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Abstract   20 

 21 
Purpose of Review: Packaged reverse osmosis (RO) systems are often synonymous with 22 

industrial water supply and high quality water reuse. These RO systems can satisfy specific 23 

industries with stringent water quality specifications. They are also compact for deployment in 24 

basement of commercial buildings for sewer mining. Increasing applications of packaged RO 25 

systems opens the door for digital transformation of their design, operation, and maintenance 26 

for a quantum leap in system performance (energy consumption, treatment efficiency, and 27 

cost). This review summarises opportunities and challenges associated with the digitalisation 28 

of packaged RO systems and guide the industry to take advantage of these opportunities. 29 

Recent Findings: Digital connectivity and machine learning offer a game changing capability 30 

to packaged RO systems. With digital capability, it is more cost effective to design, operate, 31 

and manage these RO systems. Performance can be optimised via a range of approaches that 32 

are not possible with traditional human intervention. For example, hybrid systems that require 33 

sophistication control and prediction can benefit from big data analytics. On the other hand, 34 

other system that needs less intervention can work autonomously with little human 35 

intervention.  36 

Summary: Automatic high-quality water treatment systems have attracted significant 37 

attention in recent years. This review identified a gap in understanding variable possibilities 38 

that machine learning and prediction can be successfully utilized by RO systems. This review 39 

confirms that artificial intelligence and machine learning can improve the way these systems 40 

work. Future research should strive to achieve a better way to apply these applications in 41 

packaged RO systems. 42 

Keywords: packaged reverse osmosis (RO) systems; digital transformation; machine 43 

learning; sewer mining; industrial water supply.  44 
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Introduction 45 
 46 

RO has a long history of development, started in the 1960s by Sidney Loeb and  Srinivasa 47 

Sourirajan, who pioneered the fabrication of thin film composite membranes with salt removal 48 

capability and excellent water permeability (Loeb & Sourirajan, 1963). The industrialisation 49 

of the process allowed expansion of water treatment to the industry and provided a cost-50 

effective way for seawater and brackish water desalination (Joo & Tansel, 2015). As of Jan 51 

2022, RO has accounted for over 50% of the global desalinated water volume or 22.4 million 52 

m3/d (Lattemann et al., 2010). As such, it is perhaps not a surprise that much of the focus on 53 

RO has been given toward large scale operations. In fact, recent literature has largely ignored 54 

opportunities for significant performance gain and cost reduction in packaged RO plants that 55 

are numerous and widespread in the industry and small scale water use operations.  56 

Packaged RO systems are widely used for industrial water supply and small scale water reuse. Most 57 

industrial processes have very specific water quality requirements beyond potable water 58 

standards. As a result, it is not possible to comply with these requirements without additional 59 

treatment to further purify tap water. For example, ultrapure water for electronic manufacturing 60 

must have much lower content of dissolved salts and free of any suspended particles. Over the 61 

last few decades, the demand for high-quality water has significantly increased (Zhang et al., 62 

2021). There is also an emerging trend to supply high quality water to remote operations (such 63 

as fishing vessels and remote mining operations) where traditional water sources do not exist. 64 

Water must be obtained from compromised sources (e.g. seawater, brackish groundwater, 65 

storm water run-off, and even wastewater) to support these activities, especially in remote 66 

locations. It is becoming increasingly pertinent to find solutions to produce the highest quality 67 

water from these compromised sources. Reverse osmosis (RO) has become the primary 68 

solution for industrial water supply since it can reliably provide high-quality water supplied 69 

from almost any sources.   70 

RO has many advantages compared to other treatment technologies (Wenten & Khoiruddin, 71 

2016). RO systems are compact and modular. Thanks to early inventions to produce thin-film 72 

composite membranes and modulised them in spiral wound modules, a large membrane surface 73 

area can be packed in to a small volume For example, an 8 inch membrane module with volume 74 

of less than 40 L can hold 85 m2 in membrane surface area. Through modulisation and 75 

standardisation, capacity of a packaged RO system can be increased by simply adding more 76 

membrane modules. RO membrane is operated under a hydraulic pressure, this feature makes 77 
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the system easy to control, and they produce high-quality water without complicated 78 

engineering operation. Another significant advantage of RO is the possibility to build the 79 

system on a skid that can be relocated and installed in different locations. These skids can be 80 

installed in shipping containers, making it possible to transport the plant and make it mobile 81 

(plug and play).  82 

Packaged RO systems are frequently installed in confined space (such as shipping containers 83 

or basement of a building) where operator’s access is limited or restricted. Thus, remote 84 

operation and maintenance are particularly useful and sometime a critical feature of these 85 

systems (Rezk et al., 2019). Digital transformation in the last few years has improved these 86 

features to enable better automaticity, whilst maintaining high levels of water quality. For 87 

example, today's systems can be controlled remotely via a central Human Machine Interface 88 

(HMI) that connects to the plant by broadband mobile communications. The operators do not 89 

need to be on the site and can manage multiple systems at the same time. Fully automated RO 90 

systems have capability for remote control, operation, and monitoring as well as verifying the 91 

actual state of the membranes and all relevant water quality parameters. Parameters are 92 

controlled to achieve water quality by optimising the work mode of the system. In some cases, 93 

water quality is the most critical parameter. In other cases, parameters such as plant energy 94 

consumption are more important. Many parameters can affect the efficiency of system such as 95 

water quality, temperature, and energy consumption.  96 

Water treatment by RO is energy intensive. Thus, energy efficiency has been a major driver 97 

of many recent development in RO technology   (Kim et al., 2019; Pan et al., 2020; Park et al., 98 

2020). Digitial capability can also be applied to improve energy efficiency, especially for 99 

packaged RO systems. These RO systems can be powered exclusive by renewable energy and 100 

synchronisation between intermittent availability of solar and wind energy and RO operation 101 

system can be supported by the digital infrastructure (Khan et al., 2018). Computerised 102 

program can match RO operation with real time energy availability to reduce the energy cost 103 

(Ghaithan et al., 2021).  104 

In packaged RO systems, in addition to energy, other considerations such as production rate, 105 

feed and product water quality, physical footprint, and membrane lifetime are also significant. 106 

In some RO plants, computerised program is also used to decide when water is produced and 107 

the best time to stop the plant for maintenance (Durán et al., 2021). Using data analytics and 108 
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artificial intelligence where all the data is processed makes it the most cost-effective way to 109 

define the mode of work for the plant.  110 

Despite the increasingly widespread use of packaged RO systems, there have been very few 111 

attempts to discuss and analyse the potential of digital transformation for improving their 112 

design, operation and monitoring. This article provides possible the first systematic review to 113 

show how digital capability can be integrated to packages RO plants and discuss the roadmap 114 

for future work. This review focuses on two dominant applications of packaged RO plants 115 

namely industrial water supply and sewer mining. The overarching architecture for advanced 116 

digital transformation is also delineated. 117 

Packaged RO systems for industrial applications and sewer mining 118 
 119 

Packaged RO systems are widely used for industrial applications and small scale water reuse. They 120 

are usually skid mounted and very compact to satisfy space requirement. Examples of these packaged 121 

RO systems are shown in Figure 1.  122 

 

 

 

Figure 1: (A) A typical off the shelf packaged RO system for industrial application, and (B) 123 

The packaged RO system for sewer mining at Darling Quarter (Sydney, Australia). 124 

Individual industrial processes are unique and can have very specific requirements beyond 125 

potable water standards. For example, RO can be used to enrich ammonium and nitrate for 126 

subsequent recovery during NH4NO3 production as industrial explosive and fertilizer (Duong 127 

et al., 2021). In addition, it is not always possible to comply with industrial water supply 128 

requirements with tap water, unless additional treatment is provided. For example, ultrapure 129 

water for electronic manufacturing must have much lower content of dissolved salts and free 130 

of any suspended particles. Over the last few decades, the demand for high-quality water has 131 

(A) (B) 
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significantly increased (Zhang et al., 2021). There is also an emerging trend to supply high 132 

quality water to remote operations (such as fishing vessels and remote mining operations) 133 

where traditional water sources do not exist. Water must be obtained from compromised 134 

sources (e.g. seawater, brackish groundwater, storm water run-off, and even wastewater) to 135 

support these activities, especially in remote locations. It is becoming increasingly pertinent to 136 

find solutions to produce the highest quality water from these compromised sources. Reverse 137 

osmosis (RO) has become the primary solution for industrial water supply since it can reliably 138 

provide high-quality water supplied from almost any sources.   139 

The concept of sewer mining was first proposed in the early 1990s (Butler & MacCormick, 140 

1996) but has only been applied to a larger scale in recent years. Although RO technology is 141 

already capable of reclaiming wastewater for reuse, its application has only become cost-142 

effective in recent years due to advancement in data engineering and the ability to remotely 143 

operate and maintain packaged RO systems.   144 

The traditional urban water management approach is to collect and transfer wastewater to a 145 

centralised location for treatment then discharge or beneficial reuse. This traditional approach 146 

requires extensive infrastructure for long distance water transfer while ignoring opportunities 147 

for on-site non-potable water reuse, especially in commercial buildings or densely populated 148 

apartments with large water demand for non-potable consumption such as irrigation, cooling, 149 

and toilet flushing. Sewer mining is an innovative approach that can significant reduce water 150 

consumption and cost of water management in the urban environment (Arias et al., 2020).  151 

The infrastructure to store and move wastewater across the city to a centralised plant is 152 

tremendous and includes pipes, pumps, and underground tanks (Zhang et al., 2018). Most of 153 

these assets can be in compromised conditions, compared to the visible asset like bridges or 154 

streets (Rehan et al., 2014), since they are located under the surface, and people cannot see 155 

them. If a wastewater pipe is leaking and contaminating the soil under the surface, it might be 156 

difficult to repair because in many cases the problem cannot be seen and difficult to repair  157 

In most cases, sewer mining can be defined as the extraction of wastewater from a sewer 158 

main for purification to suitable standard for non-potable reuse. The waste stream from sewer 159 

mining is returned to the sewer for subsequent treatment at an existing centralised wastewater 160 

treatment plant.  Since sewer mining is accomplished via small plants along the sewer line, 161 

there is adequate redundancy and their operation does not affect the overall network. Sewer 162 

mining can add value to urban water management since reclaimed water is used for non-potable 163 
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applications, such as toilet flushing, cooling, and irrigation on site (Sotelo et al., 2021). Potable 164 

water consumption can be reduced and the need for long distance water transfer can be 165 

eliminated.  166 

Most sewer mining projects utilise small scale RO often in combination with some form of 167 

pretreatment such as membrane bioreactor or ultrafiltration (Plevri et al., 2020).  They are 168 

installed in an urban, commercial, or industrial area with very limited space (Figure 1B). In 169 

most cases, they are installed underground in restricted space with limit human access. Thus, 170 

it is desirable for sewer mining plants be fully automated with remote control capability. 171 

Human access to these packaged plants are limited to installation, commissioning, and major 172 

maintenance.  173 

Traditional practice     174 
   175 

Similar to all other treatment processes, RO systems face routine operational challenges 176 

such as unplanned shutdowns, maintenance and downtime. In addition, there can also be issues 177 

associated with membrane fouling, and long-term membrane degradation leading to variation 178 

in treated water quality. In the past, these issues were addressed by on-site operators, often in 179 

a reactive manner as they were unable to predict or anticipate these problems in advance  180 

(Eisenberg & Middlebrooks, 1984).   181 

RO systems can be very vulnerable to changes in the working environment. This is 182 

especially significant for packaged RO plants. In many cases, these plants are installed in places 183 

where the temperature can change dramatically during day and night and the season changes. 184 

For industrial application, the water quality to packaged RO plants can vary dramatically. 185 

Therefore, the operation regime must be frequently modified to match new water quality 186 

(Wenten & Khoiruddin, 2016).   187 

Performance of an RO system is governed by many interrelated factors. Low feed water 188 

quality may damage the membrane and gradually compromise pollutant rejection without the 189 

operators’ knowledge of the problem. It is time consuming for the operator to identify the root 190 

cause, if it is possible at all (Antony et al., 2010).  Operators often find it challenging to assess 191 

the actual condition of fouling or scaling and aging membranes. Therefore, in most cases, they 192 

will not attempt to predict membrane performance. In addition, there is often a lack of 193 

knowledge and adequate record keeping.  In most cases, the operators would adapt a 194 

conservative solution to lower the flow production. While this is often a safe option, it 195 

dramatically increases the cost and energy footprint of RO treatment (Koutsou et al., 2020). 196 
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Overall traditional practice in the design and operation of packaged RO systems is conservative 197 

and is usually well below optimised performance. 198 

Digital-enabled practice 199 

Digital tools can transform the design, operation, and maintenance of packaged RO systems 200 

to achieve optimised performance (Bonny et al., 2022).  Digital transformation of packaged 201 

RO systems is based on four hierarchical steps: basic computation, data normalisation, 202 

comparison and simulation, and prediction as illustrated in Figure 2.  203 

 204 

Figure 2: Digital transformation hierarchy for packaged RO systems. 205 

The foundation for digitally transforming the design, operation and maintenance of RO 206 

systems is data acquisition and is already possible to some extent with conventional systems 207 

equipped with PLC controller and a form of data logging. The next three steps are more 208 

sophisticated and can only be realised with modern technologies. The applications of basic 209 

computation and more advanced steps in the digital transformation hierarchy are illustrated 210 

through critical analysis of the literature and experience from the Darling Quarter sewer mining 211 

facility (which is managed and operated by one of the authors).   212 

Darling Quarter plant is a sewer mining plant located under the office building on the city 213 

centre of City of Sydney. The plant mines the wastewater from the main sewer line and cleans 214 

it to a level that can be reused in cooling towers top-up, toilets, irrigation, and general cleaning 215 

within the complex.  At the Darling Quarter sewer mining facility, RO is integrated with many 216 

other auxiliary technologies for pretreatment (e.g. macerator, grit chamber/grease trap, 217 

clarifier), biological treatment (e.g. membrane bioreactor) and post-treatment (e.g. Ultraviolet 218 
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disinfection chlorination and pH controlling, storage) before the product water and be 219 

beneficially reused.   220 

These auxiliary components need to work in tandem with RO. Without digital capability, 221 

the operation must be conservative and is based on the rated flow. If one component is 222 

malfunction or fails to produce the required flow, the entire facility is affected.  An example of 223 

more advanced computation capability is the chlorination for post-treatment of the RO 224 

permeate. Chlorination is achieved via in-line dosing. The required chlorine residue is a 225 

complex function of storage time, distance, characteristics (e.g. pH, organic content, and 226 

ammonia content) of RO permeate. Simple engineering control via PLC may not be sufficient 227 

to achieve reliable and stable chlorine residue. New digital capability can fill in the gap by 228 

adjusting for the hysteric effect between measured chlorine concentration and set point, and 229 

compensate for other variables such as flow rate and water characteristics. Artificial 230 

intelligence (AI) and machine learning capability provide an excellent solution to sophisticated 231 

problem such as this (Li et al., 2021; Nguyen et al., 2021). 232 

Correct data normalisation is essential to ensure performance and adequate maintenance. 233 

The value of digital transformation is illustrated in Figure 3 that shows the differential pressure 234 

of a packaged RO system for industrial water treatment. Figure 3 shows a gradual increase in 235 

differential membrane pressure due to fouling as expected. Data between Dec 2020 and Feb 236 

2021 show a slight decrease in differential pressure that could be mistaken as reduce fouling. 237 

In fact, this decrease in differential pressure was due to temperature increase. The impact of 238 

feed water temperature can be manually normalised, however, the data are very scattered. 239 

Using a computerised software to taking to account the effect of temperature and feed flow 240 

rate, a much more accurate representation of the membrane performance can be obtained as 241 

shown in Figure 3. 242 

 243 
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Figure 3: Smart normalisation to accurately interpret performance data.  245 

 One significant advance of digital transformation is the ability to create digital twins for 246 

comparison and simulation (Figure 4). Digital twin is defined as a digitally reconstructed 247 

version of the physical system (van Rooij et al., 2021). At a very basic level, this allows for a 248 

3D representation of the packaged RO system. As discussed previously, packaged RO systems 249 

are usually installed in very confined space (Figure 1B). The produced 3D representation can 250 

be compared to the available space and check for suitable access for maintenance and 251 

equipment servicing. At a higher level, the digital version can be used to simulate a range of 252 

operation conditions and maintenance scenarios. It can also be used for training and for remote 253 

maintenance (Lian et al., 2022).  254 

 Predictive analytics is arguably the most significant advantage of the digital transformation 255 

of packaged RO operation. The ability to predict membrane scaling/fouling and separation 256 

performance is essential for performance optimisation and cost reduction. In fact, membrane 257 

scaling/fouling is inherent and unavoidable in all membrane filtration processes. When 258 

membrane scaling/fouling occurs, in most cases, the main result is a lower permeability, lower 259 

permeability, and higher energy consumption (Matin et al., 2019; Tong et al., 2019).  260 
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 261 

Figure 4: Digital twin for comparison and simulation. 262 

Scaling and fouling monitoring is particularly difficult in RO operation. RO membrane is 263 

usually modulised in spiral wound configuration. In each spiral wound module, the membrane 264 

is folded with a spacer inside that collects the water after it is filtered by the membrane. Every 265 

envelope also has a spacer from the outside (Lin, Zhang et al. 2021). This module configuration 266 

offers a very high packing density (membrane area over volume) but remove all possibility for 267 

visual inspect to monitor for scaling and fouling (Karabelas et al., 2020). 268 

Chemical additives are usually used to control membrane scaling and fouling  (Mangal et 269 

al., 2021). These additives interfere with the chemistry of specific anions and cations or act as 270 

biocides. The chemistry of these additives is complicated and will not be discussed here. 271 

However, most of the membrane manufacturers would provide a single formula for all 272 

applications regardless of the feed water chemistry. Data analytics can be used to better deploy 273 

these additives. 274 

Until recently, the only option is to manually analyse all available process parameters of the 275 

system and the quality of the water in the inlet for an educated guess (Lilane et al., 2020). 276 

Alternative, the membrane module must be removed for visual inspection in a protocol often 277 

called ‘membrane autopsy’. Membrane autopsy has been reviewed extensively in the literature. 278 

It can provide accurate information but expensive and disruptive. The module used for autopsy 279 
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cannot be reused again and given the small number of membrane modules in a packaged RO 280 

system, membrane autopsy is the last resource. The membrane needs to be taken to special 281 

laboratories with special equipment for autopsy analysis (Zheng et al., 2018). Thus, this 282 

approach is not always suitable for remote operation. 283 

New developments in AI and big data have opened opportunities to predict and analyse for 284 

scaling/fouling without membrane autopsy. The automatic control uses process parameters that 285 

influence the performance of the membrane. Computerised programs can calculate, and 286 

correlate data gathered from the system to provide a specific solution or to predict how the 287 

plant will work in the future based on the data collected in real-time. This approach can provide 288 

information about the state of the fouling or scaling before the system performance starts 289 

deteriorating  (Niu et al., 2022). Infrastructure for cloud and IoT based data analytics is now 290 

available for analytical calculation to improve the way the RO plant works (Alshehri et al., 291 

2021). 292 

Table 1: Machine learning and artificial intelligence models used for predicting RO. 293 

Performance. 294 

Model Key findings Ref 

Artificial neural network Decision tree provides better predictive 

performance than ANN 
(Choi et al., 2020) 

Decision tree 

Support vector machines 
Decision Tree yielded better results than 

support vector regression 

(Marichal 

Plasencia et al., 

2021) 
Decision tree 

Hybridized multilayer 

perceptron and particle swarm 

optimization algorithm MLP-

PSO 

Modeling results are model and context 

dependent 

ML modelling can be trained and used 
for one plant but not for another  

(Ehteram et al., 

2020) 
M5 model tree M5T 

Support-vector machine SVM 

Artificial neural network ANN predict better pressure diferent 

than RF and MLR,  Salt  passage and 

permeate flow perform better for RF 

and MLR 

(Odabaşı et al., 

2022) 
Random forest 

Multiple linear regression 

Computational Fluid 

Dynamics (CFD) 

Promising tool to predict fouling in 

reverse osmosis membranes  

(Najid et al., 

2022) 

Artificial Neural Network base 

on genetic algorithms  

ANN base on genetic algorithms ANN 

models can  manage the operating set-

points or SWRO 

(Cabrera et al., 

2017) 

Response surface 

methodology (RSM)  

ANNs has higher predictive capability 

for forward osmosis and low pressure 

ultrafiltration hybrid system 

(Nam et al., 2022) 
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Several machine learning models are available for simulating and predicting RO 295 

performance, ranging from the most basic type (such as linear regression) to sophisticated and 296 

proprietary software packages from commercial suppliers (Choi et al., 2020; Nam et al., 2022). 297 

Machine learning models and artificial intelligence algorithms recently reported in the 298 

literature are summarised in Table 1. Information corroborated from previous works in Table 299 

1 highlight the need for more research in this area. In some cases, the predictive outcomes are 300 

dependent on the models; in other words, there is still a lack of consistency in the predictive 301 

outcomes when different machine learning models are used (Odabaşı et al., 2022). Some 302 

models appear to perform better but only in respect to a defined group of parameters. It is also 303 

noteworthy that other computerised software packages can also be used to complement 304 

machine learning capability. For example, computational fluid dynamics simulation has been 305 

successfully used to predict and simulate biofouling (Najid et al., 2022).  306 

Framework for digital transformation 307 

 308 

Figure 5: Four key steps for digital transformation of packaged RO systems.  309 

Digital application to packaged RO systems is an emerging concept. It has the potential to 310 

transform the way packaged RO systems are used in the industry and for sewer mining. There 311 

have been several large scale initiatives to promote the digital transformation of packaged RO 312 

plants. Notable examples include Hubgrade from Veolia (www.veolia.com/en/solution/smart-313 

services-smart-monitoring-solutions) and SmartOps from Gradiant 314 

(www.gradiant.com/technologies/smartops-digital/). Hubgrade and SmartOps are smart data 315 

management tools for monitoring and real-time decision making to improve water system 316 
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performance including packaged RO plants. According to Hubgrade, the framework for digital 317 

transformation consists of four steps, starting from training, model development, analysis and 318 

ultimately prediction (Figure 5). Figure 5 is a useful road map for further digital transformation 319 

of packaged RO systems. Awareness of the digital capability and digital literacy are important 320 

to realise the full benefit of digital transformation of the sector. 321 

Conclusion  322 

 Packaged reverse osmosis (RO) systems are widely used for industrial water supply and 323 

sewer mining. Digital connectivity and machine learning offer a game changing capability to 324 

these packaged RO systems. Information corroborated in this review show that with new digital 325 

capability, it is much more cost effective to design, operate, and manage these RO systems. 326 

Performance can be optimised via a range of approaches that are not possible with traditional 327 

human intervention. For example, hybrid systems that need a complicated control and 328 

prediction will require complex prediction models based on big data. On the other hand, other 329 

system that needs less intervention can work autonomously without or little human 330 

intervention. Automatic high-quality water treatment systems have attracted significant 331 

attention in recent years. This review highlights key research gaps in understanding variable 332 

possibilities that machine learning and prediction can be successfully utilized by RO systems. 333 

The review also illustrates that artificial intelligence and machine learning can significantly 334 

improve the performance of packaged RO systems. 335 
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