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Abstract 

Monitoring agricultural soil organic carbon (SOC) has played an essential role in sustainable 

agricultural management. Precise and robust prediction of SOC greatly contributes to carbon 

neutrality in the agricultural industry. To create more knowledge regarding the ability of 

remote sensing to monitor carbon soil, this research devises a state-of-the-art low cost 

machine learning model for quantifying agricultural soil carbon using active and ensemble-

based decision tree learning combined with multi-sensor data fusion at a national and world 

scale. This work explores the use of Sentinel-1 (S1) C-band dual polarimetric synthetic 

aperture radar (SAR), Sentinel-2 (S2) multispectral data, and an innovative machine learning 

(ML) approach using an integration of active learning for land-use mapping and advanced 

Extreme Gradient Boosting (XGBoost) for robustness of the SOC estimates. The collected 

soil samples from a field survey in Western Australia were used for the model validation. The 

indicators including the coefficient of determination (R
2
) and root - mean – square - error 

(RMSE) were applied to evaluate the model’s performance. A numerous features computed 

from optical and SAR data fusion were employed to build and test the proposed model 

performance. The effectiveness of the proposed machine learning model was assessed by 

comparing with the two well-known algorithms such as Random Forests (RF) and Support 

Vector Machine (SVM) to predict agricultural SOC. Results suggest that a combination of S1 

and S2 sensors could effectively estimate SOC in farming areas by using ML techniques. 

Satisfactory accuracy of the proposed XGBoost with optimal features was achieved the 

highest performance (R
2 

= 0.870; RMSE= 1.818 tonC/ha) which outperformed RF and SVM.  

Thus, multi-sensor data fusion combined with the XGBoost lead to the best prediction results 

for agricultural SOC at 10 m spatial resolution.  In short, this new approach could 

significantly contribute to various agricultural SOC retrieval studies globally.  

Keywords: SOC, machine learning, multi-sensor data fusion, Sentinel 1, Sentinel 2 
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1. Introduction 

 Soil is one of the largest carbon pools in terrestrial ecosystems, and it plays a vital 

role in the global carbon cycles and care of the ecosystem (Lal, 2008; Zhou et al., 2020b). 

Agricultural soil organic carbon (SOC) contributes significantly to soil quality, soil fertility, 

agriculture and greenhouse gas emissions reduction by carbon sequestration in the agricultural 

SOC stock (Guo et al., 2021; Navarro-Pedreño et al., 2021; Venter et al., 2021). The 

agricultural SOC depends on land management practices, soil property and differs among 

rainfall zones (Guo et al., 2021; Six et al., 1998; Venter et al., 2021). Understanding the 

agricultural SOC distribution spatially is necessary to ensure food security and improve 

carbon sequestration in soil due to the increasing climate change problems (Gholizadeh et al., 

2018). High-precision agricultural SOC data can help local authorities and governments 

establish appropriate strategies for agriculture and various farmland activities (Guo et al., 

2021). Climate, ecological processes, agricultural production activities, soil characteristics, 

and land management are the key factors greatly influencing agricultural SOC.  

 The monitoring of agricultural SOC is complex due to the uncertainty of the above 

factors. Conventional SOC monitoring methods based on field experiments are time- and 

labour-consuming and subsequently, SOC mapping in large-scale areas is expensive (Forkuor 

et al., 2017). It is necessary to develop alternative approaches that are more cost-effective and 

accurate in predicting SOC. Numerous studies have attempted to solve this problem such as 

developing environmental models to improve the SOC estimation and applying remote 

sensing sensors to build digital SOC maps (Guo et al., 2021a; Guo et al., 2021b; Ha et al., 

2021; He et al., 2021; Le et al., 2021; Mondal et al., 2017; Zhou et al., 2020). While 

developed SOC prediction models like a Full Carbon Accounting Model (FullCAM) or De-

Nitrification De-Composition (DNDC) need a large amount of information from soil type, 

farming practices, and climate, they have illustrated their limitations in the prediction.  
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 Recent advances in geospatial methods using earth observation (EO) datasets and 

advanced machine learning (ML) techniques can be effective in SOC monitoring (Vaudour et 

al., 2019). The use of multispectral, hyperspectral, or synthetic aperture radar (SAR) data 

from space-borne, air-borne remote sensing platforms, or unmanned aerial systems (UASs) 

has emerged as an innovative solution to address the issues of SOC prediction on farming 

lands. Although the performance of airborne RS and UAS with high spatial resolutions of 

hyperspectral images and extensive spectral information in SOC prediction outperforms the 

space-borne sensors with multispectral bands, the scarcity and high cost of hyperspectral data 

hinder their application in large-scale agricultural SOC estimation (Angelopoulou et al., 2019; 

Guo et al., 2021; see Table 1).  

Table 1. Prediction performance of agricultural SOC in the recent literature. 

Type of sensor Sensor ML Algorithm R
2
 Reference 

Space-borne 

 

Hyperion PLSR           0.493 (Gomez et al., 2008) 

PRISMA PLSR 0.51 (Castaldi et al., 2016) 

Landsat ETM+ ANN 0.63 (Mirzaee et al., 2016) 

S2 PLSR 0.56 (Vaudour et al., 2019) 

Gaofen 1 ELM 0.84 (Guo et al., 2020) 

S1+S2 +DEM BRT 0.44 (Zhou et al., 2020b) 

Air-borne 

 

AHS160 SVM 0.89 (Stevens et al., 2010) 

HyMap PLSR 0.85 (Vohland et al., 2017) 

Unmanned 

Aerial Systems 

Mini-MCA6 SVM 0.95 (Aldana-Jague et al., 

2016) 

PLSR: Partial Least Squares Regression; SVM: Support Vector Machines; ANN: Artificial Neural Networks; 

ELM: Extreme Learning Machine; BRT: Boosted Regression Trees;  
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 Multispectral remote sensing sensors such as Hyperion, S-2, S-1, Gaofen 1, Landsat 

ETM+, and PRISMA have demonstrated their usefulness in agricultural SOC estimation. The 

free-of-charge multispectral images are an effective solution to address the problems 

concerning hyperspectral images in agricultural SOC monitoring. Gaofen 1 - launched by 

China National Space Administration – has great potential in estimating agricultural SOC 

with 0.84 R
2
 compared to other multispectral images (Guo et al., 2020). However, its spectral 

bands are not widely supported by various agencies of the Chinese government. Combining 

multi-sensors in predicting agricultural SOC has been done in recent studies such as: the 

integration of Sentinel 1 and Sentinel 2; and joining Sentinel 2 and Sentinel 3 (Zhou et al., 

2020b; Zhou et al., 2021). Multi-sensor data fusion technology is a promising way to improve 

prediction performance compared to single sensor technology (Khaleghi et al., 2013; Le et al., 

2021).  

 A few studies have combined optical data (S-2) and SAR data (S-1) to estimate 

agricultural SOC content (Zhou et al., 2020) . Recently, Zhou et al (2020) explored the 

potential of using S1, S2, and digital elevation model (DEM) data in predicting agricultural 

SOC by Boosted Regression Tree (BRT) machine learning technique. It had a prediction 

accuracy of 0.44 R
2
, which is quite low compared to other research (Table 1). It is likely due 

to the optimisation of hyper-parameters tunning and the selection of predictor variables during 

the construction phase of the ML techniques. A range of ML algorithms were used for 

agricultural SOC monitoring which are presented in table 1. The XGBoost was used in many 

studies due to its high predictive performance and being an effective supervised learning 

algorithm for addressing various classification and regression tasks with promising results 

(Chen and Guestrin, 2016), however; it has not been applied for agricultural SOC monitoring. 

For these reasons, the present study aims to develop a novel framework using free-of-charge 

multi-sensor Sentinel 2 and Sentinel 1 with state-of-the-art extreme gradient boosting 

(XGBoost) to predict agricultural SOC stocks. The specific objectives are to: (1) assess the 
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feasibility of using multi-spectral images and SAR dataset in estimating agricultural SOC; (2) 

compare the prediction performance of the XGBoost to two other well-known ML techniques 

(random forest (RF) and support vector machine (SVM)) with various scenarios of data-

fusion level in agricultural SOC prediction; and (3) highlight important predictor features in 

mapping agricultural SOC stock at 10 m spatial resolution. The novel agricultural SOC 

prediction framework will then be expanded so that relevant stakeholders are aware of the 

many advantages for agricultural management, climate change mitigation and landholders 

wanting to make more profit via carbon markets. 

2. Materials and methods 

2.1. Study area  

 The study sites are the Wests area which belongs to Goomalling shire (latitude 

coordinate: -31°18'S and longitude coordinate: 116° 49' E), and Cookies area which belongs 

to Northam shire (latitude: -31° 39' S, and longitude: 116° 39' E). These areas are located in 

the agricultural lands of Western Australia (WA). The agricultural sector plays an essential 

role in the WA’s economy. Pastoral and cropping are two main agricultural activities in the 

WA. According to Australian Bureau of Agricultural and Resource Economics, there are three 

key agricultural climatic zones in Australian, which are High-rainfall, Wheat-sheep, and 

Pastoral zones (Salim & Islam, 2010). While 95 per cent of gross value of agricultural 

production in the WA comes from the high-rainfall and wheat-sheep zones, only 5% of 

agricultural products is produced from pastoral zones. As the agricultural of the WA bases 

totally on rainfall, the main season for crop production in the WA is from April to October. 

The rainfall in growing season ranges between 146 to 294 mm (Petersen & Hoyle, 2016).  

 

 

2.2. Soil samples collection 
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 From very high spatial resolution Google Earth imagery and Sentinel 2 imagery, a 

total of 266 digitizing points for both vegetation and bare soil locations were selected to 

generate land-use binary maps (Figure 1). An Advanced ML technique with five-fold cross 

validation (CV) method were applied for binary land-use classification mapping. The 

classification accuracy of the XGBoost model were compared with the two well-known ML 

algorithm such as the RF and SVM technique. The overall accuracy, kappa coefficient, 

precision, recall and F1_score served as evaluation metrics. The best model with the highest 

value of overall accuracy, F1 score and Kappa coefficient was chosen to produce the binary 

land-use map. The binary land use classification map devised in the study areas served to 

identify bare-soil points for agricultural SOC sampling. The active learning technique in 

remote sensing classification was employed to assist in designing and sampling soil carbon, 

which helps minimise effects of vegetation on SOC contents (Fu et al., 2010; Tuia et al., 

2011).  

 

Figure 1. Flow chart of land-use binary mapping and SOC samples selection using an 

active learning method. 

 The agricultural SOC field survey was carried out in April 2021. Forty bare-soil 

sampling locations with a pixel (size of 10m x 10m) across the study areas (20 points for each 

area) were selected based on the binary map (Figure 2). A Differential Global Positioning 

System (DGPS) - a refined version of the Global Positioning System (GPS) - was used to 

identify precisely the samples’ location with an accuracy of 1-3 cm (Michalski and 

Czajewski;  2004). Four soil cores were taken in each sampling plot. The dimensions of the 

Select digitizing 
points 

ML models for 
the binary land 

use classification 
mapping  

Binary 
classification map 

from the best 
model 

Select bare 
soil points for 
agricultural 

SOC sampling 
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core was 7 cm in depth and 7.3 cm in diameter. The total agricultural SOC of soil samples 

was analysed in the laboratory by Rayment and Lyons Method 6B1 (Heanes, 1984).  

  

(a) Wests                                                      (b) Cookies 

Figure 2. Study areas and digitizing point selection: (a) Wests, and (b) Cookies 

2.3. Research framework 

 The research process includes four main phases (Fig. 3): (1) collection of surface soil 

dataset (0-10cm) based on the binary land-use map; (2) computation of predictor variables 

from optical (Sentinel 2) and synthetic aperture radar (Sentinel 1) remote sensing data; (3) 

spatial modelling of agricultural SOC based on advanced machine learning techniques 

including XGBoost, RF and SVM model; and (4) evaluating the model’s performance with 

70% of SOC dataset generated for models’ training and 30% for models’ testing. This was 

done to select the most accurate model for SOC prediction and mapping the spatial patterns of 

agricultural SOC. 
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Figure 3. A novel established framework of agricultural SOC prediction using multi-

sensor data fusion 

2.4.  Remote sensing data acquisition and image processing 

2.4.1. Data acquisition  

 In this study, S-2 multispectral satellite and S-1 C-band dual polarimetric SAR 

sensors computed the predictor indicators for agricultural SOC. Table 2 illustrates satellite 

data acquisitions from S-2A Multispectral Instrument (MSI) and S-1C Ground Range 

Detected (GRD) product with a dual-polarization data (Vertical transmit Vertical receiving 

(VV) and Vertical transmit Horizontal receiving (VH)). The ten multispectral bands from S2 

sensor were employed with spatial resolution ranging from 10 to 20. Sentinel 1 and Sentinel 2 

images were obtained from the Copernicus Open Access Hub from European Space Agency 

(ESA). The SNAP Sentinel Application Platform toolbox were employed for both optical and 

SAR data processing, whereas ArcGIS 10.3 was used to generate spatial agricultural SOC. 

The acquisition dates were closer to the field data collection dates (from 23 to 28 April 2021). 
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Table 2. Satellite data acquisition for the study sites 

Source: European Space Agency ESA, 2021 

2.4.2. Image transformation of Sentinel 2 imagery 

 The level 1-C Sentinel 2 served as the top of atmosphere (TOA) processing level and 

were geocoded in the projection of World Geodetic System (WGS84) - Universal Transverse 

Mercator (UTM) zone 50 South (50S). Then the S-2 data was transformed to surface 

reflectance by the bottom of atmospheric (BOA) correction using the ESA Sen2Cor plugin in 

the SNAP (Louis at al., 2016). In this study, a total of ten relevant S-2 bands including B2, 

B3, B4, B5, B6, B7, B8, B8A, B11, and B12 were used for this study from thirteen original S-

2 bands. The 10 bands of Sentinel 2 are employed extensively to evaluate soil properties 

(Elhag & Bahrawi, 2017).  The 10 bands were resampled to a ground sampling distance 

(GSD) of 10 m. Vegetation and soil indices are mentioned as being sensitive to soil organic 

carbon content which recently were applied for soil attribute prediction (Jin et al., 2017). 

While seven vegetation indices (VIs) were computed by vegetation radiometric indices 

algorithms, four soil indices (SIs) were extracted from a soil radiometric indices function, 

which are derived from a Thematic Land Processing module in SNAP (Pasqualotto et al., 

Sensor Scene / Tile 

ID 

Acquisition date 

(month/day/year) 

Processing 

level 

Spatial 

resolution (m) 

Spectral band/ 

polarization 

 

S-2  50JML  04/17/2021 1C 10 – 20  13 multispectral 

bands 

S-1    S1B_IW_G

RDH1SDV 

 04/27/2021 GRD 10 Dual- polarization  

(VV and VH) 
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2019) (Table 3). A total of 21 predictor variables derived from S-2 were used for agricultural 

SOC. 
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Table 3. Vegetation and soil predictor variables derived from Sentinel 2 (adapted from Pham et al.,,2020)) 

Vegetation and Soil Index Acronyms  S-2 band wavelengths References 

Ratio Vegetation Index RVI NIR

Red
 (Tucker 1979) 

Normalized Difference Vegetation 

Index  
NDVI NIR − Red

NIR + Red
 (Rouse Jr et al. 

1974) 
Green Normalized Difference 

Vegetation Index 
GNDVI NIR − Green

NIR + Green
 (Gitelson et al. 

1996) 

Normalized Difference Index using 

Bands 4 & 5 of S-2 
NDI45 RE1 − Red

RE1 + Red
 (Delegido et al. 

2011) 
Soil Adjusted Vegetation Index SAVI 

(1 + 𝐿)(
NIR − Red

NIR + Red + L
) 

L = 0.5 in most conditions 

(Huete 1988) 

Inverted Red-Edge Chlorophyll 

Index 
IRECl RE3 − Red

RE1/RE2
 (Frampton et al. 

2013) 

Modified Chlorophyll Absorption in 

Reflectance Index  
MCARI [(RE1 − Red) − 0.2 × (RE1 − Green)] × (RE1 − NIR)  (Daughtry et al. 

2000) 
Brightness index BI √(Red × Red) + (Green × Green)

2
 

(Escadafal 1989) 

Brightness index 2 BI2 √(Red × Red) + (Green × Green) + (NIR x NIR)

2
 

(Escadafal 1989) 
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Vegetation and Soil Index Acronyms  S-2 band wavelengths References 

Redness index RI Red × Red

Green × Green × Green
 (Mathieu et al. 

1998) 
Colour index CI Red − Green

Red + Green
 (Mathieu et al. 

1998) 
Note: Band wavelengths of S-2: B2: Blue (492 nm), B3: Green (560 nm), B4: Red (665 nm), B5: Red-edge 1 (RE1) (704 nm), B6: Red-edge 2 (RE2) (740 nm), B7: Red-edge 3  (RE3) 

(783nm), B8: near-infrared (NIR) (833 nm), B8A: Narrow-NIR (865 nm),  B11: short-wavelength infrared (SWIR1) (1614 nm), and B12: SWIR2 (2202 nm). 
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2.4.3.  Image transformation of Sentinel-1 imagery 

 The extraction of Sentinel 1 data included eight steps which were conducted in the 

SNAP application using the Radar toolset to convert the S-1 C-band SAR raw intensity signal 

data to scale backscatter coefficient (σ
0
) in decibel (dB) as suggested by Pham et al.,(2020) 

and Filipponi (2019). The steps includes: (1) Correct the orbit file; (2) Thermal and border 

noise removal; (3) Radiometric calibration; (4) Speckle filtering; (5) Range Doppler terrain 

correction; (7) Normalized radar backscattering coefficient by the equation 1 below; (8) S-1 

SAR band transformation to create five predictor features including VV/VH; VH/VV; VV-

VH; VH-VV; (VV+VH)/2; and (9) computation of 20 features using grey level co-occurrence 

matrix (GLMC) from S-1 VV and VH Polarizations (Fig 4). 

 

Figure 4. Steps of Sentinel 1 pre-processing and processing 

 A total of 27 features were extracted and computed from Sentinel 1. These features 

contained: the two bands from dual polarization (VH and VV); the five SAR transformed 

bands (VV/VH; VH/VV; VV-VH; VH-VV; (VV+VH)/2); and the 20 new features extracted 

from VV and VH using the GLMC algorithm (VV_Contrast, VV_Dissimilarity, 

VV_Homogeneity, VV_Angular Second Moment, VV_Energy, VV_Maximum Probability, 

Correct the orbit file 
Thermal and border 

noise removal 
Radiometric 
calibration 

Speckle filtering 
Range Doppler 

terrain correction 

Normalized radar 
backscattering 

coefficient 

S1 band 
transformation (5 

features) 

Grey level co-occurrence matrix 
(GLCM) feature extraction (20 

features) Jo
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VV_Entropy, VV_GLCM Mean, VV_GLCM Variance, VV_GLCM Correlation, 

VH_Contrast, VH_Dissimilarity, VH_Homogeneity, VH_Angular Second Moment, 

VH_Energy, VH_Maximum Probability, VH_Entropy, VH_GLCM Mean, VH_GLCM 

Variance, and VH_GLCM Correlation). 

2.4.4. Scenarios development 

 Scenarios were constructed based on the different number of predictor features and 

the combinations of sensors. While Scenario 1 and Scenario 2 were developed from S-2 

derived predictors, Scenario 3 and Scenario 4 were built from S-1 derived predictors. 

Scenario 1 (SC1) included only 10 features from 10 S-2 bands. Scenario 2 (SC2) consisted of 

a total of 21 S-2 derived predictors including 10 S-2 bands, 7 VIs bands, and 4 SIs bands. 

Scenario 3 (SC3) and Scenario 4 (SC4) comprised 7 and 27 predictor features from the S-1 

sensor, respectively. Scenario 5 (SC5) included all features based on the combination of S-2 

and S-1. The purpose of scenarios development was to assess the impact of the type of 

predictor variables and the level of different features combinations on how well agricultural 

SOC prediction went. 

2.5. Machine learning techniques 

2.5.1. Extreme gradient boosting (XGBoost) 

 The XGBoost technique was introduced by Chen and Guestrin (2016). It shares the 

same theory with other gradient tree boosting algorithms. The XGBoost algorithm is 

described as a scalable end-to-end tree boosting which is a highly accurate machine learning 

technique and has widely applied to solve data mining problems (Chen and Guestrin, 2016). 

The novelty of XGBoost is its scalability in all scenarios so it can handle sparse data 

challenges. This advanced ML techniques is able to handle both classification and regression 

tasks (Ha et al., 2021b). The further merits of the XGBoost are parallelization, out-of-core 

computation, and cache optimization, which help the training process of the system more 
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quickly than existing gradient boosted regression tree methods. This technique can easily deal 

with the problem of a model’s complexity especially if it has a large dataset. Moreover, the 

XGBoost method can use integrated optimization algorithms to tune important hyper-

parameters such as the number of trees and the rate of learning to suit a specific dataset. In 

this study, the best structure with 100 trees, and a learning rate set at 0.5 and gamma value of 

5 was found the highest performance in the XGBoost model. 

2.5.2. Random forest (RF) 

 The RF algorithm is one of the most popular machine learning algorithms, and it can 

be used effectively for a wide range of applications (Breiman, 2001; Pham et al., 2020). This 

technique includes a large number of regression trees. Each regression tree is built by the 

unique bootstrap sample from the original dataset, which decreases the sensitivity of the RF 

method to overfitting problems. Normally, the dataset will be divided with about two-thirds of 

the samples (in-bag data) for the training sets and the remaining samples for the test sets (Out-

Of-Bag (OBB data). Two essential parameters including the number of regression trees and 

number of predictor variables must be defined in the RF model. In the current work, the RF 

model with 100 trees and the maximum number of 11 features had the highest performance 

for this study area. 

2.5.3. Support vector machine (SVM) 

 Developed by Cortes and Vapnik (1995), the SVM algorithm is a well-known 

supervised learning technique based on the kernel approach and statistical theory, which can 

applied for classification, regression and outliers detection (Cortes & Vapnik, 1995; 

Cristianini & Ricci, 2008). While the SVM can help solve non-linear dataset, this method is 

not effective with a noisy and overlapped dataset. One of the advantages of SVM is that it can 

work accurately with a small number of training datasets. The SVM algorithm’s performance 

is based on the selection of kernel functions and their parameters. There are three hyper-
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parameters in the SVM method including regularization parameter, the kernel function, and 

gamma controlling the overfitting. The hyper-parameters of the SVM method are fewer than 

other machine learning algorithms. Four kernel function types include polynomial, sigmoid, 

linear and radial basis function. In this study, the grid search with a five-fold CV was used to 

determine the optimal hyper-parameters of each ML algorithm in the Python environment. In 

this work, the SVM algorithm with the radial basis function (RBF) kernel and the C value of 

10000 was used, and the epsilon value of 0.01 as the best values for tuning hyper-parameters 

of the SVM model.  

2.6. Model performance evaluation 

 To assess the model performance of binary land-use classification, five evaluation 

criteria have been used including overall accuracy (OA), kappa coefficient (KC), precision 

(P), Recall (R), and F1 score (F1) (Chicco & Jurman, 2020; Ha et al., 2021). 

 For agricultural SOC retrieval, two common validation criteria were employed to 

assess the performance of machine learning techniques with different scenarios including: the 

root mean square error (RMSE), and the coefficient of determination (R
2
). Superior model 

performance illustrates the higher R
2
 and lower RMSE. These criteria are evaluated using the 

equations below: 

RMSE = √
1

n
∑ (Pi − Oi)

2n
i=1                                                                                                   (1)          

𝑅2 =
∑ (n

i=1 Pi−Oi̅̅ ̅)

∑ (Oi−Oi)̅̅ ̅̅n
i=1

                                                                                                                    (2) 

Where: n indicates the number of soil samples; Pi and Oi illustrate the predicted SOC value 

and measured SOC value of the i sample, respectively. 

3. Results 

3.1. Land-use binary mapping 
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 Land-use classification results found by the XGBoost,, the RF and the SVM 

algorithms are indicated in Table 4 below. The results present the high accuracy of land-use 

binary mapping at study sites using the S-2 dataset. The XGBoost algorithm produced the 

highest accuracy and performed better than the RF and the SVM with 0.94 OA, 0.89 KC, 0.96 

P, 0.91 R and 0.93 F1. 

Table 4. Model’s performance of land-use binary mapping using S-2 dataset 

No  Machine learning 

model  

OA KC P R F1 

1  Extreme Boosting  

(XGBoost)  

0.94 0.89 0.96 0.91 0.93 

2  Random Forests  (RF)  0.92 0.85 0.88 0.87 0.91 

3  Support Vector 

Machine (SVM)  

0.86 0.79 0.84 0.82 0.85 

 

 The land use binary classification maps were created for the Wests and Cookies area 

using the XGBboost model using S-2 dataset and Google Earth imagery (Fig. 5). The 

classified map includes only bare soil and vegetation classes. Based on the binary 

classification maps, the precise locations belonging to the bare-soil pixels were used as a 

guide for sampling agricultural SOC field collection. 
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Figure 5. Land use binary classification map derived from the XGBoost model using S-2 

and sampling points selection: (a) Wests, and (b) Cookies

(a) Wests 

 

(b) Cookies 
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 The correlation coefficient between the input features derived from S2 data, VIs, and 

SIs with measured agricultural SOC was computed and illustrated in table 5.  According to 

Table 5, the Ratio Vegetation Index (RVI), the Normalized Difference Vegetation Index 

(NDVI), and the Soil Adjusted Vegation Index (SAVI) presented the highest correlation with 

measured agricultural SOC among 21 predictor features derived from the S-2 image. These 

indices revealed positive correlations with agricultural SOC. In contrast, the lowest 

correlations were observed between Brightness Index 2 (BI2) and agricultural SOC. 

Vegetation and Soil Indices confirmed a higher correlation with agricultual SOC than ten S-2 

multispectral bands. While vegetation indices illustrated positive correlations with 

agricultural SOC, most soil indices including BI, CI, and RI demonstrated negative 

correlations. 

Table 5. Pearson’s correlation analysis of S-2 derived predictor indicators and 

measured SOC   

S2_Bands_Index Correlation 

coefficient 

S2_VI_BI_Index Correlation coefficient 

B2 -0.056 RVI 0.409 

B3 -0.043 NDVI 0.419 

B4 -0.162 GNDVI 0.167 

B5 -0.131 NDI45 0.116 

B6 -0.011 SAVI 0.470 

B7 0.059 MCARI 0.088 

B8 0.125 IRECI 0.377 
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S2_Bands_Index Correlation 

coefficient 

S2_VI_BI_Index Correlation coefficient 

B8A 0.170 BI -0.113 

B11 -0.022 BI2 0.005 

B12 -0.025 CI -0.296 

  RI -0.059 

 

 Table 6 shows the Pearson’s correlation analysis of S-1 derived predictor indicators 

and measured agricultural SOC. VV, (VV+VH)/2, VH_GLCM Mean, VH_GLCM Variance, 

VV_Dissimilarity, VV_Homogeneity, VV_Angular Second Moment, VV_Entropy, 

VV_GLCM Mean, VV_GLCM Variance demonstrated the highest correlation with 

agricultural SOC compared to other predictor features generated from S1 data. Most GLCM 

textures showed strong correlations with agricultural SOC content. Four out of five S-1 SAR 

transformation bands (VH-VV; VV-VH; VV/VH; and VH/VV) had weak relationships with 

agricultural SOC. 
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Table 6. Pearson’s correlation analysis of S-1 derived predictor indicators and 

measured SOC   

S1_Index Correlation 

coefficient 

S1_Index Correlation 

coefficient 

S1_Index Correlation 

coefficient 

VH  0.389 VH_Homogeneity -0.100 VV_Dissimila-

rity 

0.417 

VV 0.433 VH_Angular 

Second Moment 

-0.047 VV_Homo-

geneity 

-0.416 

(VH+VV)/2 0.439 VH_Energy -0.083 VV_Angular 

Second 

Moment 

-0.431 

VH-VV 0.251 VH_Maximum 

Probability 

-0.067 VV_Energy -0.349 

VV-VH -0.243 VH_Entropy 0.106 VV_Maximum 

Probability 

-0.363 

VV/VH -0.118 VH_GLCM Mean 0.434 VV_Entropy 0.432 

VH/VV 0.118 VH_GLCM 

Variance 

0.437 VV_GLCM 

Mean 

0.476 

VH_Contrast 0.243 VH_GLCM 

Correlation 

-0.211 VV_GLCM 

Variance 

0.468 

VH_Dissim-

ilarity 

0.168 VV_Contrast 0.359 VV_GLCM 

Correlation 

-0.328 
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3.2. Evaluation and comparison of scenarios and different ML models 

 Five scenarios with varied features generated from S-2 and S-1 sensor were tested 

using the XGBoost technique (Table 7). The SC5 with the best possible number of features 

derived from multi-sensor S-1 and S-2 produced the highest prediction accuracy compared to 

the others SCs. However, the SC3 with only seven predictor variables from S1 yielded the 

worst prediction performance. A combination of S-2 and S-1 derived predictor features 

showed the highest R
2
 of 0.870 in the validation phase and the lowest RMSE of 1.818 

tonC/ha. 

Table 7. Model performance of the XGBoost technique in six scenarios 

Scenario 

(SC) 

Number of features  R
2
 training 

(70%) 

R
2
 validation 

(30%) 

RMSE 

(Ton 

C/ha) 

SC1 10 features (10 S-2 bands only) 0.713 0.443 3.160 

SC2 21 features (10 S-2 bands, 7 bands 

VIs, and 4 bands SIs) 

0.891 0.625 2.370 

SC3 7 features (2 bands from dual 

polarization, 5 SAR transformed 

bands) 

0.559 0.254 3.004 

SC4 27 features (2 bands from dual 

polarization, 5 SAR transformed 

bands, and 20 bands created from 

GLMC) 

0.998 0.584 2.471 

SC5 48 features (21 S-2 bands and 27 

S1-bands) 

0.927 0.870 1.818 
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 To compare the effectiveness of the proposed XGBoost model using multi-source EO 

data fusion, two other well-known ML algorithms were selection for the comparison. The 

performance of the three ML algorithms on agricultural SOC retrievals are presented in Table 

8. The SVM model performance in the agricultural SOC prediction was the lowest (R
2
 = 

0.661) and the RMSE value (4.396 ton/ha) was higher than those produced the XGBoost and 

the RF model. The XGBoost model with 48 predictor variables derived from a combination 

of S-2 image and S-1 image yielded the most accurate for agricultural SOC prediction in the 

validation phases (R
2
 = 0.870, and RMSE = 1.818 ton/ha), followed by the RF model (R

2
 = 

0.724 and RMSE= 2.289 ton C/ha, and the SVM model (R
2
 = 0.661 and RMSE= 4.396).  

Table 8. Performance comparison of ML algorithms on agricultural SOC estimation 

No Machine learning model 
R
2

 training 

(70%) 

R
2

 testing 

(30%) 

RMSE 

(Ton C/ha) 

1  Extreme Boosting (XGBoost)  0.927 0.870 1.818 

2  Random Forests (RF)  0.827 0.724 2.289 

3  Support Vector Machine (SVM)  0.999 0.661 4.396 

 

  Figure 6 indicates the scatter plots of the estimated versus measured agricultural soil 

organic carbon using three well-known ML techniques in testing phase. The proposed ML 

models with auxiliary variables from S-2 multispectral imagery and S-1 SAR data can 

successfully estimate the agricultural SOC. The XGBoost is better at prediction than the RF 

and SVM. 
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Figure 6. Scatter diagrams of the measured SOC and estimated SOC by (a) XGBoost, 

(b) RF, (c) and SVM. 

3.3. Spatial distribution patterns of agricultural SOC maps 

 Based on scenario 5, the spatial distribution of agricultural SOC maps generated for 

the Wests and Cookies areas using a combination of S1 and S2 datasets integrated by the 

XGBoost model are demonstrated in Fig. 7. The max, min, mean and standard deviation (SD) 

values of the predicted agricultural SOC were 15.899 ton C/ha, 5.42 ton C/ha, 6.936 ton C/ha, 

and 0.45 ton C/ha, respectively. The XGBoost model produced the low level of uncertainty 

and stable prediction capabilities with the low average value of SD.

(a) 

(c) 

(b) 
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Figure 7. Spatial distribution characteristic of agricultural SOC in study areas: (a) 

Wests (a) and (b) Cookies using the proposed XGBoost combined data fusion. 

 

(a) Wests 

(b) Cookies 
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4. Discussion  

4.1. Performance of agricultural SOC prediction models 

 The prediction accuracy of agricultural SOC has been greatly influenced by the 

selection of predictor variables, ML algorithms, and level of data fusion (Table 7). The higher 

level of data fusion with more predictor features derived from Sentinel 2 and Sentinel 1 

illustrated better prediction accuracy for retrieving agricultural SOC. This outcome is 

consistent with what Zhou et al (2020) and Castaldi et al (2019) reported. They indicated that 

the type of remote sensing data, predictor variables selection and the choice predictive models 

play important roles in SOC estimation (Castaldi et al., 2019). As well, combining S-2 and S-

1 free-of-charge EO data can improve SOC prediction performance. Recent studies also stated 

that the multi-sensor data fusion has proved to be more effective than the single sensor 

approach in quantifying SOC for both mangrove SOC stocks and agricultural SOC content 

(Le et al., 2021; Zhou et al., 2020b).  

 The XGBoost predictive model is an efficient and effective gradient boosting 

algorithm which can be applied successfully for predictive modelling in SOC stocks research. 

The performance of the proposed XGBoost model combined with data fusion in the study 

performed well and outperformed the two well-known ML algorithms i.e. the RF and the 

SVM. The XGBoost algorithm is powerful and an advanced ML technique in predicting SOC 

stocks which is backed up in other recent studies (Ha et al., 2021; Ibrahem Ahmed Osman et 

al., 2021). The prediction results of the XGBoost in the study shows superior results (R
2
 

=0.87, RMSE = 1.818 tonC/ha) which are very much higher than the results of other studies 

noted in Table 1. The proposed framework using the 48 predictor features (10 multispectral 

bands, 7 vegetation indices, 4 soil indices, 2 bands from dual polarization, 5 SAR transformed 

bands, and 20 bands created from GLMC) derived from S1 and S2 combined with the 

XGBoost ML technique were powerful in agricultural SOC prediction. Importantly, the novel 

framework developed in this work is able to handle a small number of agricultural SOC 
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samples, reflecting the robustness and cost-effectiveness of the model development for future 

and long-term agricultural SOC monitoring. However, more studies must be done on more 

sites, incorporating a wider geographical area.  

4.2. Relative importance of predictor variables 

 The successful application of satellite RS images in predicting agricultural SOC has 

been proved in much research at the regional, national and global scale (Croft et al., 2012; 

Dvornikov et al., 2021; Hamzehpour et al., 2019; Mirzaee et al., 2016; Paul et al., 2020; Zhou 

et al., 2020a). However, most studies on this topic concentrated on mapping agricultural SOC 

based on optical imagery like S-2 imagery, which is due to the close relationship of Sentinel 2 

derived indicators and SOC distribution. The present study illustrated that the predictor 

variables derived from both optical and SAR dataset are effective in estimating agricultural 

SOC. Similar observations were demonstrated by Yang and Guo (2019) (Yang & Guo, 2019). 

The relative importance of prediction features is presented in Fig. 8. Only 24 variables (10 

features derived from S-2 and 14 features derived S-1) out of 48 variables were shown the 

high relative importance in the agricultural SOC. 

 Soil Adjusted Vegetation Index (SAVI) was identified as the most important predictor 

feature for agricultural SOC retrieval. It is due to its high sensitivity to soil characteristics 

(Huete 1988). The SAVI computed from the NIR and the Red bands also shows the strongest 

correlation coefficient (0.47) in Table 5, reflecting a high sensitivity to soil backgrounds and 

allowing to quantify the agricultural soil texture and SOC. The result is similar to the finding 

reported by Xue and Su (2017). The GLCM indicators, and dual polarization VV and VH 

derived from S-1 are also influential features. The contribution of the predictor variables 

computed from SAR data on determining agricultural SOC are more significant than S-2 

derived variables. This is due to the capture ability of vegetation short-term variation 

characteristics of the Sentinel 1 sensor. Remarkably, the GLMC textures derived from 
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Sentinel 1 were not previously selected as the predictor features for agricultural SOC 

prediction. Nonetheless, it can be seen from Fig. 8 that GLMC bands from the VV 

polarization have been illustrated as being satisfactory predictor variables for estimating 

agricultural soil organic carbon. Future studies focusing on the SAR mechanism on 

agricultural SOC should be further investigated. 

 

Figure 8. Variable importance of optimal features derived from multi-source EO 

data. 

5. Conclusion 

 The present study pioneers the use of predictor features (dual polarizations and 

transformed bands) from SAR remote sensing imagery (S-1) and the fusion of predictor 

variables derived from optical remote sensing imagery (S-2) with a state-of-art machine 

learning technique (XGBoost). It is applied for predicting agricultural SOC in Western 
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Australia. Overall, the combination of S1 C-band dual polarimetric SAR and optical S2 

datasets proved to be very useful for agricultural SOC prediction. High level of data fusion or 

multi-source sensor derived predictive variables illustrated significantly better prediction 

performance than a low level of data fusion or single sensor derived features. The proposed 

XGBoost model using multi-sensor data fusion demonstrated the highest prediction accuracy 

(R
2
=0.870, RMSE= 1.818 ton/ha). In addition, the proposed model is able to derive 

agricultural SOC maps at 10m spatial resolution on regional scale with a precise accuracy. 

The binary land-use classification mapping using active learning to select bare soil sampling 

points and DPGS play important roles in the improvement of agricultural SOC prediction 

accuracy. Combining ensemble-based learning and active learning can enhance the estimates 

of agricultural SOC with only a small soil sample dataset. In short, this SOC prediction 

approach makes possible carbon neutrality for agriculture towards additional revenue via 

carbon credits. 
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