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Abstract
Most real-world problems involve some type of optimization problems that are often constrained. Numerous researchers 
have investigated several techniques to deal with constrained single-objective and multi-objective evolutionary optimization 
in many fields, including theory and application. This presented study provides a novel analysis of scholarly literature on 
constraint-handling techniques for single-objective and multi-objective population-based algorithms according to the most 
relevant journals and articles. As a contribution to this study, the paper reviews the main ideas of the most state-of-the-art 
constraint handling techniques in population-based optimization, and then the study addresses the bibliometric analysis, 
with a focus on multi-objective, in the field. The extracted papers include research articles, reviews, book/book chapters, and 
conference papers published between 2000 and 2021 for analysis. The results indicate that the constraint-handling techniques 
for multi-objective optimization have received much less attention compared with single-objective optimization. The most 
promising algorithms for such optimization were determined to be genetic algorithms, differential evolutionary algorithms, 
and particle swarm intelligence. Additionally, “Engineering,” “Computer Science,” and “ Mathematics” were identified as 
the top three research fields in which future research work is anticipated to increase.

1  Introduction

Real-world problems involve some optimization prob-
lems that are often constrained, and most of these prob-
lems are considered multi-objective optimization problems 
(MOOPs). No single solution exists for a MOOP; instead, 
different solutions generate trade-offs for different objec-
tives. Furthermore, MOOPs arise naturally in most fields, 

and solving them has been a challenging problem for 
researchers [1–3]. Evolutionary computation (EC) methods 
have been identified as more effective methods to tackle the 
challenges that arise from the MOOPs, for which the form of 
the Pareto-optimal front (discontinuity, nonconvexity, etc.) 
is not important [4, 5]. Moreover, most multi-objective evo-
lutionary algorithms (MOEAs) use the dominance concept 
[6–11].

To solve the constrained optimization of all real-world 
problems, constrained evolutionary algorithm optimization 
(CEAO) implements an evolutionary algorithm (EA) com-
bined with a constraint-handling technique (CHT). In work 
by [12], an infeasible individual will be divided into different 
categories based on their distances to the feasible region, 
and ranking will be conducted according to the classes. The 
authors of [13] introduced an approach that assigns high 
and low priorities to constraints and objective functions, 
respectively. The authors of [14] proposed a CHT that only 
considers the inequality constraints, wherein the algorithm 
uses tournament selection that has better convergence prop-
erties in comparison to the proportionate selection operator 
[15]. However, the latter algorithm employs niche count for 
all populations, which may increase the complexity of the 
computation.
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The authors of [16] introduced a novel approach that 
ignores any solution that violates any of the assigned con-
straints. The authors of   [17] first proposed the use of a 
genetic algorithm (GA) population-based approach plus a 
controlled mutation operator to keep diversity among fea-
sible solutions. The work of [18] proposed a CHT where 
three different non-dominated rankings of the population 
are performed using objective function values, different con-
straints, and a combination of all objective functions and 
values. Although the technique can handle infeasible solu-
tions carefully and maintain diversity in the population, the 
algorithm performs poorly in choosing parameter values and 
is computationally expensive. The authors of [19] developed 
an EA based on the nondominated sorting concept that uses 
the min–max formulation for constraint handling.

The authors of [20] ran the simulation of the non-dom-
inated sorting genetic algorithm II (NSGA-II) on a seven-
constrained nonlinear problem, which exhibited better per-
formance than Ray-Tai-Seow’s algorithm. The authors of 
[21] conducted an overview and analysis of the most popular 
CHTs using EAs along with pros and cons. The authors of 
[22] combined a penalty function and multi-objective opti-
mization technique, in which the ranking scheme is bor-
rowed from the latter technique. The authors of [23] sug-
gested two approaches, namely Objective Exchange Genetic 
Algorithm and Objective Switching Genetic Algorithm, for 
solving constrained MOOPs. A new partial order relation 
from the constraint MOOPs was proposed by [24], under 
which the Pareto optimum set satisfies the constraints. The 
authors of [25] introduced the Blended Space EA, which 
uses a rank obtained by blending an individual’s rank in the 
objective space to check dominance.

The authors of [26] introduced a two-phase algorithm, 
which separates the objective function and constraints. The 
authors of [27] introduced a MOO-based EA (Cai and Wang 
method), abbreviated as CW, in addition to three other mod-
els for constrained optimization. In the proposed approach, 
the simplex crossover was used to enrich the exploitation 
and exploration abilities. The authors of [28] proposed 
an EA based on an evolutionary strategy for constrained 
MOOPs. The method uses a min–max formulation for con-
straint handling in which feasible individuals and infeasible 
individuals evolve toward Pareto optimality and feasibility, 
respectively. The authors of [29] suggested Pareto Descent 
Repair (PDR) to search for feasible solutions. The authors 
of [30] proposed an adaptive tradeoff model for constrained 
evolutionary optimization to address three main issues: eval-
uating an infeasible solution in case the population contains 
only infeasible solutions,achieving a balance between feasi-
ble and infeasible individuals when the population contains 
both solutions; and selecting the feasible solution in case the 
population possesses only feasible solutions.

The authors of [31] suggested a heuristic hybrid of parti-
cle swarm optimization (PSO) and ant colony optimization 
for the optimum design of trusses, which showed to handle 
the problem-specific constraints using a fly-back mecha-
nism. The work of [32] suggested an infeasibility-driven EA 
(IDEA), which can retain a proportion of infeasible solutions 
among the population members and preserve diversity com-
pared to NSGAII. The authors of [33] investigated an EA 
solution for approximate Karush–Kuhn–Tucker (KKT) con-
ditions of smooth problems. The results of some test prob-
lems indicate that EA’s operators lead the search process to a 
point close to the KKT point. The authors of [34] discussed 
the most critical techniques, many of which were previously 
proposed [21, 35]. The previous work also addressed some 
state-of-the-art constrained handling techniques, includ-
ing feasibility rules based on GA [17], epsilon-constrained 
method [36], penalty functions [37, 38], and ensemble of 
constraint-handling methods [39, 40]. The authors of  [41] 
introduced an evolutionary scheme for handling boundary 
constraints, combined it with differential evolution (DE) 
and compared the proposed method with other boundary 
constraints handling techniques. The results indicated the 
proposed approach is much better than the existing methods.

The authors of [42] developed a water cycle algorithm, 
inspired by observations of the water cycle process that 
could be applied to a number of constraint optimization 
problems. The authors of  [43] introduced a population-
based algorithm based on the mine blast explosion concept 
and then applied the proposed approach to some constraint 
optimization problems in comparison to other well-known 
optimizers. The authors of [44] used a constraint consensus 
method that helps an infeasible individual to move towards 
the feasible region and then combined the method with a 
memetic algorithm. The research conducted by [45] devel-
oped a feasible-guiding strategy to guide the evolution of 
individuals, in which a revised objective function technique 
with a feasible guiding strategy based on NSGA-II is intro-
duced to handle constrained MOOPs. The study proposed 
by [46] proposed a class of constraint handling strategies 
in which infeasible individuals are repaired when they are 
considered in the search space and explicitly preserve the 
feasibility of the solutions.

The authors of [47] used a hybrid of PSO and GA to 
improve the balance between exploration and exploitation 
by using genetic operators, namely crossover and mutation 
in PSO. A few years later, the authors of [48] extended the 
parameter-less CHT so as to provide a balance between the 
feasible and infeasible solutions in a GA population. The 
authors of [49] proposed a new approach, known as the 
boundary update (BU) technique, which is able to handle 
constraints implicitly by updating variable bounds. The 
BU approach was tested on several constrained optimiza-
tion problems and found to be very efficient. The method 
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proposed by [49] possesses the potential to couple with 
MOEA.

It is noteworthy to mention that the majority of the men-
tioned studies focused on CHTs for single-objective optimi-
zation with little attention to multi-objective optimization. 
This is attributed to the fact that most constraint handling 
methods developed for single-objective optimization could 
also be modified for multi-objective optimization[34]. The 
main contribution of this work is reviewing the most state-
of-the-art constraint handling techniques in population-
based optimization for single- and multi-objective optimiza-
tion problems, and then the study addresses the bibliometric 
analysis, with a focus on multi-objective, in the field.

To attain a better understanding of the research field and 
to provide new insights from relevant publications, this work 
aimed to answer the following questions:

•	 RQ1: What are CHTs, and how are they important?
•	 RQ2: What are the disadvantages of the different CHTs?
•	 RQ3: What are the key subjects and keywords regarding 

constraint handling techniques?
•	 RQ4: Could we extract the most active journals, research-

ers, and countries in the field?
•	 RQ5: What are the basic statistics of constraint handling 

techniques for multi-objective population-bassed algo-
rithms?

•	 RQ6: What are the most active countries and affiliations 
in the field?

•	 RQ7: What are the gaps found in literature and future 
trajectory in the area?

The reminder of the study is as follows. Section  2 
describes the research methodology. Section 3 presents the 

CHTs in EAs. Section 4 describes the other approaches. Sec-
tion 5 addresses the benchmark test problems. Section 6 dis-
cusses the scientometric analysis. Section 7 provides a sum-
mary of the study along with recommendations for future 
research. Concluding remarks are offered in the last section.

2 � Research Methodology

The research methodology in this work was divided into 
several stages (Fig. 1). First of all, documents from data-
bases were gathered from databases, namely, Scopus and 
Web of Science (WOS). For this aim, the authors used 
special keywords, namely (TITLE-ABS-KEY (constrained 
AND multi AND objective AND evolutionary AND opti-
mization) OR TITLE-ABS-KEY (constraint AND han-
dling AND  multi AND  objective AND  evolutionary 
AND optimization) OR TITLE-ABS-KEY (constrained 
AND multi AND objective AND swarm AND optimiza-
tion) OR TITLE-ABS-KEY (constraint AND handling 
AND multi AND objective AND swarm AND optimiza-
tion) to find the related articles published as of May 4, 
2021. Supplementary A and B present the data extracted 
from Scopus and WOS, respectively. Since some of the 
articles were duplicates, they were identified and removed 
from the library in the next stage using Mendeley as a 
powerful reference manager. Also, some research ques-
tions for this study were designed. An overview, along 
with a general illustration of CHTs is provided in the next 
stage. A social network analysis, including co-occurrence, 
co-authorship, citation, and citation network analyses, 
is then conducted using VOSviewer [50, 51] and RStu-
dio. Also, some interesting analytical features, such as 

Fig. 1   Research Procedure
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number of pages and authors per article, were conducted 
in this stage. The last section required preparing the find-
ings, identifying important gaps, and determining future 
research directions.

3 � Constraint Handling Methods 
in Evolutionary Algorithms (RQ1)

Almost all real-world problems are considered constraint 
problems. A general form of a constrained multi-objective 
optimization problem (CMOOP) is described as follows 
(Eqs. 1, 2, 3):

s.t.

where F(x) is the objective vector; and t, n, and m are the 
number of objective function, equality, and inequality con-
straints, respectively. There is no single solution for a MOOP 
that simultaneously optimizes each objective, instead, there 
exists a number of Pareto optimal solutions. A Pareto front 
of possible solutions is called optimal or nondominated 

(1)Maximize (Minimize)F(x) =
(
f1(x),… , ft(x)

)

(2)hi(x) = 0i = 1,… ., n

(3)gj(x) ≤ 0j = 1,… ,m

if improving anyone's objective further would lead to a 
decrease in other objectives. According to previous surveys 
[21, 35], a simple taxonomy of the constraint handling meth-
ods in nature-inspired optimization algorithms is as follows:

- Penalty functions methods
- Decoderss
- Special operators
- Separation techniquess

The first and fourth techniques are discussed in detail 
later in the paper. As an example of decoders, [52] pro-
posed a homomorphous mapping (HM) method between an 
n-dimensional cube and feasible space. The feasible region 
can be mapped onto a sample space where a population-
based algorithm could run a comparative performance 
[52–55]. However, this method requires high computational 
costs. A special operator is used to preserve the feasibil-
ity of a solution or move within a special region [56–58]. 
Nevertheless, this method is hindered by the initialization 
of feasible solutions in the initial population, which is chal-
lenging with highly-constrained optimization problems. In 
addition, The authors of [59] presented a taxonomy of CHTs 
in MOEA as follows (Fig. 2):

•	 Penalty functions
•	 Separation method
•	 Retaining the infeasible solutions

Fig. 2   Taxonomy of different 
constraint handling methods in 
MOEA Penalty function
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•	 Hybrid methods

Generally, penalty function techniques are one of the 
most simple CHTs. There are several types of penalty func-
tions used with EAs, the most important ones include [60]:

•	 Death penalty
•	 Dynamic penalty
•	 Static penalty
•	 Adaptive penalty
•	 Stochastic ranking

Details regarding the penalty function methods will be 
discussed in the next section.

3.1 � Penalty Function Approach

The penalty function method is one of the easiest and 
most common ways to handle constraints in multi-objec-
tive evolutionary algorithms.

From a mathematical point of view, two types of pen-
alty functions could be considered as follows:

Interior methods
Exterior methods

In the first type of penalty function, interior methods, 
the penalty factor is selected such that the value will be 
small away from the constraint boundaries and need an 
initial feasible solution [59], whereas exterior methossds 
do not need an initial feasible solution [4]. Also, it should 
be noted that some of the infeasible solutions should be 
retained in the populations so that they are able to con-
verge to a solution, which lies in the boundary between 
the feasible and infeasible regions [61].

The penalty function method ignores any infeasible 
solution [62]. First, all constraints should be normalized, 
and for each solution, the constraint violations are calcu-
lated as follows (Eq. 4):

 where g(xi) refer to the normalized values for a given con-
straint  gj

(
xi
)
≥ 0, j = 1,… , J . Once the violations for the 

constraints are calculated, the values are added to determine 
the overall violation as follows (Equation. 5):

(4)wj

(
xi
)
=

{
|||
g
(
xi
)|||
, if g

(
xi
)
< 0

0, otherwise
,

(5)Ω
(
xi
)
= j =

J∑

j=1

wj

(
xi
)

Also, a penalty parameter is multiplied by the sum 
of constraint violations and then added to the objective 
function values. If a proper penalty parameter is selected, 
MOEAs will work well; otherwise, a set of infeasible 
solutions or poor solutions distribution is possible.

3.1.1 � Static Penalty Functions

In the static penalty proposed by  [63], the penalty coef-
ficient increases as a higher level of violation is reached. In 
fact, penalty functions do not change, a static penalty func-
tion is suggested, and several levels of violation are intro-
duced in which the static penalty parameter is changed in 
case higher levels of violation are achieved [64]. In the 
static penalty function, the expanded objective function 
is (Equation 6):

where Gj = max
{
0, gj(x)

}� ; and k = 1,…,l where l pre-
sents the number of violation levels.

3.1.2 � Dynamic Penalty Functions

In this category, functions are changed based on the itera-
tion number. The authors of [65] proposed the following 
dynamic penalty function, in which the penalty increases 
when the iteration number increases.

Dynamic multi-objective optimization problems 
(DMOOPs) involve the simultaneous optimization of dif-
ferent objectives subject to a number of given constraints, 
where the objective functions, constraints, and/or dimen-
sions of the objective space could change over time. EAs 
have acquired great attention among researchers for solv-
ing the above-mentioned problems.s

3.1.3 � Adaptive Penalty Functions

In this category, infeasible individuals are penalized 
according to the feedback taken from the search process. 
The authors of [66, 67] proposed a CHT based on the 
adaptive penalty function and distance measure, which 
both change as the objective function value and constraint 
violations of an individual varies.

Penalty-based constraint handing for multi-objective 
optimization is similar to single-objective problems in 
which a penalty factor is added to all the objectives. The 
authors of [67] proposed a self-adaptive penalty function 
suitable for solving constraint multi-objective optimiza-
tion problems using evolutionary algorithms. In the self-
adaptive penalty function method, the amount of penalty 
added to infeasible individuals are identified by tracking 

(6)�(x) = f(x) +

p∑

j=1

CkjGj
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the number of feasible individuals. Also, the method uses 
improved objective values instead of the original objective 
function values [68].

3.1.4 � Annealing‑Based Penalty Functions

The authors of [69] introduced a multiplicative penalty 
function based on simulated annealing. In this type of pen-
alty function, the temperature is decreased when the itera-
tion number increases, which leads to an increased penalty.

3.1.5 � Co‑Evolutionary‑Based Penalty Functions

The authors of [21] proposed a co-evolutionary approach 
in which the population is partitioned into two subpopula-
tions. The first population evolves solutions, and the sec-
ond population evolves penalty factors. In this approach, 
the penalty function considers information taken from the 
amount of constraint violations and a number of violations.

There are other types of penalty function methods, and 
Table 1 presents a summary and critique of the techniques 
for constraint handling.

3.2 � Separation of Objective Function 
and Constraints

Unlike the penalty function technique, another approach 
exists that separates the values of objective functions and 
constraints in the nature-inspired algorithms (NIAs) [70], 
which is known as the separation of objective function and 
constraints. The authors of [71] initially proposed the idea of 
dividing the search space into two phases. In the first phase, 
feasible solutions are found, and optimizing the objective 
function is considered in the second phase.

Representative methods of this type of CHT are as 
follows:

•	 Constraint dominance principle (CDP)
•	 Epsilon CHT
•	 Feasibility rules

Table 1   The important CHTs (penalty function)-RQ2 

Method Criticism Consequences

Death Penalty [16] •No information is used from infeasible points •Consumes many evaluations
•It may require the initialization of the popu-

lation and lack of diversity
•Low success rate

Static Penalty  [63] •It is required to set up a high number of 
penalty parameters

•Time-consuming

•It is also problem-dependent
Dynamic Penalty [65] •It is hard to drive good dynamic penalty 

functions in real cases
•Premature convergence or even an infeasible 

solution in some cases
•In some cases, this method converges to 

either an infeasible or feasible solution that 
is far from the global optimum  [181], [218]

Adaptive Penalty   [66] •Setting the parameters is difficult, such as 
determining the appropriate generational gap

•Time-consuming

•It requires the definitions of additional 
parameters [219]

Annealing Penalties [220] •The main disadvantage is its sensitivity to 
the values of its factors

•The performance of the algorithms is not good

•To handle linear constraints, the user should 
provide an initial feasible point to the 
algorithm

Self-adaptive Penalty [221, 222] •It defines four additional parameters that may 
affect the fitness function evaluations

•Time-consuming & weak or strong penalty 
during evolution

Segregated genetic algorithm (SGA) [223] •The main difficulty is selecting the penalties 
for each of the two sub-populations

•Time-consuming

Penalty function based on feasibility [17] •The main issue is maintaining diversity in 
the population, and in some cases, the use of 
a niching method combined with higher-
than-usual mutation rates is essential

•Premature convergence
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The next section provides further details about this type 
of constraint handling method.

3.2.1 � Constraint Dominance Principle

Three feasibility rules are applied to compare the two solu-
tions in the constraint dominance principle (CDP). If x1 is 
feasible and x2  is infeasible, then x1 would be better than 
x2 . If both solutions are infeasible, then the solution with 
a smaller constraint violation is better. If both are feasible, 
then the one dominating the other is better. The authors 
of  [20] adopted CDP to handle constraints in NSGAII 
(NSGAII-CDP), in which the population is divided into 
feasible and infeasible sub-populations. NSGAII-CDP 
first selects offspring from the feasible solutions and 
then selects solutions from the infeasible solutions. The 
authors of [72] also adopted CDP to handle constraints in 
the MOEA/D framework.

3.2.2 � ε‑Constrained (EC) Method

The basic principle of the ε-constrained method, first 
introduced by [73], is similar to the superiority of feasible 
solution (SF) proposed by [74] (Equations. 12–13). The 
epsilon value is updated until the parameter k reaches the 
control generations Tc . The authors of [75] embedded the 
epsilon CHT in MOEA/to set the epsilon value adaptively 
to r comparison. Also, the violation threshold is based on 
the constraint type, the feasible space size, and the search 
outcome. In the method proposed by [75], the infeasible 
solutions with violations less than threshold are identified 
(Eqs. 7–8).

where x� presents the top � th individual at initialization; and 
the cp parameter is selected between [2,10, 68].

3.2.3 � Feasibility Rules

The popularity of this method depends on its ability to be 
coupled to a range of algorithms without announcing new 
parameters (factors) [34].

The feasibility rules proposed by [17] are simple, could 
be integrated into a variety of algorithms without adding 
new parameters, and thus, are largely used in the research 
field. The authors of [76, 77] developed feasibility rules 
for the selection process, which have been adopted by 

(7)�(0) = V
(
x�
)

(8)𝜀(k) =

{
𝜀(0)

(
1 −

k

Tc

)cp

, 0 < k < Tc

0, k > Tc

different evolutionary algorithms such as DE, PSO, and 
GA. According to the number of feasible solutions, the 
search space could be divided into three phases as follows 
[68]:

•	 No feasible solution is found.
•	 There exists at least one feasible solution.
•	 Integrating the parent–offspring population has more 

feasible solutions than the size of the next generation 
population.

The feasibility rules used in multi-objective optimization, 
also known as the superiority of feasible solution (SF), are 
addressed as follows [68] (Equation 9):

where f m
worst

  and v(x) show the mth objective value of the 
worst feasible solution and the overall constraint violation, 
respectively.

3.2.3.1  Feasibility Rules in  Differential Evolution 
(DE)  Although the feasibility rules introduced by [17] have 
also been widely used by other researchers in DE [78], 
[79] [77, 80–83],  [84]  [30], they have been rarely used in 
multi-objective differential evolution. Particularly, [85] used 
Pareto dominance in constrained space instead of the sum 
of constraint violations. Later, the authors of  [79] adopted 
the Pareto dominance in Generalized Differential Evolution 
(GDE), but encountered difficulties when there exist more 
than three constraints and/or objective functions.

The authors of [78] proposed a scheme for partitioning 
the objective space using the conflict information for multi-
objective optimization. The authors of [86] introduced an 
operational efficient model based on Data Envelopment 
Analysis (DEA) and introduced DE along with the feasibility 
rules to optimize the mentioned model. The authors of [87] 
proposed a combined constraint handling framework, known 
as CCHF, for solving constrained optimization problems, in 
which the features of two well-known CHTs (i.e. feasibility 
rules and multi-objective optimization) were addressed in 
three different situations (feasible situation, infeasible situ-
ation, and semi-feasible situation).

3.2.3.2  Feasibility Rules in  PSO  The authors of  [88] 
employed feasibility rules as a constraint handling technique 
to recognize the most competitive PSO variant when solv-
ing constrained numerical optimization problems (CNOPs). 
In the research by [88], local-best was identified to be better 
than global best PSO. The authors of  [89, 90] adapted an 
artificial bee colony algorithm (ABC) to solve CNOPs by 
using feasibility rules by modifying the probability assign-

(9)fitnessm(x) =

{
fm(x) if x is feasible

f m
worst

+ v(x) otherwise
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ment for the roulette wheel selection. The authors of [91] 
compared different GA variants using the feasibility rules as 
the constraint handling method. In the work of [92], a hybrid 
version of PSO to solve constrained optimization problems 
was introduced and the authors found that the swarm at each 
generation is split into several sub-swarms. Also, the hybrid 
version applied the feasibility rules to compare particles in 
the swarm.

3.2.3.3  Feasibility Rules in GA  The authors of [93] proposed 
a GA with a new multi-parent crossover for solving con-
straint optimization problems, in which the feasibility rules 
were added to handle the constraints. The latter authors also 
solved constraint numerical optimization problems by using 
different GA variants along with feasibility rules and found 
that all GAs perform equally. In the work of [26] a two-
phase framework for solving constraint optimization prob-
lems was introduced. Specifically, the first phase ignores the 
objective function and the genetic algorithm minimizes the 
violation of the solutions, while the second phase optimizes 
bi-objective functions, including the original objective func-

tion and constraints satisfaction. Moreover, feasibility rules 
is applied to assign fitness values to the individuals.

3.2.3.4  Feasibility Rules in  Other Population‑Based Algo‑
rithms  Feasibility rules have been adapted to other popu-
lation-based algorithms, such as artificial immune systems 
[94–99], organizational evolutionary algorithm [100, 101], 
biogeography-based optimization [102], and bacterial for-
aging optimization [103].

3.3 � Retaining Infeasible Solutions in the Population

Another CHT is used to retain the infeasible individuals in 
the population. In other words, a constraint multi-objective 
optimization problem with m objective is transformed to an 
optimization problem with m + 1 objectives, which could 
save the infeasible solution during the evolution process [32, 
104, 105] proposed a constraint handling technique so that 
individuals with low Pareto rank and low constraint viola-
tion will be chosen.

Fig. 3   The main disadvantages 
of CHTs in MOEA- RQ2
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Retaining the infeasible 
individuals in the population

• Improper integration may cause low 
convergence speed and poor distribution.

Hybrid method

Nature-inspired 
constraint handling 

techniques

Feasibility rules
Multiobjective 

concept
Penalty function Epsilon method Special operators Stochastic ranking Ensemble tecniques

Fig. 4   State-of-the-art CHTs [34]
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3.4 � Hybrid Methods

Hybrid methods combine several CHTs to handle con-
straints. The authors of [106] addressed four different hybrid 
methods in their work: (1) the ensemble of constraint-han-
dling method [68] separates the population into three sub-
populations; (2) the adaptive trade-off model [107, 108] 
contains two different CHTs, (3) in the push and pull search 
[109], the population is pushed to the unconstrained Pareto 
front (push) then the population is pulled back to the Pareto 
front (pull), (4) the two-phase framework (ToP) [110] solves 
a constraint multi-objective optimization problem by first 
converting the objective functions into a single objective 
function via the weighting method then, in the second phase, 
a constrained MOEA is adopted to attain the Pareto feasible 
solutions. The disadvantages for each category are summa-
rized in Fig. 3.

The authors of [34] presented a state-of-the-art taxonomy 
of CHTs, which is illustrated in Figs. 4 and 5 presents the 
different state-of-the-art CHTs that have been used since 
2000. As mentioned, the authors of [17] first applied fea-
sibility rules to the genetic algorithm. The authors of [111] 
introduced stochastic ranking, which employs a user-
defined parameter instead of using penalty factors and is 
able to control the infeasible solutions based on the sum 
of constraint violation and objective function values. In a 
study of [38], the epsilon-constraint method was proposed 
to transform the constraint optimization problem into an 
unconstrained one. The authors of [38] addressed a multi-
constrained optimization problem based on the KS function. 
The authors of [112] proposed a boundary search approach 
inspired by the ant colony metaphor based on conducting 
a boundary search between a feasible and infeasible solu-
tion. The authors of [32] proposed an additional objective 
to solve a bi-objective optimization problem, where the first 
objective is the original problem and the second objective 
is the constraint violation measure. In the work of [39], a 
combination of four CHTs, namely feasibility rules, sto-
chastic ranking, self-adaptive penalty function, and the 

epsilon-constraint method to solve constraint numerical 
optimization problems, was addressed.

3.5 � Stochastic Ranking

The authors of [111] proposed the stochastic ranking (SR) 
approach to balance between the objective and penalty func-
tions stochastically. The method was tested using a strategy 
evolution on several benchmarks, and the results showed 
that the method is able to improve the search performance 
with a user-defined parameter without introducing compli-
cated variation operators. SR has also been coupled with 
other population-based algorithms, such as ant colony opti-
mization (ACO) [113, 114], differential evolutionary (DE) 
[115–117], and evolutionary programming (EP) [118].

3.6 � Ensemble Techniques

Ensemble CHTs provide a new research platform to tackle 
constrained multi-objective optimization problems. Com-
bining several CHTs could improve the capability of an 
approach compared with a single CHTs [34, 119]. For 
instance, [120] proposed a combination of four CHTs, 
namely nondominated sorting, constrained-domination 
principle, multiple constraint ranking, and dynamic pen-
alty function, and incorporated the proposed technique into 
an MOEA based on NSGAII. Some other ensemble CHTs 
have been reported [39, 121, 122]. Although the ensemble 
CHT has a competitive performance, it suffers from being 
parameter-dependent.

3.7 � Multi‑Objective Concept

Based on the multi-objective optimization concept, a con-
straint single-objective optimization problem is transferred 
to an unconstrained multi-objective optimization problem 
[4]. The multi-objective version of the optimization problem 
possesses an extra objective function, which presents the 
sum of constraint violation [32, 123–125].

Fig. 5   Timeline of different state-of-the-art CHTs
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The authors of [126] presented a taxonomy for constraint 
handling strategies in multi-objective GA, which include:

•	 Penalty function methods
•	 Separation method
•	 Special operators
•	 Repair methods

Among these strategies, the penalty function method is 
not straightforward in multi-objective GA since the fitness 
assignment is based on the non-dominance rank of a solu-
tion rather than its objective function values [127]. Yet, the 
penalty function method is one of the most popular CHTs 
in constraint multi-objective optimization. Whenever the 
multi-objective function and constraint violation for each 
constraint are assessed, the sum of violations is added to 
each objective function value considering the multiplica-
tion of the penalty parameter [128, 129].The authors of [23] 
proposed two approaches, namely OEGADO and OSGADO. 
The OEGADO runs several GAs in parallel so that each 
GA optimizes one objective, whereas The OSGADO runs 
each objective sequentially with a common population for 
all objectives.

3.8 � Repair Approaches

There are several techniques used as repair algorithms, in 
which the search space is reduced (since only feasible indi-
viduals are considered):

•	 In the permutation encodings method, each solution of 
an EA population is simply signified as an ordered list 
[130, 131].

•	 Repair procedures in binary representations, which could 
be shown as fixing the number of 1 s in binary represen-
tations and Hopfield networks [132, 133].

•	 Repair methods in graphs are represented as spanning 
trees and repairing graphs  [134, 135].

•	 Repair methods in grouping GAs, are proper for scenar-
ios where a number of items should be assigned to a set 
of groups [136, 137].

Pure EAs do not perform well in complex combina-
torial problems with a high number of constraints [138, 
139]. Single-solution-based algorithms (e.g. local search, 
simulated annealing) have good performance in exploita-
tion, while population-based algorithms (e.g. swarm intel-
ligence, EA are exploration-oriented. In these problems, 
the hybridization of population-based algorithms with 
single-based algorithms can improve the power of both 
exploration and exploitation [139–141]. A memetic algo-
rithm is a hybridization of an EA and a local search (LS) 
approach that LS is applied to improve the quality of the 
fitness function. On the other hand, LS could be used as 
a CHT [139], i.e. the local repair algorithm only consider 
feasible individuals leading to reducing the search space. 
Repair methods could be applied to EAs in several ways, 
such as in permutation encodings [142],  [131], in binary 
representation [143], and in graphs and trees [134–144]. 
Although repair algorithms have numerous advantages, 
some disadvantages do exist. For instance, repair algo-
rithms are problem-specific and must be designed for a 
specific problem [145]. Table 2 shows a summary of the 
disadvantages of the state-of-art CHTs.

4 � Other Approaches

Table 3 provides a summary of novel approaches proposed 
between 2020 and 2021 to tackle constrained multi-objec-
tive optimization problems. Based on Table 3, there are 
signs of a renewed interest in constrained multi-objective 
optimization, even the clear superior amount of research 
in constrained single-objective optimization.

As a general, a taxonomy of CHTs in MOEAs could 
be summarized in Fig. 6. The CHTs presented in Fig. 6 
have been explained in details in previous sections. As it 

Table 2   A summary of disadvantages of the state-of-art CHTs- RQ2

Method Disadvantages

Ensemble method Although the ensemble CHT has a competitive performance, the method is parameter-dependent
Repair method Repair algorithms are problem-specific and, thus, must be designed for a specific problem
Feasibility rules The method is likely to lead to premature convergence
Stochastic ranking Although the method has been employed in several nature-inspired algorithms, it is not often 

used for the multi-objective version of the algorithms
Epsilon-constraint method In some cases, premature convergence has been reported, while other works report that the 

method relies on gradient-based mutation
Multi-objective concept It may require gradient calculation [34]



A Review on Constraint Handling Techniques for Population‑based Algorithms: from…

1 3

is mentioned earlier, most constraint handling techniques 
developed for single-objective optimization problems can 
be applied to MOOPs. It is worthy to note that among 
them, stochastic ranking [72] [146]–150], penalty func-
tion [23, 67], multi-objective method [32] [151] [127] 

[152], Epsilon constrained method [153–160], transform-
ing method [106, 161, 100, 101, 162–166], feasibility 
rules (with a modification) [167, 168], hybrid methods 
[169–173], and repair operators [148, 149, 174–178] have 
been addressed to multi-objective optimization problems.

Table 3   Novel approaches for 
constrained multi-objective 
optimization problems between 
2020 and 2021

Source Method

KKT points for constrained multi-objective optimization [224, 225]
IoT and cloud computing [226]
Indicator-based constrained handling technique [227]
Decomposition-based algorithm [228, 106]
Push and pull search embedded [166]
Multi-stage evolutionary algorithm [229, 230]
Partition selection [161]
Surrogate-assisted evolutionary algorithm [150]
Purpose-directed two-phase multi-objective differential evolution [231]
Directed Weight Vectors [232]
Gradient-based repair method [233]
Detect and scape strategy [234]
Reference points-based method [235]
multi-objective wireless network optimization using the genetic algorithm [236]
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5 � Benchmark Test Problems

Many benchmark or test problems have been suggested 
to measure the evolutionary algorithms' performance. On 
the other hand, benchmark problems help researchers bet-
ter understand an algorithm's strengths and weaknesses 
[179]. These test problems are classified as single-objec-
tive such as Rosenbrock [180], G01-G09  [181], Himmel-
blau’s problem [182], Welded Beam [183], Pressure Vessel 
[184], Speed Reducer [185], Corrugated bulkheads design 
[186], Heater exchanger [187], Multiple disk clutch brake 
[188],

Rolling element bearing [189], Car side design [190], 
Stepped beam design problem [191], multi-objective 
including BNH [192], OSY [193],, ZDT [194], BT [107, 
108], Truss2D [195], and many-objective optimization 
problems, for example, C-DTLZ [196], WFG[197], DTLZ 
[198]. Among the above-mentioned test problems, some of 

them are still unconstrained. More details are suggested in a 
review paper in the field by [197].

6 � Scientometric Analysis (RQ3‑ RQ6)

A scientometric analysis is conducted to scientifically meas-
ure and analyze the literature in a particular field of study 
and has attracted much attention from researchers 119–208]. 
To perform the analysis in this work, VOSviewer [51] and 
RStudio were used. The following sub-sections provide new 
insight into the scientometric analysis in the field.

6.1 � Citation Statistics

Figure 7 displays the trend of published documents, which 
shows that the number of documents in the field signifi-
cantly increased from 2003 until the end of 2021 (just 
above 470 documents).

Fig. 7   Trend of published docu-
ments

Fig. 8   Combo chart of number 
of documents vs. total citations 
(Scopus)
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Figure 8 presents a combo chart of the number of docu-
ments vs. total citations. In 2002, the most citations was 
achieved (the paper entitled: “A fast and elitist multi-
objective genetic algorithm: NSGA-II” [20] has received 
more than 43,000 citations, according to Scopus). It is 
apparent that the number of citations has increased dra-
matically according to the trend.

According to the WOS, the number of citations of the 
top articles in the field was analyzed and is presented in 
Supplementary C (Fig. 1). Of the 735 related documents 
in WOS, about 45,824 citations were identified from the 
related papers, with an average of 1992.35 citations per 
year and an average of 62.35 citations per item. [20, 209, 
210] are the top 3 cited articles with 20,013, 2609, and 
1591 citations in WOS, respectively.

6.2 � Statistics Based on Document Types

Among the document types, including articles, proceedings 
papers, reviews, and other items indexed by WOS, a total 
of 735 publications on constraint handling multi-objective 
population-based optimization algorithms were found 
(Table 4). From the search, articles were the most popular 

document type, comprising a total of 522 articles (71.02% 
of 735 documents) with 2.60 authors per publication (APP). 
Also, articles as the document type had the highest CPP2021 
of 84.10, followed by proceedings papers with TP of 220 
(29.93% of contributions and APP = 2.13). Moreover, there 
is a significant difference between the TC2021 article and 
the proceedings paper.

Figure 9 presents the distribution of documents based on 
different types, according to WOS. It is clear from the figure 
that conference papers have the most contributions before 
2010, followed by articles. However, since 2010, articles 
have had the most contributions in the field. It is also inter-
esting to note that book/book chapters have been published 
since 2000. However, most book/book chapters have been 
published after 2010.

6.3 � Publication Statistics Based on Journal

Table 5 presents the top 20 journals that have published the 
greatest number of constraint handling multi-objective pop-
ulation-based algorithms papers based on Scopus. Accord-
ingly, Lecture Notes In Computer Science (117), Applied 
Soft Computing Journal (57), and Swarm and Evolutionary 

Table 4   Citations analysis 
based on document type

TP, AU, APP, TC2020, and CPP2020 present total number of articles; total number of authors; total num-
ber of authors for each publication; total citations from WOS since publication year to the end of 2020; 
total citations for each paper, respectively; Other items: early access and letters  [237, 238].

Document type TP % AU APP TC2021 CPP2021

Article 522 71.02 1362 2.60 43,904 84.10
Proceedings paper 220 29.93 469 2.13 1,543 7.01
Review 16 2.17 20 1.25 806 50.37
Other items 23 3.12 134 5.82 468 20.34

Fig. 9   Type of research outputs
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Computation (30) are most are most utilized, which pre-
dominate in the field of optimization and evolutionary 
computations.

A total of 735 articles were published in 399 journals, 
which are classified among the 51 WOS categories in SCI-
EXPANDED. Table 6 lists the 10 most productive WOS 

Table 5   The top 20 sources that have published the greatest number of constraint handling multi-objective population-based algorithms (Scopus)

# Scopus # of Documents # Scopus # of 
docu-
ments

1 Lecture notes in computer science 117 11 IEEE Access 32
2 Applied soft computing journal 57 12 Swarm and evolutionary computation 30
3 “International journal of electrical power and 

energy systems”
27 13 Engineering optimization 21

4 “Kongzhi Yu Juece control and decision” 13 14 Soft computing 16
5 Energy conversion and management 12 15 Studies in computational intelligence 16
6 IEEE transactions on cybernetics 12 16 Advances in intelligent systems and computing 15
7 Structural and multidisciplinary optimization 13 17 Communications in computer and information science 14
8 IEEE transactions on evolutionary computation 27 18 Engineering applications of artificial intelligence 14
9 Electric power systems research 10 19 Energy 13
10 Applied intelligence 12 20 Information sciences 13

Table 6   The top 10 productive 
WOS categories

# Web of Science category TP AU APP TC2021 CPP2021

1 “Computer science” artificial intelligence” 271 628 2.31 35,074 129.42
2 “Engineering electrical” electronic” 171 463 2.70 3688 21.56
3 “Computer science” interdisciplinary applications” 92 243 2.64 2691 29.25
4 “Operations research” management science” 61 131 2.14 1541 25.26
5 “Computer science” theory methods” 171 385 2.25 32,492 190.011
6 “engineering multidisciplinary” 64 167 2.60 2377 37.14
7 “Mathematical interdisciplinary applications” 45 116 2.57 645 14.33
8 “Energy fuels” 41 122 2.97 950 23.17
9 “Computer science information systems” 48 124 2.58 746 15.54
10 “Automation control systems” 60 155 2.58 1178 19.63
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categories. A total of 271 articles (36.87% of 735 articles) 
were published in the first category (Computer Science 
Artificial Intelligence), of which 83.39% were published in 
Engineering Electrical Electronic (23.26%) and Computer 
Science Theory Methods (23.26%). Comparing the top 10 

categories, the highest CPP2021 of articles published in the 
Computer Science Theory Methods category is 190.011, 
which includes the paper entitled: “A fast and elitist multi-
objective genetic algorithm: NSGA-II” by [20], and the 
highest APP for articles published in the Energy Fuels cat-
egory is 2.97.
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Figure 10 provides a comparison of the development 
trends of the top four productive WOS categories, includ-
ing “Computer Science Artificial Intelligence”, “Engi-
neering Electrical Electronic”, “Computer Science The-
ory Methods”, and “Computer Science Interdisciplinary 
Applications”. Between 2001 and 2021, Computer Science 
Artificial Intelligence was the most predominant category 
and has possessed the highest number of publications since 
2004, excluding the period between 2007 and 2008. The 
three other categories possess fluctuations between 2001 
and 2021, and as of writing this paper, “Computer Science 
Theory Methods” and “Engineering Electrical Electronic” 
have the same TP of 171.

6.4 � Publication Statistics by Countries

From Fig. 11, China, India, and the USA are the top three 
active countries in the field according to Scopus (respec-
tively), while China, the USA, and India are the top 3 
active territories in the field based on WOS, respectively. 
It is pertinent to mention that the USA is ranked second 
based on WOS, but India is ranked second, according 
to Scopus. Also, it can be seen that there is a signifi-
cant difference between the first rank (China) and second 
rank (India) based on the number of publications indexed 
by Scopus. Moreover, Fig. 12 presents the collaboration 
among countries, where the links across the circles depict 
the collaborations, and the circles' size represents the 
countries' activities in the field. The green and yellow 
colors present the keywords that have been used recently, 

while the dark blue indicates those used earlier (around 
2008).

Figure 13 displays the growth rate of the top 5 active 
countries in comparison to the world. While China and 
the USA have smooth trends between 2000 and 2021, 
India, the UK, and Australia show some fluctuations. 
Between 2002 and 2003, India presented the highest 
growth rate, then the trend continued smoothly until 2014, 
when it increased until 2015. The trend for the UK shows 
two growths between 2002–2003 and 2007–2008. While 
the number of articles published by Australia is much less 
than the four other countries, there was a significant rise 
between 2015 and 2016.

6.5 � Statistics Based on the Subject Area

Figure 14 presents the distribution of articles based on the 
subject area. Computer science, Engineering, and Math-
ematics possess the most contributions, with 936, 619, and 
580 published articles, respectively. Comparatively, Phar-
macology, Medicine, and Economics own the least contri-
butions, with 1, 4, and 6 published documents in the field, 
respectively.

6.6 � Statistics Based on Authors

Figures 15 shows the top authors with the most publication 
according to Scopus (Supplementary C, Figure 2 presents 
statistics based on WOS). Kalyanmoy Deb from “Michigan 
State University (USA)”, Ray T. from “University of New 
South Wales (Australia)”, and Carlos A. Coello Coello from 
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“Cinvestav-IPN (Mexico)” with 38, 32, and 28 publications 
are the top 3 authors in the field indexed by Scopus. WANG 
Y from “City University Hong Kong (Hong Kong)”, Carlos 
A. Coello Coello from “Cinvestav-IPN (Mexico)”, and Ray 
T. from “University of New South Wales (Australia)” are 
the top 3 authors in the area with 21, 20, and 17 documents 
(indexed by WOS), respectively. According to WOS, 1717 
authors have worked on constraint multi-objective popula-
tion-based optimization.

In total, 0.5241% of authors own more than 10 docu-
ments; 1.6307% possess between 5 and 10 documents; 
4.5428% have between 3 and 5 papers; 11.7647% own 2 
papers; and 81.5377% possess 1 document (Fig. 16). Fig-
ure 17 presents the collaboration among the authors, where 
links across the circles depict the collaborations, and the 
circles' size shows the authors activities in the field. In addi-
tion, the yellow color represents recent activity, and the dark 
blue color depicts the contributions prior to 2014.

6.7 � Statistics on Keywords

Keywords indicate the basic parts of a certain field of 
research and could offer insight into the organization and 
knowledge provided in the articles. Figure 18 provides an 
overlay visualization of the co-occurrence analyses via a 
network map based on the Scopus database. Each node in 
the network represents a keyword, and the link between 
nodes indicates the co-occurrence of the keywords. The top 
keywords in Scopus include multi-objective optimization, 
Pareto optimal solution, evolutionary algorithm, artificial 
intelligence, machine design, stochastic systems, distributed 
power generation, and reliability. The color of each circle 
represents the identified cluster, and each circle's size illus-
trates the keywords' importance. Table 7 presents the top 
keywords of 1-word, 2-word, and 3-word lengths extracted 
from Scopus. Specifically, optimization, algorithm, and 
scheduling are the top 1-word length keywords indexed by 

Fig. 14   Distribution based on the subject area (Scopus)
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Scopus; genetic algorithm, constraint handling, and con-
strained optimization are the top 2-word length keywords; 
and constraint-handling techniques, Particle Swarm 

Optimization (PSO), and multi-objective optimization are 
the top 3-word length keywords indexed by Scopus.

6.8 � Publication Statistics by Number of Pages 
(Pages Count)

As of writing this paper, May of 2021, approximately 
22395.8 pages of documents on constraint handling multi-
objective population-based algorithms were published, with 
an average of 13.0435 pages per paper. About 22.53931% of 
the articles possess between 10 and 15 pages; 12.17239% of 
the manuscripts are between 15 and 20 pages; 39.07979 % 
of the papers are between 5 and 10 pages; and 67.09377% 
of the manuscripts are between 5 and 20 pages. Figure 19 
presents the distribution of the manuscripts based on page 
count.

7 � Summary and Future Research (RQ7)s

The paper presents an analysis and overview of CHTs 
applied to multi-objective population-based algorithms. The 
first part of the paper defines the main idea of CHTs, and 
the second part discusses a detailed scientometric analysis 
of the field. Some important technical points are extracted 
as follows:
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Fig. 17   Collaboration among the authors (overlay visualizatio

Fig. 18   Network visualization of keywords
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•	 In the death penalty method, no information is used from 
infeasible points.

•	 The static penalty method is problem-dependent and may 
need several penalty parameters.

•	 Dynamic penalty method may converge to either an 
infeasible or feasible solution that is far from the global 
optimum.

•	 The main disadvantage of the annealing penalty method 
is its sensitivity to its factors' values.

•	 Setting parameters in the adaptive penalty method is dif-
ficult, and the method needs the definitions of additional 
parameters.

•	 The additional parameters may affect the fitness function 
evaluations in the self-adaptive penalty method.

•	 The main difficulty in SGA is selecting the penalty fac-
tors for each sub-population.

•	 If the population is completely infeasible, choose solu-
tions with a smaller overall constraint violation.

•	 Retaining a proportion of infeasible solutions in the pop-
ulation may enhance the convergence and diversity of the 
algorithm.

•	 Two types of CHTs, namely repair methods and special 
genetic operators, focus only on the feasible space.

•	 Feasible solutions could be used to repair infeasible solu-
tions (repairing population).

•	 According to the constraint dominance principle, the 
feasible solution is always preferred over the infeasible 
solution, which may cause loss of important information 
from infeasible individuals.

Table 7   Top 1-,2-, and 3- word keywords used in the field

# 1-Word Frequency 2-Word Frequency 3-Word Frequency

1 Optimization 680 Genetic algorithms 367 Constraint-handling techniques 74
2 Algorithms 360 Constraint handling 184 Particle swarm optimization (PSO) 565
3 Scheduling 141 Constrained optimization 1071 Multi-objective optimization 467
4 NSGA-II 97 Multi-objective optimization 1339 Particle swarm optimization 205
5 Design 96 Evolutionary algorithms 1081 Constrained multi-objective optimization 68
6 Algorithm 59 Differential evolution 208 Electric load dispatching 66
7 Reliability 33 Problem solving 239 Multi-objective optimization problem 222
8 Investments 33 Multi-objective 307 Differential evolution algorithms 71
10 Benchmarking 113 Decision making 135 Pareto optimal solutions 121
12 Costs 57 Pareto principle 281 Constrained multi-objective optimizations 213

Fig. 19   Distribution of documents based on page count
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•	 Retaining a huge number of infeasible solutions may 
cause low convergence speed.

•	 Although special operators are known to be highly com-
parative CHT, their applicability is limited, which makes 
this technique difficult to run.

•	 Decoder is an interesting CHTs, but it involves a high 
computational cost and, thus, is now rarely used.

•	 Although the ensemble CHT has a competitive perfor-
mance, the method is parameter-dependent.

•	 Although the stochastic ranking method has been 
employed in several nature-inspired algorithms, it is not 
often used for the multi-objective version of the algo-
rithms.

•	 Epsilon constraint method has been known as a powerful 
CHT, however, in some cases, premature convergence 
has been reported, while other works report that the 
method relies on gradient-based mutation.

•	 Using multi-objective concept as a CHT may require gra-
dient calculation.

•	 Recently, feasibility rules have been recognized as one of 
the most powerful CHTs, which are simple and flexible; 

however, one of the major disadvantages of this method 
is premature convergence since this technique favors fea-
sible solutions.

As a future direction, the authors have identified the top 
5 most-used keywords and research fields in the last three 
years (2019–2021) based on Scopus. Tables 8 and 9 show 
the mentioned keywords and research fields for this time 
period. It is obvious that multi-objective optimization, con-
straint optimization, and evolutionary algorithms are the 
most famous keywords in the last three years. It should be 
noted that CHTs for multi-objective optimization has not 
received much attention compared with single-objective 
optimization. It is suggested that researchers focus on such 
methods in future works. Also, the BU technique, which 
is able to handle constraints directly, possesses the poten-
tial to couple with a multi-objective evolutionary algorithm 
(MOEA) as well. Furthermore, it is suggested to focus on 
constraint handling techniques for many-objective optimiza-
tion problems (with more than three objectives) as it is not 
received much attention. In addition, according to Tables 9 
and, GA, DE, and PSO remain the top 3 algorithms, which 
are expected to be further explored in the future. Moreover, 
Engineering, Computer Science, and Mathematics have been 
the top 3 research fields in the last two years, and it is pro-
jected that research work will advance in these areas in the 
future. It is also recommended to review the applications 
of constrained multi-objective evolutionary algorithms in 
different sectors; including engineering design problems 
[212], scheduling optimization problems [176] [214–216], 
and resource optimization problems  [217].

8 � Discussion and Conclusion

Constraint population-based optimization involves using a 
population-based algorithm combined with a CHT to solve 
a constraint optimization problem. The first part of the paper 
defines the main idea of CHTs, and the second part discusses 
detailed scientometric analysis of the field. It is noteworthy 
that most of the mentioned studies in the literature focused 
on CHTs for single-objective optimization with little atten-
tion to multi-objective optimization. This paper presents 
an analysis and evaluation of the CHTs, focusing on multi-
objective optimization population-based algorithms, which 
support evolutionary and swarm intelligence algorithms. 
To the best of our knowledge, this study is the first anal-
ysis of relevant journals evaluated over the most relevant 
journals, keywords, authors, and articles in this field. All 
related papers, including research articles, reviews, book/
book chapters, conference papers, etc., were extracted and 
analyzed. Publication statistics by year, journal, country, 

Table 8   Top 5 keywords in 2019 and 2021

# Keywords (Scopus) Frequency

1 Pareto principle 65
2 Genetic algorithms 72
3 Differential evolution 45
4 Particle swarm optimization (PSO) 132
5 Economic and social effects 34
6 Benchmarking 32
7 Decision making 36
8 Energy utilization 28
9 Scheduling 39
10 Pareto optimal solutions 24

Table 9   Top 5 research fields in 2019 and 2021

# Research fields (Scopus) (%) 
Contri-
bution

1 Engineering 24.3
2 Computer science 31.8
3 Mathematics 17.2
4 Energy 5.9
5 Decision sciences 4.1
6 Materials science 4.1
7 Business, management and accounting 1
8 Environmental science 2.1
9 Physics and astronomy 2.8
10 Earth and planetary sciences 1.4
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affiliation, author, number of pages, number of authors, and 
keywords are discussed in this paper as follows:

•	 According to WOS, 45,824 citations have been received 
by the related papers, which is an average of 1992.35 
citations per year and an average of 62.35 citations per 
item in WOS.

•	 Based on WOS, articles were the most popular docu-
ment type, with a total of 522 articles (71.02%), and 2.60 
authors per publication.

•	 Articles as the document type had the highest CPP2021 
of 84.10, followed by proceedings papers with TP of 220 
(29.93% of contributions and APP = 2.13).

•	 Conference papers have the most contributions before 
2010 followed by articles. However, since 2010, articles 
have had the most contributions in the field.

•	 A total of 271 articles (36.87% of the total), with 2.31 
authors per publication (on average), were published in 
the Computer Science Artificial Intelligence category, 
according to WOS.

•	 In total, 271 articles (36.87% of 735 articles) were pub-
lished in the first category (Computer Science Artificial 
Intelligence), and a total of 83.39% were published in 
the first three categories: Engineering Electrical Elec-
tronic (23.26%) and Computer Science Theory Meth-
ods (23.26%).

•	 The highest CPP2021 of articles published in Computer 
Science Theory Methods is 190.011, which includes 
the paper “A fast and elitist multi-objective genetic 
algorithm: NSGA-II” by [20], and the highest APP for 
articles published in ‘Energy fuels’ is 2.97.

•	 “Computer Science Artificial Intelligence,” “Engineer-
ing Electrical Electronic,” “Computer Science Theory 
Methods,” and “Computer Science Interdisciplinary 
Applications” were the top 4 productive WOS catego-
ries in the field.

•	 China, USA, and India were the top three active coun-
tries in the field, according to WOS.

•	 Computer science, Engineering, and Mathematics have 
the most contributions, with 936, 619, and 580 pub-
lished articles, respectively. Pharmacology, Medicine, 
and Economics own the least contributions, with 1, 4, 
and 6 published documents in the field, according to 
Scopus.

•	 Kalyanmoy Deb from “Michigan State University 
(USA)”, Ray T. from “University of New South Wales 
(Australia)”, and Carlos A. Coello Coello from “Cin-
vestav-IPN (Mexico)” are the top 3 authors in the field 
with 38, 32, and 28 publications (indexed by Scopus), 
respectively. WANG Y from “City University Hong 
Kong (Hong Kong)”, Carlos A. Coello Coello from 
“Cinvestav-IPN (Mexico)”, and Ray T. from “Uni-
versity of New South Wales (Australia)” are the top 

3 authors in the area with 21, 20, and 17 documents 
(indexed by WOS), respectively.

•	 Almost 0.5241% of authors own more than 10 docu-
ments; 1.6307% possess between 5 and 10 documents; 
4.5428% have between 3 and 5 papers; 11.7647% of 
authors own 2 papers; and 81.5377% of authors possess 
1 document.

•	 Approximately 22.53931% of the articles possess 
between 10 and 15 pages; 12.17239% of the manu-
scripts are between 15 and 20 pages; 39.07979% of the 
papers are between 5 and 10 pages; and 67.09377% of 
the manuscripts are between 5 and 20 pages.
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