
EURO Journal on Computational Optimization 10 (2022) 100050
Contents lists available at ScienceDirect

EURO Journal on Computational 
Optimization

journal homepage: www.elsevier.com/locate/ejco

A hybrid genetic algorithm for scheduling jobs 

sharing multiple resources under uncertainty

Hanyu Gu, Hue Chi Lam ∗, Yakov Zinder
School of Mathematical and Physical Sciences, University of Technology Sydney, 
PO Box 123, Broadway, NSW 2007, Australia

a r t i c l e i n f o a b s t r a c t

Keywords:
Genetic algorithm
Local search
Sample average approximation
Stochastic scheduling
Discrete distribution

This study addresses the scheduling problem where every job 
requires several types of resources. At every point in time, the 
capacity of resources is limited. When necessary, the capacity 
can be increased at a cost. Each job has a due date, and 
the processing times of jobs are random variables with a 
known probability distribution. The considered problem is 
to determine a schedule that minimises the total cost, which 
consists of the cost incurred due to the violation of resource 
limits and the total tardiness of jobs. A genetic algorithm 
enhanced by local search is proposed. The sample average 
approximation method is used to construct a confidence 
interval for the optimality gap of the obtained solutions. 
Computational study on the application of the sample average 
approximation method and genetic algorithm is presented. It 
is revealed that the proposed method is capable of providing 
high-quality solutions to large instances in a reasonable time.
© 2022 The Author(s). Published by Elsevier Ltd on behalf 
of Association of European Operational Research Societies 

(EURO). This is an open access article under the CC 
BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author.
E-mail addresses: hanyu.gu@uts.edu.au (H. Gu), hue.lam@student.uts.edu.au (H.C. Lam), 

yakov.zinder@uts.edu.au (Y. Zinder).
https://doi.org/10.1016/j.ejco.2022.100050
2192-4406/© 2022 The Author(s). Published by Elsevier Ltd on behalf of Association of European 
Operational Research Societies (EURO). This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.ejco.2022.100050
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ejco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejco.2022.100050&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hanyu.gu@uts.edu.au
mailto:hue.lam@student.uts.edu.au
mailto:yakov.zinder@uts.edu.au
https://doi.org/10.1016/j.ejco.2022.100050
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050
1. Introduction

This paper is concerned with the problem of scheduling the set of jobs J = {1, ..., J }
where each job requires several types of resources. The planning horizon is discretised 
into a number of time periods of equal length indexed 1, ..., H and the set of all time 
periods is denoted by T = {1, ..., H}. The processing time of each job j is a discrete 
random variable pj which assumes integer values and 0 ≤ pmin

j ≤ pj ≤ pmax
j ≤ H, for all 

j ∈ J , where pmin
j and pmax

j are the minimal and maximal possible processing times of 
job j, respectively. All random variables pj are independently distributed.

All jobs are available for processing from period t = 1 and have to be executed without 
preemption, i.e. once the processing of a job starts, no interruption is allowed until its 
completion. A schedule s specifies for each job j the period sj when its processing starts. 
Each job j is given a period dj and it is desired to complete this job at period dj or 
earlier. The tardiness of any job j is max{sj + p′j −dj − 1, 0}, where p′j is a realisation of 
pj , i.e. an element of the set {pmin

j , ..., pmax
j }. A realisation of the job’s processing times 

is referred to as a scenario. For any schedule s = [s1, ..., sJ ], the expected total tardiness 
is

G1(s) = G1(s1, ..., sJ ) =
∑
j∈J

∑
p′
j∈{pmin

j ,...,pmax
j }

Pr(pj = p′j) max{sj + p′j − dj − 1, 0} (1)

where Pr(pj = p′j) is the probability that the processing time of job j is p′j .
The processing of each job requires K types of renewable resources. The set of resources 

is denoted by K = {1, ..., K}. In each period t, it is desired that the total consumption of 
resource k should not exceed a certain non-negative integer Rtk, which will be referred 
to as the capacity of resource k in period t. If the capacity Rtk is exceeded, this attracts 
a certain penalty. During its processing, at each period, a job j ∈ J consumes rjk units 
of resource k, where rjk is a non-negative integer. Given a schedule s, for any k ∈ K

and any period t, denote by Ctk(s) the total amount of resource k consumed in period t. 
Since all processing times are random variables, Ctk(s) is a random variable. The penalty 
for the violation of the limit, imposed by the capacity Rtk, is calculated using the three 
given parameters Utk, αtk and βtk, where βtk > αtk > 0 and Utk is a positive integer. 
Each extra unit of resource k in the range [Rtk, Rtk +Utk] increases the penalty by αtk, 
whereas each extra unit of resource k in addition to Rtk + Utk increases the penalty by 
βtk. In other words, the penalty is calculated as follows:

ftk(Ctk(s)) =

⎧⎪⎨
⎪⎩

αtk(Ctk(s) −Rtk) if Rtk < Ctk(s) ≤ Rtk + Utk

(αtk − βtk)Utk + βtk(Ctk(s) −Rtk) if Ctk(s) > Rtk + Utk

0 otherwise
. (2)

For any schedule s, denote by G2(s) the expected total penalty for violating the 
resource capacity in s, i.e.



H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050 3
G2(s) = G2(s1, ..., sJ ) =
∑
t∈T

∑
k∈K

E
[
ftk(Ctk(s))

]
(3)

where E is the expectation operator. The goal is to minimise

G(s) = G1(s) + G2(s). (4)

The considered scheduling problem has been motivated by a project with a rolling 
stock maintenance centre. This maintenance centre is responsible for the heavy mainte-
nance of passenger trains. The duration of maintenance tasks is uncertain at the time of 
planning. This is because maintenance duration depends on the condition of the train-
set; the availability and composition of the workforce; the availability of spare parts, e.g. 
bogie, wheel and air conditioning set; and many other factors. The maintenance tasks 
are carried out by various teams of floor personnel. Each team has different size and skill 
set. Therefore, the real-world problem is with multiple types of resources. Each passen-
ger train has a desired time window within which the maintenance of this train should 
commence. This time window is determined by the rolling stock operator, and is based 
on the validity period of the heavy maintenance that was previously performed. Due to 
the limited capacity of resources, it may not be possible for all the trains to arrive at the 
centre within the desired time windows. If the capacity is exceeded, this attracts a certain 
penalty. Research on the planning of rolling stock maintenance with one type of resource, 
undertaken by the authors of this paper, has been published in [26], [28] and [27], where 
Genetic Algorithm was used in [26] and [28]. Below also considers a solution approach 
based on Genetic Algorithm (GA), but the proposed method is different from the GA 
used in our previous publications in several ways, which we discuss in detail in Section 2.

The remainder of this paper is organised as follows. Section 2 provides a review of 
the related work. Section 3 presents a mixed integer linear programming formulation 
of the considered problem, and an efficient algorithm for computing the value of the 
objective function. The sample average approximation approach for assessing solution 
quality is described in Section 4. In section 5, a genetic algorithm enhanced by local 
search is proposed for solving the stochastic programming problem. This is followed in 
Section 6 by the results of computational experiments. Conclusions and directions for 
further research are given in Section 7.

2. Related work

The problem considered in this paper falls into the realm of stochastic optimisation, 
which is well-known to be computationally difficult [8]. Exact methods, developed to 
solve stochastic programming problems, include Benders decomposition which is com-
monly referred to as L-shaped algorithm [58], [37], [19]; dual decomposition method [18], 
[42]; and progressive hedging [49], [63], [4]. The L-shaped algorithm has been successfully 
applied to solve many different stochastic scheduling problems from production schedul-
ing [33], to project scheduling [15], and operating room scheduling [20,21]. Strategies to 



4 H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050
enhance the performance of L-shaped algorithm have been proposed in [2] and applied 
to solve the travelling salesman problem with drone [59], distribution network problem 
[3], and two-stage 0-1 stochastic program [51].

The difficulty of stochastic programming problems also inspires the development of 
approximation and bounding algorithms [13] and sampling-based algorithms [52], among 
which the Sample Average Approximation (SAA) approach has received much attention 
thus far (see, for example, [61], [33], [41], [10], [70]). The history of SAA dates back 
to the 1990s when it was first known by the name “stochastic counterpart method” 
[50], and then “sample-path optimisation method,” [48,46]. The convergence of solutions 
obtained by SAA has been studied in [53], [34], [52], [54], and [16]. SAA method is also 
used to determine solution quality in stochastic programs via computing the lower and 
upper bounds [40,61,6,7]. For a comprehensive overview on sampling-based methods for 
stochastic optimisation, see the survey [30].

Metaheuristics algorithms, such as Particle Swarm Optimisation [24], Greedy Ran-
domised Search Procedures [5], Variable Neighbourhood Search [1], Evolutionary Algo-
rithm [68], and Genetic Algorithm [39] have been successfully used in many different 
applications of stochastic optimisation. A survey on metaheuristics for stochastic com-
binatorial optimisation is provided by [12], wherein four metaheuristic approaches, i.e. 
Ant Colony Optimisation, Evolutionary Computation, Simulated Annealing, and Tabu 
Search, are considered. For a recent review of metaheuristics, matheuristics, simheuris-
tics, and learnheuristics methods, and their applications to stochastic combinatorial 
optimisation problems, see [32]. In a recent review paper, [25] report that out of 100 
papers about flow-shop scheduling problems under uncertainty published from 2001 to 
2016, Genetic Algorithm was the most used metaheuristics method and constituted the 
largest proportion (42%) of the total study papers (53 papers).

One of the key issues when applying Genetic Algorithm to stochastic optimisation 
problems is the computation of the objective function, which involves expected values. 
The majority of work in the literature use simulation methods to approximate the ob-
jective function. One strategy is to evaluate all solutions in all generations of GA with a 
small number of scenarios (see, for example, [39], [29], and [62]). However, it is possible 
that the final solution returned by GA as the best solution is of low-quality with respect 
to the true objective value [64]. This issue is addressed in [66] and [31], where a set of 
good solutions found by GA is re-evaluated with a sample of 105 scenarios to accurately 
select the best solution. Our paper also proposes a solution approach based on Genetic 
Algorithm, but in contrast to the above-mentioned studies, we can compute the objective 
function. So, at each generation, our GA can precisely determine whether a solution is 
better than another one.

The proposed approach is different from the Genetic Algorithm in our previous stud-
ies (see, [28], [26]) in several ways. First, [28] and [26] use only the standard Genetic 
Algorithm. As the application of local search methods can improve solutions and speed 
up the convergence process [57], the proposed solution method incorporates local search 
within the GA procedure. Second, this paper employs SAA for assessing the quality of 



H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050 5
GA solutions. Third, [28] and [26] use the random key encoding scheme, which requires a 
procedure to transform the chromosome into a solution. This paper uses a solution-based 
representation, wherein a solution is directly represented by a chromosome.

The idea to incorporate local search method within a Genetic Algorithm can be traced 
back at least to [47] and has been successfully applied to the permutation flowshop 
scheduling problem [56], parallel machines scheduling problem [55], and job shop schedul-
ing problem [60], among others. Most studies found in the literature design and use the 
hybrid Genetic Algorithm for deterministic problems. Under the assumption that param-
eters are known constants, it is easy to incorporate the local search method within the 
genetic algorithm framework as the evaluation of neighbour solutions does not require 
much time. However, for optimisation problems where random parameters are present 
in the objective function, it is expensive to compute the objective function value for a 
solution. For this reason, studies that use genetic algorithm enhanced by local search for 
solving stochastic optimisation problems are limited. The local search used in this paper 
is designed with the aim that the neighbour solutions can be evaluated quickly, making 
it efficient enough to be used in the GA framework.

The problem under study in this paper is closely related to [33], in which the problem 
is formulated as a two-stage stochastic model with complete recourse. The first-stage 
decision is to determine the starting times for jobs based on knowledge about the dis-
tribution of the uncertain processing times. The second-stage recourse cost describes a 
penalty for the amount in which the resource capacity is exceeded. This formulation 
allows for the application of L-shaped method. To solve large instances, the authors of 
[33] develop a sequential sampling procedure. In contrast to [33], our paper presents an 
alternative approach based on Genetic Algorithm metaheuristic. Furthermore, our paper 
exploits the problem structure and uses an efficient method to compute the value of the 
objective function. The proposed method is fast enough that it can be included within 
the optimisation procedure.

3. Mixed integer linear programming formulation

In this section, we first present a mixed integer linear programming model for the con-
sidered problem. Next, we describe an efficient algorithm for evaluation of the objective 
function.

3.1. Mixed integer linear program

In order to rewrite the objective function in a more convenient form, let Ω denote the 
set of all scenarios, πω denote the probability of a scenario ω ∈ Ω, and (pω1 , ..., pωJ )
denote the realisation of processing times in scenario ω. As discussed in Section 1, 
for each period t and each resource k, there is a regular capacity Rtk and an expan-
sion capacity Utk. If the total amount of resource k consumed in period t exceeds 
the regular capacity, then additional resources are needed. Let ytkω be the expan-



6 H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050
sion of resource k in period t in the range [Rtk, Rtk + Utk] under scenario ω. Thus 
ytkω = min{Utk, (

∑
j∈J

∑
s∈Sω

jt
rjkxjs − Rtk)+}, where a+ = max{0, a}. Moreover, if 

the total amount of resource k consumed in period t exceeds Rtk + Utk, then additional 
penalty is incurred. Let otkω be the expansion of resource k in addition to Rtk +Utk un-
der scenario ω. Thus otkω = (

∑
j∈J

∑
s∈Sω

jt
rjkxjs−Rtk−ytkω)+. The objective function 

can be written as

G1(s)+G2(s) =
∑
ω∈Ω

πω

{∑
j∈J

max{sj+pωj −dj−1, 0}+
∑
t∈T

∑
k∈K

(αtkytkω+βtkotkω)
}
. (5)

To guarantee job j can complete within the planning horizon under all scenarios, the 
latest time to start j is restricted to tmax

j = H − pmax
j + 1. Therefore, job j can start in 

any periods in Tj = {1, ..., tmax
j }. For any job j, any period t, and any scenario ω, let

Sω
jt = {τ | τ + pωj − 1 ≥ t, τ ≤ t} ∩ Tj (6)

denote the set of starting times which makes job j to be processed during time period t. 
For each j ∈ J and each t ∈ Tj , let

xjt =
{

1 if job j starts in period t

0 otherwise
(7)

Then, the starting time for each job j can be determined by

sj =
∑
t∈Tj

txjt

where variables xjt are obtained by solving the following mixed integer linear program

(MILP) z∗ = min
∑
ω∈Ω

πω

{∑
j∈J

∑
t∈Tj

max{t + pωj − dj − 1, 0} xjt

+
∑
t∈T

∑
k∈K

(αtkytkω + βtkotkω)
}

(8)

s.t.
∑
t∈Tj

xjt = 1, j ∈ J (9)

∑
j∈J

∑
s∈Sω

jt

rjkxjs − ytkω − otkω ≤ Rtk, ω ∈ Ω, t ∈ T, k ∈ K (10)

0 ≤ ytkω ≤ Utk, ω ∈ Ω, t ∈ T, k ∈ K (11)

otkω ≥ 0, ω ∈ Ω, t ∈ T, k ∈ K (12)

xjt ∈ {0, 1}, j ∈ J, t ∈ Tj (13)



H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050 7
The objective function (8) is a weighted sum of two components: the expected total 
tardiness and the expected total penalty for violating the capacity, which we wish to 
minimise. Constraint (9) ensures that all jobs are completed by the end of planning 
horizon. Constraint (10) calculates the additional units of resource k required beyond 
the capacity Rtk in period t under scenario ω. Constraints (11) - (12) describe the domain 
for ytkω and otkω, respectively. Constraint (13) states the integrality restriction on the 
decision variable xjt.

As mentioned in the Introduction section, the probability distribution of pj, j ∈ J

is discrete. The assumption of discrete processing times is reasonable because a job is 
scheduled in a discrete time interval (e.g. 1 day). Hence, optimal solution of the original 
two-stage problem can be obtained by solving the MILP (8)-(13). This technique is 
mentioned in the tutorial [36]. In this paper, CPLEX is used to solve the problem (8)-
(13). It is reported in the computational experiments that only small-sized instances can 
be solved to optimality.

Alternatively, the considered problem can be formulated as the following two-stage 
stochastic program with complete recourse [14]:

(SP) min
∑
ω∈Ω

πω

{∑
j∈J

∑
t∈Tj

max{t + pωj − dj − 1, 0} xjt

}
+

∑
ω∈Ω

πωQ(x, ω)

s.t.
∑
t∈Tj

xjt = 1, j ∈ J

xjt ∈ {0, 1}, j ∈ J, t ∈ Tj

where Q(x, ω) = min
∑
t∈T

∑
k∈K

(αtkytkω + βtkotkω)

s.t.
∑
j∈J

∑
s∈Sω

jt

rjkxjs − ytkω − otkω ≤ Rtk, ω ∈ Ω, t ∈ T, k ∈ K

0 ≤ ytkω ≤ Utk, ω ∈ Ω, t ∈ T, k ∈ K

otkω ≥ 0, ω ∈ Ω, t ∈ T, k ∈ K

The first stage variable is xjt, j ∈ J, t ∈ Tj and the second stage variables are ytkω
and otkω, t ∈ T, k ∈ K, ω ∈ Ω. In the above formulation, Q(x, ω) is a function of the 
first stage variable x and of the realisation of processing times under a scenario ω ∈ Ω. 
The first stage requires to determine the starting time of each job, whereas the second 
stage is concerned with the expansion of the capacity of each resource.

3.2. Evaluation of the objective function

In this section, we discuss the evaluation of the objective function (4). We first present 
a method to find, for a given schedule, the probability distribution of Ctk(s) in (2), 
k ∈ K, t ∈ T . Then, we show how the objective function can be computed.



8 H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050
Let yj(u) denote the probability that the processing time of job j is u. For any time 
period t and any resource k, job j requires rjk if it is being processed in period t. Given 
a schedule s = [s1, ..., sJ ], the probability that job j is still being processed in period t, 
denoted by ejt(sj), can be computed as follows.

ejt(sj) =
{∑pmax

j

u=t−sj+1 yj(u), t ∈ {sj , ..., H}
0, t ∈ {1, ..., sj − 1}

. (14)

For any job j ∈ J , any period t ∈ T , and any resource k ∈ K, let

Ejtk(sj) =
{

rjk with probability ejt(sj)
0 with probability 1 − ejt(sj)

. (15)

The total resource consumption of resource k in period t, resulting from the schedule 
s, is the sum Ctk(s) =

∑
j∈J Ejtk(sj). For a specific period t, the random variables Ejtk(s)

are independently distributed. Therefore, Ctk(s) is a random variable that follows the 
Generalised Poisson-Binomial (GPB) distribution [69].

In the following, we propose to compute Ctk(s), k ∈ K, t ∈ T by means of convolu-
tions. For any schedule s = [s1, · · · , sJ ], any period t ∈ T , and any resource k ∈ K, let 
P (Ctk(sl) = i) be the probability that i resources of type k from the partial schedule 
sl = [s1, . . . , sl] are consumed in period t. Then,

P (Ctk(s1) = r1k) = e1t(s1) and P (Ctk(s1) = 0) = 1 − e1t(s1)

and for all 1 ≤ l < J
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (Ctk(sl+1) = 0) = (1 − e(l+1)t(sl+1))P (Ctk(sl) = 0)

P (Ctk(sl+1) = i) = (1 − e(l+1)t(sl+1))P (Ctk(sl) = i)

+ e(l+1)t(sl+1)P (Ctk(sl) = i− r(l+1)k),

1 ≤ i <

l+1∑
j=1

rj

P (Ctk(sl+1) = rlk + r(l+1)k) = e(l+1)t(sl+1)P (Ctk(sl) = rlk)

.

Such a method was presented in [27] to calculate the exact distribution of the number 
of trains residing at a maintenance centre on a particular day, which is a random variable 
that follows Poisson Binomial distribution. We extend this method to the case of Gener-
alised Poisson Binomial distributed random variables. The entire procedure is outlined 
in Algorithm 1. To simplify notation, we suppress dependence on the given schedule s in 
Algorithm 1, and simply use ejt instead of ejt(s), Ejtk instead of Ejtk(s) and Ctk instead 
of Ctk(s). Furthermore, we apply Algorithm 1 for each period t and each resource k. If it 



H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050 9
Algorithm 1 Direct convolution.
1: Input: The set of two-point random variable Ej , which takes the value 0 with probability 1 − ej , and rj

with probability ej , j ∈ {1, ..., J}
2: Output: The probability mass function of the sum C =

∑J
j=1 Ej

3: procedure
4: Pr(C1 = 0) = 1 − e1, Pr(C1 = r1) = e1
5: Pr(C1 = c) = 0, for c = 1, ..., r1 − 1
6: Set � = 1
7: for j from 2 to J do
8: Pr(C�+1 = 0) = (1 − ej) · Pr(C� = 0)
9: R =

∑j
i=1 ri

10: for i from 1 to R − 1 do
11: Pr(C�+1 = i) = ej · Pr(C� = i − rj) + (1 − ej) · Pr(C� = i)
12: end for
13: Pr(C�+1 = R) = ej · Pr(C� = R − rj)
14: Set � = � + 1
15: end for
16: Pr(C = c) = Pr(C� = c), for c = 0, ..., ∑N

j=1 rj
17: return the probability mass function of C
18: end procedure

is clear which period and resource are considered, the subscript t and k can be dropped 
and the notation ej , Ej , and C can be used instead of ejt, Ejtk, and Ctk, respectively.

As a result, let Cmax
k =

∑
j∈J rjk, the objective function (4) can be computed as in 

(16). Therefore, we utilise (16) to accurately calculate the objective function value for 
solutions that we get from both the hybrid genetic algorithm and the sample average 
approximation method.

G1(s) + G2(s) = G1(s)

+
∑
t∈T

∑
k∈K

Rtk+Utk∑
c=Rtk+1

αtk(c−Rtk)Pr(Ctk(s) = c)

+
∑
t∈T

∑
k∈K

Cmax
k∑

c=Rtk+Utk+1
βtk(c−Rkt − Utk)Pr(Ctk(s) = c)

(16)

It should be mentioned that the complexity of the direct convolution procedure by 
Algorithm 1 is O(rmaxJ 2), where rmax = maxJ

j=1{rj}. The overall complexity to com-
pute the total resource consumption Ctk(s), for all resources k and for all time periods 
t is O(HKJ 2rmax).

4. Sample average approximation

The Sample Average Approximation (SAA), as its name suggests, is an approach 
of replacing the original problem with its sampling approximation. In this section, we 
first describe the SAA approach as in [40]. Then we explain how to obtain a statistical 
estimate for a lower bound on the optimal value z∗ of the objective function for the con-
sidered stochastic optimisation problem (also called the true problem). The optimality 



10 H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050
gap and statistical confidence intervals on the quality of an obtained SAA solution are 
also constructed accordingly.

The following mathematical model describes the SAA problem of the (MILP) with a 
sample size N . Given a sample ω1, ω2, ..., ωN of N scenarios, we can estimate the expected 
total tardiness in (1) and the expected total penalty for capacity violation in (3) by the 
average total tardiness and average total penalty over all scenarios, respectively. The 
resulting SAA problem is a large mixed integer program:

z∗N = min 1
N

N∑
i=1

{∑
j∈J

∑
t∈Tj

max{t + pω
i

j − dj − 1, 0} xjt

+
∑
t∈T

∑
k∈K

(αtkytkωi + βtkotkωi)
}

(17)

subject to (9), (13)∑
j∈J

∑
s∈Sωi

jt

rjkxjs − ytkωi − otkωi ≤ Rtk,

1 ≤ i ≤ N, t ∈ T, k ∈ K (18)

0 ≤ ytkωi ≤ Utk, 1 ≤ i ≤ N, t ∈ T, k ∈ K (19)

otkωi ≥ 0, 1 ≤ i ≤ N, t ∈ T, k ∈ K (20)

Let x be a vector of decision variables xjt, ∀j ∈ J, ∀t ∈ Tj . The SAA method provides 
a means to obtain a statistical estimate for the lower bound and optimality gap. It 
consists of generating M independent random samples, each of size N , and solving the 
resulting SAA problems. The optimal objective value is denoted by zmN , m = 1, ..., M , 
and the optimal solution is denoted by xm

N . The average of the optimal objective values 
of the M SAA problems

z̄N = 1
M

M∑
m=1

zmN (21)

is a statistical estimate for a lower bound on z∗ [40,43]. The sample variance can be 
estimated by

σ2
z∗
N

= 1
(M − 1)

M∑
m=1

(zmN − z̄N )2 (22)

Given a solution x̂, we can accurately calculate the objective function value G(x̂) as 
described in Section 3.2. The quality of the solution x̂ can be determined by computing 
the optimality gap estimate

G(x̂) − z̄N . (23)



H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050 11
The solution x̂ can be obtained as x̂ ∈ arg min{G(xm
N ) : m = 1, ..., M} or from the 

method proposed in Section 5. Given a small non-negative number α, let tM,α denote 
the (1-α) quantile of the Student’s t-distribution [38,35] with M degrees of freedom. We 
use

P

(
G(x̂) − z∗ ≤ G(x̂) − z̄N +

tM−1,α σz∗
N√

M

)
≈ 1 − α, (24)

to construct the one-sided confidence interval of the level (1 − α) for the optimality gap 
at x̂. That is,

[
0, G(x̂) − z̄N +

tM−1,α σz∗
N√

M

]
(25)

Instead of developing a confidence interval for the optimality gap by computing G(x̂), 
we may develop a confidence interval for the optimality gap by the upper-bound estima-
tor. An estimate of the upper bound for z∗ can be obtained by evaluating the solution 
x̂ using a sample ω1, ω2, ..., ωN ′ of N ′ scenarios, where N ′ > N [34]. Let ẑN ′(x̂) denote 
the standard sample mean estimator of G(x̂) and σ2

ẑN′ (x̂) denote the standard sample 
variance estimator. An approximate (1 − 2α)-level confidence interval for the optimality 
gap at x̂ is

[
0, ẑN ′(x̂) − z̄N +

tM−1,α σz∗
N√

M
+

tN ′−1,α σẑN′ (x̂)√
N ′

]
(26)

The above procedure for determining solution quality in stochastic programs was 
suggested in [43] and developed in [40].

5. Hybrid genetic algorithm

Genetic Algorithm (GA) is a population-based search algorithm that can generates 
high-quality solution for many mathematical optimisation problems. GA has also re-
ceived significant attention and has been successfully used in many different applications 
of stochastic optimisation. For example, [17] propose a two-stage GA for solving a 
stochastic parallel machine scheduling problem; [11] propose a biased random-key GA for 
the two-stage capacitated facility location problem; [71] develop a GA for solving large-
scale instances of the two-stage stochastic programming for single yard crane scheduling 
problem. In this section, we propose a Genetic Algorithm enhanced by local search for 
solving large instances of the considered problem. We refer to the proposed method as 
the Hybrid Genetic Algorithm (HGA).

Our HGA utilises genetic algorithm for global search and an efficient local search 
method for intensification purposes. Algorithm 2 presents the pseudocode for the HGA. 
The input is comprised of the population size (P ), crossover probability (λc), mutation 



12 H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050
Algorithm 2 Hybrid genetic algorithm.
1: Input: population size (P ), crossover probability (λc), mutation probability (λm), termination condition 

(GENmax)
2: procedure
3: Initialise population consisting of P randomly generated chromosomes
4: while GENmax is not satisfied do
5: for i from 1 to P do
6: Use the binary tournament to select two parents from the population
7: With probability λc, apply the half-uniform crossover on the selected parents
8: With probability λm, apply the uniform mutation on the offspring
9: end for

10: Use local search to educate or improve each chromosome in the population
11: end while
12: return the best solution found
13: end procedure

probability (λm), and maximum number of generations (GENmax). First, the initial 
population of P chromosomes is created randomly (line 3). Then, the main loop (lines 
4 to 11) performs the half-uniform crossover, uniform mutation, and local search on the 
current population until the maximum number of generations (GENmax) is reached. The 
inner loop (lines 5 to 9) uses the binary tournament operator [45] to pick two parents for 
reproduction. A new offspring is created by applying the half-uniform crossover operator 
on the two parents with probability λc. When the crossover operator is not applied, 
the first parent is handled as the offspring. With probability λm, mutation is performed 
on each of the generated offspring. Finally, local search procedure is used to improve 
the offspring solution quality (line 10), where it takes a chromosome μ as an input and 
returns a chromosome in the neighbourhood of μ with the smallest value of the objective 
function. The details of several components of our HGA are given in the remainder of 
this section.

5.1. Representation of chromosome and definition of fitness function

In GA, the chromosome representation of a solution is important so that it is sus-
ceptible to the required genetic operators and fully characterise the solution. In our 
implementation of GA, we have chosen the solution-based representation, in which a 
chromosome directly represents a schedule of jobs. For example:

represents a solution where job 1 starts in period 14, job 2 starts in period 19, and so on. 
The rationale behind this chromosome representation is that no further decoding proce-
dure is needed since each gene of a chromosome corresponds to the job’ starting period. 
Solution-based representation is widely used in the permutation flow shop scheduling 
problem [56], and the job-shop problem [65] where the chromosome denotes the order 
in which jobs are processed. In the remainder of this paper, chromosome, solution, and 
schedule have the same meaning. The three terms are used interchangeably. The fitness 



H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050 13
Fig. 1. Example of the half-uniform crossover.

of a chromosome is calculated as 1/G, where G is the objective function value. The ob-
jective function value is computed as described in Section 3.2. The chromosome with a 
smaller value of the objective function will have higher fitness.

5.2. Parent selection and crossover

The purpose of the selection operator is to decide which solutions will be selected from 
the population to generate offspring. In our implementation of GA, we have chosen the 
binary tournament operator [45]. The binary tournament operator picks two randomly 
selected individuals from the population, and the one with a better fitness is selected for 
reproduction. Two rounds of the tournament are executed to get two parent chromosomes 
from which an offspring will be generated.

The purpose of the crossover operator is to take pair of chromosomes and combine 
them to produce offspring. The selected parent chromosomes will undergo crossover ac-
cording to the crossover probability λc. In our implementation of GA, we have chosen to 
use the half-uniform crossover operator [23,22,44]. The half-uniform crossover operator 
compares the genes from the two parent chromosomes, copies the matching genes, and 
places them in the same position in the offspring partial solution. Then, the Hamming 
distance, i.e. the number of non-matching genes, is calculated. The offspring inherits ex-
actly half of the non-matching genes (at random) from the first parent, and the remaining 
from the second parent. Fig. 1 shows an example of the half-uniform crossover operator. 
The half-uniform crossover is suitable for the solution based representation because it 
is able to promote the level of diversification that our HGA needs. The half-uniform 
crossover is much less likely than the traditional one- or two-point crossover to produce 
the same offspring twice from the same parents [22]. The half-uniform crossover with 
solution based representation had been used in [67] to solve the job scheduling problem 
in grid computing.

5.3. Mutation

The purpose of the mutation operator is to maintain genetic diversity in the popu-
lation. In our implementation of GA, the uniform mutation is applied at gene level to 
retain population diversity. Each gene in the child chromosome is assigned a random 
number sampled from the uniform distribution U(0, 1). If this random number is not 



14 H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050
greater than λm, the corresponding gene value is replaced by an integer randomly drawn 
from 1 to H − pmax

j + 1, where j corresponds to the index of the chosen gene in the 
chromosome.

5.4. Local search method

The purpose of the local search is to find a better solution within the neighbourhood 
of a given solution. For a given solution s, the local search procedure defines a neigh-
bourhood constituting a set of all solutions that can be reached by applying some search 
operator to s. This paper proposes the operator shift(τ, τ ′) which shifts the starting pe-
riod from τ to τ ′ for a given job. The procedure Shift Search is described in the following. 
In this procedure, a solution s = [s1, ...sJ ] represents a chromosome, and G(s) represents 
the objective function value of s (inverse of G(s) gives the fitness of s).

Procedure Shift Search (s, G(s))

Step 1. Job list JL ← {1, 2, ...,J}
Step 2. If JL is not empty, choose a job j in JL, remove j from JL, 
and go to step 3. Otherwise, stop and return s and G(s).
Step 3. Execute operator shift(τ, τ ′) on s for τ = sj and τ ′ = {1, ..., H−
pmax
j + 1} \ τ . Compute the objective function value after each shift 

operator had been applied and choose the best one. If the objective 
function value of the best solution is better than G(s), let s be the best 
solution and G(s) be the objective function value of the best solution, 
then go to Step 2.

In step 3 of the above procedure, when a shift is performed, the chosen job j is first 
removed from the current solution s, and the distribution of resource consumption is 
updated for all periods that are affected by this removal, i.e. ∀t ∈ {τ, ..., τ + pmax

j − 1}. 
Let PMF be the resultant probability mass function. After assigning a new starting 
period τ ′ to job j, the distribution is again updated by convolving PMF with the 
distribution of job j for all the impacted periods, i.e. ∀t ∈ {τ ′, ..., τ ′ + pmax

j − 1}. The 
fitness of a solution resulting from a shift can be computed quickly since the distribution 
of resource consumption is updated by considering one job at a time, leaving all other 
jobs and all unaffected periods unchanged.

In the following, we discuss the relationship between the features of the problem 
instances and the performance of the proposed local search method. For a solution s
consisting of J jobs, as many as J×(H−1) shift operators can be applied to this solution, 
where H is the planning horizon. For each operator, the total number of operations to 
compute the value of the objective function is K×H, where K is the number of resources. 
Thus, the complexity of the procedure Shift Search is O(J ×K×H2). The total running 
time grows linearly with increases in the number of jobs and resources but quadratically 
with the increase in planning horizon.

However, it is noted that not all J × (H − 1) shift operators can improve the solu-
tion s. This observation leads to the development of a dominance rule that reduces the 
neighbourhood size. The dominance rule is described as follows. Consider a solution s



H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050 15
whose value of the objective function is G(s). Let s′ be a solution obtained by applying a 
specific operator shift(τ, τ ′) to a given job j. If the sum of G1(s′) and G2(s \ j) is greater 
than or equal to G(s), then the solution s′ is dominated and the operation shift(τ, τ ′) can 
be ignored, since it is better to start job j on period τ than τ ′. Applying the dominance 
rule described above to the procedure Shift Search can significantly reduce the running 
time of HGA because only the dominant solutions are considered during the local search 
process, i.e. the size of the search space is reduced. In our implementation of the HGA, 
the dominance rule is used in the local search procedure.

6. Computational results

In this section, we report the computational results of the proposed HGA on 54 
randomly generated problem instances. We first validate the performance of the HGA 
against the exact solutions on the set of small problems. Then, we run the HGA on the 
set of large problems, compare its results with the SAA method and the GA developed by 
[39]. Next, we report the computational results, and present the 95% confidence interval 
for the optimality gap at the best solution returned by HGA. Finally, sensitivity analysis 
on the performance of the proposed HGA and SAA methods is studied.

The proposed hybrid genetic algorithm was implemented in Cython [9]. The testing 
system was a cluster with Intel Xeon Gold 6150 2.7 GHz 8 cores CPU with 180 GB
RAM, running Red Hat Enterprise Linux. The computational facilities were provided by 
the UTS eResearch High Performance Computer Cluster.

6.1. Generation of test instances

The length of the planning horizon is 50 time periods. In this study, we consider 6 
classes of instances: 20 jobs & 5 resources, 40 jobs & 5 resources, 60 jobs & 5 resources, 
80 jobs & 5 resources, 100 jobs & 5 resources, and 120 jobs & 5 resources. The random 
processing time of job (i.e. pj) is assumed to have two possible values with equal prob-
ability. The first value is generated from a uniform distribution on the integers 1, .., 50. 
The second value is set to the first value plus ψ if the resulting sum is not larger than H. 
Otherwise, the second value is set to the first value minus ψ. The value of ψ is chosen 
to be ψ = 5.

For job j, the parameter dj is generated from a uniform distribution on the integers 
1, ..., 10, i.e. dj ∼ U(1, 10). The amount of resource k consumed by job j (i.e. rjk) is 
generated from a uniform distribution on the integers 1, ..., 5, i.e. rjk ∼ U(1, 5). It is 
assumed that the amount of resource available does not change significantly over the 
planning horizon, thus we set Rtk = Rk, ∀t ∈ T . For the same reason, we set Utk =
Uk, ∀t ∈ T . For resource k, the parameter Rk is generated from a uniform distribution 
on the integers between p̄r̄kJ /H and p̄r̄kJ /(0.6H), where p̄ = 1/J

∑J
j=1 pj and r̄k =

1/J
∑J

j=1 rjk. For resource k, the parameter Uk is set to the greatest integer less than 
or equal to 10% of Rk, i.e. Uk =

⌈
0.1Rk

⌉
.



16 H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050
Fig. 2. Change in the objective function value with number of generations of the HGA on the pilot set of 
(a) small problems and (b) large problems.

For the penalty rates (i.e. αtk and βtk), it is assumed that they do not vary drastically 
over the planning horizon, thus we set αtk = αk, βtk = βk, ∀t ∈ T . The parameter αk

is generated from a uniform distribution on the integers 1, ..., 10, i.e. αk ∼ U(1, 10), 
whereas βk is calculated as max{2αk, 10}. The setting on the above parameters follows 
the setting in the study by [33].

To test the performance of the proposed solution approaches on problem instances of 
a varying number of scenarios, we consider two cases:

• Small problem where only ten jobs have two processing times, the remaining jobs 
have deterministic processing times. The total number of scenario is 210 = 1024
scenarios.

• Large problem where every job has two processing times resulting in a total of 2J
scenarios, where J is the number of jobs.

6.2. HGA parameter setting

For the HGA, we set the values P = 20, λc = 0.9, λm = 0.01 for all the instances. The 
stopping criterion of the proposed HGA was determined using a small pilot set of six 
problem instances included in the test instances described above. For each instance, ten 
runs of the algorithm were performed. The results of the experiments are displayed in 
Fig. 2. The horizontal axis indicates the generation, while the vertical axis indicates the 
value of the objective function corresponding to the best solution found. From Fig. 2, 
the algorithm converges rapidly in less than 50 generations. Therefore, GENmax = 50 is 
used.

6.3. Comparisons between the proposed HGA and CPLEX on small problem instances

As has been discussed in Section 3.1, the stochastic programming problem can be 
formulated as the model MILP. Solving the model MILP by CPLEX gives an exact



H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050 17
Table 1
Comparison between the performance of CPLEX and HGA on small instances.

Instance CPLEX HGA
Time Obj AvgTime MinObj AvgObj MaxObj Std Gap(%)

20-5-1024-S1 912 1156 4 1156 1156 1156 0.00 0.00%
20-5-1024-S2 2264 1885 5 1885 1885 1885 0.00 0.00%
20-5-1024-S3 6363 585 8 585 588 591 1.85 0.51%
40-5-1024-S1 3244 1093 33 1093 1096 1105 4.69 0.27%
40-5-1024-S2 2333 1412 28 1412 1413 1417 1.80 0.07%
40-5-1024-S3 3386 2056 25 2056 2061 2068 4.40 0.24%
60-5-1024-S1 13455 1553 129 1557 1563 1574 6.35 0.64%
60-5-1024-S2 2496 1388 112 1391 1394 1397 1.66 0.43%
60-5-1024-S3 4298 4014 70 4014 4024 4043 9.01 0.25%
80-5-1024-S1 5449 1821 197 1822 1823 1825 0.92 0.11%
80-5-1024-S2 16106 1996 234 1999 2001 2005 2.12 0.25%
80-5-1024-S3 4921 2818 208 2819 2840 2878 18.01 0.78%

Notes: Instance ‘20-5-1024-S1’ means 20 jobs, 5 resources, and 1024 scenarios;
‘S1’ means first instance for the jobs-resources-scenarios combination.

solution to the stochastic programming problem. Table 1 presents results of the proposed 
HGA and the CPLEX solver for the small problem instances. For all the instances, 
CPLEX stopped after reaching a 5-hour limit or when an optimal solution was found. 
The column “Time” gives the solve time (in seconds) used by CPLEX to obtain the 
optimal solution (column “Obj”). For each instance, Table 1 also shows the average 
running time in seconds (AvgTime), the minimum, average, and maximum values of 
the objective function (MinObj, AvgObj, MaxObj), and the standard deviation (Std) 
obtained for ten runs of the proposed HGA. Solution quality of the HGA is measured by 
the percentage relative difference Gap(%) = (AvgObj−Obj)/Obj× 100, and is reported 
under the column titled “Gap(%)”.

The results in Table 1 show that the HGA can find high-quality solutions with low 
running time in comparison with the optimal solutions by CPLEX. When J ≤ 40, 
the algorithm obtains optimal solutions in all 6 instances (column “MinObj”). When 
J ≥ 60, the gaps between HGA and CPLEX increase but are not significant. The av-
erage percentage relative differences are about 0.44% and 0.38% for the instances with 
60 jobs and 80 jobs, respectively. In terms of the running times of the methods, the 
proposed HGA can solve all the instances with J ≤ 40 in less than 40 seconds. For 
the instances with 80 jobs, HGA takes less than 4 minutes, whereas CPLEX requires 
as much as 1 hour to solve the problems to within 1% optimality and significantly 
more time to prove optimality. This shows the limitation of CPLEX and the strength 
of the proposed HGA for the considered problem. Furthermore, the running times of 
the proposed HGA do not vary between instances of the same jobs-resources-scenarios 
combination and only increase with problem scale, whereas the solve time by CPLEX 
varies significantly between instances of the same jobs-resources-scenarios combina-
tion.



18 H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050
6.4. Performance evaluation of the proposed HGA on large problem instances

We further analyse the performance of the HGA by running the algorithm on 42 large 
problem instances where every job has two processing times. We evaluate its performance 
in comparison with the SAA method and the GA in [39], which is referred to as GA-Li. 
We implement the GA-Li in Python and all computational experiments were conducted 
on the same computer as that of HGA. The parameter setting for GA-Li is the same as 
in [39] with population size of 10, mutation probability of 0.05, number of scenarios used 
for evaluation of objective function being 50 and stopping criteria of 100 generations.

Table 2 provides a summary of results. As mentioned in Section 4, solving the SAA 
problems (by CPLEX) repeatedly produces a statistical estimate for a lower bound on the 
optimal value of the objective function for the true problem. The parameters for solving 
the SAA problems are: M = 30 and N = 50. We report the statistical lower bound 
under the column titled ‘z̄N ’. For all the instances, CPLEX stopped after reaching a 1-
hour time limit or when an optimal solution was found. For the method SAA, we report 
the average solve time by CPLEX (in seconds) over 30 SAA problems under the column 
titled ‘AvgTime’; and the standard deviation under the column titled ‘Std’. For each SAA 
problem, the solution obtained from SAA is evaluated as described in Section 3.2. The 
average objective value of the solutions, over the 30 SAA problems, is reported under the 
column titled ‘AvgObj’. As such, z̄N is different from AvgObj. For the method HGA, we 
report the average running time in seconds (AvgTime), the average value of the objective 
function (AvgObj), and the standard deviation (Std) over ten runs. For the method GA-
Li, we report the average value of the objective function (AvgObj) over ten runs. For all 
three methods, the deviation of the average objective value from z̄N is reported under 
the columns titled “Gap(%)”, and is calculated by Gap(%) = (AvgObj− z̄N )/z̄N × 100. 
To facilitate the reading, the values obtained by the HGA are in bold if they are better 
than the values obtained by SAA and GA-Li.

The results in Table 2 show that the proposed HGA outperform the SAA and GA-Li 
methods. Over all the 42 problem instances, the HGA not only obtains better solutions in 
all of them but also achieves more stable results across the different runs of the algorithm. 
For the group of instances with large resource violation penalty (e.g., “highPen-80-5-280-
S1”), it is observed that when αtk and βtk are 100 times larger, the gap is 6 times larger 
on average. This is reasonable since the total penalties are a large part of the objective 
function value and SAA cannot have a good approximation with a small sample size 
limited by the capability of CPLEX. The average gap to z̄N is about 1.97% for the HGA, 
whereas it is about 3.07% for the SAA method, and 10.33% for the GA-Li method. The 
results suggest that the proposed HGA is capable of obtaining high-quality solutions for 
large instances of the considered problem. From the experiment, we observe that SAA 
with N = 100 produces superior solution quality than SAA with N = 50 at the cost 
of significantly longer running time. For the running time of the methods, the average 
time required by HGA was 79 seconds, and the increase in running time between the 
test cases with (20 jobs, 220 scenarios) and with (80 jobs, 280 scenarios) is moderate. On 



H
.
G

u
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

10
(2022)

100050
19

HGA
AvgTime AvgObj Std Gap(%)
6 865 1.64 1.41%
6 1348 0.87 2.28%
9 473 0.95 0.21%
9 843 6.40 0.96%
6 1315 3.72 0.61%
8 575 0.00 0.17%
32 4541 11.18 1.98%
24 7244 14.55 1.81%
28 2492 2.73 1.38%
44 1200 0.03 0.08%
38 1834 1.48 1.16%
52 1267 3.13 0.64%
83 4770 15.40 3.11%
78 2051 1.23 0.39%
95 3286 5.76 2.18%
150 2340 10.24 2.23%
150 1492 0.95 0.27%
117 1850 0.16 0.38%
174 5077 7.62 1.91%
228 3323 6.44 1.75%
185 3470 9.94 2.45%
311 2079 0.13 0.24%
221 6097 7.27 1.99%
296 4417 16.93 3.42%
Table 2
Comparison between the performance of SAA, GA-Li and HGA on large instances.

Instance z̄N SAA GA-Li
AvgTime AvgObj Std Gap(%) AvgObj Gap(%)

20-5-220-S1 853 18 869 4.44 1.88% 886 3.90%
20-5-220-S2 1318 17 1356 7.60 2.88% 1384 4.99%
20-5-220-S3 472 23 474 1.43 0.42% 518 9.84%
20-5-220-S4 835 22 843 6.37 0.96% 893 6.95%
20-5-220-S5 1307 13 1320 8.46 0.99% 1326 1.45%
20-5-220-S6 574 20 575 0.00 0.17% 626 9.06%
40-5-240-S1 4453 69 4593 33.66 3.14% 4711 5.80%
40-5-240-S2 7115 39 7294 25.96 2.52% 7373 3.63%
40-5-240-S3 2458 46 2520 18.24 2.52% 2601 5.82%
40-5-240-S4 1199 49 1202 3.12 0.25% 1331 11.01%
40-5-240-S5 1813 37 1849 10.12 1.99% 1951 7.61%
40-5-240-S6 1259 135 1267 3.54 0.64% 1398 11.04%
60-5-260-S1 4626 108 4832 25.62 4.45% 5003 8.15%
60-5-260-S2 2043 88 2060 10.87 0.83% 2242 9.73%
60-5-260-S3 3216 1440 3320 19.67 3.23% 3533 9.87%
60-5-260-S4 2289 2732 2342 45.46 2.32% 2599 13.54%
60-5-260-S5 1488 544 1494 1.87 0.40% 1733 16.47%
60-5-260-S6 1843 76 1863 38.04 1.09% 1999 8.46%
80-5-280-S1 4982 105 5126 18.71 2.89% 5471 9.81%
80-5-280-S2 3266 3186 3359 16.57 2.85% 3607 10.43%
80-5-280-S3 3387 546 3507 17.01 3.54% 3802 12.24%
80-5-280-S4 2074 2684 2084 4.50 0.48% 2391 15.28%
80-5-280-S5 5978 100 6164 25.69 3.11% 6422 7.43%
80-5-280-S6 4271 1563 4453 24.14 4.26% 4810 12.62%



20
H

.
G

u
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

10
(2022)

100050

HGA
%) AvgTime AvgObj Std Gap(%)
% 466 4067 3.07 0.92%
% 503 2790 0.44 0.18%
% 443 2807 0.65 0.14%
% 497 2652 0.27 0.15%
% 711 2390 0.65 0.17%
% 535 2470 0.19 0.12%
% 768 4638 2.50 0.76%

760 6054 2.03 1.36%
% 1154 4060 4.53 1.02%
% 957 3752 1.73 0.19%

874 5147 2.09 1.68%
% 939 4481 2.33 1.45%
% 252 288346 647 5.84%
% 381 96918 314 12.20%
% 286 96694 791 11.29%
% 555 128975 298 8.15%
% 715 2823 2.36 0.71%
% 530 2956 9.21 3.54%

100 times larger.
Table 2 (continued)

Instance z̄N SAA GA-Li
AvgTime AvgObj Std Gap(%) AvgObj Gap(

100-5-2100-S1 4030 265 4093 52.18 1.56% 4449 10.40
100-5-2100-S2 2785 1427 2792 1.70 0.25% 3177 14.06
100-5-2100-S3 2803 831 2810 6.74 0.25% 3172 13.16
100-5-2100-S4 2648 1406 2654 1.67 0.23% 3101 17.11
100-5-2100-S5 2386 3297 2392 2.24 0.25% 2925 22.59
100-5-2100-S6 2467 1735 2472 1.41 0.20% 2949 19.54
120-5-2120-S1 4603 163 4660 7.77 1.24% 5066 10.06
120-5-2120-S2 5973 143 6120 60.52 2.46% 6488 8.62%
120-5-2120-S3 4019 2047 4075 8.93 1.39% 4522 12.52
120-5-2120-S4 3745 252 3756 4.46 0.29% 4172 11.40
120-5-2120-S5 5062 201 5199 14.18 2.71% 5527 9.19%
120-5-2120-S6 4417 188 4516 14.94 2.24% 4900 10.94
highPen-80-5-280-S1 272439 115 293357 1638 7.68% 309366 13.55
highPen-80-5-280-S2 86381 3373 99267 1582 14.92% 114764 32.86
highPen-80-5-280-S3 86882 556 98743 1907 13.65% 128821 48.27
highPen-100-5-2100-S1 119260 415 131389 936 10.17% 143159 20.04
highPen-100-5-2100-S2 2803 3600 3046 169 8.67% 3230 15.23
highPen-100-5-2100-S3 2855 2104 3229 145 13.10% 3575 25.22

Notes: Instance ‘20-5-220-S1’ means 20 jobs, 5 resources, and 220 scenarios;
‘S1’ means first instance for the jobs-resources-scenarios combination;
Instance ‘highPen-80-5-280-S1’ is instance ‘80-5-280-S1’ but the values of αtk and βtk, for all t and k are 



H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050 21
Table 3
The 95% confidence interval for the optimality gap at x̂, where x̂ is the best solution obtained from the 
HGA.

Instance 20-5-220-S1 20-5-220-S2 20-5-220-S3 40-5-240-S1 40-5-240-S2 40-5-240-S3
z̄N 852.83 1317.85 472.06 4453.38 7115.35 2457.71
σz∗

N
12.83 29.73 1.63 61.97 93.28 36.44

CI construction using (25)
G(x̂) 863.75 1347.88 473.00 4527.02 7214.22 2490.35
tM−1,0.05 σz∗N√

M
3.98 9.22 0.50 19.22 28.94 11.30

95% CI [0, 14.90] [0, 39.25] [0, 1.45] [0, 92.87] [0, 127.81] [0, 43.94]
CI construction using (26)

ẑN ′ (x̂) 864.43 1357.54 481.00 4521.60 7210.75 2490.75
σẑN′ (x̂) 128.12 235.70 3.91 481.66 602.93 253.79
tM−1,0.025 σz∗N√

M
4.79 11.10 0.61 23.14 34.83 13.61

tN′−1,0.025 σẑ
N′ (x̂)√

N ′ 2.51 4.62 0.08 9.45 11.83 4.98
95% CI [0, 18.90] [0, 55.42] [0, 9.63] [0, 100.81] [0, 142.06] [0, 51.63]

the other hand, although all the SAA problems can be solved to optimality, the average 
solve time of CPLEX was 474 seconds, which is about six times more than HGA. It is 
also noted that for the group of instances with 120 jobs, SAA requires less time than 
HGA on average.

Tables 3 and 4 present the 95% confidence interval (CI) for the optimality gap at 
x̂, where x̂ is the best solution found after ten runs of the HGA for each instance. We 
report the test results for developing the CI based on G(x̂) according to (25) and based 
on the upper-bound estimator ẑN ′(x̂) according to (26) (see Section 4). The upper-
bound estimator ẑN ′(x̂) is obtained using N ′ = 104. From Table 3, it can be observed 
that tighter confidence interval on the optimality gap can be obtained using the CI 
construction based on G(x̂) rather than ẑN ′(x̂). Indeed, the latter yields confidence 
interval widths that are within 2.78% and 2.09% from the upper bound G(x̂), roughly 
1.68 and 1.12 times larger than that obtained from the former, for the instances with 20 
and 40 jobs, respectively. This is expected since the random CI width in (26) consists 
of not only the sampling error from estimating the lower bound but also that from 
the upper-bound estimator. The same observation can be seen in Table 4, in which 
constructing the CI using (25) results in sufficiently tight confidence intervals.

6.5. Sensitivity analysis

The results in Table 2 indicate that instance 80-5-280-S2 is harder to solve than the 
other instances. The reason could be that there is a well-balanced share between the 
expected total tardiness of jobs and the expected total penalty for violating the resource 
capacity, which results in both SAA and HGA spending a substantial amount of time 
in an attempt to find the solution that minimises the total cost. In this section, using 
the large instance 80-5-280-S2, we first analyse the performance of SAA and HGA with 
the variation of two problem parameters: H and ψ. Because the time required by the 
proposed HGA to solve the instance is at most 30 minutes, we impose a 30-minute time 



22 H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050
Table 4
The 95% confidence interval for the optimality gap at x̂, where x̂ is the best solution obtained from the 
HGA (continue).

Instance 60-5-220-S1 60-5-220-S2 60-5-220-S3 80-5-240-S1 80-5-240-S2 80-5-240-S3
z̄N 4625.95 2042.61 3215.88 4982.28 3266.44 3386.94
σz∗

N
57.47 15.18 46.31 44.95 47.61 50.98

CI construction using (25)
G(x̂) 4749.98 2050.58 3280.43 5068.31 3314.92 3460.76
tM−1,0.05 σz∗N√

M
17.83 4.71 14.37 13.94 14.77 15.81

95% CI [0, 141.86] [0, 12.68] [0, 78.91] [0, 99.97] [0, 63.25] [0, 89.63]
CI construction using (26)

ẑN ′ (x̂) 4753.09 2057.37 3277.23 5079.33 3334.72 3475.48
σẑN′ (x̂) 505.62 122.74 292.91 389.73 284.11 342.30
tM−1,0.025 σz∗N√

M
21.46 5.67 17.29 16.78 17.77 19.03

tN′−1,0.025 σẑ
N′ (x̂)√

N ′ 9.92 2.41 5.75 7.65 5.57 6.72
95% CI [0, 158.52] [0, 22.84] [0, 84.39] [0, 121.48] [0, 91.62] [0, 114.29]

Table 5
Sensitivity analysis on the performance of SAA and HGA with H for instance 80-5-280-S2.

Instance H SAA HGA
AvgTime AvgObj Std AvgMIP-gap(%) AvgTime AvgObj Std

80-5-280-S2 50 1800 3360.70 19.17 0.60% 228 3323.29 6.44
60 1800 2115.50 3.32 0.11% 430 2109.48 0.59
70 1800 2108.32 2.73 0.19% 655 2104.69 0.57
80 1800 2109.44 2.41 0.21% 906 2104.90 0.54
90 1800 2107.40 2.05 0.18% 1244 2104.69 0.43
100 1819 2108.45 2.20 0.24% 1521 2104.31 0.21

limit for CPLEX. This ensures a fair comparison. Next, using the large instances, the 
performance of HGA is analysed with the variation of two GA parameters: λm and λc.

Table 5 presents the analysis on the performance of SAA and HGA with H ∈
{50, 60, 70, 80, 90, 100} when the remaining problem parameters stay unchanged. In this 
table, the average optimality gap reported by CPLEX across ten runs is reported under 
the column titled “AvgMIP-gap(%)”. It is observed that the required computation time 
by HGA increases when H increases. This is expected since increasing H will inevitably 
increase the number of moves in the local search procedure, which is the most time-
consuming component in the proposed HGA. Indeed, the HGA took, on average, 6.67 
times longer to solve instance 80-5-280-S2 with H = 100 than with H = 50. When look-
ing at the average objective value when H is increased from 50 to 60, we note that the 
AvgObj is improved since the penalty incurred for exceeding the capacity of resources 
is reduced. As H continues to be increased from 70 to 100, there is little difference in 
the AvgObj because resource capacity is always sufficient, and the cost incurred due 
to the violation of resource limits is dominated by the total tardiness of jobs. For the 
SAA method, it is observed that CPLEX fails to solve the SAA problems to optimality 
before the 30-minute time limit is reached. The lowest average optimality gap reported 
by CPLEX was 0.11% when H = 60.



H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050 23
Table 6
Sensitivity analysis on the performance of SAA and HGA with ψ for instance 80-5-280-S2.

Instance ψ SAA HGA
AvgTime AvgObj Std AvgMIP-gap(%) AvgTime AvgObj Std

80-5-280-S2 5 1800 3360.70 19.17 0.600% 228 3323 6.44
10 1420 8002.33 24.79 0.170% 207 7884 14.34
15 460 11211.83 88.86 0.008% 216 10990 14.79
20 269 12384.08 108.30 0.009% 213 12198 0.00

Table 7
Sensitivity analysis on the performance of HGA with λm and λc for large instances, in terms of solution 
quality and time.

Group λm = 0.01
λc = 0.85 λc = 0.9 λc = 0.95
AvgObj Std AvgTime %O %S %T %O %S %T

20 jobs 896 1.29 7 -0.03% -22% 1% -0.01% -12% 2%
40 jobs 4763 10.05 28 -0.12% -12% 1% -0.10% -2% 2%
60 jobs 3372 8.29 84 -0.11% -21% 2% -0.06% -5% 2%
80 jobs 3959 6.61 186 -0.11% -17% 4% -0.07% -1% 5%
Average 3247 6.56 76 -0.09% -18% 2% -0.06% -5% 3%
Group λm = 0.05

λc = 0.85 λc = 0.9 λc = 0.95
%O %S %T %O %S %T %O %S %T

20 jobs 0.01% -11% 44% -0.06% -45% 46% -0.05% -36% 46%
40 jobs -0.10% -18% 56% -0.13% -30% 61% -0.12% -32% 62%
60 jobs -0.11% -25% 80% -0.20% -27% 81% -0.17% -16% 80%
80 jobs -0.12% -16% 86% -0.17% -17% 89% -0.14% -17% 93%
Average -0.08% -17% 66% -0.14% -30% 69% -0.12% -25% 70%

Table 6 presents the analysis on the performance of SAA and HGA with ψ ∈
{5, 10, 15, 20} when the remaining problem parameters stay unchanged. It is observed 
that an increase in ψ leads to an increase in the objective value due to violation of the 
resource limits but has little impact on the solution time of HGA. Also, increasing ψ
makes the SAA problems substantially easier to solve. This is because the total tardiness 
of jobs is negligible when ψ is large. Indeed, the ratios of the expected total penalty for 
violating the resource capacity to the total tardiness of jobs were 0.48, 2.13, 3.47, and 
4.21, respectively, for the four settings of ψ.

Table 7 presents the analysis on the performance of HGA using a combination of 
λm ∈ {0.01, 0.05} and λc ∈ {0.85, 0.9, 0.95} when P = 20 and GENmax = 50. In this 
table, the instances are grouped according to the number of jobs. The first four columns 
are as follows: the instance group (Group), the average objective value (AvgObj), the 
standard deviation (Std), the average time taken by HGA to terminate (AvgTime), 
across the ten runs of the HGA with λm = 0.01 and λc = 0.85. In this table, all the 
percentage differences are relative to the corresponding results obtained by the HGA 
with λm = 0.01 and λc = 0.85. It can be clearly seen that the solution quality improves 
at the cost of longer computation time when λm increases. This is essentially because 
more genes in the chromosomes would likely be perturbed when λm is large. As a result 



24 H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050
of the differences between the original chromosomes and the mutated chromosomes, more 
iterations of local search would likely be required to explore the search space. Indeed, 
the HGA with λm = 0.05 consistently obtains a better solution than the HGA with 
λm = 0.01. However, the former takes on average 1.7 times longer than the latter. The 
parameter λc controls how diversified the chromosomes in a population are. Based on the 
results in Table 7, increasing or decreasing λc relative to λc = 0.9 can slightly reduce the 
solution quality. Since the half-uniform crossover operator gives us a highly disruptive 
crossover [23], using a large crossover probability (λc = 0.95) may decrease the likelihood 
that better solutions will be kept in the population.

7. Conclusion

This paper examines the problem of scheduling jobs where each job requires several 
types of resources with uncertain job processing times. A method for calculating the exact 
distributions of resource consumption resulting from a given schedule was presented. 
Knowing the distribution enables us to compute the value of the expected cost incurred 
from exceeding the resource capacity. A genetic algorithm enhanced by local search 
was then proposed to find a schedule that minimises costs. The HGA incorporates the 
“standard” implementation of the GA as the global search scheme and a simple but 
effective shift search procedure as the local search scheme. The computational results 
on small problem instances show that the proposed HGA yields high-quality solutions 
with low computation time. Although it is possible to solve these small test problems to 
optimality by using commercial MIP solvers, the computation time grows rapidly as the 
number of scenarios increases. For large applications, computational results show that the 
HGA outperforms the SAA strategy and that changes in ψ have a negligible effect on the 
computation time with this method. However, the influence of planning horizon on the 
performance of HGA is, due to the embedded local search procedure, more prominent.

Further studies should consider other modelling extensions. For example, one could 
include a metric to deal with severe uncertainty of job processing times. In particular, the 
model can be adjusted to determine the required capacity of the resource types to ensure 
that capacity will not be exceeded with a certain probability. Other metaheuristics can be 
developed or the HGA proposed in this paper can be adapted to solve this new problem.

CRediT authorship contribution statement

All authors contributed equally to this work.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper.



H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050 25
References

[1] C. Almeder, R.F. Hartl, A metaheuristic optimization approach for a real-world stochastic flexible 
flow shop problem with limited buffer, Int. J. Prod. Econ. 145 (1) (2013) 88–95, https://doi .org /
10 .1016 /j .ijpe .2012 .09 .014.

[2] G. Angulo, S. Ahmed, S.S. Dey, Improving the integer L-shaped method, INFORMS J. Comput. 
28 (11) (2016) 483–499, https://doi .org /10 .1287 /ijoc .2016 .0695.

[3] A.N. Arslan, W. Klibi, B. Montreuil, Distribution network deployment for omnichannel retailing, 
Eur. J. Oper. Res. 294 (3) (2021) 1042–1058, https://doi .org /10 .1016 /j .ejor .2020 .04 .016.

[4] S. Atakan, S. Sen, A progressive hedging based branch-and-bound algorithm for mixed-integer 
stochastic programs, Comput. Manag. Sci. 15 (2018) 501–540, https://doi .org /10 .1007 /s10287 -018 -
0311 -3.

[5] F. Ballestín, R. Leus, Resource-constrained project scheduling for timely project completion with 
stochastic activity durations, Prod. Oper. Manag. 18 (4) (2009) 459–474, https://doi .org /10 .1111 /
j .1937 -5956 .2009 .01023 .x.

[6] G. Bayraksan, D.P. Morton, Assessing solution quality in stochastic programs, Math. Program. 
108 (2–3) (2006) 495–514, https://doi .org /10 .1007 /s10107 -006 -0720 -x.

[7] G. Bayraksan, D.P. Morton, Assessing solution quality in stochastic programs via sampling, IN-
FORMS Tutor. Oper. Res. (2009) 102–122, https://doi .org /10 .1287 /educ .1090 .0065.

[8] G. Bayraksan, D.P. Morton, A sequential sampling procedure for stochastic programming, Oper. 
Res. 59 (4) (2011) 898–913, https://doi .org /10 .1287 /opre .1110 .0926.

[9] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, K. Smith, Cython: the best of both 
worlds, Comput. Sci. Eng. 13 (2) (2011) 31–39, https://doi .org /10 .1109 /MCSE .2010 .118.

[10] M.L. Bentaha, O. Battaia, A. Dolgui, A sample average approximation method for disassembly line 
balancing problem under uncertainty, Comput. Oper. Res. 51 (2014) 111–122, https://doi .org /10 .
1016 /j .cor .2014 .05 .006.

[11] F.L. Biajioli, A.A. Chaves, L.A.N. Lorena, A biased random-key genetic algorithm for the two-stage 
capacitated facility location problem, Expert Syst. Appl. 115 (2019) 418–426, https://doi .org /10 .
1016 /j .eswa .2018 .08 .024.

[12] L. Bianchi, M. Dorigo, L.M. Gambardella, W. Gurjahr, A survey on metaheuristics for stochastic 
combinatorial optimization, Nat. Comput. 8 (2009) 239–287, https://doi .org /10 .1007 /s11047 -008 -
9098 -4.

[13] J. Birge, R. Wets, Sublinear upper bounds for stochastic programs with recourse, Math. Program. 
43 (1989) 131–149, https://doi .org /10 .1007 /BF01582286.

[14] J.R. Birge, F. Louveaux, Introduction to Stochastic Programming, Springer, New York, 1997.
[15] M.E. Bruni, L.D.P. Pugliese, P. Beraldi, F. Guerriero, A two-stage stochastic programming model 

for the resource constrained project scheduling problem under uncertainty, in: Proceedings of the 
7th International Conference on Operations Research and Enterprise System (ICORES 2018), 2018.

[16] C. Bugg, A. Aswani, Logarithmic sample bounds for sample average approximation with capacity-
or budget-constraints, Oper. Res. Lett. 49 (2) (2021) 231–238, https://doi .org /10 .1016 /j .orl .2021 .
01 .007.

[17] Z. Cao, C. Lin, M. Zhou, C. Zhou, K. Sedraoui, Two-stage genetic algorithm for scheduling stochastic 
unrelated parallel machines in a just-in-time manufacturing context, IEEE Trans. Autom. Sci. Eng. 
(2022), https://doi .org /10 .1109 /TASE .2022 .3178126.

[18] C.C. Carøe, R. Schultz, Dual decomposition in stochastic integer programming, Oper. Res. Lett. 24 
(1999) 37–45, https://doi .org /10 .1016 /S0167 -6377(98 )00050 -9.

[19] C.C. Carøe, J. Tind, L-shaped decomposition of two-stage stochastic programs with integer recourse, 
Math. Program. 83 (1998) 451–464, https://doi .org /10 .1007 /BF02680570.

[20] B. Denton, J. Viapiano, A. Vogl, Optimisation of surgery sequencing and scheduling decisions under 
uncertainty, Health Care Manage. Sci. 10 (2007) 13–24, https://doi .org /10 .1007 /s10729 -006 -9005 -4.

[21] B.T. Denton, A.J. Miller, H.J. Balasubramanian, T.R. Huschka, Optimal allocation of surgery 
blocks to operating rooms under uncertainty, Oper. Res. 58 (4) (2010) 802–816, https://doi .org /10 .
1287 /opre .1090 .0791.

[22] L.J. Eshelman, J.D. Schaffer, Preventing premature convergence in genetic algorithm by prevent-
ing incest, in: Proceedings of the Fourth International Conference on Genetic Algorithms, 1991, 
pp. 115–121.

[23] C. García-Martínez, F.J. Rodriguez, M. Lozano, Genetic algorithms, in: R. Martí, P.M. Pardalos, 
M.G.C. Resende (Eds.), Handbook of Heuristics, Springer, Cham, 2018, pp. 431–464.

https://doi.org/10.1016/j.ijpe.2012.09.014
https://doi.org/10.1016/j.ijpe.2012.09.014
https://doi.org/10.1287/ijoc.2016.0695
https://doi.org/10.1016/j.ejor.2020.04.016
https://doi.org/10.1007/s10287-018-0311-3
https://doi.org/10.1007/s10287-018-0311-3
https://doi.org/10.1111/j.1937-5956.2009.01023.x
https://doi.org/10.1111/j.1937-5956.2009.01023.x
https://doi.org/10.1007/s10107-006-0720-x
https://doi.org/10.1287/educ.1090.0065
https://doi.org/10.1287/opre.1110.0926
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1016/j.cor.2014.05.006
https://doi.org/10.1016/j.cor.2014.05.006
https://doi.org/10.1016/j.eswa.2018.08.024
https://doi.org/10.1016/j.eswa.2018.08.024
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1007/BF01582286
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib02FE28C1A3E2B28DE6C8CE1ECEBD9AA3s1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib31912263BB250F324160F0F64B203E9Fs1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib31912263BB250F324160F0F64B203E9Fs1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib31912263BB250F324160F0F64B203E9Fs1
https://doi.org/10.1016/j.orl.2021.01.007
https://doi.org/10.1016/j.orl.2021.01.007
https://doi.org/10.1109/TASE.2022.3178126
https://doi.org/10.1016/S0167-6377(98)00050-9
https://doi.org/10.1007/BF02680570
https://doi.org/10.1007/s10729-006-9005-4
https://doi.org/10.1287/opre.1090.0791
https://doi.org/10.1287/opre.1090.0791
http://refhub.elsevier.com/S2192-4406(22)00026-0/bibDCF8727B5900F53625163890C893B393s1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bibDCF8727B5900F53625163890C893B393s1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bibDCF8727B5900F53625163890C893B393s1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bibEDBE270CE890BE50EFD982514DE979F2s1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bibEDBE270CE890BE50EFD982514DE979F2s1


26 H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050
[24] J.C. Geng, Z. Cui, X.S. Gu, Scatter search based particle swarm optimization algorithm for earli-
ness/tardiness flowshop scheduling with uncertainty, Int. J. Autom. Comput. 13 (3) (2016) 285–295, 
https://doi .org /10 .1007 /s11633 -016 -0964 -8.

[25] E. Gonzalez-Neira, J.R. Montoya-Torres, D. Barrera, Flow-shop scheduling problem under uncer-
tainties: review and trends, Int. J. Ind. Eng. Comput. 8 (2017) 399–426, https://doi .org /10 .5267 /j .
ijiec .2017 .2 .001.

[26] H. Gu, H.C. Lam, A genetic algorithm approach for scheduling trains maintenance under uncer-
tainty, in: H.A. Le Thi, T. Pham Dinh, N. Nguyen (Eds.), Advanced Computational Methods 
for Knowledge Engineering, ICCSAMA 2019, in: Advances in Intelligent Systems and Computing, 
Springer, Cham, 2019, pp. 106–118.

[27] H. Gu, H.C. Lam, Y. Zinder, Planning rolling stock maintenance: optimisation of train arrival dates 
at a maintenance centre, J. Ind. Manag. Optim. 18 (2) (2022) 747–772, https://doi .org /10 .3934 /
jimo .2020177.

[28] H. Gu, M. Joyce, H.C. Lam, M. Woods, Y. Zinder, A genetic algorithm for assigning train arrival 
dates at a maintenance centre, Paper presented at the 9th IFAC Conference on Manufacturing 
Modelling, Management and Control, 28–30 August, Berlin School of Economics and Law, 2019.

[29] J. Gu, M. Gu, C. Cao, X. Gu, A novel competitive co-evolutionary quantum genetic algorithm 
for stochastic job shop scheduling problem, Comput. Oper. Res. 37 (5) (2010) 927–937, https://
doi .org /10 .1016 /j .cor .2009 .07 .002.

[30] T. Homem-de-Mell, G. Bayraksan, Monte Carlo sampling-based methods for stochastic optimiza-
tion, Surv. Oper. Res. Manag. Sci. 19 (1) (2014) 56–85, https://doi .org /10 .1016 /j .sorms .2014 .05 .001.

[31] S.C. Horng, S.S. Lin, F.Y. Yang, Evolutionary algorithm for stochastic job shop scheduling with 
random processing time, Expert Syst. Appl. 39 (3) (2012) 3603–3610, https://doi .org /10 .1016 /j .
eswa .2011 .09 .050.

[32] A.A. Juan, P. Keenan, R. Martí, S. McGarraghy, J. Panadero, P. Carroll, D. Oliva, A review of the 
role of heuristics in stochastic optimisation: from metaheuristics to learnheuristics, Ann. Oper. Res. 
(2021), https://doi .org /10 .1007 /s10479 -021 -04142 -9.

[33] B. Keller, G. Bayraksan, Scheduling jobs sharing multiples resources under uncertainty: a 
stochastic programming approach, IIE Trans. 42 (1) (2009) 16–30, https://doi .org /10 .1080 /
07408170902942683.

[34] A.J. Kleywegt, A. Shapiro, T. Homem-de-Mello, The sample average approximation method for 
stochastic discrete optimization, SIAM J. Optim. 12 (2) (2002) 479–502, https://doi .org /10 .1137 /
S1052623499363220.

[35] K. Krishnamoorthy, Handbook of Statistical Distributions with Applications, Chapman & 
Hall/CRC, New York, 2006.

[36] S. Küçükyavuz, S. Sen, An introduction to two-stage stochastic mixed-integer programming, Tutor. 
Oper. Res. (2017), https://doi .org /10 .1287 /educ .2017 .0171.

[37] G. Laporte, F.V. Louveaux, The integer L-shaped method for stochastic integer programs with 
complete recourse, Oper. Res. Lett. 13 (3) (1993) 133–142, https://doi .org /10 .1016 /0167 -6377(93 )
90002 -X.

[38] A.M. Law, W.D. Kelton, Simulation Modeling and Analysis, 5th edn., McGraw-Hill, New York, 
2000.

[39] H. Li, E. Demeulemeester, A genetic algorithm for the robust resource leveling problem, J. Sched. 
19 (1) (2016) 43–60, https://doi .org /10 .1007 /s10951 -015 -0457 -6.

[40] W. Mak, D.P. Morton, R.K. Wood, Monte Carlo bounding techniques for determining solution 
quality in stochastic programs, Oper. Res. Lett. 24 (1–2) (1999) 47–56, https://doi .org /10 .1016 /
S0167 -6377(98 )00054 -6.

[41] C. Mancilla, R. Storer, A sample average approximation approach to stochastic appointment 
sequencing and scheduling, Math. Program. 44 (8) (2012) 655–670, https://doi .org /10 .1080 /
0740817X .2011 .635174.

[42] S. Mitra, P. Garcia-Herreros, I.E. Grossmann, A cross-decomposition scheme with integrated 
primal–dual multi-cuts for two-stage stochastic programming investment planning problems, Math. 
Program. 157 (2016) 95–119, https://doi .org /10 .1007 /s10107 -016 -1001 -y.

[43] V.I. Norkin, G.C. Pflug, A. Ruszczynski, A branch and bound method for stochastic global optimi-
sation, Math. Program. 83 (1998) 425–450, https://doi .org /10 .1007 /BF02680569.

[44] D. Peña, A. Tchernykh, B. Dorronsoro, P. Ruiz, A novel multi-objective optimization approach to 
guarantee quality of service and energy efficiency in a heterogeneous bus fleet system, Eng. Optim. 
(2022), https://doi .org /10 .1080 /0305215X .2022 .2055007.

https://doi.org/10.1007/s11633-016-0964-8
https://doi.org/10.5267/j.ijiec.2017.2.001
https://doi.org/10.5267/j.ijiec.2017.2.001
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib9A6637CFED1638FFAF8A7787FDB79276s1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib9A6637CFED1638FFAF8A7787FDB79276s1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib9A6637CFED1638FFAF8A7787FDB79276s1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib9A6637CFED1638FFAF8A7787FDB79276s1
https://doi.org/10.3934/jimo.2020177
https://doi.org/10.3934/jimo.2020177
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib28E7CE326E1D8B69F370EFDCB1AD8EBCs1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib28E7CE326E1D8B69F370EFDCB1AD8EBCs1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib28E7CE326E1D8B69F370EFDCB1AD8EBCs1
https://doi.org/10.1016/j.cor.2009.07.002
https://doi.org/10.1016/j.cor.2009.07.002
https://doi.org/10.1016/j.sorms.2014.05.001
https://doi.org/10.1016/j.eswa.2011.09.050
https://doi.org/10.1016/j.eswa.2011.09.050
https://doi.org/10.1007/s10479-021-04142-9
https://doi.org/10.1080/07408170902942683
https://doi.org/10.1080/07408170902942683
https://doi.org/10.1137/S1052623499363220
https://doi.org/10.1137/S1052623499363220
http://refhub.elsevier.com/S2192-4406(22)00026-0/bibE442897274F15DFCA129DFCD2DE15184s1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bibE442897274F15DFCA129DFCD2DE15184s1
https://doi.org/10.1287/educ.2017.0171
https://doi.org/10.1016/0167-6377(93)90002-X
https://doi.org/10.1016/0167-6377(93)90002-X
http://refhub.elsevier.com/S2192-4406(22)00026-0/bibEFD0864899A8992E41A6B931B63D6E28s1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bibEFD0864899A8992E41A6B931B63D6E28s1
https://doi.org/10.1007/s10951-015-0457-6
https://doi.org/10.1016/S0167-6377(98)00054-6
https://doi.org/10.1016/S0167-6377(98)00054-6
https://doi.org/10.1080/0740817X.2011.635174
https://doi.org/10.1080/0740817X.2011.635174
https://doi.org/10.1007/s10107-016-1001-y
https://doi.org/10.1007/BF02680569
https://doi.org/10.1080/0305215X.2022.2055007


H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050 27
[45] F. Pezzella, G. Morganti, G. Ciaschetti, A genetic algorithm for the flexible job-shop scheduling 
problem, Comput. Oper. Res. 35 (10) (2008) 3202–3212, https://doi .org /10 .1016 /j .cor .2007 .02 .014.

[46] E.L. Plambeck, B.R. Fu, S.M. Robinson, R. Suri, Sample-path optimization of convex stochastic 
performance functions, Math. Program., Ser. A B 75 (2) (1996) 137–176, https://doi .org /10 .1007 /
BF02592150.

[47] C.R. Reeves, Genetic algorithms and neighbourhood search, in: T.C. Fogarty (Ed.), Evolutionary 
Computing, vol. 865, Springer, Berlin, Heidelberg, 1994, pp. 115–130.

[48] S.M. Robinson, Analysis of sample-path optimization, Math. Oper. Res. 21 (3) (1996) 513–528, 
https://doi .org /10 .1287 /moor .21 .3 .513.

[49] R. Rockafellar, R. Wets, Scenarios and policy aggregation in optimization under uncertainty, Math. 
Oper. Res. 16 (1) (1991) 119–147.

[50] R.Y. Rubinstein, A. Shapiro, Sensitivity Analysis and Stochastic Optimization by the Score Function 
Method, 1st edition, John Wiley & Sons, Chichester, England, 1993.

[51] K. Ryan, D. Rajan, S. Ahmed, Scenario decomposition for 0-1 stochastic programs: improvements 
and asynchronous implementation, https://doi .org /10 .1109 /IPDPSW .2016 .119, 2016.

[52] A. Shapiro, Monte Carlo sampling methods, Handb. Oper. Res. Manag. Sci. 10 (2003) 353–425, 
https://doi .org /10 .1016 /S0927 -0507(03 )10006 -0.

[53] A. Shapiro, T. Homem-De-Mello, On the rate of convergence of optimal solutions of Monte Carlo 
approximations of stochastic programs, SIAM J. Optim. 11 (1) (2000) 70–86, https://doi .org /10 .
1137 /S1052623498349541.

[54] A. Shapiro, D. Dentcheva, A. Ruszczyński, Lectures on Stochastic Programming: Modelling and 
Theory, Society for Industrial and Applied Mathematics, Philadelphia, 2014.

[55] L.C.R. Soares, M.A.M. Carvalho, Biased random-key genetic algorithm for scheduling identical 
parallel machines with tooling constraints, Eur. J. Oper. Res. 285 (3) (2020) 955–964, https://
doi .org /10 .1016 /j .ejor .2020 .02 .047.

[56] L.Y. Tseng, Y.T. Lin, A hybrid genetic local search algorithm for the permutation flowshop schedul-
ing problem, Eur. J. Oper. Res. 198 (1) (2009) 84–92, https://doi .org /10 .1016 /j .ejor .2008 .08 .023.

[57] H.T. Ünal, F. Başçiftçi, Using evolutionary algorithms for the scheduling of aircrew on airborne 
early warning and control system, Def. Sci. J. 70 (3) (2020) 240–248, https://doi .org /10 .14429 /dsj .
70 .15055.

[58] R.M. Van Slyke, R. Wets, L-shaped linear programs with applications to optimal control and 
stochastic programming, SIAM J. Appl. Math. 17 (4) (1969) 638–663, https://doi .org /10 .1137 /
0117061.

[59] S.A. Vásquez, G. Angulo, M.A. Klapp, An exact solution method for the tsp with drone based on 
decomposition, Comput. Oper. Res. 127 (2021) 105127, https://doi .org /10 .1016 /j .cor .2020 .105127.

[60] C.R. Vela, R. Varela, M.A. Gonzalez, Local search and genetic algorithm for the job shop scheduling 
problem with sequence dependent setup times, J. Heuristics 16 (2) (2010) 139–165, https://doi .org /
10 .1007 /s10732 -008 -9094 -y.

[61] B. Verweij, S. Ahmed, A.J. Kleywegt, G. Nemhauser, A. Shapiro, The sample average approximation 
method applied to stochastic routing problems: a computational study, Comput. Optim. Appl. 24 
(2003) 289–333, https://doi .org /10 .1023 /A :1021814225969.

[62] K.J. Wang, S.M. Wang, J.C. Chen, A resource portfolio planning model using sampling-based 
stochastic programming and genetic algorithm, Eur. J. Oper. Res. 184 (1) (2008) 327–340, https://
doi .org /10 .1016 /j .ejor .2006 .10 .037.

[63] J.P. Watson, D.L. Woodruff, Progressive hedging innovations for a class of stochastic mixed-integer 
resource allocation problems, Comput. Manag. Sci. 8 (2011) 355–370, https://doi .org /10 .1007 /
s10287 -010 -0125 -4.

[64] J.P. Watson, S. Rana, L.D. Whitley, A.E. Howe, The impact of approximate evaluation on the 
performance of search algorithms for warehouse scheduling, J. Sched. 2 (2) (1999) 79–98.

[65] T. Yamada, R. Nakano, A genetic algorithm applicable to large-scale job-shop problems, Paper pre-
sented at the Parallel Problem Solving from Nature 2, Belgium, 28–30 September, 1992, pp. 281–290.

[66] Y. Yoshitomi, R. Yamaguchi, A genetic algorithm and the Monte Carlo method for stochastic job-
shop scheduling, Int. Trans. Oper. Res. 10 (6) (2003) 577–596, https://doi .org /10 .1111 /1475 -3995 .
00429.

[67] M.T. Younis, S. Yang, Hybrid meta-heuristic algorithms for independent job scheduling in grid 
computing, Appl. Soft Comput. 72 (2018) 498–517, https://doi .org /10 .1016 /j .asoc .2018 .05 .032.

[68] F. Zaman, S. Elsayed, R. Sarker, C. Essam, C.A. Coello Coello, An evolutionary approach for 
resource constrained project scheduling with uncertain changes, Comput. Oper. Res. 125 (2021) 
105104, https://doi .org /10 .1016 /j .cor .2020 .105104.

https://doi.org/10.1016/j.cor.2007.02.014
https://doi.org/10.1007/BF02592150
https://doi.org/10.1007/BF02592150
http://refhub.elsevier.com/S2192-4406(22)00026-0/bibBCB11BFE30AB63380186972F0324B70Fs1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bibBCB11BFE30AB63380186972F0324B70Fs1
https://doi.org/10.1287/moor.21.3.513
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib21AB39C12CC2190754D8DA6EF2BA239Bs1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib21AB39C12CC2190754D8DA6EF2BA239Bs1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib9C57C51D58E71CEF13431FDAF09DB524s1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib9C57C51D58E71CEF13431FDAF09DB524s1
https://doi.org/10.1109/IPDPSW.2016.119
https://doi.org/10.1016/S0927-0507(03)10006-0
https://doi.org/10.1137/S1052623498349541
https://doi.org/10.1137/S1052623498349541
http://refhub.elsevier.com/S2192-4406(22)00026-0/bibD7AC9902D083BDA59DC560B2A16A852Es1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bibD7AC9902D083BDA59DC560B2A16A852Es1
https://doi.org/10.1016/j.ejor.2020.02.047
https://doi.org/10.1016/j.ejor.2020.02.047
https://doi.org/10.1016/j.ejor.2008.08.023
https://doi.org/10.14429/dsj.70.15055
https://doi.org/10.14429/dsj.70.15055
https://doi.org/10.1137/0117061
https://doi.org/10.1137/0117061
https://doi.org/10.1016/j.cor.2020.105127
https://doi.org/10.1007/s10732-008-9094-y
https://doi.org/10.1007/s10732-008-9094-y
https://doi.org/10.1023/A:1021814225969
https://doi.org/10.1016/j.ejor.2006.10.037
https://doi.org/10.1016/j.ejor.2006.10.037
https://doi.org/10.1007/s10287-010-0125-4
https://doi.org/10.1007/s10287-010-0125-4
http://refhub.elsevier.com/S2192-4406(22)00026-0/bibBDF3D2AEABE11258E3BF6072382BA4AAs1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bibBDF3D2AEABE11258E3BF6072382BA4AAs1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib2D9B7EC89497FB23568E6CE80601AC30s1
http://refhub.elsevier.com/S2192-4406(22)00026-0/bib2D9B7EC89497FB23568E6CE80601AC30s1
https://doi.org/10.1111/1475-3995.00429
https://doi.org/10.1111/1475-3995.00429
https://doi.org/10.1016/j.asoc.2018.05.032
https://doi.org/10.1016/j.cor.2020.105104


28 H. Gu et al. / EURO Journal on Computational Optimization 10 (2022) 100050
[69] M. Zhang, Y. Hong, N. Balakrishnan, An algorithm for computing the distribution function of the 
generalized Poisson binomial distribution, J. Stat. Comput. Simul. 88 (8) (2018) 1515–1527, https://
doi .org /10 .1080 /00949655 .2018 .1440294.

[70] L. Zhen, Tactical berth allocation under uncertainty, Eur. J. Oper. Res. 247 (3) (1981) 928–944, 
https://doi .org /10 .1016 /j .ejor .2015 .05 .079.

[71] F. Zheng, X. Man, F. Chu, M. Liu, C. Chu, A two-stage stochastic programming for single yard 
crane scheduling with uncertain release times of retrieval tasks, Int. J. Prod. Res. 57 (13) (2019) 
4132–4147, https://doi .org /10 .1080 /00207543 .2018 .1516903.

https://doi.org/10.1080/00949655.2018.1440294
https://doi.org/10.1080/00949655.2018.1440294
https://doi.org/10.1016/j.ejor.2015.05.079
https://doi.org/10.1080/00207543.2018.1516903

	A hybrid genetic algorithm for scheduling jobs sharing multiple resources under uncertainty
	1 Introduction
	2 Related work
	3 Mixed integer linear programming formulation
	3.1 Mixed integer linear program
	3.2 Evaluation of the objective function

	4 Sample average approximation
	5 Hybrid genetic algorithm
	5.1 Representation of chromosome and definition of fitness function
	5.2 Parent selection and crossover
	5.3 Mutation
	5.4 Local search method

	6 Computational results
	6.1 Generation of test instances
	6.2 HGA parameter setting
	6.3 Comparisons between the proposed HGA and CPLEX on small problem instances
	6.4 Performance evaluation of the proposed HGA on large problem instances
	6.5 Sensitivity analysis

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References


