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Abstract—Joint communication and radar sensing (JCAS) in-
tegrates the two functions into one system, sharing one trans-
mitted signal. In this paper, we investigate JCAS waveform
optimization in communication-centric systems, where a base
station (BS) detects radar targets and communicates with mobile
users simultaneously. Different from existing works, we study
multi-metric optimizations for a practical low-cost system and
establish their connections. To relax the requirement of full-
duplex technology, we add a single receive antenna for sensing
at the BS, which is synchronized with and spatially separated
from the JCAS transmit array. We first optimize precoders
for communications and radar, individually. Then, we formulate
a JCAS waveform optimization problem that constrains either
mutual information (MI) or Cramér-Rao bound (CRB) of radar
and maximizes the relaxed signal-to-interference-plus-noise rate
(SINR) of communications. Exploiting the geometric characteristic
of the relaxed SINR, we provide a closed-form solution under
certain conditions and propose a numerical iteration algorithm
that works in all situations. We also disclose the connections
between optimizations with constraining MI and CRB, using
numerical results. Finally, simulation results are provided and
validate the proposed optimization solutions.

Index Terms—Joint communication and radar sensing (JCAS),
mobile networks, radar-communications, waveform optimization

I. INTRODUCTION

Sharing many hardware and signal processing modules and
transmitting one single signal, joint communication and radar
sensing (JCAS) systems have shown great potential in many
applications. One main application is for the fifth-generation
(5G) cellular networks or beyond [?]. The 5G perceptive
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mobile network is proposed and aims to detect the surrounding
environment using the communication links [?], [?]. The JCAS
techniques will be the main feature in the sixth-generation (6G)
cellular networks, dedicated to designing joint-function systems
that use a single waveform to realize both communication and
radar purposes [?]. JCAS systems have also attracted a lot
of interest with applications in vehicular networks and self-
driving [?], [?], [?], where signals used for communications
between cars are also used for sensing the environment to detect
objects and avoid collisions. For indoor environments, several
works on passive WiFi sensing have been reported [?], [?],
[?]. The underlying principle is to use the WiFi link to sense
the object movements and human behaviour, which can be a
promising technique for smart home applications. With sharing
radar and communication functions, the JCAS devices can be
smarter and more energy-efficient than conventional electronic
devices. Moreover, with the deployment of a huge number of
electronic devices in these future applications, JCAS techniques
can reduce the hardware costs and power consumptions greatly
[?].

A. Related Works

With most traditional hardware components replaced by dig-
ital processing modules, JCAS-enabled systems can reduce the
number of connected devices and save the frequency resources
[?], [?], [?]. To utilize the resources completely, most developed
JCAS systems transmit single waveforms [?]. The resource
utilization of the single waveform transmission schemes is
highly efficient since the waveforms have dual functions that
can be used for both communication and radar purposes. Such
waveforms can be developed from classical radar waveforms
[?], [?], [?] or conventional communication waveforms [?], [?].

Waveform optimization for JCAS has been reported in the
literature. In [?], a multi-beam approach was proposed to
flexibly generate JCAS sub-beams using analog antenna arrays.
The optimization of the multi-beams was further investigated
in [?]. This approach can adapt to varying channels but is
suboptimal. In [?], the authors separated antenna arrays into
two groups to realize dual-function JCAS systems. The radar
waveform falls into the nullspace of the downlink channel, such
that the interference between radar signals and communication
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signals can be minimized. A multi-objective function was
further applied to trade off the similarity between the generated
waveform and the desired one in [?]. The multi-objective
function in [?] is a weighted sum of two individual optimal
waveforms. In [?], the authors maximized the radar signal-
to-interference-plus-noise ratio (SINR) with a given specific
capacity of communication channels. The work in [?], [?] fur-
ther introduced a sub-sampling matrix for radar as an objective
function of the optimization. Most of these existing works
either optimized one-side (radar/communication) performance
with constraining the other side (communication/radar) [?], [?],
[?], [?] or adopted a weighted-sum solution to optimize joint
metrics with constraining the power [?], [?], [?]. Except those
two main-stream methodologies, there are also some works
that design the desired beam directions for both radar and
communications, and embed the information on the sidelobes
of radar beams [?], [?]. In this paper, we would like to regulate
both radar and communications, so that they each can achieve
a required performance threshold.

When optimizing JCAS waveforms, different performance
metrics for both communications and radar sensing can be
used. The metrics for multiuser communication systems include
multiuser interference (MUI) [?], [?] and effective channel
gain (ECG) [?]. The MUI tolerance was analyzed for multi-
input-multi-output orthogonal-frequency-division-multiplexing
(MIMO-OFDM) JCAS systems in [?], using the interleaved
signal model in [?]. The individual optimal communication
waveform in [?] is also based on minimizing the MUI. How-
ever, simply minimizing MUI can cause the JCAS signals to
fall into the nullspace of individual communication signals and
result in a low sum rate. To tackle this issue, the authors
in [?] introduced an expected diagonal matrix that requires
a constellation symbol matrix (CSM). As for radar sensing,
typically considered performance metrics include mutual infor-
mation (MI) [?], [?], Cramér-Rao bound (CRB) [?], [?], and
minimum mean-squared error (MMSE) [?]. In [?], MI for an
OFDM JCAS system was studied, and the power allocation on
subcarriers was investigated by maximizing the weighted sum
of the MI of radar and the MI of communication. In [?], the
authors developed an MI measure that jointly optimizes the
performance of radar and communication systems that overlap
in the same frequency band. The CRB and MMSE are also
commonly-used metrics for waveform optimization. In [?], the
authors derived the performance bounds for a single antenna
system. In [?], the authors derived performance bounds for the
radar estimation rate based on MMSE estimation bounds.

B. Motivations and Contributions

This paper develops waveform optimization approaches for
OFDM JCAS systems and aims to establish connections be-
tween different commonly-used metrics. Firstly, we consider
a practical JCAS system of deployment, using a single dedi-
cated receive antenna for sensing. JCAS systems, particularly
those underlying communication signals, confront the major

challenge of full-duplex, that is, transmitting and receiving at
the same time using the same frequency channel [?]. Solutions
bypassing full-duplex requirements were discussed in [?], [?].
Here, we adopt a single receive antenna dedicated to radar
sensing, which is a low-cost and practical solution at the
moment. Due to the use of a frequency-modulated continuous-
wave signal, the sensing antenna is widely separated from the
transmit array, and hence can perfectly retrieve the receive echo
signals for sensing without short range leakage (SRL) effects
[?], [?]. Secondly, there are not many papers that conduct
parallel comparisons between multiple performance metrics in
JCAS systems so far. We aim to optimize the precoder of
communications with constraining one of the radar performance
metrics including CRB and MI. We formulate the optimization
problems for both MI and CRB of radar under the same
communication framework. In addition to providing closed-
form solutions to the optimization problems, we are able to
establish and observe connections between using MI and CRB
as optimization metrics.

The main contributions of this paper are summarized as
follows.

• We derive multiple metrics, including a novel relaxed
SINR for communications, and MI and CRB for radar
sensing, in an OFDM-based JCAS system. In the adopted
system, bypassing the full-duplex requirement, one single-
antenna sensing receiver is used for collecting the signals
reflected from targets.

• We propose the relaxed SINR by summing the traditional
ones for all users. Instead of using the conventional
semi-definite relaxation (SDR) method, we analyze the
geometric characteristic of the proposed relaxed SINR.
Due to its hyperbolic characteristic, we can obtain the
closed-form solution of the precoder to the relaxed SINR
optimization problem. Additionally, we can obtain the
precoder directly without the requirement of transforming
the covariance matrix to the precoder.

• We derive multiple metrics, including MI and CRB, for
radar and optimize the precoders using these metrics. We
also show that MI focuses on the accuracy of the whole
channel vectors, while the CRB is biased on the accuracy
of the derivatives of the channel vectors with respect to
different parameters.

• We formulate two JCAS precoding optimization problems
with constraints on the users’ achieved SINRs and the
achieved MI/CRB of radar. We provide both closed-form
solutions under certain conditions and numerical iteration
algorithms. We also show the JCAS performance gaps be-
tween those two different radar constraints via numerical
results.

Notations: a denotes a vector, A denotes a matrix, italic
English letters like N and lower-case Greek letters α are a
scalar. |A|,AT ,AH ,A∗, and A† represent determinant value,
transpose, conjugate transpose, conjugate, and pseudo inverse,
respectively. We use diag(a) to denote a diagonal matrix with
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Fig. 1. Illustration of JCAS systems with downlink sensing. The BS uses a
single-antenna receiver dedicated for sensing the reflected downlink signals.

diagonal entries being the entries of a and Tr(A) to denote
the trace of a square matrix. ‖A‖F and [A]N represent the
Frobenius norm and the N th column of a matrix, respectively.

II. SYSTEM AND CHANNEL MODELS

We consider an OFDM-based JCAS system supporting mul-
tiuser communications, as well as active downlink sensing.
As shown in Fig. 1, the sensing is conducted at the BS,
where an N × 1 uniform linear array (ULA) is employed
for transmitting communication data blocks. Since the full-
duplex technologies are not mature yet, we consider a low-cost
alternative setup, where a single antenna, sufficiently separated
from and synchronized with the transmit array, is used for
solely collecting the reflected signals and sensing. This antenna
can be co-located with the transmit array or geometrically
separated. In the former, SRL signals from the transmitter is
largely separated and can be simply removed as they are known
at the receiver. In the latter, in terms of sensing, it is equivalent
to a bi-static radar. For both cases, the system is equivalent to
a multi-input-single-output (MISO) system for sensing. Hence,
sensing parameters except for the angle-of-arrivals (AoAs) can
be effectively estimated by using the received signals at the
BS. The role of AoAs in localization can be substituted by
angle-of-departures (AoDs) in our considered system.

The OFDM signal consists of K subcarriers with the subcar-
rier interval ∆f = 1/T , where T is the length of one OFDM
symbol exclusive of the cyclic prefix (CP) of length TC. Let
s[k,m] denote a U×1 data symbol vector on subcarrier k of the
mth time slot. A digital precoder with the dimension of N×U ,
P[k,m], is applied to s[k,m], such that ‖P[k,m]‖2F ≤ U . The
precoded data symbol vector is written as

x[k,m] = P[k,m]s[k,m],

k ∈ {0, · · · ,K − 1},m ∈ {0, · · · ,M − 1}. (1)

An inverse fast Fourier transform (IFFT) across the frequency
band is then applied to the elements of x[k,m] from k = 0
to k = K − 1 and transforms signals into time domain. The
time-domain signals are transmitted by the N × 1 ULA.

The BS conducts downlink communications with U mobile
users (MUs) that may also become part of the targets in sensing.
Each user has a single receive antenna. The transmitted signals
go through a finite-scatter channel model [?], given by

hC
u [k,m] =

Lu∑
lu=1

βlua(Φlu)e−j2πk
τlu
T ej2πmfd,lu (T+Tc), (2)

where βlu is the channel gain of the luth path between BS
and MU u, Φlu = π sin(ϕlu) is the equivalent AoD with
ϕlu being the actual AoD, a(·) is an N × 1 normalized ULA
array response vector, τlu is the time delay of the lth path
of user u, fd,lu is the Doppler frequency of the lth path of
user u, and Tc is the duration of a CP. We can use traditional
least square (LS) method to estimate the channel model. We
assume that fd,lu(T + Tc) is small enough, such that the term
of ej2πmfd,lu (T+Tc) can be regarded unchanged and can be
absorbed into the coefficients βlu from m = 0 to m = M − 1.
Thus, the channel model becomes invariant to the time slot.
Let us send a data block S[k] =

[
s[k, 0], · · · , s[k,M − 1]

]
of

length M at the baseband of BS. We assume the data symbols
are statistically independent, i.e., E(S[k]SH [k]) = P I, where
P is the transmit power. The received signal for each user is
sampled at the interval of T/K and converted to the frequency
domain using K-point FFTs after removing CP. We assemble
a limited number of M time slots. The received data symbol
of the uth user is

ru[k] = (hC
u [k])HP[k]S[k] + nC

u [k], (3)

where nC
u [k] is a complex AWGN vector with zero mean and

covariance matrix of σ2
CIM , P[k] is the precoder during the

first M time slots, and hC
u [k] equals hC

u [k, 0].

Meanwhile, the BS utilizes the single-antenna receiver as in
Fig. 1 to perform radar sensing. The transmitted signals from N
antennas impinge on L targets with the time delays of {τl}Ll=1.
We still omit the Doppler term and write the sensing channel
as

hS[k] =

L∑
l=1

αla(Ωl)e
−j2πk τlT = AΨΦ[k]1, (4)

where αl is the path loss coming from the lth target,
Ωl = π sin(ωl) is the equivalent AoD with ωl being
the AoD of targets, τl is the time delay of the targets,
A = [a(Ω1), · · · ,a(ΩL)], Ψ = diag(α1, · · · , αL), Φ[k] =
diag([e−j2πk

τ1
T , · · · , e−j2πk

τL
T ]), and 1 is a vector with all

entries being 1s. We assume that the entries of the radar channel
vectors are independent and identically distributed (i.i.d.). The
received frequency-domain signal at the sensing receiver of the
BS is written as

r[k] = (hS[k])HP[k]S[k] + nS[k], (5)

where nS[k] is a complex additive-white-Gaussian-noise
(AWGN) vector at the sensing receiver, and it has zero mean
and covariance matrix of σ2IM .
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III. INDIVIDUAL PERFORMANCE METRICS

In this section, we derive the performance metrics for com-
munications and sensing individually. For communications, we
consider the SINR metric. Due to the non-convex nature of
the SINR expression, we can use the traditional semi-definite
relaxation (SDR) technique [?] to relax SINR. By fixing the
SINR thresholds to be the same among users, we also propose
a novel relaxed SINR that has a quadratic form. For radar
sensing, we consider two different metrics, MI and CRB, and
aim to disclose the links between these metrics in the JCAS
design.

A. Metrics for Communications

The SINR is one of the main performance metrics considered
in communications, especially in multiuser systems. For the
studied system, the SINR on the kth subcarrier of the uth user
is given by

SINRk,u =
P
U |(h

C
u [k])Hpu[k]|2

P
U

∑
v 6=u
|(hC

u [k])Hpv[k]|2 + σ2
C

, (6)

where pu[k] is the uth column of P[k]. The SINR has a non-
convex form and is difficult to optimize, especially when joint
optimization in JCAS is required. By letting

Hk,u = hC
u [k](hC

u [k])H ,Qk,u = pu[k]pHu [k], (7)

we can use the traditional SDR technique [?] to relax the SINR
into the following form,

Rk,u = Tr(Qk,uHk,u)− γk,u

∑
v 6=u

Tr(Qk,vHk,u) +
σ2
CU

P

 ,

(8)

where γk,u is a given threshold, such that SINRk,u ≥ γk,u,
which is equivalent to Rk,u ≥ 0. According to [?], we can
prove that Rk,u+γk,u can be seen as a lower bound of SINRk,u

at high SNRs.

Proof. Dividing Rk,u by

(∑
v 6=u

Tr(Qk,vHk,u) +
σ2
CU
P

)
, we

have
Rk,u∑

v 6=u
Tr(Qk,vHk,u) +

σ2
CU

P

= SINRk,u − γk,u.

Note that
∑
v 6=u

Tr(Qk,vHk,u) denotes the MUI of the system.

Generally, we can regulate the power of precoder, such that
it is smaller than 1. At high SNRs, the term of σ2

CU
P can be

seen as zero. Then, we have SINRk,u − γk,u ≥ Rk,u. Hence,
at high SNRs, Rk,u + γk,u can be seen as a lower bound of
SINRk,u.

The relaxed SINR, Rk,u, can be solved using the standard
semi-definite programming (SDP). Nevertheless, the obtained

ideal Qk,u always has a high rank while the practical Qk,u is
pu[k]pHu [k] and only has a rank of 1. Some papers use rank
reduction approaches [?] to force Qk,u’s rank to be 1, but these
approaches will cause distortion errors between the ideal Qk,u

and the rank-reduced Qk,u. For this problem, we propose a
novel metric that can use pu[k] instead of Qk,u to optimize
the sum of Rk,u.

As detailed in Appendix ??, we can rewrite Rk,u into the
following form,

Rk,u =(pHu [k]Hk,upu[k])

− γk,u

∑
v 6=u

(pHv [k]Hk,upv[k]) +
σ2
CU

P

 . (9)

Now, letting γk,u be invariant to u, we develop a metric, Rk =
U∑
u=1

Rk,u, which can be represented as

Rk

=

U∑
u=1

(pHu [k]Hk,upu[k])

− γk

 U∑
u=1

∑
v 6=u

(pHv [k]Hk,upv[k]) +
σ2
CU

2

P


=

U∑
u=1

(pHu [k]Hk,upu[k])

− γk

 U∑
u=1

∑
v 6=u

(pHu [k]Hk,vpu[k]) +
σ2
CU

2

P


=

U∑
u=1

pHu [k]

Hk,u − γk
∑
v 6=u

Hk,v

pu[k]

− γk σ2
CU

2

P
.

(10)

As mentioned above, Rk,u+γk,u is a lower bound of SINRk,u.
Similarly, Rk + γk can be seen as the lower bound of the
average SINR for all users. Since γk is a fixed value, we only

need to maximize Rk instead. We denote
U∑
u=1

SINRk,u/U as

the average SINR on subcarrier k. By maximizing Rk under
the constraint of Rk,u ≥ 0, we can guarantee that the average
SINR is maximized, while each user meet the lowest SINR
requirement. Let Ck,u = Hk,u − γk

∑
v 6=u

Hk,v . We note that

Rk is a quadratic form. More specifically, when pu[k] is a
real vector of dimension two, Rk is a hyperbola curve, and
when pu[k] is a real vector of dimension three, Rk is a
saddle surface. Even though the reformulated Rk is still not
a convex function, we can exploit the geometric characteristic
of hyperbola curve to obtain its optimal value. The individual
precoding optimization problem for communications can hence
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be formulated as

arg max
P[k]

Rk = −γk
σ2
CU

2

P
+

U∑
u=1

pHu [k]Ck,upu[k]

s.t.‖P[k]‖2F ≤ U,Rk,u ≥ 0. (11)

We note that, in most cases, only the first eigenvalue of Ck,u

is positive. This is resulted from the low correlation among the
communication channel vectors. Considering a specific case
when the communication channel vectors are orthogonal with
one another, they become the eigenvectors of Ck,u and the
eigenvalues of Ck,u are ‖hC

u [k]‖2 and −‖hC
v [k]‖2,∀v 6= u.

When the channel vectors are statistically independent, it is
still held that only the first eigenvalue is positive because the
channel vector of hC

u [k] has little projection value on the other
channel vectors of hC

v [k],∀v 6= u.

B. MI for Radar Sensing

MI is a widely-used metric in both radar and communication
systems. For radar, maximizing MI enables the maximization
of information/entropy on targets in the received signal. Since
the channel vector is the main concern for the radar system,
MI determines how much entropy can be transformed to the
receiver side. For radar, the transmitted symbols are already
known at the receiver side. Hence, the MI is generally written
in a conditional form. The conditional MI is defined as the
entropy between the channel and the received signals with a
given transmit symbol. Following the derivations in [?], the
MI between the channel vectors and the received signals for
radar sensing can be represented as

MI =I(hS[k]; r[k]|S[k])

= log2

∣∣σ−2PhS[k]HP[k]PH [k]hS[k] + 1
∣∣ . (12)

It is clear that the optimal P[k] should have only one dimension
spanned by hS[k]. Since P[k] has U columns, P[k] can be
rewritten as P[k] = hS[k]Λ[k], where Λ[k] is a 1× U vector,
such that ‖hS[k]Λ[k]‖2F = U . However, the obtained precoder
has only U variables in Λ[k]. For JCAS optimization, the
obtained solution has a limited degree of freedom and cannot
achieve a flexible tradeoff between radar and communication
performances, as will be investigated in section IV. To get more
insights from the MI expression, we decompose P[k] into the
following form,

P[k] = hS[k]Λ[k] + N[k], (13)

where Λ[k] = (hS[k])†P[k] and N = P − hSΛ. It is
decomposed in this way such that hS[k]Λ[k] contains the
component that can change the value of MI, and N[k] is
a matrix with columns in the nullspace of hS[k]Λ[k]. Thus,
the columns of N[k] are orthogonal with those of hS[k]Λ[k].
Substituting (13) into MI of (12), we have

MI

= log2

∣∣σ−2PhS[k]H(hS[k]Λ[k] + N[k]) ×

(hS[k]Λ[k] + N[k])HhS[k] + 1
∣∣

= log2

∣∣σ−2PhS[k]H(hS[k]Λ[k])(hS[k]Λ[k])HhS[k] + 1
∣∣

= log2

∣∣σ−2Phkλk + 1
∣∣ ≤ max(MI), (14)

where hk = ‖hS[k]‖4F , λk = Λ[k]ΛH [k].

C. CRB for Radar Sensing
CRB is a theoretical lower bound of the estimation errors

of parameters. The minimization of CRB does not directly
influence the actual estimation errors, since it is a lower
bound, but it can reflect the potential gaps between the actual
estimation methods and the ideal optimal one. The CRB has
many different forms, depending on the formulation of the
channel parameters [?]. In our considered broadband MISO
systems, we mainly study the estimation for delays, complex
gains, and AoDs of the targets, exclusive of the Doppler
frequencies. For convenience, we represent all parameters
collectively using one common real-valued vector Θ =[
Re[α1, · · · , αL], Im[α1, · · · , αL], τ1, · · · , τL,Ω1, · · · ,ΩL

]T
.

It is noted that there are 4L parameters in total. Hence, the
received signal vector is a function of 4L variables.

The CRB matrix, denoted as B, contains all lower bounds of
the estimation errors [?]. To jointly evaluating these bounds, we
can count the total CRB as the Frobenius norm of B. The CRB
matrix is the inverse of the Fisher information matrix (FIM),
i.e., B = F−1. Referring to the derivations of [?] and using
the so-called DOD/DOA Model defined in [?], we obtain our
corresponding FIM as

F =


Re[F1] −Im[F1] Re[F2] Re[F3]
Im[F1] Re[F1] Im[F2] Im[F3]
Re[FT2 ] Im[FT2 ] Re[F4] Re[F5]
Re[FT3 ] Im[FT3 ] Re[FT5 ] Re[F6]

 , (15)

where the expressions of F1 to F6 are provided in Appendix
??. The derivation can be referred to [?].

From Appendix ??, we see that the FIM matrix depends on
the covariance matrix, Q[k] = P[k]PH [k], only. Therefore, the
CRB-based optimization problem is equivalent to optimizing
Q[k]. We aim to minimize the largest eigenvalue of the CRB
matrix as in [?]. Minimizing the largest eigenvalue of the CRB
matrix is equivalent to maximizing the smallest eigenvalue
of the FIM. The waveform optimization under the eigen-
optimization criterion can be directly formulated as an SDP,

arg min
Q[k]
−t

s.t.F � tI,Q[k] � 0,Tr(Q[k]) ≤ P, (16)

where t is an auxiliary variable.
When optimizing F as a whole, we note that it is difficult

not to use SDPs. After obtaining Q[k] via SDPs, we still need
to obtain P[k]. We introduce the rank reduction method in [?]
to obtain P[k] from the rank reduced Q[k]. This would result
in errors for Q[k] and cannot guarantee the optimality of P[k].
Fortunately, we can prove that the P[k] can be obtained per-
fectly from the optimal Q[k] when F equals Re[F4], Re[F6], or
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F1. This means that the CRB of the estimate for one parameter
is optimized when other parameters are fixed. The proof is
provided in Appendix ??.

Remark 1: To this end, we have introduced all required com-
munication and radar metrics, two relaxed SINR expressions
for communications, and MI and CRB for radar. The proposed
novel relaxed SINR is the sum of all users’ relaxed SINRs and
makes their thresholds to be the same. The proposed commu-
nication metric has two main advantages. Firstly, we can avoid
using SDP methods to solve the optimization problem, and
obtain P[k] directly without the requirement of transforming
Q[k] into P[k]. Secondly, we can get a clear view of the
geometric property of the proposed metric. By using its unique
geometric property, we can obtain the closed-form solution for
the JCAS optimization problems.

Remark 2: Intuitively, we can see the following connections
between MI and CRB metrics. Referring to the optimal MI
radar precoder, hS[k]Λ[k], we can observe that it only has a
rank of one while the optimal CRB precoder has a rank of L.
For the CRB of delays, angles, and complex path gains, F is
equal to Re[F4], Re[F6], and F1, respectively. As can be seen
from Appendix ?? and ??, the optimal P[k] corresponding to
these CRBs equal A[B̄[k]]

1
2

1:L,1:L, Ȧ[B̄[k]]
1
2

1:L,1:L, and the right
singular vectors of Φ[k]A, respectively. Apparently, the two
different radar metrics, MI and CRB, have different focuses
on the system designs. The optimal MI solution tends to
maximize the received power and the channel information,
whereas the optimal CRB solutions minimize the variance of
the estimation errors for different sensing parameters, based on
different partial matrices of the FIM, which are the derivatives
of the channel vectors with respect to different parameters. We
can compare these two metrics in parallel via simulations, as
will be detailed in section ??.

IV. MI CONSTRAINED JCAS WAVEFORM OPTIMIZATION

We have introduced all required radar and communication
metrics. In this section, we aim to optimize the communication
metric with constraining the MI of radar. We will provide both
a closed-form optimal solution under certain conditions and a
more general numerical iteration algorithm.

A. Closed-Form Solution

The proposed relaxed SINR, Rk + γk, is a lower bound of
the SINR. Note that Rk + γk

σ2
CU

2

P is a quadratic form that is
symmetric to the original point. The symmetric property makes
it easy to obtain our following derivations. Hence, we define
Jk as Rk + γk

σ2
CU

2

P and maximize Jk instead of Rk. The MI-
constrained JCAS optimization problem is formulated as

arg max
P[k]

Jk = Rk + γk
σ2
CU

2

P
=

U∑
u=1

pu[k]HCk,upu[k]

s.t.‖P[k]‖2F ≤ U,MI ≥ I0, Rk,u ≥ 0,∀u ∈ {1, · · · , U},
(17)

where the power of the precoder is normalized to be no greater
than U , the MI of radar is restricted to be no smaller than a
given threshold, i.e., I0, and the relaxed SINR for communica-
tions, Rk,u, is no smaller than 0, which means that the SINR
of the uth user is no smaller than the threshold. It is noted that
all variables have an index of k. For notational simplicity, we
omit the index k in the following of this subsection.

Using the decomposition of P in (13) and the MI expression
in (14), we can rewrite the second constraint of (17) into a
simpler form,

λ = ‖Λ‖2F ≥
σ2(2I0 − 1)

Ph
. (18)

Note that this form is equivalent to MI ≥ I0. Let pu = vu+wu,
where vu denotes the uth column of hSΛ and wu is the uth
column of N that is orthogonal to vu. With a given pu, vu is
given by hS(hS)Hpu

‖hS‖2F
, and wu is given by pu − vu.

The MI constrained problem is now simplified as

arg max
pu

J

s.t.‖P‖2F ≤ U, ‖Λ‖2F ≥
σ2(2I0 − 1)

Ph
,Ru ≥ 0,∀u ∈ {1, · · · , U}.

(19)

Now, we provide the closed-form solution to (17), presented
in Lemma 1 and Theorem 1.

Lemma 1. The maximal value of J is obtained when pu is on

the surface of the constraints, i.e.,
U∑
u=1
‖pu‖2F = U or ‖Λ‖2F =

σ2(2I0−1)
Ph , or Ru = 0.

Proof. The proof is shown in Appendix ??.

According to Lemma 1, we obtain an important theorem
that directly leads to the closed-form solution of pu, which is
illustrated as follows.

Theorem 1. Let us denote the constraint equations as ‖P‖2F =
U , MI = I0, and Ru = 0,∀u. The corresponding constraint
inequations are ‖P‖2F ≤ U , MI ≥ I0, and Ru ≥ 0,∀u. The
closed-form solution of the precoding vector has the form of

pu =
C∑
i=1

au,icu,i, where au,i are non-zero scaling factors, C

is the number of positive eigenvalues in Cu, and cu,i is the
i-th eigenvector of Cu. The closed-form solution exists only
when it satisfies ‖P‖2F ≤ U and MI ≥ I0 and Ru ≥ 0 and
{‖P‖2F = U orMI = I0 or Ru = 0}.

Proof. The proof is shown in Appendix ??.

The closed-form solution can be obtained when au,i exists.
The existence of the closed-form solution depends on the
intersection of two spaces. One space is formed by constraints.
The other is spanned by cu,i, i ≥ C. If there is no intersection
between these two spaces, the closed-form solution does not
exist. Otherwise, the closed-form solution is given by the linear
expression of cu,i, i ≥ C. From the illustration in Fig. 2, we
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can see that the intersection of the two spaces may be empty.
Hence, in general cases, whenever the intersection is empty or
not, we will propose an iterative algorithm to solve the problem.

In general cases, we can obtain the following corollary.

Corollary 1. The optimal point of P is on the tangent plane
of J(P) = J0 with J0 being the maximal value.

Proof. The proof is shown in Appendix ??.

B. Iterative Solution

Next, we propose an iteration algorithm based on the New-
ton’s method [?] when the closed-form solution cannot be
obtained. According to the proof of Lemma 1, we can make
pu reach one surface of the constraints. Fig. 2 explains how
our proposed iteration algorithm works. Our algorithm has
two stages. In the first stage, the iterative point moves in the

direction of cu =
C∑
i=1

au,icu,i to the surface of the constraint,

where au,i are given in Appendix ??. In general, C equals 1
and cu = cu,1. From the figure, it is noted that not all points
on the surface is the optimal point. The optimal point should
be the tangent point between the surface of J(P) = J0 and the
surface of the constraint. In the second stage, the iterative point
moves along the surface to approach to the optimal point.

Before the iteration begins, we need to find an initial point of
P, such that all U+2 constraints are satisfied. The intersection
set could be empty if either γ or I0 is set too high. Such a
case indicates the limitations of JCAS waveform designs, i.e.,
the JCAS waveform sometimes cannot reach the requirements
of both radar and communications. Hence, some of the per-
formances for either radar or the communications have to be
sacrificed. On the other hand, it should be highlighted that the
intersected set of all constraints could be in a very limited space
or even a point, given relatively high thresholds of both radar
and communications. In this case, by finding the intersection
set itself, we can already guarantee the system performance for
both radar and communications, and do not need to optimize the
metric J . According to Theorem 1, as long as the intersection
set is nonempty, we can always maximize J with satisfying all
constraints.

Note that we can always let pu =
N∑
i=1

bu,iqi, where bu,i are

arbitrary scaling factors, qi,∀i ∈ {1, · · · , N}, are normalized
vectors and satisfy that

qi = Qi[(h
C
1 , · · · ,hC

U ,h
S)H ]†:,i, i ≤ U + 1,

qHj qi = 0, U + 1 < j ≤ N, ∀i ∈ {1, · · · , N}, j 6= i, (20)

where Qi is a scaling factor, such that ‖qi‖2F = 1. Note that
qi,∀i ∈ {1, · · · , N}, form the entire space of N dimension.
In the JCAS optimization problem, there are U + 2 constraints
in total. By substituting pu into ‖P‖2F ≤ U , we have

U∑
u=1

N∑
i=1

b2u,i ≤ U. (21)

Fig. 2. Explanation of the principle of the proposed iterative Algorithm 1.

By substituting pu into the MI constraint, we have

log2

(
σ−2P

U∑
u=1

b2u,U+1‖hS‖22 + 1

)
≥ I0. (22)

By substituting pu into Ru ≥ 0, we have

b2u,u‖hC
u‖22 − γ

∑
v 6=u

b2v,u‖hC
u‖22 +

σ2
CU

P

 ≥ 0. (23)

By letting b2u,i = xu,i ≥ 0, all constraints form a convex
intersection set, i.e.,

U∑
u=1

N∑
i=1

xu,i ≤ U
U∑
u=1
‖hS‖22xu,U+1 ≤ 2I0σ2/P − 1

xu,u‖hC
u‖22 − γ

(∑
v 6=u

xv,u‖hC
u‖22

)
≥ γ σ

2
CU
P

xu,i ≥ 0

(24)

It is clear that all constraints form a convex set that is
intersected by multiple planes in the space of (x1,1, · · · , xU,N ).
As long as this intersection set is not empty, we can choose
{bu,i}s that make all constraints be held. Then during iterations,
we need all these constraints to be held and make J increase
iteratively.

1) Stage 1: Now, we give the details of our proposed

algorithm. We have obtained a P, such that
U∑
u=1
‖pu‖2F ≤ U

and ‖Λ‖2F ≥
σ2(2I0−1)

Ph and Ru ≥ 0. The current iterative point
of P is denoted as P(i) and each column of P(i) is p

(i)
u .

We generate two new vectors moving in the directions of cu.

p
(i)
u− = p(i)

u − εcu,p
(i)
u+ = p(i)

u + εcu. (25)

According to the derivations in Appendix ??, only one of the
two vectors defined in (25) can make the objective function
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Algorithm 1 JCAS Precoder Optimization with MI Constraint
1: Input: hS and {Cu}Uu=1.
2: Initialization: i = 0, J(P(−1)) = −∞, I0,
3: Obtain cu,i that is the eigenvector corresponding to the

positive eigenvalues.
4: Find P(i) satisfying all three constraints.
5: Stage 1:

6: while
U∑
u=1
‖pu‖2F < U and‖Λ‖2F >

σ2(2I0−1)
Ph do

7: Obtain p
(i)
u± according to (25).

8: Obtain next iterative vectors, p
(i+1)
u , according to (26).

9: i = i+ 1.
10: end while
11: Stage 2:
12: while J(P(i)) > J(P(i−1)) do
13: Obtain p̆

(i)
u± according to (28).

14: Obtain next iterative vectors, p
(i+1)
u , according to (30).

15: i = i+ 1.
16: end while
17: Output: P.

increase. We select the one that makes J increase as the next
iterative point.

p(i+1)
u =

{
p
(i+1)
u− if J(p

(i+1)
u− ) > J(p

(i+1)
u+ )

p
(i+1)
u+ else

(26)

2) Stage 2: When the iterative point is already on the
surface, we generate two precoding vectors moving in the
directions of cu.

p
(i)
u− = p(i)

u − εcu,p
(i)
u+ = p(i)

u + εcu, (27)

where p
(i)
u is on the surface of the constraint, while p

(i)
u− and

p
(i)
u+ are not. Since these two vectors are not on the surface

of the constraints, we project them onto the surface of the
constraint, i.e.,

p
(i)
u− =

N∑
i=1

b′u,iqi,p
(i)
u+ =

N∑
i=1

b′′u,iqi. (28)

It is noted that b′u,i, b
′′
u,i, and qi are known, given p

(i)
u− and p

(i)
u+.

If p
(i)
u reaches the surface of Ru = 0, we only need to adjust

b′u,i and b′′u,i, such that p
(i)
u− and p

(i)
u+ can reach the surface.

If p
(i)
u reaches the surface of ‖Λ‖2F = σ2(2I0−1)

Ph , we only
need to adjust b′U+1,i and b′′U+1,i, such that the new vectors
are projected onto the surface. If p

(i)
u reaches the surface of

‖P‖2F = U , we only need to adjust the length of the new
vectors, such that they are on the surface. The projected vectors
are given by

p̆
(i+1)
u− = P{p(i)

u−}, p̆
(i+1)
u+ = P{p(i)

u+}, (29)

where P denotes the projection function. One of the two vectors
in (28) should make the objective function keep rising. We
select the one that makes J increase as the next iterative point.

p(i+1)
u =

{
p̆
(i+1)
u− if J(p̆

(i+1)
u− ) > J(p̆

(i+1)
u+ )

p̆
(i+1)
u+ else

. (30)

Update the iteration index i = i+1 and repeat the same pro-
cedure in Stage 2. We terminate the iteration when J(p

(i+1)
u )

stop rising.

C. Complexity Analysis

In this subsection, we analyze the computational complexity
of Algorithm 1. The main computation tasks in Algorithm 1
include the eigen-decomposition of Cu and the iterations. The
complexity of the eigen-decomposition of Cu can be given
by O(N3). Since there are UK Ck,u, the total complexity
of eigen-decomposition is O(N3UK). After obtaining the
eigenvectors, the main computational task is the calculation
of Jk, which has a complexity of O(2N2U) for each Jk in
each iteration. The total complexity of obtaining all Jk is
O(2N2UKIi) with Ii being the number of iterations. The
overall complexity is max(O(N3UK),O(2N2UKIi)).

V. CRB CONSTRAINED JCAS WAVEFORM OPTIMIZATION

In this section, we optimize the communication metric by
constraining the radar CRB. For individual CRB optimization,
we have obtained the covariance matrix of the waveform, i.e.,
Q[k] = PH [k]P[k], and the corresponding waveform matrix,
Pcrb[k]. We constrain the CRB by limiting the Euclidean
distance between the optimal CRB and the JCAS waveform
matrices. The communication metric is still the proposed Jk.
The JCAS optimization problem with the CRB constraint is
formulated as

arg max
P[k]

Jk

s.t.‖P[k]−Pcrb[k]‖2F ≤ ξ, ‖P[k]‖2F ≤ U,Rk,u ≥ 0, (31)

where ξ is a threshold that controls the Euclidean distance
between P[k] and Pcrb[k]. For simplicity of notation, we omit
k in the rest of this subsection.

The problem above can be solved in a way similar to the
MI constrained problem. The transformed CRB constrained
problem can be seen as a quadratic problem with convex
constraints. The closed-form solution also exists. Referring to
Theorem 1, the closed-form solution can be obtained when
C∑
i=1

au,icu,i can reach one of the constraint surfaces. When the

closed-form solution does not exist, we propose an iteration
algorithm.

1) Stage 1: We need to obtain a P, such that ‖P‖2F ≤ U ,
and ‖P−Pcrb‖2F ≤ ξ, and Ru ≥ 0. The current iterative point
of P is denoted as P(i) and each column of P(i) is p

(i)
u .
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Algorithm 2 JCAS Precoder Optimization with CRB Con-
straint

1: Input: Pcrb and {Cu}Uu=1.
2: Initialization: i = 0, J(P(−1)) = −∞, ε, ξ,
3: Obtain cu,i that is the eigenvector of Cu corresponding to

the positive eigenvalues.
4: Find P(i) satisfying all three constraints.
5: Stage 1:
6: while ‖P‖2F < U and ‖P−Pcrb‖ < ξ do
7: Obtain p

(i)
u± according to (32).

8: Obtain next iterative vectors, p
(i+1)
u , according to (??).

9: i = i+ 1.
10: end while
11: Stage 2:
12: while J(P(i)) > J(P(i−1)) do
13: Obtain p̆

(i)
u± according to (??).

14: Obtain next iterative vectors, p
(i+1)
u , according to (??).

15: i = i+ 1.
16: end while
17: Output: P.

We generate two new precoding vectors moving in the

directions of cu =
C∑
i=1

au,icu,i, i.e.,

p
(i)
u− = p(i)

u − εcu,p
(i)
u+ = p(i)

u + εcu. (32)

One of the two vectors defined in (32) should make the
objective function rise. We select the one that makes J increase
as the next iterative point.

p(i+1)
u =

{
p
(i+1)
u− if J(p

(i+1)
u− ) > J(p

(i+1)
u+ )

p
(i+1)
u+ else

(33)

2) Stage 2: When the vector reaches the surface of a
constraint, we still generate two precoding vectors moving in

the directions of cu =
C∑
i=1

au,icu,i,

p
(i)
u− = p(i)

u − εcu,p
(i)
u+ = p(i)

u + εcu. (34)

In the CRB constrained problem, if p
(i)
u reaches the constraint

of ‖P‖2F ≤ U or ‖P−Pcrb‖2F ≤ ξ, we can directly scale those
precoding vectors onto the surface of the constraint, i.e.,

p̆
(i)
u− = p

(i)
u−a−, p̆

(i)
u+ = p

(i)
u+a+. (35)

By adjusting the scaling coefficients, a+ ≈ 1 and a− ≈ 1, we
can let the vectors be on the surface of the constraint. If p

(i)
u

reaches the constraint of Ru = 0, we adopt the similar method
as the MI constrained JCAS optimization to project the new
vectors onto the constraint surface. One of the two vectors in
(28) should make the objective function keep rising. We select

-10 -8 -6 -4 -2 0 2 4 6 8 10

SNR (dB)

0

1

2

3

4

5

6

7

8

9

S
um

 r
at

e 
of

 c
om

m
un

ic
at

io
n 

(b
ps

/H
z)

Fig. 3. Sum rate of communications versus SNR with using Algorithm 1 and
other bench-marking JCAS solutions.
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Fig. 4. MI of sensing versus SNR with using Algorithm 1 and other bench-
marking JCAS solutions.

the one that makes J increase as the next iterative point.

p(i+1)
u =

{
p̆
(i+1)
u− if J(p̆

(i+1)
u− ) > J(p̆

(i+1)
u+ )

p̆
(i+1)
u+ else

(36)

Update the iteration index i = i + 1 and repeat the
same procedure in Stage 2. We terminate the iteration when
J(p

(i+1)
u ) stop rising. The proposed CRB constrained optimiza-

tion scheme is summarized in Algorithm ??.

VI. SIMULATION RESULTS

In this section, we provide simulation results to validate the
proposed algorithms, using numerical experiments on MAT-
LAB. We simulate a JCAS system where a BS communicates
with U = 2 MUs each having a channel with Lu = 3 paths, and
the BS also needs to sense an environment with L = 3 targets.
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Fig. 6. Sum rate of communications versus SNR with using Algorithm 2 and
other bench-marking solutions.

The BS adopts a 16×1 ULA as the transmit antennas and uses
OFDM modulation to transmit a 2× 1 data symbol vector on
each subcarrier. The number of subcarriers is K = 512. The
AoDs for both MUs and targets are randomly distributed from
−π to π. The delay of each path is a random value ranging
from 0 to T/2. For the parameter in the communication metric,
we consider that the data block matrix S[k] has a dimension
of 2× 8.

We present the simulation results in three subsections. In
the simulation figures, we denote Algorithm 1 as “proposed
MI constrained JCAS” and denote Algorithm 2 as “proposed
CRB constrained JCAS”. In subsection ??, we show the

achieved sum rates for communications, i.e.,
K∑
k=1

U∑
u=1

log2(1 +

SINRk,u)/K/U , and the achieved MI for radar sensing by
using our proposed Algorithm 1. In subsection ??, we verify
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the sum rates for communications and the CRB for radar
sensing by using our proposed Algorithm 2. In subsection ??,
we compare our proposed algorithms in parallel and intend
to find out the connections between using MI and CRB for
optimizing JCAS waveforms. For comparison, we compare
our proposed algorithms with the bench-marking solutions,
including the optimal individual solutions and the weighted sum
JCAS solution in [?].

A. MI Constrained JCAS

Fig. ?? shows how the sum rates vary with SNR for various
waveform optimization schemes. The sum rates of commu-
nications rise with SNR increasing. For the individual com-
munication precoder, the sum rate remains the highest, which
is as expected because the individual precoder is designed
for sum-rate maximization without any radar constraint. For
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JCAS solutions, we compare our proposed Algorithm 1 with
the weighted-sum JCAS solution in [?]. We define the ratio
of I0 to Imax as ρ, where Imax is the maximum achievable
MI. We see that with ρ ranging from 0.8 to 0.9, our proposed
precoder achieves better performance than the weighted-sum
JCAS solution. Moreover, the weighted-sum JCAS solution
needs a so-called constellation symbol matrix (CSM). When
CSM is unavailable, we see that the sum rate of the weighted-
sum JCAS solution drops substantially. Comparatively, our
proposed algorithm guarantees that the SINR is larger than

γk = 0.8 max

(
U∑
u=1

SINRk,u/U

)
. We can obtain the SINR

that is no smaller than γk at high SNRs. With the MI threshold
I0 decreasing, we see that the achieved sum rate rises accord-
ingly. This is as expected since our proposed precoder aims to
balance between the radar and communication performances.
The more demanding the MI requirement of radar is, the

smaller the sum rate of communications can be achieved.
Fig. ?? unfolds the achieved MI of radar sensing versus

SNR for various waveform optimization schemes. The system
setup is the same as that in Fig. ??. The MI of individual MI
radar precoder, i.e., P[k] = hS[k]Λ[k], remains the highest.
Our proposed Algorithm 1 achieves higher MI than [?] when
the MI threshold is no less than 0.8Imax with Imax being
the maximum value of MI. Together with Fig. ??, under the
same power control, we observe that the sum rate is inversely
proportional to I0 while the MI is proportional to I0. To
guarantee good performances for both communications and
radar sensing, I0 is around 0.8 Imax.

Fig. ?? illustrates how fast the proposed Algorithm 1 can
converge. The x-axis is for the number of iterations, i, in
Algorithm 1 and the y-axis is for the value of Jk, the objective
function in (17). The SNR is fixed at 0 dB. It is noted that the
average number of iterations that makes Jk converge is about
10. More iterations lead to higher radar MI. The value of Jk is
around 1 to 2 and it rises with decreasing I0, which indicates
that the optimization of Jk with a lower I0 reaches the surface
of the constraints later than that with a higher I0. The value of
Jk determines the gap between the nominator of SINR and the
MUI. We note that the value of Jk is smaller than the achieved
sum rate and it can be seen as a lower bound of the sum rate.

B. CRB Constrained JCAS

Fig. ?? depicts how the sum rates vary with SNR for the
proposed CRB constrained scheme, i.e., Algorithm 2, and other
schemes. Similar to Fig. ??, the sum rate of the individual
communication precoder remains the highest. The precoding
matrix is normalized to be U . We observe that, overall, our
proposed Algorithm 2 achieves better performance than the
weighted-sum JCAS solution. With a smaller ξ, the achieved
sum rate drops accordingly. The value of ξ represents the
Euclidean distance between Pcrb[k] and P[k]. Hence, setting
ξ = 1 can achieve a balanced performance between radar and
communications, as depicted in ??.

Fig. ?? illustrates the achieved CRB of radar sensing versus
SNR. The system setup is the same as that in Fig. ??. The
individual CRB radar precoder achieves the lowest CRB among
all schemes. Our proposed Algorithm 2 achieves a low CRB
that approaches to the one for the individual optimal scheme.
Compared with the method in [?], our scheme achieves better
performances. By further decreasing ξ to zero, our proposed
scheme can achieve the lowest CRB. Together with Fig. ??,
we can set ξ to be around 1 to guarantee good performances
for both communication and sensing.

Fig. ?? illustrates an example of JCAS beam patterns em-
ploying the proposed algorithms. To make the beam patterns
clear to see, we only consider one MU and one target with
only one path, i.e., U = 1, L = 1, and Lu = 1. For individual
designs as illustrated in section III, we adopt the individual
optimal MI radar precoder and the individual optimal commu-
nication precoder, respectively. We see that there is only one
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main lobe located at around 40◦ for the radar precoder and only
one main lobe located at around −50◦ for the communication
precoder. For JCAS designs, both of our proposed algorithms
have two main lobes, matching with the locations of individual
designs tightly. At the sidelobes, we see that our proposed
JCAS solutions have a larger sidelobe, since our proposed
JCAS solutions simultaneously generate two main lobes while
the individual designs only need to generate one main lobe.

C. Comparisons of Proposed MI/CRB Constrained JCAS

Fig. ?? plots the sum rate versus the achieved MI of the
proposed Algorithm 1 (MI constrained JCAS), Algorithm 2
(CRB constrained JCAS), and other two bench-marking solu-
tions. The system setup is the same as that in Fig. ??. The
x-axis is the sum rate of communications and the y-axis is the
achieved MI of radar. For Algorithm 1, we vary the thresholds ρ
from 0.7 to 0.9. For Algorithm 2, we vary the threshold ξ from
0.5 to 1.5. For weighted sum JCAS [?] that uses a weighting
coefficient, µ, we vary µ from 0.4 to 0.6. We name the work
in [?] as MI-vs-MI JCAS that derived the optimal radar MI
waveform and the optimal communication MI waveform in
a single-user case. For MI-vs-MI JCAS, we also use µ to
balance between the optimal MI waveforms of radar and that
of communications. We see that the MI achieved by Algorithm
1 is significantly higher than all other schemes. With the same
communication performances, the MI of Algorithm 1 exceeds
that of Algorithm 2 by almost 1 bit. This could be explained by
noting that the individual CRB radar precoder is close to the
array response matrix A instead of hS[k]Λ[k], which means
that some vectors in A could be truncated when using the
CRB precoder, resulting in the decrease of MI. We note that if
the curve is convex and approaches to the top-right corner, the
curve can be seen as an ideal curve that can satisfy both the
sum rates for communications and the MI for radar. Our goal
should be to make the curve approach to the top-right corner
as much as possible.

Fig. ?? plots the sum rate versus the achieved CRB of the
proposed Algorithm 1 (MI constrained JCAS), Algorithm 2
(CRB constrained JCAS), and other bench-marking solutions.
The x-axis is the sum rate of communications and the y-axis
is the achieved CRB of radar. The ranges of thresholds are
the same as those in Fig. ??. The system setup is the same
as that in Fig. ??. From the figure, we see that the CRB of
Algorithm 1 is higher than that of Algorithm 2. This could
be explained by the fact that the proposed optimal MI radar
precoder only has a rank of 1. Hence, the eigenvalues of FIMs
are relatively smaller and result in the increase of CRB. The
Algorithm 2’s CRB is closed to that of the individual CRB radar
precoder, the corresponding achieved sum rate is significantly
higher than that of individual radar precoder. The optimal
curve should approach to the bottom-right corner that achieves
relatively better JCAS performance. Comparing to Fig. ??, we
see that the proposed Algorithm 1 has advantages in MI-based

optimizations while the proposed Algorithm 2 has advantages
in CRB based optimizations.

VII. CONCLUSION

In this paper, we have proposed the JCAS precoding opti-
mization algorithms that maximize the developed relaxed SINR
under the constraint of either MI or CRB of radar. The adopted
radar metrics correspond to two types of individual optimal
radar waveforms and the adopted communication precoding
vectors maximize the relaxed SINR. The developed relaxed
SINR of communication has a quadratic form and can serve
as a lower bound for SINR. When the radar targets and the
communication users are close to each other, we can obtain
the closed-form solution. Otherwise, in more general cases,
we can use the proposed iteration algorithms to optimize the
JCAS precoders. The simulations provide the valid range of the
thresholds and validate the effectiveness of the proposed algo-
rithms. The simulations also show that the proposed MI/CRB
constrained JCAS algorithms have their own advantages.

APPENDIX A
PROOF FOR EQUALITY BETWEEN (8) AND (9)

Let H , hhH and Q , ppH . To show that (8) is equal to
(9), we only need to prove that Tr(QH) = pHHp. We have

Tr(ppHH) = Tr(pHHp) = (pHHp). (37)

Therefore, (8) is equal to (9).

APPENDIX B
EXPRESSION FOR FIM SUBBLOCKS

Referring to the derivation in [?], the FIM subblocks are
expressed as

F1 =
2

σ

K∑
k=1

ΦH [k]AHP[k]PH [k]AΦ[k]

F2 =
2

σ

K∑
k=1

ΦH [k]
(
AHP[k]PH [k]A

)
�ΨΦ̇[k]

F3 =
2

σ

K∑
k=1

ΦH [k]
(
AHP[k]PH [k]Ȧ

)
�ΨΦ[k]

F4 =
2

σ

K∑
k=1

Φ̇H [k]
(
AHP[k]PH [k]A

)
� (ΨH11HΨ)Φ̇[k]

F5 =
2

σ

K∑
k=1

Φ̇H [k]
(
AHP[k]PH [k]Ȧ

)
� (ΨH11HΨ)Φ[k]

F6 =
2

σ

K∑
k=1

ΦH [k]
(
ȦHP[k]PH [k]Ȧ

)
� (ΨH11HΨ)Φ[k],

(38)

where � is the Hadamard product,

Φ̇[k] =

[
∂[Φ[k]]:,1
∂(τ1/T )

, · · · , ∂[Φ[k]]:,L
∂(τ1/T )

]
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= −j2πkΦ[k], (39)

and

Ȧ =

[
∂[A]:,1
∂Ω1

, · · · , ∂[A]:,L
∂ΩL

]
. (40)

APPENDIX C
PROOF FOR THE EXISTENCE OF P̄[k] SATISFYING

P̄[k]P̄H [k] = Q[k]

When there is only one parameter, the expression of F can
be simplified greatly. Following the derivation in [?], the FIM
of delay is Re[F4], the FIM of angles is Re[F6], and the FIM
of the complex path gains is F1.

When we consider the FIM for only one parameter, we
can prove that there is an optimal P[k] that is not affected
by the rank issue of Q[k]. We use Re[F4] as an example
to demonstrate the existence of P[k]. For other FIMs in the
diagonal entries of F, they hold the same property and can be
proven in the same way.

When F = Re[F4], it is noted that AHQ[k]A is a low rank
matrix with rank being L. The null-space of A is given by
NA and the total space is given by B = [A NA]. Notice that
Q[k] = BB−1Q[k]B−1B. Let B̄[k] , B−1Q[k]B. Then, we
have

AHQ[k]A

=AHBB−1Q[k]B−1BA

=AH [A 0]

[
[B̄[k]]1:L,1:L 0

0 0

]
[A 0]A. (41)

Now, we can obtain P[k] = A[B̄[k]]
1
2

1:L,1:L. Therefore, we can
obtain P[k] perfectly, such that P[k]PH [k] = Q[k].

APPENDIX D
PROOF FOR LEMMA 1

We write J as

J =

U∑
u=1

pHu Cupu. (42)

Next, we prove that any point of pu cannot maximize J
when there is no constraint, which equivalently means that the
optimal value is achieved on the constraint surface.

We express pu as vu+wu, where vu is given by hS(hS)Hpu
‖hS‖2F

,
and wu is given by pu − vu. For any given point of {p′u}Uu=1

that is inside the surfaces of all three constraints, we can find a
new vector, p′′u = p′u + εcu,i, where cu,i is the ith eigenvector
of Cu corresponding to the positive eigenvalue. The variable,
ε > 0, is small enough to make the new vector still be inside
the surfaces of the constraints. Then, the new vector satisfies

J(p′′u) =J(p′u + εcu,i)

=J(p′u) + 2εru,ic̄
T
u,ip̄

′
u + ε2ru,i, (43)

where c̄u,i =
[
Re[cu,i]

T , Im[cu,i]
T
]T

and p̄u =[
Re[pu]T , Im[pu]T

]T
. It is clear that the third term of

(??) is positive. If the second term is also positive, we have
J(p′′u) > J(p′u). Hence, J keeps rising until the vector reaches
one out of the three constraint surfaces. If the second term
in (??) is negative, then we choose the opposite vector, i.e.,
p′′u = p′u − εcu,1, and the second term becomes positive.
Therefore, the optimal value of pu is on one of the constraint
surfaces.

APPENDIX E
PROOF FOR THEOREM 1

For a given vector, pu, it can be expressed as a linear

function of all eigenvectors of Cu, i.e., pu =
N∑
i=1

cu,iau,i,

where cu,i is the ith eigenvector of Cu and au,i is a weighting
coefficient. The rank of Cu is L and the number of positive
eigenvalues of Cu is C. Then we have

J(pu) =

U∑
u=1

N∑
i=1

ru,ia
2
u,i, (44)

where ru,i is the ith eigenvalue of Cu. According to Lemma
1, the optimal point must be on the surface of the constraints,
which means that one out of three equality constraints is
satisfied.

When the constraint of ‖P‖2F = U is satisfied, the weighting

coefficients satisfy that
U∑
u=1

N∑
i=1

a2u,i = U . Then we can obtain

the optimal values for au,i, i.e.,

a2u,i =

{ ru,i
D , i = 1
0, else

, (45)

where D is a factor, such that
U∑
u=1

N∑
i=1

a2u,i = U .

When pu reaches the surface of ‖Λ‖2F = σ2(2I0−1)
Ph , the

weighting coefficients satisfy

U∑
u=1

∣∣∣∣∣
N∑
i=1

(hS)Hcu,iau,i

∣∣∣∣∣
2

=
σ2(2I0 − 1)

P
. (46)

We note that the phase of au,i has no impacts on J , which
means that we can let the phase of au,i be ej∠cHu,ih

S

. Then, we
have

U∑
u=1

∣∣∣∣∣
N∑
i=1

∣∣(hS)Hcu,i
∣∣ |au,i|

∣∣∣∣∣
2

=
σ2(2I0 − 1)

P
. (47)

Note that this is a convex optimization problem, we can
solve the modulus of au,i using convex optimization toolboxes.
Hence, the optimal values for au,i are

au,i =

{
|au,i|?ej∠cHu,ih

S

, i ≤ C
0, else

. (48)
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Under the constraint of pHu Hupu−γ
∑
v 6=u

pHv Hupv = γ
σ2
CU
P ,

we optimize J =
U∑
u=1

pHu Cupu. Substituting the constraint into

the objective function, we have J = γ
σ2
CU
P +

∑
v 6=u

pHv Hvpv −

γ
∑
u 6=v

pHu Hvpu =
σ2
CU
P +

∑
v 6=u

Rk,v ≥ γ
σ2
CU

2

P . Note that the

thresholds γ is the same for all users, which means that we
can only let the user with the smallest optimal Rk,u meet this
constraint. Hence, in this case, the closed-form solution is the
same as the conventional communication solution in (11).

APPENDIX F
PROOF FOR COROLLARY 1

According to Lemma 1, the optimal point of P is on the
surface of constraints. For simplicity, we assume that the
optimal P is achieved when ‖P‖2F = U . In this case, the
surface of J(P) = J0 and the surface of ‖P‖2F = U are tangent
with each other. Otherwise, there will be a point of P that
satisfies J(P) = J0 and ‖P‖2F < U , which is contradictory
with Theorem 1. Therefore, the optimal point of P is on the
tangent plane of J(P) = J0.
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