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Domain-adversarial Network Alignment
Huiting Hong, Xin Li Member, IEEE, Yuangang Pan, and Ivor W. Tsang Member, IEEE

Abstract—Network alignment is a critical task to a wide variety of fields. Many existing works leverage on representation learning to
accomplish this task without eliminating domain representation bias induced by domain-dependent features, which yield inferior
alignment performance. This paper proposes a unified deep architecture (DANA) to obtain a domain-invariant representation for
network alignment via an adversarial domain classifier. Specifically, we employ the graph convolutional networks to perform network
embedding under the domain adversarial principle, given a small set of observed anchors. Then, the semi-supervised learning
framework is optimized by maximizing a posterior probability distribution of observed anchors and the loss of a domain classifier
simultaneously. We also develop a few variants of our model, such as, direction-aware network alignment, weight-sharing for directed
networks and simplification of parameter space. Experiments on three real-world social network datasets demonstrate that our
proposed approaches achieve state-of-the-art alignment results.

Index Terms—Network alignment, Representation Learning, Adversarial Learning, Graph convolutional networks.
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1 INTRODUCTION

N ETWORK alignment seeks to find the correspondence
of nodes (a.k.a. anchor links) across two or more

networks. It is of importance in a wide variety of fields.
For instance, network alignment can be applied to connect-
ing identical users across different social network medias
(refer to as different domains in the sequel). The estab-
lished user correspondence could alleviate the sparsity issue
of analyzing individual social networks with information
fusion, benefiting applications such as preferred link pre-
diction and cross-domain recommendation. Similarly, net-
work alignment can help construct a more compact knowl-
edge graph based on the existing vertical or cross-lingual
knowledge bases, thus to obtain better knowledge infer-
ence. In Bioinformatics, aligning protein-protein interaction
networks from different species has been widely studied in
order to determine the common functional structures.

Regarding the network alignment task, there exists a
basic assumption that affiliated nodes should have a con-
sistent connectivity structure across the different networks.
The approaches exploring the topological consistency of-
fer a universal solution to the alignment task, since the
informative node attributes are usually unavailable in re-
ality. Recently, representation learning of networks a.k.a.
network embedding has provided a means to obtain low-
dimensional representations of nodes by exploiting the
structural information of the network. Then, the network
alignment could be performed by exploring a common low-
dimensional subspace of networks or a subspace transfor-
mation between networks.

However, in the literature, existing embedding-based
alignment methods, e.g. SNNA [1] and IONE [2], fail to ex-
plicitly capture domain-invariant features, which therefore
suffer from domain representation bias w.r.t. the network
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Fig. 1. An SVM trained domain classification on 2D representations of
vertices obtained by existing alignment approaches in Douban-weibo
dataset.

alignment task1. Most network-embedding approaches tend
to obtain the local structures and high-order structures
simultaneously in the embedded space. For example, IONE
leveraged LINE [3] to preserve the second-order proximity
explicitly and retain high-order structures implicitly via
linkage propagation. The learned embedding therefore in-
cludes domain-dependent signals, which may be suitable
for distinguishing between the domains/networks, but is
inborn defective for the alignment task due to inadequate
learning of domain-invariant features.

Fig.1(a) and 1(b) show the 2D representations of nodes
of two networks (Douban and Weibo), which are obtained
from two state-of-the-art network alignment approaches
SNNA[1] and IONE[2] respectively. For clarity, we only plot
2000 vertices randomly sampled from the test set. The exper-
imental setup is consistent with that described in Sec.4. The
decision boundaries of SVM is shown in the background
color. The SVM domain classifiers are trained on the learned
representations and the testing accuracies are 0.99 and 0.95

1. In this paper, the domain representation bias refers to the domain-
dependent features which are irrelevant to the specific task but is able
to represent domains. For example, RGB value could be thte key feature
to distingish from colorful digits and grayscale digits, but shouldn’t be
the key feature to disignuish from each digit.
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respectively. We believe that the representations somehow 
encoded the domain-dependent feature, for example, the 
signal of the average node degree (the average node degree 
of Douban is twice that of Weibo, see Table 1). And we argue 
that such domain-dependent features learned by existing 
network alignment approaches are not informative to align 
the networks, as the domain of each network is previously 
known to the alignment task. And sometimes the domain-
dependent features may even lead to an inferior alignment 
performance. Thus, suppressing the learning of domain-
dependent features/domain representation bias to lead the 
representations of nodes more task-specific t o b oost the 
alignment performance is the basic motivation in this paper.

In the literature, there are some existing works 
which introduce domain-dependent features and domain-
independent features in pursuit of better performance for 
cross-domain tasks, e.g., cross-domain sentiment analysis 
and image segmentation [4]. These features are usually 
learned through manual selection or (and) feature augmen-
tation, which is applicable in the field o f n atural language 
processing and image processing, where explicit semantics 
and rich attributes are accessible [5]. However, it cannot 
be applied to network embedding, where only structural 
information is available.

Inspired by the recent advancement of domain adapta-
tion learning [6], [7], which is trying to obtain features that 
are invariant to the change of domains, we propose to incor-
porate an adversarial learning of domain classifier into the 
process of network embedding within an alignment frame-
work to suppress the generation of the domain-dependent 
features for better alignment performance. The framework 
- Domain-Adversarial Network Alignment (DANA) mainly 
consists of two components, namely, task-driven network 
embedding module and adversarial domain classifier.

In this paper, the task-driven embedding of networks is 
accomplished via graph convolutional networks (GCNs) [8],
[9], known as being powerful on graph-structured data. In-
stead of enforcing the anchors’ representations to be same as 
in most existing works, e.g., IONE, we maximize a posterior 
probability distribution of anchors over the parameter space 
to supervise GCNs in pursuit of a more flexible network 
representation. On the other hand, the embedding process is 
also supervised by the adversarial domain classifier, which 
is meant to perform an adversarial learning of the domain 
classifier t o o btain t he d omain-invariant f eatures w.r.t. the 
alignment task. That is to say, the framework is optimized 
in order to minimize the loss of the alignment and maximize 
the loss of the domain classifier simultaneously.

To better deal with the alignment task involved with 
directed networks, e.g., Twitter where follower-followee 
relations2 are maintained on purpose in Twitter to constitute 
a directed network/graph, we further adapt the framework 
by developing a direction-aware structure to characterize 
the directed edges in networks. Moreover, weight-sharing 
within the network embedding module is facilitated to 
obtain similar subspaces for each domain/network, which 
generally benefits t he a lignment d etermination, w hile re-

2. In twitter, someone is following you does not mean that you 
are necessarily following them back. In contrast, the friendship on 
Facebook is always bidirectional, meaning that the contact graph is 
undirected.

ducing the number of parameters to speed up the training
process.

The main contributions of this paper can be summarized
as follows:

• We propose a representation learning-based adver-
sarial framework to perform the network alignment
tasks. Unlike most existing approaches which for-
mulate the alignment task as the mapping problem
between networks, the adversarial learning adopted
here is to steer the feature extraction towards align-
ment tasks by suppressing the domain-dependent
features which are considered task-unrelated for
network alignment. To best of our knowledge, we
are the first to argue that it is helpful to elimi-
nate/suppress the domain-dependent features to im-
prove the performance of network alignment.

• The mathematical models and deductions, and ex-
periments in the paper are specifically tailored to
the conventional alignment tasks and tasks involved
with directed networks. In particular, the objective
function leverages a probabilistic design from a
multi-view perspective as the network alignment
can be viewed as a bi-directional matching prob-
lem. Whereas most of existing approaches adopt an
distance-based supervision with the observed an-
chors.

• We evaluate the proposed models with detailed
experiments on real-world social network datasets.
Results demonstrate significant and robust improve-
ments in comparison with other state-of-the-art ap-
proaches.

The rest of the paper is organized as follows. Section 2
summarizes the related work. Section 3 illustrates the design
and algorithms of vanila GANA, and its variations. Section 4
reports the experimental design and discusses the results. A
case study, which illustrates how the framework suppresses
the domain-dependent features to boost the alignment task,
is also included in Section 4. Section 5 concludes the paper.

2 RELATED WORK

Our work is most related to embedding-based network
alignment and adversarial learning.

2.1 Embedding-based Network Alignment
Among the various representation learning-based network
alignment approaches, the main difference lies in the way (1)
What kind of network embedding approach is leveraged?
(2) Whether the multiple networks are projected onto the
same low-dimensional subspace?

[10] proposed a shallow model MAH to align the net-
work manifolds by modeling social graphs with hyper-
graphs. The manifolds of social networks are projected
onto a common embedded space, then the user mapping
can be inferred by comparing the distances of users in
the embedding space. To scale up, IONE [2] proposed an
embedding approach by only considering the “second-order
proximity” of local structures to obtain the common low-
dimensional subspace of networks, semi-supervised by the
observed anchors.
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ULink [11] was proposed to explore the concept of “La-
tent User Space”, the objective of which is to find projections 
of each network while minimizing the distance between the 
node and its correspondence among their respective vector 
spaces. Similarly, PALE [12] proposes to embed the networks 
individually first b y l everaging o n n etwork embedding 
approach, e.g., LINE [3] or Deepwalk [13], then to seek an 
explicit feature space transformation that would map one 
into the other one. However, the standalone embedding 
process in a two-phase approach like PALE is designed 
irrelevant to the alignment task, thus may not include 
the features which directly benefit t he a lignment. A nd all 
the aforementioned approaches neglect the importance of 
learning domain-invariant features.

2.2 Adversarial Training of Neural Networks
Generative Adversarial Networks (GANs) [14], which plays 
an adversarial minimax game between the generator and 
discriminator, frees the users from the painful practice of 
defining a tricky objective function. GANs shows its impres-
sive potential in various fields/tasks, e.g., natural language 
processing [15], [16] and network embedding [17], [18].

Recently, an adversarial training framework DANN [6] 
was proposed for domain adaption. In particular, DANN in-
troduces a representation learning module for better domain 
adaptation, in which the adversarial training pushes maxi-
mizing the loss of the domain classifier t hus t o encourage 
domain-invariant features to dominate the process of min-
imizing the loss of the label classifier. [ 7] f urther extended 
this idea to obtain a controllable invariance through adver-
sarial feature learning. Both two approaches were based on 
the theory that a good representation for domain adaption 
is one for which an algorithm cannot identify the domain of 
its input. This is also the building block of our work.

SNNA [1] is recently proposed to perform social network 
alignment via supervised adversarial learning. SNNA is a 
two-phase approach which first learns the low-dimensional 
representation for each network via the conventional net-
work embedding, then learns the projection function within 
a GAN framework. Supervised by the observed anchors, 
the generator targets at learning a transformation from one 
embedding space to another which minimize the Wasser-
stein distance between the projected source distribution and 
the target distribution, while the discriminator estimates the 
distance between two embedding space. In other words, the 
adversarial learning in SNNA is used to obtain an optimal 
projection function between the two subspaces.

In contrast to the two-phase SNNA, our proposed ap-
proach performs network representation learning and align-
ment learning in a unified a rchitecture. T he adversarial 
learning is mainly for the domain classifier t o fi lter away 
the domain-dependent feature by maximizing the loss of 
the classifier. M eanwhile, t he p resentation l earning i s also 
task-driven by maximizing the posterior probability of the 
observed anchors, thus to produce useful feature represen-
tations for network alignment.

3 DOMAIN-ADVERSARIAL NETWORK ALIGNMENT

In this section, we formulate our problem first, a nd then 
present a vanilla framework for domain-adversarial net-
work alignment. Its adaptions with weight-sharing for

model simplification and a direction-aware structure for
directed networks are further introduced.

For the same user in different social networks, namely
vAi in network A and vBj in network B, we denote (vAi , v

B
j )

as a pair of anchors. The network alignment task could be
formulated as predicting the anchor pair (vAi , v

B
j ) given two

networks NA = (V A, EA) and NB = (V B , EB), where
v
A/B
i ∈ V A/B , V A/B and EA/B are the sets of vertices

and edges in network A/B respectively. Each vertex is
either labeled as dA or dB , indicating the network which
the vertex belongs to. Note that we argue that domain-
dependent features, which are capable to reveal the domain
identity, are futile, sometimes detrimental to alignment task.
To achieve better alignment performance, we adopt the
domain-adversarial training paradigm to train a domain
classifier, which helps to extract domain-invariant represen-
tations of networks.

3.1 Vanilla Architecture of DANA

The vanilla architecture of DANA consists of two compo-
nents, namely, task-driven network embedding module and
adversarial domain classifier.

3.1.1 Task-driven Network Embedding

To explore the structural information of networks, we em-
ploy GCNs as our task-driven feature extractors. Note that
we adopted a GCN for each network (See Fig.2). In the
following, we omit the superscript A/B which denotes the
identity of the network for simplicity. Given the adjacency
matrix M ∈ R|V |×|V | of one network, GCN outputs the cor-
responding hidden representations Hl ∈ R|V |×kl in the l-th
layer with kl neurons following the layer-wise propagation
rule, namely:

Hl = σ(FHl−1Wl) (1)

where l = 1, 2, . . . , L. F =D−
1
2 (M + I)D−

1
2 is the convo-

lution kernel, which acts as a spatial filter on network. D
denotes the diagonal node degree matrix of the network,
i.e. Dii =

∑
jMij and I is the self-connection identity

matrix of the network. Wl ∈ Rkl−1×kl denotes the trainable
weight matrix of the l-th layer. H0 can be either previ-
ously encoded vectors carrying privilege information of the
network or randomly initialized. The activation function σ
is implemented by ReLU(·) in our framework following
[8]. Thereby, the GCN module outputs a low-dimensional
vector R = HL for each network, respectively. To integrate
the representation learning into the alignment task, we
optimize the network alignment problem by maximizing the
following posterior:

P(ΘgA ,ΘgB |S) ∝ P(S|ΘgA ,ΘgB )P(ΘgA ,ΘgB ) (2)

where S denotes the collection of anchor pairs. ΘgA denotes
all the parameters of the GCNA module, i.e., ΘgA =
{HA

0 ,W
A
1 ,W

A
2 , . . . ,W

A
L }. The notation definition applies to

ΘgB . Note that the probability expansions for an anchor pair
(vAi , v

B
j ) ∈ S, i.e.:

p(vBj , v
A
i |ΘgA ,ΘgB ) = p(vAi |ΘgA ,ΘgB )p(vBj |vAi ,ΘgA ,ΘgB )

= p(vBj |ΘgA ,ΘgB )p(vAi |vBj ,ΘgA ,ΘgB ),
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Fig. 2. The Vanilla Architecture of DANA

are both significant to our problem. We abbreviate
p(vAi , v

B
j |ΘgA ,ΘgB ) to p(vAi , v

B
j ), then we have p(vBj |vAi )

and p(vAi |vBj ) as the abbreviations of p(vBj |vAi ,ΘgA ,ΘgB )
and p(vAi |vBj ,ΘgA ,ΘgB ), respectively. Therefore, we define
p(vBj , v

A
i ) = 1/2[p(vAi )p(vBj |vAi )+p(vBj )p(vAi |vBj )], which is

a popular practice for multi-view problems where all views
matter. Further, a Gaussian prior is introduced for the model
parameters, i.e. p(ΘgA) ∼ N(0, I) and p(ΘgB ) ∼ N(0, I).
The resultant optimization criterion Je can be derived as
follows:

Je =
∑

(vA
i ,vB

j )∈S

log
1

2

(
p(vBj |vAi )p(vAi ) + p(vAi |vBj )p(vBj )

)
− λ(‖ΘgA‖+ ‖ΘgB‖)

(3)
where p(vAi ) and p(vBj ) are the constants. Softmax function
is used to approximate the likelihood of observing an anchor
pair, namely:

p(vBj |vAi ) =
exp(rBj · rAi )∑|V B |

n=1 exp(rBn · rAi )
(4a)

p(vAi |vBj ) =
exp(rAi · rBj )∑|V A|

n=1 exp(rAn · rBj )
(4b)

where rAi corresponds to the learned representation of ver-
tex vAi ∈ V A. The same is true for rBi . Due to the summation
over the entire set of nodes in Eq.(4a) and Eq.(4b), it will
be time-consuming for large scale networks. To reduce the
computational complexity, we adopted a sampled softmax
function [19], which performs the summations over a set of
sampled candidates, namely

p(vBj |vAi ) =
exp(rBj · rAi )∑|CB |

vc∼PB(v) exp(rBc · rAi )
. (5)

The candidate set CB ⊂ V B is sampled via a log-uniform
distribution PB(v). Such operation also applies to Eq.(4b).

3.1.2 Adversarial Domain Classifier

However, the optimization criterion Eq.(3) could not in-
duce purging the task-irrelevant domain feature, which may
weaken the professionalism of representations for network
alignment. Inspired by the adversarial learning paradigm,
we further augment the alignment task-driven network em-
bedding with an adversarial learning to a domain classifier,

Algorithm 1 Training procedure of DANA

Input: network A including V A and MA, network B
including V B and MB , and the set of anchor seeds S.
Hyperparameters: the batch size of vertices U ; the batch size
of anchor seeds Z ; the weighting factor γ; the regularization
factor λ.

Parameters: the feature extractors GCNA: ΘgA =
{HA

0 ,W
A
l } and GCNB : ΘgB = {HB

0 ,W
B
l } where

l = 1, 2, . . . , L; the domain classifier parameterized as MLP:
ΘD.

Output: representations of V A: RA = HA
L ; representations

of V B : RB = HB
L .

1: Randomly initialize {ΘgA ,ΘgB ,ΘD} ∼ N(0, I)
2: repeat
3: Sample a batch of vertices from V A: V A

U = {vAu }
U

u=1

4: Sample a batch of vertices from V B : V B
U = {vBu }

U

u=1

5: Sample a batch of anchors from S: SZ = {sz}Zz=1
6: Update ΘgA ,ΘgB with Adam Optimizer to minimize:

−
∑

(vA
i ,vB

j )∈Sz
log 1

2

(
p(vBj |vAi ) + p(vAi |vBj )

)
+γ

∑
v∈{V A

U ∪V B
U }
∑

d∈{dA,dB} Id(v) log p(d|v)

+λ(‖ΘgA‖+ ‖ΘgB‖)
7: Update ΘD with Adam Optimizer to minimize:

−
∑

v∈{V A
U ∪V B

U }
∑

d∈{dA,dB} Id(v) log p(d|v) + λ‖ΘD‖
8: until convergence

which is meant to filter away the domain-dependent fea-
tures while concentrating on extracting alignment-targeted
features.

Note that the domain classifier, acting as the discrim-
inator, tries to distinguish which domain a given vertex
v ∈ {V A ∪ V B} comes from, while feature extractors, i.e.
GCNs in our framework, act as a role of the generator,
aiming at learning domain-invariant features from the input
data to fool the domain classifier. Technically, the domain
classifier and the feature extractor are trained by playing
minimax games expressed as follows:

max
ΘgA ,ΘgB

min
ΘD
Jd =

∑
v

∑
d

−Id(v) log p(d|v) + λ‖ΘD‖ (6)

where d ∈ {dA, dB} denotes the label of the domain v
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belongs to, and ΘD is the parameter set of the domain
classifier. Note that Id(v) is the indicator function, which
equals to 1 if v comes from the domain d and 0 otherwise.
We employ an MLP classifier where the last hidden layer
is connected to a softmax layer to induce the conditional
distribution p(d|v).

Referring back to Eq.(3) for the network alignment task,
we train GCNA and GCNB to extract domain-invariant
feature representations while maximizing the posterior
probability for network alignment with the following form:

max
ΘgA ,ΘgB

min
ΘD
J = Je + γJd (7)

where hyperparameter γ is a weighting factor to modulate
the contribution of Jd. To optimize ΘgA , ΘgB and ΘD, we
incorporate a Gradient Reversal Layer (GRL) [6] between
feature extractors and domain classifier. GRL can be viewed
as an activation function layer with no parameters, which
identically transfers the input during the forward pass
but reverses gradients (multiplied by −1) during the back
propagation. The adoption of GRL enables a synchronous
optimization of Eq.(7), thus DANA can be trained easier
and faster. The overall architecture and algorithm of our
proposed model are depicted in Fig.2 and Algorithm 1,
respectively.

3.2 DANA for Directed Networks
There exist many networks deliberately defined as the di-
rected graph. For example, Twitter created a directed graph
of followers because the interactions in Twitter are gener-
ally one-way. Stemmed from the spectral graph theory, the
conventional GCN requires a symmetric adjacency matrix
to obtain the low-dimensional representation, which makes
our model limited to dealing with the undirected graph. To
address directed networks, existing research simply relaxes
the strict constraint on the symmetric adjacency matrix
in GCNs, and explains the convolutional kernel from a
spatial perspective [20]. However, it suffers an inadequate
characterization of the directed edges in networks, which
is important for obtaining accurate representations of the
associated vertices. In pursuit of better representations, we
elaboratively characterize each vertex from two perspec-
tives, which performs the convolution according to its in-
degree and out-degree distributions, respectively.

Given an adjacency matrix M of a directed network, and
randomly initialized H0 and H̃0, the hidden representation
of Hl and H̃l in the l-th layer can be obtained as follows:

Hl = σ(FH̃l−1Wl) (8a)

H̃l = σ(F̃Hl−1W̃l) (8b)

where FA = D−1(M +I), F̃ = D̃−1(M̃ +I), and M̃ = MT ,
D̃ii =

∑
jM̃ij . Eq.(8a) focuses on the convolution opera-

tions on vertices’ out-going neighbours, and Eq.(8b) focuses
on the convolution operations on vertices’ in-going neigh-
bours. At length, each GCN outputs two low-dimensional
representations for each vertex, i.e. R = HL and R̃ = H̃L.
The computation and dataflow through the unfolded struc-
ture are also depicted in Fig.3. Then, ri and r̃i of each vertex
vi are concatenated to perform the alignment.

3.3 Weight-sharing Between GCNs

An ideal representation learning for alignment task is to ob-
tain a low-dimensional subspace in which the two vertices
of an anchor pair are close to each other. Thus the candidates
of a vertex can be obtained based on a “distance” between
the two vectors. Drawing the subspaces close to each other
is usually supervised by forcing the vertices of an anchor
pair to share the same representation.

In this paper, we further reinforce the closeness between
subspaces by sharing weights across the two GCNs i.e.
enforcing WA

l = WB
l , l = 1, 2, . . . , L. Additionally, such

weight-sharing reduces the number of parameters and sim-
plifies our model so that it is more favorable to model
training.

4 EXPERIMENTS

In this section, we present the experimental evaluations
of our proposed models and the competing baselines over
three real-world datasets.

4.1 Metrics, Datasets and Comparative Models

4.1.1 Metrics

We evaluate the performance of our proposed models and
competing baselines using a metric of Hits@k:

Hits@k =
HitsA@k +HitsB@k

|Stest| × 2

where HitsB/A@k means the number of hits in test set Stest

given the top-k candidates in network A/B for each vertex
from network B/A. In our models, the Cosine similarity is
adopted as the scoring criteria to obtain the top-k candi-
date list. For the baselines, the candidate lists are obtained
following the scoring criteria suggested in their papers. In
addition to hits@k, we also adopted the Mean Reciprocal
Rank (MRR) [21] to evaluate the models. Similar to the
definition of Hits@k, MRR in this paper is an average value
of bi-directional counts.
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Fig. 4. Detailed performance comparison on real-world datasets.

TABLE 1
Statistics of the datasets used for evaluation

Dataset Network(#Nodes, #Edges) #Anchors

DBLP Data Mining (11526, 28565) 1295Machine Learning (12311, 26162)

Fq.-Tw. Foursquare (5313, 76972) 1611Twitter (5120, 164920)

Db.-Wb. Douban (10103, 527980) 4752Weibo (9576, 270780)

4.1.2 Datasets

We employ three real-world cross network data sets, the
statistics of which are tabulated in Table 1. For the DBLP
[22] dataset, authors are split into two different co-author
networks (Data Mining and Machine Learning) by filtering
publication venues of their papers. The ground truth an-
chors of this dataset are the authors who published papers
in both areas. Note that the co-author relationships are non-
directional in DBLP. In contrast, the other two datasets
[23][24] are constructed from the directed social networks.
The ground truth of the anchor users is obtained based
on the fact that some users provide their unified accounts
across social networks.

4.1.3 Comparative Models

Our proposed model DANA with its variants and the state-
of-the-art baseline methods for comparison are listed as
following:

• MAH [10]: A hypergraph-based manifold matching
approach for network alignment, where the hyper-
edges model the high-order relations in social net-
works.

• ULink [11]: An approach for multi-platform user
identity linkage predication in which Latent User
Space was proposed and utilized. The constrained
concave-convex procedure is also adopted for the
model inference.

• IONE [2]: The state-of-the-art approach for network
alignment which incorporates the learning of the
second-order proximity preserving embeddings and
the network alignment in a unified framework.

• PALE-LINE [12]: An embedding-based approach
where the embeddings of individual networks are
learned using LINE [3], and an MLP is used for learn-
ing the project function between the low-dimensional
subspaces of networks.

• PALE-Deepwalk [12]: A variant of PALE-LINE, in
which DeepWalk [13] is adopted for learning indi-
vidual network embeddings. The projection function
learning is the same as that of PALE-LINE.

• SNNA [1]: An adversarial approach to network align-
ment where the low-dimensional subspaces of net-
works are obtained by using existing network em-
bedding approaches. The generator is then designed
to learn a projection function from one subspace
to another, and the discriminator is to estimate the
wasserstein distance between the projected source
distribution and the target distribution.

• DANA: The vanilla version of our proposed frame-
work in this paper.

• DANA-S: A variation of DANA where the Suffix “-S”
of the name indicates an incorporation with weight-
sharing adopted in the model.

• DANA-SD : A variation of DANA where “D” fur-
ther indicates an incorporation of the direction-aware
structure on top of DANA-S.

• DNA : refers to a variation of DANA where the
domain adversarial component (Gradient reversal
layer and domain classifier) is removed.

In our experiments, for DANA and its variants, we use
2-layer GCNs for feature extractor and a 2-layer MLP for
domain classifier. The batch size of vertices U for domain-
adversarial training is set to 512 and the batch size of
anchors seeds Z is set as the size of the training set. The
parameters are optimized using Adam optimizer with a
learning rate of 0.001, a weighting factor γ = 1.0, and
λ = 0.01 for regularization. The state-of-the-art approaches,
including MAH [10], ULink [11], IONE [2], PALE-LINE,
PALE-Deepwalk [12], and SNNA [1], are evaluated as the
competing baselines. They are trained based on the settings
recommended in the published papers or the distributed
open source code until convergence.
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TABLE 2
Hits@1 and MRR comparison on real-world datasets.

Dataset Metric MAH PALE-LINE PALE-DW IONE Ulink SNNA DNA DANA DANA-S DANA-SD

DBLP

Hits@1 0.0695 0.0277 0.0772 0.0560 0.0116 0.0096 0.2104 0.2182 0.2201 0.2297Imp(%) 230.50 729.24 197.54 310.18 1880.17 2292.71 9.17 5.27 4.36
MRR 0.1108 0.0422 0.1710 0.1414 0.0503 0.0312 0.2739 0.2830 0.2838 0.2895Imp(%) 161.28 586.02 69.30 104.74 475.55 827.88 5.70 2.30 2.01

Fq.-Tw.

Hits@1 0.0062 0.0093 0.0464 0.1409 0.0495 0.0372 0.1207 0.1486 0.1548 0.1842Imp(%) 2870.97 1880.65 296.98 30.73 272.12 395.16 52.61 23.96 18.99
MRR 0.0176 0.0164 0.0928 0.2132 0.1479 0.0550 0.2017 0.2258 0.2391 0.2579Imp(%) 1365.34 1472.56 177.91 20.97 74.37 368.91 27.86 14.22 7.86

Db.-Wb.

Hits@1 0.0032 0.0126 0.0358 0.0794 0.0074 0.0042 0.0847 0.1420 0.1772 0.1930Imp(%) 5931.25 1431.75 439.11 143.07 2508.11 4495.24 127.86 35.92 8.92
MRR 0.0081 0.0317 0.0822 0.1224 0.0301 0.0300 0.1598 0.2144 0.2228 0.2608Imp(%) 3119.75 722.71 217.27 113.07 766.45 769.33 63.20 21.64 17.06
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Fig. 5. Hits@50 vs. Dimension on Foursquare-Twitter.
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Fig. 6. Hits@50 vs. Training ratio on Foursquare-Twitter.

4.2 Experimental Results

4.2.1 Overall Alignment Performance.

In this section, we compare the performance of DANA
with its variations and other baselines on three real-world
datasets. We set 80% of the anchors as the training set and
the rest as the test set. The dimension of the embedding is
unanimously set to 100 for all models. Note that kL is set
to 50 in DANA-SD as the embedding is the concatenation
of two vertex representations ri and r̃i. We tabulate Hits@1,
MRR and DANA-SD’s improvement over all comparative
approaches in Table 2. And the experimental results of
Hits@k (k = {10, 20, 30, 40, 50}) are presented in Fig.4.

From Fig.4 and Table 2, we can observe that:

1) DANA and its variants significantly outperform
most baselines, under different @K settings for all
datasets. It demonstrates the efficacy of the pro-
posed DANA framework. In particular, DANAs im-
prove Hits@1 by 190+%, 30+% and 140+% respec-
tively over the most competitive baseline on DBLP,
Foursquare-Twitter and Douban-Weibo. When k be-
comes larger, DANAs can still achieve more than
15+% performance improvement. In general, the
improvement becomes more significant when k is
smaller.

2) The unified frameworks, e.g., IONE, achieve much
higher accuracy than the two-phase methods, e.g,

PALE-LINE and PALE-Deepwalk. Because the embed-
ding process (first-phase) in two-phase framework
is independent of the objective of the alignment
task, which would result in unsuitable representa-
tions for the transformation process in the second-
phase. Besides, the two-phase alignment method is
also sensitive to the adopted embedding approach
(e.g., Deepwalk performs better than LINE in PALE
framework).

3) Both ULink and SNNA do not perform well with
only the structural information, as they heavily rely
on the initialization of the embedding. In particular,
better performances of ULink and SNNA usually
come with the initialization using the privilege in-
formation, e.g., attributes. Whereas, benefiting from
the adopted GCNs, DANA and its variants are ro-
bust to the initialization.

4) The matrix factorization-based approach MAH per-
forms worst because matrix-factorization is kind of
linear method which is usually inferior to the non-
linear embedding method used in our framework.
Further, MAH is hard to scale up for large-scale
problems due to the matrix inversion involved. For
Foursquare-Twitter dataset, MAH requires the rep-
resentation with over 800 dimensions to reach con-
vergence [2], which further validates the efficiency
of the embedding-based approaches.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, SEPTEMBER 2019 8

1 2 3 4 5 6 7
L

16
18
20
22
24
26
28
30

M
R

R
 (

%
)

DANA

DANA-S

DANA-SD

(a) DBLP

1 2 3 4 5 6 7
L

0

5

10

15

20

25

M
R

R
 (

%
)

DANA

DANA-S

DANA-SD

(b) Foursquare-Twitter

Fig. 7. Sensitivity analysis of parameter L

Compared with DANA and its variants, DNA (DANA
without the adversarial learning module) achieves lower
accuracy. It demonstrates the effectiveness of the domain
adversarial learning w.r.t. the network alignment task. Bene-
fiting from the introduced weight-sharing structure, DANA-
S performs better than the vanilla DANA. DANA-SD out-
performs all the baselines which validates the importance
of the incorporation of direction-aware structure. Note that
DANA-SD also achieves a performance enhancement on the
undirected network DLBP, we believe it’s due to the larger
parameter set (an adoption of W̃ ). The superiority of DANA-
SD becomes more obvious for larger directed networks, i.e.
Douban-Weibo dataset. We also investigate the importance
of directional edges to the entire network via analyzing net-
work structures. It turns out that the number of connected
components and that of strongly connected components
in Foursquare-Twitter differ significantly compared with
Douban-Weibo dataset. It indicates the direction informa-
tion play a rather important role in the Foursquare-Twitter
dataset. Thus, Foursquare-Twitter dataset may be beneficial
to the LINE-based model IONE which joints three sets of
vectors from different views for directed network alignment
[2]. In comparison, DANA-SD employs two sets of vectors
to capture the directions, but still improves Hits@k by 10%+
over IONE.

Fig.5 and Fig.6 show the outperformance of DANA-
SD on the Foursquare-Twitter dataset, given different di-
mension settings as well as different training-to-test ratios.
Fig.6 also indicates that, in a weakly-supervised manner,
our proposed models can still achieve robust and obvious
outperformance.

To sum up, we have DANA-SD > DANA-S > DANA >
DNA in terms of alignment accuracy, which is consistent
with our motivation in this paper.

Regarding the efficiency, DANA and its variants take few
minutes (within 500 epochs) to reach convergence, which is
much faster compared with other baselines. That is because:
(1) GCNs is an efficient feature extractor. (2) the gradient
reversal layer enables synchronous learning of Eq.(7).

4.2.2 Parameter Sensitivity Analysis

To analyze the effects of the hyperparameters in DANAs
which are the number of layers in GCNs L and the weight-
ing factor γ, we conduct the experiments of DANAs with
different L-layers GCN and different values of γ.
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Fig. 8. Sensitivity analysis of parameter γ

TABLE 3
Link Prediction Performance on Foursquare-Twitter

Dataset Metric(%) GCN GCN-D Improve

Foursquare

mAP 10.947 12.267 12.06%
R@3 8.928 10.287 15.22%
R@5 13.956 15.862 13.66%
R@10 20.367 23.400 14.89%

Twitter

mAP 8.651 9.079 4.95%
R@3 5.175 5.769 11.48%
R@5 8.223 9.314 13.27%
R@10 13.556 14.979 10.50%

In Fig.7, we vary the number of the layers (from 1 to
7) in GCNs, as well as fixing all other parameters. And we
observe that DANAs achieve the best performance with the
2-layers GCNs. When L > 2, the deeper layers GCNs have,
the worse the performance. The observation is consistent
with the general acknowledgement that two-layers usually
are the best setting for the conventional GCNs [25]. That is
because the graph convolution of the GCN model can be
viewed as a special form of Laplacian smoothing over the
features of a vertex and its nearby neighbors. However, the
operation also results in an over-smoothing when involved
with many convolutional layers, leading the output features
of vertices less distinguishable and an inferior alignment
performance.

Fig.8 presents the effect of the weighting factor γ when
varying its values in {0.2, 0.4, 0.6, 0.8, 1.0} and fixing all
other parameters. The alignment performances on both
Foursquare-Twitter and Douban-Weibo datasets appear an
obvious increasing tend with the increase of γ, which
demonstrates that the domain-adversarial learning module
in DANAs plays a positive role for the alignment task.

4.2.3 Probabilistic Design Effect

To verify the effectiveness of our unconventional design in
objective function for the alignment task, we compare MAP-
based models and MSE-based models on three datasets.
MAP denotes the Maximum Posterior Probability and the
objective function is designed as Eq.(3) in this paper. MSE
denotes Minimize mean Square Error which is adopted
in most of the existing distance-based approaches. In our
experiments, the objective function of MSE-based alignment
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Fig. 9. Objective analysis of alignment task.

models is given as:

JMSE =
∑

(vA
i ,vB

j )∈S

‖rAi − rBj ‖− 1

2C

 C∑
vB
c

‖rAi − rBc ‖+
C∑
vA
c

‖rAc − rBj ‖


(9)

where vAc and vBc are the negative samples. For each anchor
pair, we randomly sample C = 50 negative samples from
network A and network B respectively. We further adapt
DNA and the distance-based model SNNA by replacing
their objective functions with Eq.(9) and Eq.(3) respectively
to obtain four models for comparison, namely, (MAP-based)
DNA, MSE-based DNA, (MSE-based) SNNA and MAP-
based SNNA.

Fig.9(a) and Fig.9(b) show the performance of MAP-
based DNA and MSE-based DNA on three datasets. We see
that DNA lost 4.77-9.94% MRR accuracy for the alignment
when its objective function is replaced by Eq.(9). Fig.9(c) and
Fig.9(d) show the similar observation. MAP-based SNNA
performs better than MSE-based SNNA on all three dataset,
which illustrates the strength of our MAP-based design by
viewing the alignment as a bi-directional matching problem.
Note that the alignment performance of MAP-based SNNA
is still much lower than that of our proposed DANAs. One
of the reasons is that the features of SNNA learned from
the network embedding may include domain-dependent
signals, which cannot be eliminated in its adversarial pro-
cedure of learning the projection function between two
networks. Thus, SNNA cannot avoid domain representation
bias which yields an inferior alignment performance.

4.2.4 Directed Convolution Effect
Recall that we propose to modify the graph convolutional
network in this paper to adapt our alignment model to
directed networks (See Sec.3.2). To verify the effect of the
directed convolution structure, we compare GCN and GCN-
D (”-D” indicates an incorporation of the direction-aware
convolution structure) on link prediction task within a sin-
gle network, where the objective function is formulated to
preserve the structural proximity [3]:

L = −
∑

(i,j)∈E

log σ(rTj · ri) +
1

C

C∑
vc∈V

log σ(−rTc · ri)


where (vi, vc) denotes a negative edge randomly drawn
from the noise distribution and C is the number of negative
edges for each observed edges (vi, vj).

We split 90% edges from the network for the training
process. Table 3 reports the test performances of link pre-
diction on Foursquare network and Twitter network with
respect to the metrics Mean Average Precision (mAP) and
Recall@k (R@k) [26]. As we expected, the performance
of GCN-D all significantly improve over the conventional
GCN. It implies that intentionally capturing the directions in
GCNs is beneficial to the representation learning of directed
networks, and in turn beneficial to the alignment of directed
networks.

4.3 Case Study: Domain-invariant Embedding

To better illustrate the characteristic of our proposed model,
we introduce a case study in Fig.10 to visualize the behavior
of the domain adversarial training. A twinning-networks
(NA and NB) is constructed as follows: We adopt the well
known Zachary’s Karate network [27] as NA, where the 2D
embedding (coordinates) of vertices (shown as circles) are
obtained via large graph layout following [28]. (2) The nodes
in NB (presented as triangles) are generated with the mirror
opposite of each node in NA along the y-axis. (3) The edges
ofNB are generated exactly the same as that ofNA. (4) Each
node in NA along with its corresponding node in NB are
considered as an anchor in the twinning-networks.

Taking 50% of anchors as the training set and initializing
HA

0 and HB
0 with the coordinates, we perform DANA-

S and DNA-S for the alignment task with WA = WB

and MA = MB , where the network embedding module
are instantiated with 1-layer GCNs. Let • / N denote the
points correctly classified by the domain classifier and ◦ /
M denote the missed shot. Note that DANA-S, integrated
with domain-adversarial learning, is in pursuit of the do-
main invariant features, which may be not good for the
domain classifier (See Fig.10(b), all nodes are classified to
one domain). While the features learned with DNA-S are
domain dependent, leading to an inferior performance for
the alignment task.

We visualize the weight W of the hidden neurons in the
1-layer GCNs in Fig.10 following [6], where W ∈ R2×k,
k = 10. Note that the neurons visualization consists of ten
lines with each line corresponding to the i-th neuron of the
hidden layer, i = 1, 2, · · · , 10. We can observe that:

1) Most neurons of DNA-S gather around and paral-
lel to y-axis, tending to capture the discriminative
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Fig. 10. Hidden neuron visualization on the toy twinning-networks

feature for domain classification, since the twin-
networks is y-axis symmetric.

2) DANA-S gives a richer representation, that is, the
ten lines of neurons visualization are widely dis-
persed.

3) The dominant pattern in the neurons visualization
of DNA-S, i.e., the lines parallel to y-axis, vanishes
in that of DANA-S, bringing a better performance
for the alignment task.

5 CONCLUSION

With a conjecture that domain-dependent features hin-
der the network alignment performance, we propose a
representation learning-based domain-adversarial frame-
work (DANA) to perform network alignment, by obtaining
domain-invariant representations, and develop its adap-
tions for specific tasks, i.e. (directed social network align-
ment). Comprehensive empirical studies on three popular
real-world datasets show that DANA can significantly im-
prove the performance for social network alignment tasks
in comparison with existing solutions. Unlike most exist-
ing approaches which formulate the alignment task as the
mapping problem between networks, Our paper triggers
the discussion on the importance of feature extraction to-
ward alignment tasks. And the proposed network alignment
framework opens a new door to other tasks, e.g., cross-
lingual knowledge graph task.
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