. The variation of this type of methods
is the way to choose similar journeys. A naive approach is to simply use the
journeys at the same location and in the same time period, which is usually used as
a baseline method for benchmarking other methods. K-Nearest Neighbour (KNN)
[8, 41, 44] is a popular approach to choose similar journeys, which select the K-
nearest neighbours of previous journeys. However, determining the optimal size of
nearest neighbours is very tricky. The size of nearest neighbours largely influences
the prediction performance [8]. Apart from that, K-NN is computationally intensive
if a large-scale number of historical journeys is present.

In general, the historical average methods are reliable only when the traffic
patterns in the area of interest is relatively stable, such as the rural areas.

2.2 Time Series Methods

Time series methods [9, 43] assume that there is a pattern or a mixture of patterns in
the historical time series data and the patterns will remain the same in the future time
period. Based on the assumption, time series methods try to model the historical
time series data by mathematical functions and used the mathematical functions to
forecast the future.

In [9], a non-linear time series model is used to predict the travel time on a
highway section in Orlando, Florida. In this study, two models including single-
variable model and multiple-variable model have been built and compared with
each other. Interestingly, the results showed that the single-variable model based
on speed time series data outperformed the multiple-variable model based on speed,
occupancy and volume time series data.

The accuracy of this type of methods highly depends on the fitness of the
mathematical functions to model the historical data and the similarity between
historical and real-time traffic patterns. Both the variation of historical data and
changes of real-time from historical traffic patterns can largely impact the accuracy
of the prediction results.

2.3 Regression Methods

Regression methods assume that the bus arrival time is an output of a function of
different variables such as traffic circumstances, number of passengers, number of
bus stops, and climate situations. Therefore, this type of methods uses a mathematical
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function to describe the relationship between the dependent variable - travel time -
with a set of independent variables.

There were many studies [5, 24, 27, 36, 40] that used regression models for
bus travel time prediction. The major difference is the independent variables used
for building the regression models. One of advantages of regression methods is
that the importance of each independent variable to the dependent variable can
be known by the built regression models. For example, in a study [36] a set of
multiple linear regression models has been developed using independent variables
including distance, number of stops, dwell time, boarding and alighting passengers
and weather to predict bus arrival time. According to the results, weather is less
important than other inputs in the models.

The major limit of regression methods is that variables in transport systems are
likely to be inter-correlated rather than completely independent [6].

2.4 Kalman Filter Methods

Originated from the state-space representations in modern control theory, Kalman
filter is a recursive procedure that estimates the future states of dependent variables.
It is introduced to travel time prediction because of its advantage in continuously
updating the state variable using new observations [6].

Many studies based on Kalman filter algorithm have been reported for travel
time prediction [7, 26, 34, 47, 49]. For instance, Chu et al. [7] developed a
method for travel time estimation based on Kalman filtering. The proposed method
can dynamically estimate noise statistics of the system by adapting to the new
observations. The Kalman filtering based algorithm was evaluated under recurrent
and non-recurrent traffic congestion conditions. The results showed that the proposed
method outperformed the benchmark method for both situations. In Yang’s study
[26], a discrete-time Kalman filter was used to predict arterial travel time in the
scenarios of special events such as graduation ceremony.

2.5 Machine Learning Methods

Machine Learning [31] is a branch of artificial intelligence which is based on the
idea that systems can learn from data and make decisions. It focuses on studying
computer algorithms that build models based on historical data and improve the
models automatically through experience. Typically building a machine model
consists of four phases including 1) preparing training data set, 2) choosing a
candidate algorithm, 3) training a model by the selected algorithm on the training
data set, and 4) using and improving the model.

Support Vector Machine (SVM) is one of popular Machine Learning algorithms
that are reported in the literature of bus travel time prediction. SVM uses kernel
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functions to find a hyperplane or set of hyperplanes that can be used for classification,
regression or outliers detection. Yu et al. [2, 56] used SVM to predict bus arrival time
by considering the segment-level travel time and four traffic conditions including
peak time and sunny day, off-peak time and sunny day, peak time and rainy day, and
off-peak time and rainy day. The model used three inputs consisting of segment,
travel time of current segment, and the latest travel time of next segment, to output
the predicted travel time.

Artifical Neural Network (ANN) [1] is also a popular Machine Learning algorithm
for bus travel time prediction. ANN is inspired by biological neural networks,
in which there are multiple layers of processing units called artificial neurons.
Each neurons has an activation function and is connected with other neurons.
The connection between two neurons means the output of a neuron as the input
of another neuron. Each connection is assigned a weight which represents its
importance. Through learning process, the initial weights are adjusted to capture
the relationship between inputs and outputs usually by backpropagation algorithm
[28]. ANN-based methods have gained popularity in predicting bus travel time
because of their ability to solve complex non-linear relationships [5, 6, 25, 38] . For
example, Ramakrishna et al. [38] developed a Multiple Layer Perceptron (MLP)
for predicting bus travel time using vehicle speed data and passenger data, which
achieved better performance over the linear regression approach. In the study of
Jeong et al. [25], the ANN model outperformed both historical data model and
regression model in predicting bus travel time using actual vehicle location data
in Houston, Texas.

One advantage of Machine Learning methods is that they can deal with large
volume of data sets. Another advantage is that they can discover the complex
relationships between predictors, such as non-linear relationships. The ability to
tolerate noisy data is also an advantage of Machine Learning methods.

3 Proposed System Framework

The proposed system framework of bus travel time prediction is illustrated in Fig.
1, in which each parallelogram represents a function component, each rectangle is
the output of each function component, solid line stands for the process of model
training and dashed line stands for the prediction process. There are four major
function components which are described as follows.

• Real Time GTFS Data Collection: the component to collect real-time GTFS data
which will be introduced in Section 4 of this chapter.

• GPS Data Correction: the component to correct GPS data points and match them
to road segments, which we will introduce in Subsection 5.2 of this chapter.

• Model Training: the component to train a prediction model using historical GPS
data, which will be introduced in Subsection 5.3 of this chapter.

• Model Prediction: the component to predict bus travel time using the trained
prediction model, which will be introduced in Subsection 5.3 of this chapter.
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Fig. 1 Framework of Travel Time Prediction: Each parallelogram represents a function component,
each rectangle is the output of each function component, solid line stands for the process of model
training and dashed line stands for the prediction process. Best viewed in color.

4 Real Time Data Collection

This section introduces the data used for this research work and the workflow to
collect the real-time data through RESTful data APIs.

4.1 GTFS Data

The General Transit Feed Specification (GTFS) [16] defines a common data format
to allow public transit agencies to publish their transit data so that the data can
be consumed by various applications. Generally, GTFS is divided into two streams
inlcuding GTFS static and GTFS real-time. The former contains public transportation
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schedules and associated geographic information while the latter contains the real-
time vehicle positions and all trip updates.

GTFS has been used as an industry standard for majority of transit agencies
to publish their transit data around the world [17]. As GTFS data contains both
scheduled and real-time information about transit operations, it has been actively
used for many research problems such as transit accessibility [11, 10, 14, 19, 35],
transit network analysis [20, 51], performance evaluation [4, 50], delay prediction
[45, 46, 55], and transit trip inference [32, 57].

4.2 GTFS Data Collection

The data used for this study is the GTFS data published by the local transport
agency: Transport for NSW [33]. We collect the following three data sets.

• Real-time bus position data: the real-time buses’ movements with longitudes,
latitudes, and associated time stamps. The real-time bus positions are captured by
the GPS devices mounted on the buses. There are always errors associated with
the GPS data. We need to correct the GPS data by a map matching algorithm
which we introduce in Subsection 5.2 of this chapter.

• Bus timetable data: containing the scheduled bus trips and scheduled arrival
times at bus stops.

• Bus network data: containing the geolocations of all bus stops and the physical
geometry of the bus routes.

As the bus position data is published in real time, we need to develop a data
collection service for continuously collecting the data through RESTful data APIs.
Fig. 2 illustrates the workflow of data collection. To collect the real-time bus position
data, the data collection service sends a data pulling request to the data APIs every 5
seconds. After receiving the data returned from the data API the service then parses
the data and checks whether it is exactly the same to the previous data points. If
so then it discards the data, otherwise it appends the data to stored data files. The
purpose of removing the duplicate records is to save space as well as to reduce
the computation cost in the following step of data processing. In the entire Sydney
metropolitan region there are around 24,000 bus stops and more than 25,000 bus
trips are being scheduled during a 24-hour day, which leads to more than 3GB of
real-time bus position data being collected every day. Apart from the bus position
data, the data collection service also collects timetable and network data daily in a
similar fashion, in order to have up-to-date timetable and network data.



10 Yuming Ou

Fig. 2 Workflow of data collection service: The data collection service sends a data pulling request
to the real-time bus position data API every 5 seconds. After receiving the data returned from the
data API the service then parses the data and checks whether it is exactly the same to the previous
data points. If so then it discards the data, otherwise it appends the data to stored data files. Apart
from the bus position data, the data collection service also collects timetable and network data
daily in a similar fashion.

5 Methodology

5.1 Problem Formulation

In this subsection, we first give the definitions of Road Segment, Route, Bus Stop
and Trip. On top of the definitions, we then propose the equation to calculate the
travel time between two bus stops. Finally, we formulize the research problem of
travel time prediction.

Definition 1. (Road Segment): A road segment seg is a portion of the road between
two consecutive bus stops, which is represented by a tuple consisting of segment ID
id and its length l.

seg = (id, l) (1)

Definition 2. (Route): A route r is a vector of road segments from the origin bus
stop to the destination bus stop,

r = [seg1,seq2, ...,segi, ...,segn] (2)

in which segi is the ith road segment of the route r and n is the total number of road
segments of the route r.
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Definition 3. (Bus Stop): A bus stop stop is the end point of a road segment and is
also the starting point of the successive road segment. There is a mapping function
f for returning a road segment for a given bus stop:

f : stop j 7→ segi (3)

in which stop j is the starting point of segi. Obviously, stop j is also the end point of
segi−1.

Definition 4. (Trip): A trip trip contains the information about the segments that the
bus travels and their corresponding travel times. It is a vector of tuples consisting of
road segment and corresponding travel time and time stamp,

trip = [(seg1, tt1, ts1),(seg2, tt2, ts2), ...,(segi, tti, tsi), ...,(segn, ttn, tsn)] (4)

in which tti is the travel time on road segment segi and tsi is the time stamp that trip
starts to travel on segi

Based on the above definitions, we have the following theorem for calculating
travel time between two bus stops.

Theorem 1. (Travel Time between Two Bus Stops) The travel time between two bus
stops for a given trip is the sum of corresponding travel times of road segments that
the trip travels between the two bus stops:

tts jk =
g( f (stopk))−1

∑
i=g( f (stop j))

tti (5)

in which tts jk is the travel time from stop j to stopk, and g is a function returning the
sequence of a road segment:

g : segi 7→ i (6)

Definition 5. (Travel Time Prediction): The research problem of this study is to
build a model Θ that predicts the road segment travel times so that the travel time
between two bus stops for a given trip can be calculated by above Eq. 5:

Θ : (trip1, ..., tripm−1,segi,stop j, t j,stopk) 7→ t̂tm
i (7)

in which t̂tm
i is the predicted travel time for mth trip on road segment segi, trip1, ...,

tripm−1 are the previous trrips that have passed segi, stop j is the last bus stop that
the mth trip has passed, t j is the arrival time at stop j, and the stopk is the next bus
stop that the mth trip will arrive at.
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Fig. 3 An example of GPS errors: The red dots are the GPS data points sent from the GPS device
on a bus while the green line is the actual bus trajectory along the main road. It can be observed
that many GPS locations are falling further away from the green line (road centre line) instead of
exactly being on it. Best viewed in color.

5.2 GPS Data Correction

Due to the well-known issue of GPS accuracy [54], the GPS data is always associated
with an error which is a deviation from what the real position of the bus vehicle is.
The errors are variable depending on the circumstances, the road network geometry
layout and continuity of data transmission in real-time. Many other sources could
contribute to GPS errors, such as clock error, signal jamming, weather and building
blocking. An example of GPS errors is shown is Fig. 3 in which the red dots are the
GPS data points sent from the GPS device on a bus while the green line is the actual
bus trajectory along the main road. It can be observed that many GPS locations are
falling further away from the green line (road centre line) instead of exactly being
on it. Consequently, before using the bus GPS data to train the prediction model, we
need to correct the GPS data through map matching algorithms by matching every
GPS coordinate transmitted by the bus to a correct location on the road centreline.

There are various methods that have been used in the literature for map matching
[3, 21, 30, 52]. One native way is the point-to-curve method, which projects
GPS points to their closest edges. This method is simplistic and lacks robustness
especially when the road network has a complicated structure such as in the CBD
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Fig. 4 Hidden Markov Model for Map Matching: The blue rectangles are the hidden states of
the road segments on which the bus is while the yellow circles are the observations of the GPS
readings. Best viewed in color.

areas. An improved method is the curve-to-curve method which considers the
closeness and similarity between the curve formed by GPS points and the candidate
path. However, it still has the same problems under the circumstances of large GPS
errors and complicated overlayed networks. Other approaches include using the
geometry and topology of the road network [42], Kalman filters [29], and Fuzzy
rules [39].

To achieve a high accuracy of GPS data correction in real-time, our map matching
method is based on a Hidden Markov Model (HMM) [12, 48]. HMMs usually
model a system by considering their unobserved states and their observations. In
the system one hidden state can change to any other hidden state by following a
state transition probability. Instead of the hidden states, one can observe the values
generated from the hidden states with emission probabilities. In this work, we model
the road segments on which the bus is as the hidden states and the GPS readings as
the observations as shown in Fig. 4. Under this setting, the emission probability is
defined in the following Eq. 8,

P(GPSt |segt
i) =

1√
2πσ

e
gd(GPSt ,GPSt

i )
2

2σ2 (8)

in which GPSt is the bus GPS reading at time t, segt
i is the road segment i that the

bus is on at time t, GPSt
i is the projection of GPSt on segt

i , gd is the great circle
distance between two geolocations, and σ is the stand deviation of the GPS device
error.

Furthermore, the transition probability is defined in the following Eq. 9,

P(segt+1
j |segt

i) =
gd(GPSt ,GPSt+1)

rd(GPSt
i ,GPSt+1

j )
(9)

in which rd is the distance between two geolocations along the road segment path.
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Given a sequence of GPS readings as the observations, we can utilize the Viterbi
algorithm [13] to find out the most likely sequence of road segments as the hidden
states.

5.3 LSTM-Based Travel Time Prediction

Our approach to predict the arrival time at next bus stop is composed of two steps
including 1) predicting the travel time for each segment that is between current
location to the next bus stop, 2) and then summing up the travel times for all above
segments. One advantage of our approach is that predicting the segment-based travel
time can capture the characteristics of each segment at a finer level of granularity
than directly predicting the travel time from current location to the next bus stop as
a whole. Another advantage of our approach over the method of simply predicting
travel time between two bus stops is that it can be used for real-time prediction. Our
approach can keep updating the prediction when a bus is travelling by updating the
bus’ location.

In order to predict the travel time on a road segment, we build a model based on
Long Short-Term Memory (LSTM) network [15, 18, 23]. LSTM networks are a type
of Recurrent Neural Network (RNN) which are well-suitable for time series data.
LSTM networks are improved for dealing with the issue of vanishing gradient [22]
that the traditional RNNs usually suffer from. When the gradient values become
extremely small during the training of RNNs, the weights are prevented from
changing their values and the neural networks stop further learning. LSTM networks
overcome the vanishing gradient problem by using a mechanism called gates to
control the information flow into and out the memory of the network.

Fig. 5 shows the LSTM unit that is used in our approach. It consists of a cell
which is the memory of the network and three gates including forget gate, input
gate and output gate.

Fig. 5 Long Short-Term Memory Unit: The structure of a LSTM unit
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The sequence data set Ψ used for training the LSTM network for a road segment
is defined as follows:

Ψ = {...,(Xm, ttm+1), ...} (10)

Xm = (xm−n, xm−n+1, ..., xm) (11)

xm = [ttm,sm,stop j, t j] (12)

in which ttm is the travel time of the mth trip tripm on the road segment, sm is the
seconds from midnight derived from the time stamp that tripm starts to travel on the
road segment, stop j is the last bus stop tripm has passed, t j is the arrival time at bus
stop stop j, and n is the length of a sequence.

After building the sequence data set Ψ , we train the LSTM network by the
following equations.

fm = σ(Wx f xm +Wh f hm−1 +b f ) (13)

im = σ(Wxixm +Whihm−1 +bi) (14)

c̄m = φ(Wxcxm +Whchm−1 +bc) (15)

cm = c̄m� im + fm� cm−1 (16)

om = σ(Wxoxm +Whohm−1 +bo) (17)

hm = om�φ(cm) (18)

in which fm is the forget gate, im is the input gate, c̄m is the cell input, cm is the cell
state, om is the output gate, hm is the output, σ is the sigmoid activation function, φ

is the tanh activation function, W∗ is the weight matrices, and b∗ is the bias vectors.

6 Case Study

6.1 Case Study Setting

Our proposed methodology has been applied to an area of Sydney to predict bus
travel time. The area for our case study is shown in Fig. 6. We focused on the
road segments that are highlighted in blue. There are multiple bus routes which
are operating on these road segments. In total, there are sixteen bus stops on the
road segments as represented by the purple dots. Fourteen bus stops including the
stops from the first to the fourteenth are on a main road and the remaining two bus
stops are on a motorway. One major reason why we choose these road segments is
because part of them is on a main road and part of them is on a motorway. We can
test our method performance for both types of road.

We collected the GTFS real-time data using the method introduced in Subsection
4.1 of this chapter. The data covers six months of real-time bus GPS location data
in the study area. There are more than 2.1 million GPS data points generated from
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Fig. 6 Area for the case study: Blue line represents the road segments while the purple dots stand
for the bus stops. The numbers beside the bus stops are the bus stop IDs. Best viewed in color.

37,622 bus trips from May 2019 to October 2019. We used the method presented in
Subsection 5.2 of this chapter to correct the GPS data by map-matching them to the
corresponding locations on the road segments.

The six-month data was split into a training data set for training the model and
a test data set for evaluating the model’s performance. They cover four months and
two months of time period respectively. We evaluated our approach against other
three methods including Moving Average, Linear Regression and Support Vector
Machine.

6.2 Experimental Results

Three metrics were used for evaluating the model performance, including Mean
Absolute Error (MAE), Symmetric Mean Absolute Percentage Error (SMAPE), and
Root Mean Squared Error (RMSE). They are defined by the following equations
respectively.

MAE =
∑

M
m=1 ∑

N−1
n=1 | ˆttsmn− ttsmn|
M(N−1)

(19)

SMAPE =
∑

M
m=1 ∑

N−1
n=1

| ˆttsmn−ttsmn|×2
| ˆttsmn|+|ttsmn|

M(N−1)
×100% (20)
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RMSE =

√
∑

M
m=1 ∑

N−1
n=1 ( ˆttsmn− ttsmn)2

M(N−1)
(21)

in which M is the total number of bus trips and N is the total number of GPS data
points for a bus trip, ˆttsmn is the prediction of travel time in minutes for the nth

GPS data point of mth bus trip, and ttsmn is the corresponding actual travel time in
minutes.

We used the training data set to train a model following the approached proposed
in Section 5 of this chapter, and then used the test data set to evaluate the model. We
compared our approach with three benchmark methods including Moving Average
(MA), Liner Regression (LR), Support Vector Regression (SVR), using the above
evaluation metrics. Table 1 provides the evaluation results, which shows that our
approach outperforms the other methods for all evaluation metrics.

Table 1 Comparison of prediction errors for four models

Methods MAE SMAPE RMSE
(min) (%) (min)

MA 0.72 19.42 0.94
LR 0.55 18.32 0.86
SVR 0.54 18.77 0.84
Our approach 0.50 17.37 0.72

Table 2 Comparison of prediction errors for four models (weekday vs weekend)

Methods MAE SMAPE RMSE
(min) (%) (min)

Weekday MA 0.83 19.19 0.97
LR 0.59 17.91 0.92
SVR 0.55 17.97 0.89
Our approach 0.51 17.31 0.74

Weekend MA 0.59 19.55 0.81
LR 0.51 18.54 0.72
SVR 0.48 18.82 0.73
Our approach 0.46 17.65 0.64

To further investigate the performance of our approach, we compared it with
the three benchmark methods in different scenarios. The first scenario is that we
divided the test data set into two data sets for weekday and weekends respectively
and used them to evaluate the methods. The second scenario is to split the time
period from 6AM to 22PM into three parts including morning peak hours (from
6:30AM to 10AM), afternoon peak hours (from 3PM to 7PM) and non-peak hours



18 Yuming Ou

Table 3 Comparison of prediction errors for four models (weekday peak hours vs weekday non-
peak hours)

Methods MAE SMAPE RMSE
(min) (%) (min)

Morning Peak Hours MA 0.77 19.39 1.02
LR 0.59 18.27 0.91
SVR 0.57 18.16 0.87
Our approach 0.53 16.31 0.78

Non-peak Hours MA 0.69 18.95 0.88
LR 0.51 17.75 0.79
SVR 0.52 17.79 0.77
Our approach 0.46 16.64 0.65

Afternoon Peak Hours MA 0.57 19.72 0.97
LR 0.56 19.47 0.93
SVR 0.55 19.34 0.84
Our approach 0.51 19.16 0.73

Table 4 Comparison of prediction errors for four models (motorway vs non-motorway)

Methods MAE SMAPE RMSE
(min) (%) (min)

Motorway MA 1.01 18.41 1.20
LR 0.92 17.87 1.14
SVR 0.93 18.01 1.12
Our approach 0.89 13.00 1.13

Non-motorway MA 0.67 20.13 0.89
LR 0.51 19.19 0.81
SVR 0.47 19.23 0.77
Our approach 0.40 18.57 0.56

(the remaining). The third is to evaluate the methods in the scenario that the bus
stops are on a motorway. The evaluation results for the above three scenarios are
given in Table 2, 3, and 4 respectively, which show that our approach consistently
beat other methods.

7 Discussion

Artificial Intelligence is regarded as one of the most revolutionary developments in
human history. Nowadays we are witnessing its transformative power. There are so
many AI-based cutting-edge solutions solving the most critical challenges faced by
the society.
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The research work presented in this book chapter is one of the examples -
AI technologies are used in solving the challenging problem of bus travel time
prediction. The proposed AI-based solution can process large amount of vehicle
movement data and predict bus travel time in real time, which helps manage
the critical issue of traffic congestion. It demonstrates that AI technologies can
largely improve the efficiency of our workplace and empower high-performance
organisations, governments and communities.

8 Conclusion

In this chapter, we study the research problem of bus travel prediction which is
significant to our societies as it helps to improve our daily lives. In order to address
this research problem, we propose an approach to predict bus travel time using real-
time bus GPS location data. The proposed method involves real-time data collection
and processing and adopts the state-of-the-art machine learning technologies.

To verify our approach, a case study was carried out to predict the bus travel
time in an area of Sydney. In the case study, three benchmark methods are used to
compare with our approach. The evaluation results based on three evaluation metrics
show that our proposed approach consistently outperforms the three benchmark
methods in a variety of scenarios. In the future, we will further improve our approach
by applying Graph Neural Networks.

The proposed method in this chapter can support traffic congestion management
by providing the information of real-time bus arrival time and delay. This information
can help not only transport operators proactively manage traffic congestion and take
actions for mitigating the impact of delay, but also commuters better schedule their
travel plans accordingly. The research work shows the power of AI technologies to
promote productivity in traffic congestion management.

References

1. Agatonovic-Kustrin, S., Beresford, R.: Basic concepts of artificial neural network (ann)
modeling and its application in pharmaceutical research. Journal of pharmaceutical and
biomedical analysis 22(5), 717–727 (2000)

2. Bin, Y., Zhongzhen, Y., Baozhen, Y.: Bus arrival time prediction using support vector
machines. Journal of Intelligent Transportation Systems 10(4), 151–158 (2006)

3. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In:
Proceedings of the 31st international conference on Very large data bases, pp. 853–864 (2005)

4. Braz, T., Maciel, M., Mestre, D.G., Andrade, N., Pires, C.E., Queiroz, A.R., Santos, V.B.:
Estimating inefficiency in bus trip choices from a user perspective with schedule, positioning,
and ticketing data. IEEE Transactions on Intelligent Transportation Systems 19(11), 3630–
3641 (2018)

5. Chen, M., Liu, X., Xia, J., Chien, S.I.: A dynamic bus-arrival time prediction model based on
apc data. Computer-Aided Civil and Infrastructure Engineering 19(5), 364–376 (2004)



20 Yuming Ou

6. Chien, S.I.J., Ding, Y., Wei, C.: Dynamic bus arrival time prediction with artificial neural
networks. Journal of transportation engineering 128(5), 429–438 (2002)

7. Chu, L., Oh, J.S., Recker, W.: Adaptive kalman filter based freeway travel time estimation
(2005)

8. Coffey, C., Pozdnoukhov, A., Calabrese, F.: Time of arrival predictability horizons for public
bus routes (2011). DOI 10.1145/2068984.2068985

9. D’Angelo, M.P., Al-Deek, H.M., Wang, M.C.: Travel-time prediction for freeway corridors.
Transportation Research Record 1676(1), 184–191 (1999)

10. Farber, S., Fu, L.: Dynamic public transit accessibility using travel time cubes: Comparing
the effects of infrastructure (dis) investments over time. Computers, Environment and Urban
Systems 62, 30–40 (2017)

11. Farber, S., Morang, M.Z., Widener, M.J.: Temporal variability in transit-based accessibility to
supermarkets. Applied Geography 53, 149–159 (2014)

12. Fine, S., Singer, Y., Tishby, N.: The hierarchical hidden markov model: Analysis and
applications. Machine learning 32(1), 41–62 (1998)

13. Forney, G.D.: The viterbi algorithm. Proceedings of the IEEE 61(3), 268–278 (1973)
14. Fransen, K., Neutens, T., Farber, S., De Maeyer, P., Deruyter, G., Witlox, F.: Identifying public

transport gaps using time-dependent accessibility levels. Journal of Transport Geography 48,
176–187 (2015)

15. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: Continual prediction with lstm
(1999)

16. Google: Google transit apis. URL https://developers.google.com/transit
17. Google: Public feeds wiki. URL https://code.google.com/archive/p/

googletransitdatafeed/wikis/PublicFeeds.wiki
18. Greff, K., Srivastava, R.K., Koutnı́k, J., Steunebrink, B.R., Schmidhuber, J.: Lstm: A search

space odyssey. IEEE transactions on neural networks and learning systems 28(10), 2222–2232
(2016)

19. Guthrie, A., Fan, Y., Das, K.V.: Accessibility scenario analysis of a hypothetical future
transit network: social equity implications of a general transit feed specification–based sketch
planning tool. Transportation research record 2671(1), 1–9 (2017)

20. Hadas, Y.: Assessing public transport systems connectivity based on google transit data.
Journal of Transport Geography 33, 105–116 (2013)

21. Hashemi, M., Karimi, H.A.: A critical review of real-time map-matching algorithms: Current
issues and future directions. Computers, Environment and Urban Systems 48, 153–165 (2014)

22. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and
problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 6(02), 107–116 (1998)

23. Huang, Z., Xu, W., Yu, K.: Bidirectional lstm-crf models for sequence tagging. arXiv preprint
arXiv:1508.01991 (2015)

24. Jeong, R., Rilett, R.: Bus arrival time prediction using artificial neural network model. In:
Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems
(IEEE Cat. No.04TH8749), pp. 988–993 (2004). DOI 10.1109/ITSC.2004.1399041

25. Jeong, R., Rilett, R.: Bus arrival time prediction using artificial neural network model. In:
Proceedings. The 7th international IEEE conference on intelligent transportation systems
(IEEE Cat. No. 04TH8749), pp. 988–993. IEEE (2004)

26. Jiann-Shiou Yang: Travel time prediction using the gps test vehicle and kalman filtering
techniques. In: Proceedings of the 2005, American Control Conference, 2005., pp. 2128–
2133 vol. 3 (2005). DOI 10.1109/ACC.2005.1470285

27. Kwon, J., Coifman, B., Bickel, P.: Day-to-day travel-time trends and travel-time prediction
from loop-detector data. Transportation Research Record 1717(1), 120–129 (2000)

28. Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Transactions on signal
processing 39(9), 2101–2104 (1991)

29. Li, L., Quddus, M., Zhao, L.: High accuracy tightly-coupled integrity monitoring algorithm
for map-matching. Transportation Research Part C: Emerging Technologies 36, 13–26 (2013)



AI for Real-Time Bus Travel Time Prediction in Traffic Congestion Management 21

30. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for low-sampling-
rate gps trajectories. In: Proceedings of the 17th ACM SIGSPATIAL international conference
on advances in geographic information systems, pp. 352–361 (2009)

31. Mitchell, T.M., et al.: Machine learning (1997)
32. Nassir, N., Khani, A., Lee, S.G., Noh, H., Hickman, M.: Transit stop-level origin–

destination estimation through use of transit schedule and automated data collection system.
Transportation research record 2263(1), 140–150 (2011)

33. Transport for NSW, A.: Transport for nsw’s open data portal. URL https://opendata.
transport.nsw.gov.au/

34. Okutani, I., Stephanedes, Y.J.: Dynamic prediction of traffic volume through kalman filtering
theory. Transportation Research Part B: Methodological 18(1), 1–11 (1984)

35. Owen, A., Levinson, D.M.: Modeling the commute mode share of transit using continuous
accessibility to jobs. Transportation Research Part A: Policy and Practice 74, 110–122 (2015)

36. Patnaik, J., Chien, S., Bladikas, A.: Estimation of bus arrival times using apc data. Journal of
public transportation 7(1), 1 (2004)

37. Publications, U.N.: World Urbanization Prospects: The 2018 Revision. UN (2019). URL
https://books.google.com.au/books?id=Kp9AygEACAAJ

38. Ramakrishna, Y., Ramakrishna, P., Lakshmanan, V., Sivanandan, R.: Use of gps probe data
and passenger data for prediction of bus transit travel time. In: Transportation Land Use,
Planning, and Air Quality, pp. 124–133 (2008)

39. Ren, M., Karimi, H.A.: Movement pattern recognition assisted map matching for
pedestrian/wheelchair navigation. The journal of navigation 65(4), 617–633 (2012)

40. Shalaby, A., Farhan, A.: Bus travel time prediction model for dynamic operations control and
passenger information systems. Transportation Research Board 2 (2003)

41. Sinn, M., Yoon, J.W., Calabrese, F., Bouillet, E.: Predicting arrival times of buses using
real-time gps measurements. In: 2012 15th International IEEE Conference on Intelligent
Transportation Systems, pp. 1227–1232. IEEE (2012)

42. Srinivasan, D., Cheu, R.L., Tan, C.W.: Development of an improved erp system using gps
and ai techniques. In: Proceedings of the 2003 IEEE International Conference on Intelligent
Transportation Systems, vol. 1, pp. 554–559. IEEE (2003)

43. Stephanedes, Y.J., Kwon, E., Michalopoulos, P.: On-line diversion prediction for dynamic
control and vehicle guidance in freeway corridors. 1287 (1990)

44. Sun, D., Luo, H., Fu, L., Liu, W., Liao, X., Zhao, M.: Predicting bus arrival time on the basis
of global positioning system data. Transportation Research Record 2034(1), 62–72 (2007)

45. Sun, F., Dubey, A., Samal, C., Baroud, H., Kulkarni, C.: Short-term transit decision support
system using multi-task deep neural networks. In: 2018 IEEE International Conference on
Smart Computing (SMARTCOMP), pp. 155–162. IEEE (2018)

46. Sun, F., Pan, Y., White, J., Dubey, A.: Real-time and predictive analytics for smart public
transportation decision support system. In: 2016 IEEE International Conference on Smart
Computing (SMARTCOMP), pp. 1–8. IEEE (2016)

47. Vanajakshi, L., Subramanian, S.C., Sivanandan, R.: Travel time prediction under
heterogeneous traffic conditions using global positioning system data from buses. IET
intelligent transport systems 3(1), 1–9 (2009)

48. Varga, A., Moore, R.: Hidden markov model decomposition of speech and noise. In:
International Conference on Acoustics, Speech, and Signal Processing, pp. 845–848. IEEE
(1990)

49. Wall, Z.R.: An algorithm for predicting the arrival time of mass transit vehicles using
automatic vehicle location data. Ph.D. thesis, University of Washington (1998)

50. Wessel, N., Allen, J., Farber, S.: Constructing a routable retrospective transit timetable from a
real-time vehicle location feed and gtfs. Journal of Transport Geography 62, 92–97 (2017)

51. Wessel, N., Widener, M.J.: Discovering the space–time dimensions of schedule padding and
delay from gtfs and real-time transit data. Journal of Geographical Systems 19(1), 93–107
(2017)



22 Yuming Ou

52. White, C.E., Bernstein, D., Kornhauser, A.L.: Some map matching algorithms for personal
navigation assistants. Transportation research part c: emerging technologies 8(1-6), 91–108
(2000)

53. Williams, B., Hoel, L.: Modeling and forecasting vehicular traffic flow as a seasonal arima
process: Theoretical basis and empirical results. Journal of Transportation Engineering 129,
664–672 (2003). DOI 10.1061/(ASCE)0733-947X(2003)129:6(664)

54. Williams, S.D., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R.M., Prawirodirdjo, L., Miller,
M., Johnson, D.J.: Error analysis of continuous gps position time series. Journal of
Geophysical Research: Solid Earth 109(B3) (2004)

55. Wu, J., Zhou, L., Cai, C., Dong, F., Shen, J., Sun, G.: Towards a general prediction system
for the primary delay in urban railways. In: 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), pp. 3482–3487. IEEE (2019)

56. Yu, B., Yang, Z.Z., Wang, J.: Bus travel-time prediction based on bus speed. In: Proceedings
of the Institution of Civil Engineers-Transport, vol. 163, pp. 3–7. Thomas Telford Ltd (2010)

57. Zahabi, S.A.H., Ajzachi, A., Patterson, Z.: Transit trip itinerary inference with gtfs and
smartphone data. Transportation Research Record 2652(1), 59–69 (2017)


