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Abstract 7 

Buildings are exposed to risks from environmental hazards such as earthquakes, windstorms 8 

and floods. Substantial uncertainties from various sources are inevitably involved in the risk 9 

estimation and decision-making for activities such as design and disaster risk mitigation for 10 

buildings. Decision makers seek to achieve economic efficiency while ensure building safety 11 

by managing the extreme tail risk that is typically a concern when facing low-probability, high-12 

consequence events. Thus, risk preferences and tolerances play an important role in the 13 

decision process, which often vary among different decision makers. The conventionally used 14 

minimum expected life-cycle cost criterion (MELC) fails to adequately cope with large 15 

uncertainty and risk preferences. To this end, this paper presents the application of a set of 16 

decision models beyond the MELC to support decision-making under uncertainty for buildings 17 

exposed to environmental hazards. The objective is to provide risk-informed decision support 18 

for decision-makers with a wide range of risk appetites while taking into account uncertainties 19 

involved in the life-cycle cost. The features, strengths and weaknesses of these decision models 20 

are discussed from a practical point of view. The application and selection of the decision 21 

models are demonstrated by two practical decision problems: (i) seismic design of a high-rise 22 

commercial building, and (ii) wind hazard mitigation for a low-rise residential building. These 23 

examples illustrate how the decisions for choosing seismic design levels and wind mitigation 24 

measures vary when different decision models and model settings are applied.  25 
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1. Introduction 28 

Buildings are exposed to risks from natural hazards such as earthquakes, windstorms and 29 

floods. The occurrence and intensity of these extreme events, the environmental loads imposed 30 

on buildings and the consequent performance, damage and loss of buildings are subjected to 31 

significant uncertainties, both aleatory and epistemic. Probabilistic risk assessment (PRA) for 32 

buildings provides a systematic way to account for associated uncertainties and estimate risks 33 

from environmental hazards. For a certain planning time horizon, the outputs of the PRA are 34 

typically probability distributions of life-cycle costs for buildings (e.g. [1-4]). Decision 35 

variables such as the net present value and benefit-to-cost ratio can also be obtained from the 36 

PRA (e.g. [3] [5-6]). These outputs can inform and support the decision-making for activities 37 

such as design and disaster risk mitigation for buildings. The decision-making process aims to 38 

achieve economic efficiency while limit extreme tail risks to ensure building safety, and 39 

therefore improve building resilience to natural disasters at an optimal cost.  40 

Decision-making for buildings is conventionally based on the minimum expected life-cycle 41 

cost (MELC) criterion (e.g. [1] [7-8]), which represents a risk-neutral attitude to achieve long-42 

term economic efficiency from a societal perspective. Substantial uncertainties are involved in 43 

the PRA and the low-probability catastrophic consequences are often the concern of many 44 

decision makers. Hence, it is not surprising that risk averseness is found to be prevalent in civil 45 

engineering decisions when facing environmental hazards [9]. The MELC fails to fully capture 46 

the large uncertainty and dispersion involved in the life-cycle cost distribution, and may 47 

downplay possible catastrophic losses because only the mean of life-cycle cost is taken into 48 

account. Moreover, the MELC is only adequate for risk-neutral decision makers but fails to 49 

cope with other risk preferences such as risk aversion. 50 

To this end, there is a need for decision models to deal with large uncertainty as well as 51 

different risk preferences and tolerances of decision makers. This paper presents the application 52 
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of a set of decision models to provide decision support for buildings exposed to environmental 53 

hazards beyond the decision-making solely based on expected life-cycle cost. The presented 54 

decision models in this paper include risk measures such as Value-at-Risk (VaR), Conditional-55 

Value-at-Risk (CVaR) [10] and Range-Value-at-Risk (RVaR) [11-12], the utility theory (UT) 56 

[13], the stochastic dominance (SD) [14-15] and its extension almost stochastic dominance 57 

(ASD) [16]. To the best knowledge of the author, it is the first time that the ASD and RVaR are 58 

introduced to decision problems for buildings subjected to environmental hazards. The 59 

features, strengths and weaknesses of these decision models are discussed from a practical 60 

point of view. Two practical decision examples, i.e. seismic design of a high-rise commercial 61 

building and wind hazard mitigation for a low-rise residential building, are presented to 62 

compare and demonstrate the applicability of these decision models. It is anticipated that the 63 

practical examples given in this paper shed some light on the use and selection of decision 64 

models for buildings exposed to environmental hazards. The application of these decision 65 

models is expected to provide risk-informed decision support for decision-makers with a wide 66 

range of risk appetites while taking into account uncertainties involved in the life-cycle cost.. 67 

The remainder of the paper is organized as follows. First a set of decision models are 68 

introduced, and discussions are provided regarding their features, strengths and weaknesses 69 

from a practical point of view. Then practical examples of applying these decision models to 70 

the seismic design of a high-rise commercial building and wind hazard mitigation for a low-71 

rise residential building are presented. Parametric studies and comparisons of the decisions 72 

based on these decision models are also included.  73 

2. Decision Models 74 

2.1. Risk Measure 75 

A risk measure maps the random variable of interest (e.g. life-cycle cost, benefit-to-cost 76 

ratio) obtained from the probabilistic risk assessment (PRA) to real numbers, which explicitly 77 
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quantifies the risk and provides the basis for choosing between different decision alternatives. 78 

Two most common risk measures in financial applications are the Value-at-Risk (VaR) and 79 

Conditional-Value-at-Risk (CVaR). For insurance industry and natural disaster management, 80 

VaR has also been adopted to represent the probable maximum loss (e.g. [17-18]). Consider 81 

that the probability distribution of life-cycle cost (LCC) is available from the PRA, then for a 82 

certain probability level α (0 < α < 1), VaRα (LCC) is  83 

VaR ( ) ( )LCC Q LCC =  (1) 84 

where Qα (LCC) is the α-quantile of the random variable LCC. CVaRα (LCC) can be viewed as 85 

an average of quantiles or VaRs for probability levels between α and 1, which is given by [19] 86 

11
CVaR ( ) VaR ( )

1
LCC LCC d 





=

−   (2) 87 

The VaR and CVaR above a certain probability level (e.g. α = 90%) can be used to 88 

characterize the upper tail of the LCC distribution, which is of primary interest for low-89 

probability, high-consequence hazards, and hence account for risk averseness in decision-90 

making. The higher the considered probability level α, the higher the degree of risk aversion. 91 

The CVaR accounts for possible catastrophic losses in the upper tail exceeding the 92 

corresponding VaR [19], and hence may be more favoured by risk-averse decision makers in a 93 

decision context of extreme environmental events. CVaR also conforms some attractive 94 

theoretical axioms such as coherency and regularity [19]. However, compared to VaR, CVaR 95 

may be overly sensitive to outliers with extremely small probabilities in the upper tail [11]. In 96 

practice, it is often hard to tell if these outliers could really happen in reality or they are just 97 

caused by estimation errors of the risk assessment as no PRA models are prefect. Hence, CVaR 98 

may occasionally lead to costly decisions.  99 

The Range-Value-at-Risk (RVaR) [11-12] offers a compromise between VaR and CVaR, 100 

which is less sensitive to extreme outliers than CVaR while can better capture the critical tail 101 



5 

behaviour compared to VaR. At probability levels of α and β (0 < α ≤ β ≤ 1), RVaRα,β (LCC) is 102 

given by 103 

,

1
VaR ( )             < 

RVaR ( )

VaR ( )                               =  

LCC d

LCC

LCC






 



  
 

 


 −

= 




 (3) 104 

The RVaR is closely connected to VaR and CVaR. When α = β, RVaRα,β (LCC) is equivalent 105 

to VaRα (LCC). When 0 < α < β = 1, RVaRα,β (LCC) equals to CVaRα (LCC). Fig. 1 illustrates 106 

VaRα (LCC), CVaRα (LCC) and RVaRα,β (LCC) given the cumulative distribution function 107 

(CDF) of the life-cycle cost. It is indicated that, at a selected probability level, VaR cannot cope 108 

with extreme values of LCCs exceeding VaRα (LCC). The CVaRα (LCC) could be too sensitive 109 

to outliers with extremely small probability in the upper tail of life-cycle cost distribution. The 110 

RVaR serves as a risk measure that lies between VaR and CVaR.  111 

The risk measures introduced here can also be used in conjunction with the minimum 112 

expected life-cycle cost criterion (MELC) by providing constraints on the maximum tolerable 113 

life-cycle cost. In other words, a decision alternative with lower expected life-cycle cost while 114 

satisfying the constraints specified by VaR, CVaR and/or RVaR would be preferred in the 115 

decision-making. The MELC leads to cost-efficient decisions while the constraints reflect the 116 

decision maker’s tolerance of extreme losses and costs.  117 

2.2. Utility theory  118 

The utility theory (UT) is widely employed to explicitly factor risk preferences into the 119 

decision process (e.g. [20-21]), where utility functions are used to subjectively weigh possible 120 

consequences. In other words, utility measures the desirability of consequences. The UT 121 

provides a normative model that prescribes rational decisions by maximizing the expected 122 

utility associated with different risk preferences. For a random variable x of the consequence 123 

containing n outcomes, x1, x2, … , xn, the expected utility (EU) of x is given by  124 
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1

EU( ) ( )
n

i i

i

x p u x
=

=  (4) 125 

where u(x) is the utility function, and pi is the probability of xi. Note that ∑ 𝑝𝑖
𝑛
𝑖=1  = 1. The utility 126 

functions are used to reflect decision makers’ risk preferences. When a linear utility function 127 

is adopted to represent the risk-neutral attitude, the decisions yielded by UT are equivalent to 128 

those dictated by MELC. Convex and concave nonlinear utility functions are used to 129 

characterize risk-seeking and risk-averse attitudes, respectively. Generally speaking, the more 130 

nonlinearity the utility function, the higher the degree of risk proneness or risk aversion. 131 

Consider a power utility function u(x) = −(−x)l where x = −LCC is a negative value to frame 132 

the life-cycle cost as a loss, and to ensure u(x) is a monotonic and increasing function. In other 133 

words, a lower life-cycle cost with a higher utility is preferred. The scaled shape of u(x) with 134 

different l values is plotted in Fig. 2, where l = 1, l < 1 and l > 1 stand for risk-neutral, risk-135 

seeking and risk-averse attitudes, respectively.  136 

In practice, the elicitation of a widely accepted utility function is often not an easy task, 137 

which may hinder the application of UT. For example, decision makers often have difficulties 138 

in expressing their risk preferences quantitively via utility functions. It is also common that 139 

multiple decision makers with different risk preferences cannot reach an agreement, which 140 

could happen even when all decision makers are risk-averse but with varying degrees of risk-141 

averseness.  142 

2.3. Stochastic Dominance and Almost Stochastic Dominance 143 

The stochastic dominance (SD) [14-15] provides an alternative approach for decision-144 

making in civil engineering applications, for example, the selection of design levels for 145 

buildings and pipelines [2][22]. The SD conforms to the principle of maximum expected utility, 146 

and ranks two decision alternatives based on their distributional information without the need 147 

to specify any utility functions. In the context of this study, suppose F and G are two design 148 
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candidates, or two mitigation/retrofit measures. Let F(x) and G(x) denote the cumulative 149 

distribution function (CDF) of x where x = −LCC is a random variable associated with the life-150 

cycle cost of a design or mitigation/retrofit measure. Then for any decision maker with a non-151 

decreasing utility function u(x) (i.e. uꞌ(x) ≥ 0), F dominates G by the first-degree stochastic 152 

dominance (FSD) if and only if F(x) ≤ G(x) for all values of x with a strong inequality for at 153 

least one value of x [23]. If F dominates G by FSD, F is always preferred to G, and the expected 154 

utility associated with F is always no smaller than that of G regardless of the risk preferences 155 

of decision makers (i.e. the implicit utility function of x can be linear, concave or convex). In 156 

other words, FSD provides a way to rank two decision alternatives for all decision makers who 157 

are expected utility maximizers without knowing their exact risk preferences and utility 158 

functions. Fig. 3a illustrates the CDFs of F and G when F dominates G by FSD. There are other 159 

higher degree SD rules that are narrowly applicable to either risk-averse or risk-seeking 160 

decision makers. These higher order SD rules are not included in this paper. See Levy [23] for 161 

details. 162 

In practice, the SD often fails to fully rank all decision alternatives due to its rigorous rules 163 

that are frequently violated by some ‘pathological’ preferences [23], for example, extremely 164 

risk-averse or risk-seeking. Thus, SD is often used in an initial screen to exclude a small number 165 

of inefficient or suboptimal alternatives. For example, the FSD adopted by Goda & Hong [2] 166 

and Zhou & Nessim [22] failed to rank any design candidates, and only a few inferior designs 167 

were screened out by assuming risk aversion when higher degree SD rules were adopted. The 168 

almost stochastic dominance (ASD) is an extension of SD that provides a relaxation of SD’s 169 

strict conditions [16][23]. Compared to SD, ASD has an improved capability to rank decision 170 

alternatives to satisfy most decision makers who are expected utility maximizers [23].  171 

The almost first-degree stochastic dominance (AFSD) allows a relatively small portion of x 172 

at which the condition of FSD does not hold, i.e. F(x) > G(x). Define S1 is a subset of x that 173 
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contains x values where F(x) > G(x). For 0 ≤ ε < 0.5, F dominants G by AFSD for all values of 174 

x if and only if [23] 175 

1

[ ( ) ( )] | ( ) ( ) |
S

F x G x dx G x F x dx−  −   (5) 176 

Fig. 3b illustrates the CDFs of F and G when F dominates G by AFSD. The ε value is 177 

calculated as the violation area enclosed between F(x) and G(x) when F(x) > G(x) (i.e. 178 

∫ [𝐹(𝑥) − 𝐺(𝑥)]𝑑𝑥
𝑆1

 ) divided by the total area enclosed under the two CDFs (i.e. 179 

∫ |𝐺(𝑥) − 𝐹(𝑥)|𝑑𝑥). Note that if there is no violation area (ε = 0), AFSD coincides with FSD. 180 

If F dominants G by AFSD and ε is sufficiently small, then F is preferred to G, and the expected 181 

utility associated with F is no smaller than that of G except for some ‘pathological’ defined 182 

utility functions [23], for example, overly convex or concave (i.e. extremely risk-averse or risk-183 

seeking). In other words, the rank of alternatives dictated by AFSD would satisfy most 184 

expected utility maximizers with non-decreasing utility functions. The ε value in AFSD has a 185 

broad range, i.e. 0 ≤ ε < 0.5, and therefore caution is needed when selecting the ε value in 186 

practice. The smaller the ε value, the stronger the dominance. It may need subjective judgement 187 

to determine the largest allowed violation area or ε value which may vary depending on the 188 

decision problem. The discretion of ε value in practical civil engineering decision problems is 189 

discussed in Section 3. Higher degree ASD rules are not included in this paper. Refer to Leshno 190 

& Levy [16] and Tzeng et al. [24] for more details. 191 

2.4. Comparison of decision models 192 

Table 1 presents a summary for different decision models in terms of their strengths and 193 

weaknesses in practical decision support applications. The application of these decision models 194 

are illustrated by two practical decision problems described in the next section.  195 
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3. Illustrative Examples 196 

3.1. Seismic Design 197 

In this example, the decision analysis was conducted to choose design spectral response 198 

acceleration and the corresponding return period for a high-rise commercial building in 199 

Vancouver, Canada. The building is described in detail by Goda & Hong [2]. It is a nine-storey 200 

office building with a floor area of 9406 m2, which is classified as a moderately ductile 201 

moment-resisting steel frame.  202 

The probabilistic risk assessment (PRA) and life-cycle cost analysis methods by Goda & 203 

Hong [2] were adopted considering a building service period of 50 years and a discount rate of 204 

5%. The simulation-based PRA and life-cycle cost analysis include seismic hazard analyses, 205 

structural damage assessment and cost estimation. The seismic hazard analyses consider twelve 206 

seismic source zones including the Cascadia subduction zone that influence Vancouver as 207 

described in Adams & Halchuk [25]. The occurrences of seismic events from these source 208 

zones are modelled by stochastic processes (i.e. a renewal process for the Cascadia subduction 209 

zone and Poisson processes for the other source zones). The seismic magnitudes and ground 210 

motion parameters are obtained by relevant magnitude-recurrence relations and attenuation 211 

relations. The structural damage assessment simplifies the building as an elastoplastic single-212 

degree-of-freedom system (natural vibration period is 1.0s and damping ratio is 5%) to obtain 213 

the probability of damage states related to the drift ratio and damage factor. The life-cycle cost 214 

includes the initial construction cost of a design candidate (C0), and the damage and repair costs 215 

(CDR) which cover the repair/reconstruction cost of the structural and non-structural 216 

components, loss of contents, business interruption and relocation expenses. The cost 217 

estimation empirically relates the initial construction costs to design levels, and the damage 218 

and repair costs are a function of the damage states (see [2] for details about empirical equations 219 

used for cost estimation). Note that injury and fatality costs can be regarded as an externality 220 



10 

and it is assumed that the decision maker is only interested in the proposition of design, 221 

construction and ownership of the building [2][26]. Therefore, injury and fatality costs are not 222 

included in the life-cycle cost.  223 

Table 2 lists nine seismic design candidates considered in the decision process including 224 

their design spectral response acceleration (SAEf), design return period (TR) and initial 225 

construction cost (C0). The design candidates are from S1 to S9 with an increasing SAEf, and 226 

thus increasing C0 and seismic safety levels. Note that all the costs are presented in 2020 227 

Canadian dollars (CAD). A total of 50,000 Monte Carlo simulations were conducted, and the 228 

random samples of life-cycle costs (LCC) corresponding to different design levels were then 229 

obtained for subsequent decision analyses. The major uncertainties involved in the life-cycle 230 

cost assessment are from seismic demands and the resulting building damage and losses. The 231 

expected damage and repair cost E[CDR], the expected life-cycle cost E[LCC] and standard 232 

deviation of life-cycle cost σLCC derived from the simulation are also listed in Table 2. It 233 

suggests that the initial construction cost increases with seismic design levels, whereas the 234 

expected damage and repair cost as well as the standard deviation of life-cycle cost decrease 235 

with seismic design levels. This is expected as an increased initial expenditure in design and 236 

construction reduces potential seismic damage and the uncertainty associated with life-cycle 237 

costs. Based on the minimum expected life-cycle cost criterion (MELC), S6 (TR = 3,000 years 238 

and SAEf = 0.526g, where g is the gravitational acceleration) with the least expected life-cycle 239 

cost is the preferred design candidate among S1-S9.  240 

For buildings exposed to seismic hazards, risk-averse decision makers may emphasize on 241 

the extreme life-cycle costs. The three risk measures introduced in Section 2.1 can be used to 242 

characterize the upper tail of life-cycle costs and provide decision support for risk-averse 243 

decision makers. Fig. 4 shows the Value-at-Risk (VaR), Conditional-Value-at-Risk (CVaR) and 244 

Range-Value-at-Risk (RVaR) of the life-cycle costs associated with different design candidates 245 
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at five commonly used probability levels, i.e. 0.50 (median), 0.75, 0.90, 0.95 and 0.99. It 246 

suggests that the decision maker prefers a stronger design (i.e. larger TR and SAEf) as a higher 247 

probability level is specified. At the same probability level of α, VaRα (LCC) ≤ RVaRα, β (LCC) 248 

≤ CVaRα (LCC) for a given design candidate, and the CVaR yields the most conservative 249 

design selection as it fully accounts for the extreme tail risks. For example, at probability levels 250 

of 0.90, 0.95 and 0.99, the strongest design S9 is dictated by CVaR as shown in Fig. 4b. S9 is 251 

also preferred at probability levels of 0.95 and 0.99 based on VaR, whereas the second strongest 252 

design S8 would be preferred at the probability level of 0.90 as shown in Fig. 4a. S6 is preferred 253 

for CVaR0.50, which is same with the decision based on MELC. A relatively weaker design S3 254 

is dictated by VaR0.50. As suggested by Fig. 4c, the RVaR may provide a middle ground 255 

between VaR and CVaR at a given probability level. For example, the seismic design selected 256 

based on RVaR0.75, 0.90 is S6, while S5 and S7 are dictated by VaR0.75 and CVaR0.75, 257 

respectively.  258 

As mentioned in Section 2.1, these risk measures can also be used as constraints in 259 

conjunction with the MELC to achieve a balance between economic efficiency and risk 260 

aversion. Such constraints reflect decision makers’ tolerance of extreme tail risks. For example, 261 

the decision criterion may be set as: the best design among S1-S9 is the one with the minimum 262 

expected life-cycle cost while also satisfying the condition that VaR0.90 (CDR) ≤ C0/2. In other 263 

words, the VaR of damage and repair cost (CDR = LCC – C0) at a probability level of 0.90 is no 264 

greater than 50% of the initial design and construction cost C0. Under this constraint, S6 with 265 

the minimum expected life-cycle cost among S1-S9 is still the preferred design candidate. If a 266 

more risk-averse constraint CVaR0.90 (CDR) ≤ C0/2 is used, then S7 with the second smallest 267 

expected life-cycle cost would be preferred as S6 no longer satisfies the constraint.  268 

The decision analysis was further conducted by comparing the expected utility associated 269 

with the nine design candidates considering a variety of risk preferences. The power utility 270 
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function described in Section 2.2 was used, i.e. u(x) = −(−x)l, where x = −LCC to ensure u(x) 271 

is a monotonic and increasing function. The expected utilities were then evaluated for the l 272 

value ranging from 0.1 to 5.0 with an increment of 0.1 to represent a wide variety of risk 273 

preferences. For the risk-neural attitude (i.e. l = 1.0), the rank of design candidates based on 274 

the expected utility is equivalent to those based on the expected life-cycle cost (i.e. a design 275 

with a higher expected utility or lower life-cycle cost is preferred). Table 3 lists the preferred 276 

design among S1-S9 with different l values. A stronger design would be generally preferred as 277 

l increases. Fig. 5 shows the comparison of expected utility for l = 0.1, 1.7, 3.0, 4.0 and 5.0. 278 

The numerical value for utility in the vertical axis is not shown in the figure because only the 279 

rank of expected utility is of concern. It suggests that only for risk-seeking decision-makers 280 

with an extremely convex utility function (i.e. l = 0.1), a weaker design (i.e. S5) than that 281 

dictated by the MELC (i.e. S6) would be preferred. S6 is the preferred design for most risk-282 

seeking decision-makers (0.2 ≤ l < 1.0), mildly risk-averse decision-makers ((1.0 < l ≤ 1.7) and 283 

risk-neutral decision-makers (l = 1.0). For decision-makers with higher levels of risk aversion 284 

(1.8 ≤ l ≤ 5.0), a stronger design S7, S8 or S9 would be preferred. Recall the preferred design 285 

S7, S8 or S9 dictated by VaR and CVaR at relatively high probability levels (i.e. 0.90 or higher 286 

for VaR and 0.75 or higher for CVaR), which is consistent with that dictated by highly concave 287 

utility functions, and thus represents a high level of risk aversion.  288 

Without specifying utility functions, the first-degree stochastic dominance (FSD) was used 289 

to select among the design candidates. Fig. 6 depicts the cumulative distribution functions 290 

(CDF) of x = − LCC corresponding to the nine design candidates S1-S9. The CDF curves 291 

intersect with each other, and therefore no FSD relation is found for any designs. Besides a 292 

visual check, the FSD relation between any two design candidates can also be determined by 293 

the algorithm presented in Appendix A. The almost first-degree stochastic dominance (AFSD) 294 

with relaxed conditions was then employed. The ε value characterizing the area of violation 295 



13 

can be assessed by the algorithm given in Appendix A. Table 4 shows if a design candidate in 296 

the first column dominates those in the first row by AFSD, and the corresponding ε value if 297 

AFSD relation exists. As shown in Table 4, S6 dominates the other design candidates by AFSD. 298 

However, in practice, S6 may not be viewed as the best design among S1-S9 that satisfies most 299 

decision makers because the ε values for some AFSD relations are very close to the maximum 300 

allowed value 0.5, which indicates a weak dominance relation. For example, ε = 0.48 for the 301 

AFSD relation between S6 and S7, and ε = 0.45 for the AFSD relation between S6 and S8. This 302 

is consistent with the utility analysis that S6 is not preferred by most decision makers that a 303 

considerable portion of risk-averse decision makers would choose S7 or S8. If the maximum 304 

allowed ε value is subjectively set as 0.30 in practice, then one design candidate would be 305 

chosen over the other only when the former dominates the later by AFSD with ε no greater 306 

than 0.30. In this case, S6 and S7 would be chosen over S1-S4, and S1 is screened out as most 307 

designs (S3-S9) would be chosen over S1. In this example, the AFSD fails to practically 308 

determine the best design option among S5-S9 but only screens out some inferior design 309 

candidates (S1-S4). If the selected threshold for ε is reduced, then less inferior design 310 

candidates will be screened out. On the other hand, increase of threshold for ε can better rank 311 

design candidates. However, caution should be exercised when increasing the threshold for ε 312 

as the resulting decision rank may not be preferred by a majority of decision makers who are 313 

utility maximizers.  314 

3.2. Wind Hazard Mitigation 315 

The second example presents a decision problem of wind hazard mitigation for a low-rise 316 

residential building in Brisbane, Australia. The building is a one-storey contemporary house 317 

with a complex hip-end roof. It has timber roof and wall frames. The exterior of wall is brick 318 

veneer. The roof cladding is corrugated metal sheeting attached to metal top-hat battens. This 319 

building is designed and constructed to a wind classification of N2 (a flat site with suburban 320 
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terrain and partial shielding) according to AS 4055 [27] and AS 1684.2 [28]. The replacement 321 

values of the building and contents are estimated to be $375,000 and $75,000 Australian dollars 322 

(AUD) according to Australian housing cost guides ([29]), respectively. Refer to Qin [30] for 323 

more details about this low-rise residential building. 324 

Brisbane is primarily under the threat of non-cyclonic windstorms such as severe 325 

thunderstorms and east coast lows. The economic losses for the contemporary house mainly 326 

arise from direct wind damage to the building envelope (e.g. roof cladding and windows) and 327 

subsequent rainwater intrusion through the damaged building envelope. Three mitigation 328 

measures are considered to reduce wind damage risks including (i) improvement of roof 329 

resistance by strengthening roof connections (RF), (ii) installation of window shutters (WS), 330 

and (iii) improvement of the design strength of windows (WR). See Qin & Stewart [6] for 331 

details of these mitigation measures and their influences on structural performance. Apart from 332 

these three mitigation measures, another decision alternative is to keep ‘business as usual’ with 333 

no mitigation (BAU). The life-cycle cost (LCC) includes a one-off cost for adopting a 334 

mitigation measure, and the damage, repair and replacement cost (inclusive of relocation and 335 

additional living cost) caused by severe windstorms. The base construction cost of the building 336 

is the same for the four decision alternatives and hence is excluded from the life-cycle cost. 337 

The mitigation measures applied at the initial design and construction stage are RF and WR, 338 

and the window shutters (WS) are also assumed to be installed at the beginning of the building 339 

service period. The mitigation cost additional to the base construction cost is 0%, 0.56%, 1.60% 340 

and 0.32% of the building replacement value, respectively, for BAU, RF, WS and WR. The 341 

damage, repair and replacement costs associated with the four decision alternatives are 342 

obtained from the probabilistic risk assessment (PRA) by Qin & Stewart [31] and Qin [30] for 343 

a building service period of 50 years and a discount rate of 4%. This simulation-based risk 344 

assessment consists of four major components, i.e. i) hazard modelling for extreme wind and 345 
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associated rainfall, ii) reliability-based wind damage assessment for roof and windows, iii) 346 

evaluation of rainwater intrusion, and iv) loss estimation. See details in Qin & Stewart [31] and 347 

Qin [30].  348 

A total of 100,000 Monte Carlo simulations were conducted, and the random samples 349 

of life-cycle costs corresponding to the four decision alternatives were then obtained for 350 

subsequent decision analyses. The major uncertainties involved in the life-cycle cost 351 

assessment are from wind hazards, building damage and loss modelling. Note that all the costs 352 

are presented in 2020 Australian dollars. The expected life-cycle costs for the 50-year building 353 

service period are $8,609, $10,218, $6,285 and $4,992 AUD for BAU, RF, WS and WR, 354 

respectively. Based on the minimum expected life-cycle cost criterion (MELC), implementing 355 

mitigation measures WR and WS would be preferred to ‘do nothing’ (BAU), and WR is the 356 

most cost-effective mitigation measure. Fig. 7 plots the histograms of the random samples of 357 

life-cycle costs corresponding to the four decision alternatives. It is indicated that mitigation 358 

measures WR and WS considerably reduce the extreme tail risks of the life-cycle cost 359 

distribution. Although WS is less cost-effective than WR according to MELC, it provides a 360 

significant reduction of uncertainty and extreme losses, which may be favoured by many risk-361 

averse decision-makers. RF is not a cost-effective mitigation measure. 362 

Wind mitigation decisions based on risk measures are then examined. The Value-at-Risk 363 

(VaR), Conditional-Value-at-Risk (CVaR) and Range-Value-at-Risk (RVaR) of the life-cycle 364 

costs associated with the four decision alternatives at five commonly used probability levels, 365 

i.e. 0.50 (median), 0.75, 0.90, 0.95 and 0.99 are compared in Fig. 8. RF is still not a viable 366 

mitigation measure based on all considered risk measures. WS would be preferred based on 367 

CVaR for all the five probability levels. This is expected as WS significantly reduces the 368 

extreme tail risks, though the expected life-cycle cost with WS is higher than that 369 

corresponding to WR. For mitigation decisions based on VaR, WR would be preferred at 370 
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probability levels of 0.50 and 0.75, which is the same with the decision dictated by MELC and 371 

less conservative than that dictated by CVaR. The decision based on RVaRα,β is getting closer 372 

to that dictated by CVaRα as β increases. For example, at a probability level α = 0.50, the 373 

preferred mitigation decision for RVaR0.50, 0.75 is WR, which is the same with that for VaR0.50, 374 

while the mitigation decision dictated by RVaR0.50, 0.90 is WS, same with that dictated by 375 

CVaR0.50.  376 

The decision analysis was further conducted by comparing the expected utility associated 377 

with the four decision alternatives considering a variety of risk preferences. Same as the seismic 378 

design problem, the power utility function was used, i.e. u(x) = −(−x)l, where x = −LCC. The 379 

expected utilities were then evaluated for the l value ranging from 0.1 to 5.0 with an increment 380 

of 0.1. It suggests that WS is preferred to BAU for most decision-makers except those with an 381 

extremely convex utility function (i.e. l = 0.1 for risk-seeking). WR is preferred to BAU for all 382 

the utility functions considered (i.e. 0.1 ≤ l ≤ 5.0), whereas RF is not preferred to BAU. WR is 383 

preferred to WS for all considered risk-seeking, risk-neutral and a portion of risk-averse 384 

decision-makers (i.e. 1.0 < l ≤ 1.5), which is consistent with the decision dictated by VaR0.50, 385 

VaR0.75 or RVaR0.50, 0.75. WS is preferred to WR for a considerable portion of risk-averse 386 

decision-makers (i.e. 1.6 ≤ l ≤ 5.0), which is the same decision with that based on CVaR at all 387 

the five probability levels as shown in Fig. 8b. This again shows CVaR is a more conservative 388 

risk measure than VaR and RVaR. The rank of the four decision alternatives with l = 0.1, 1.0, 389 

1.6 and 4.0 is summarized in Table 5 to show the above findings.  390 

The first-degree stochastic dominance (FSD) was then used for the mitigation decision-391 

making. Using the FSD algorithm given in Appendix A, BAU, WS and WR are all found to 392 

dominate RF by FSD. It means that, for all decision makers with a non-decreasing utility 393 

function, RF is not preferred regardless of the decision makers’ risk preferences. This is 394 

consistent with the decision based on the three risk measures and the utility analysis which 395 
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concludes RF is not a viable mitigation measure. BAU, WS and WR cannot be determined by 396 

FSD. The almost first-degree stochastic dominance (AFSD) was further adopted to identify the 397 

mitigation measure that would be preferred by most decision makers. Given the random 398 

samples of x (x = − LCC) associated with the mitigation options, the ε value for one dominating 399 

the other by AFSD can be calculated by Eq. (6) in Appendix A. Table 6 shows if a mitigation 400 

measure in the first column dominates those in the first row by AFSD, and the corresponding 401 

ε value if AFSD relation exists. Table 6 suggests that WR and WS dominate BAU by AFSD 402 

with ε = 0.02 and 0.21, respectively. These ε values are deemed to be small enough for most 403 

decision-makers to choose WR and WS over BAU. This is consistent with the decision analysis 404 

based on expected utility that WR is preferred to BAU for a wide range of risk preferences, and 405 

WS is preferred to BAU by most decision-makers except for those who are extremely risk-406 

seeking. For these two viable mitigation measures, WR dominates WS by AFSD with ε = 0.36. 407 

This ε value may not be small enough to choose WR over WS for most decision-makers, which 408 

is consistent with the utility analysis that WS would be preferred to WR by a considerable 409 

portion of risk-averse decision-makers. By specifying a threshold for ε value (i.e. the maximum 410 

allowed ε value), the AFSD can be used to rank the mitigation options for most decision makers 411 

if the corresponding ε value does not exceed the threshold. This threshold value is somewhat 412 

determined by subjective judgement in practice and can vary depending on the decision 413 

problem of interest. For this wind mitigation problem, a threshold value around 0.25 might be 414 

appropriate. However, for the seismic design problem, it fails to find the best design candidate 415 

even with a larger threshold value (e.g. 0.30). 416 

4. Conclusions  417 

This paper presents the application of a set of decision models for buildings exposed to 418 

environmental hazards beyond the minimum expected life-cycle cost criterion (MELC), which 419 

can cope with large uncertainty and different risk preferences involved in decision problems 420 
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for low-probability, high-consequence natural hazards. The decision models in this paper 421 

include risk measures such as Value-at-Risk (VaR), Conditional-Value-at-Risk (CVaR) and 422 

Range-Value-at-Risk (RVaR), the utility theory (UT), the stochastic dominance (SD) and its 423 

extension almost stochastic dominance (ASD), whereby the RVaR and ASD are newly 424 

introduced to a decision context for buildings exposed to environmental hazards. The features 425 

of these decision models were discussed from a practical point. The risk measures well capture 426 

extreme tail risks that are often of concern to risk-averse decision makers. The UT provides a 427 

full rank of decision alternatives for decision-makers with all possible risk preferences (risk 428 

aversion, risk proneness, risk neutral) that are encoded in utility functions. The SD and ASD 429 

have the advantage that a specific utility function is not required for decision-making as it is 430 

often difficult to elicit a widely accepted utility function in practice. 431 

With the consideration of decision makers’ possible risk preferences and tolerances, the 432 

selection and application of these decision models were illustrated by two practical engineering 433 

decision examples, i.e. seismic design of a high-rise commercial building and wind hazard 434 

mitigation for a low-rise residential building. It was found that, the decision based CVaR tends 435 

to yield a stronger seismic design or a more effective wind mitigation measure (e.g. installing 436 

window shutters) with high initial expenditures. CVaR is the most conservative risk measure 437 

that may suit decision makers with relatively high levels of risk averseness. The RVaR may 438 

give a decision in the middle ground between VaR and CVaR. The risk measures can also be 439 

used in conjunction with the MELC as a constraint for decision makers’ risk tolerances. The 440 

seismic design example suggests that a higher design level may be selected when using a CVaR 441 

constraint rather than a VaR constraint. The utility analyses were conducted for a wide range 442 

of nonlinear utility functions. For most concave utility functions representing risk averseness, 443 

the seismic design and wind mitigation decisions yielded by UT are comparable to those based 444 

on risk measures at many commonly used probability levels. The first-degree stochastic 445 
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dominance (FSD) and its extension the first-degree almost stochastic dominance (AFSD) with 446 

an improved capacity to rank decision alternatives were also adopted in these two examples. 447 

They failed to find the best seismic design candidate, and only a few inferior designs were 448 

screened out. For the wind mitigation problem, AFSD successfully selected mitigation 449 

measures that are worth adopting and satisfy most decision makers who are expected utility 450 

maximizers. The wind mitigation decisions by AFSD are consistent with those by the utility 451 

analysis. 452 

The application and selection of decision models to adequately address the uncertainty 453 

involved in the decision problem as well as various risk preferences and tolerances can be 454 

challenging, and on a case-by-case basis depending on a particular decision context, whereby 455 

expert judgement is often required. This study attempts to make the decision-making process 456 

as objective as possible by applying quantitative decision models, however, a certain level of 457 

subjectivity is unavoidable in practical decision-making problems because decision makers 458 

will have different preferences and tendencies. It is anticipated that the two practical decision 459 

problems given in this paper shed some light on the application of decision models for buildings 460 

exposed to environmental hazards. The application of these decision models is expected to 461 

better support decision-making by providing decision options that meet different needs and risk 462 

appetites of decision makers while taking into account uncertainties involved in the life-cycle 463 

cost. The decision models introduced in this paper may also be extended to other civil structures 464 

and infrastructure systems subjected to low-probability, high-consequence events. 465 

Appendix A: Algorithms for FSD and AFSD 466 

Suppose F and G are two design candidates, or two mitigation/retrofit measures. x and y, 467 

each containing n random samples, are the decision variables (e.g. – LCC) corresponding to F 468 

and G, respectively. Arrange the samples of x and y in a non-descending order (i.e. x1 ≤ x2 ≤ … 469 

≤ xn; y1 ≤ y2 ≤ … ≤ yn), and assign a probability of 1/n to each sample.  470 
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The algorithm for FSD [23]: F dominates G by FSD if and only if xi ≥ yi for all i values (i = 471 

1, 2, …, n), and xi > yi for at least one i value.  472 

The algorithm for AFSD [31]: The ε value characterizing the area of violation is calculated 473 

as  474 

:

1

( )

| |

i i

i i

i y x

n

i i

i

y x

y x




=

−

=

−




 (A1) 475 

If ε < 0.5, then F dominates G by AFSD. 476 
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Tables  545 

Table 1. Comparison of decision models in practical application.  546 

Decision model Description Strength Weakness 

Risk 

Measure 

VaR Quantile value of the decision 

variable (e.g. life-cycle cost) 
Easy to use 

May not well capture 

extreme tail risks 

CVaR 
Average of quantiles beyond a 

certain probability level 

Better capture extreme tail 

risks 

May be too sensitive to 

outliners in the tail of 

probability distribution 

RVaR 
Average of quantiles between 

two probability levels 

Offer combined features of 

VaR and CVaR 

More effort needed to 

determine the two 

probability levels 

UT 
Decision-making based on 

maximum expected utility. 

Explicitly factor risk 

preferences into the utility 

function that measures the 

desirability of consequences 

Elicitation of a widely 

accepted utility function 

is often not an easy task 

SD 

Rank two decision alternatives 

based on their distributional 

information without knowing 

risk attitudes; conform the 

principle of maximum 

expected utility. 

No need to subjectively 

specify utility functions 

Often fail to rank 

decision alternatives due 

to its rigorous rules that 

are frequently violated by 

some ‘pathological’ 

preferences 

ASD 

Select decision alternatives 

accepted by most decision 

makers; extension of SD. 

No need to subjectively 

specify utility functions; a 

relaxation of SD’s strict 

conditions; allow some 

extreme risk preferences 

as exemptions 

May still not fully rank 

decision alternatives in 

practice 

 547 

 548 

 549 

 550 

 551 

 552 
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Table 2. Seismic design levels and statistical cost information. 553 

design 

candidate 

TR 

(year) 

SAEf 

(g) 

cost statistics (million CAD) 

C0 E[CDR] E[LCC] σLCC 

S1 250 0.178 19.5 9.3 28.8 12.7 

S2 500 0.252 19.8 5.4 25.2 9.5 

S3 750 0.303 20.1 3.9 24.0 8.2 

S4 1000 0.343 20.3 3.2 23.5 7.4 

S5 1500 0.405 20.6 2.4 23.0 6.1 

S6 3000 0.526 21.3 1.4 22.7 5.0 

S7 5000 0.635 21.8 1.1 22.9 4.0 

S8 7500 0.736 22.4 0.7 23.1 3.4 

S9 10000 0.829 22.9 0.6 23.5 3.1 

 554 

Table 3. Preferred seismic design dictated by expected utility. 555 

 l = 0.1 0.2 ≤ l ≤ 1.7 1.8 ≤ l ≤ 3.1 3.2 ≤ l ≤ 4.6 4.7 ≤ l ≤ 5.0 

preferred design 

candidate 
S5 S6 S7 S8 S9 

 556 

 557 

Table 4. AFSD relations for the nine design candidates.  558 

design 

candidate 
S1 S2 S3 S4 S5 S6 S7 S8 S9 

S1 Na N N N N N N N N 

S2 ε = 0.33 N N N N N N N N 

S3 ε = 0.26 ε = 0.42 N N N N N N N 

S4 ε = 0.22 ε = 0.37 ε = 0.40 N N N N N N 

S5 ε = 0.18 ε = 0.28 ε = 0.32 ε = 0.42 N N N N ε = 0.42 

S6 ε = 0.16 ε = 0.22 ε = 0.24 ε = 0.28 ε = 0.33 N ε = 0.48 ε = 0.45 ε = 0.31 

S7 ε = 0.16 ε = 0.25 ε = 0.27 ε = 0.30 ε = 0.39 N N ε = 0.42 ε = 0.34 

S8 ε = 0.17 ε = 0.27 ε = 0.30 ε = 0.35 ε = 0.42 N N N ε = 0.36 

S9 ε = 0.19 ε = 0.36 ε = 0.41 ε = 0.49 N N N N N 

Notes: a N means no AFSD relation.  559 

  560 
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Table 5. Rank of decision alternatives based on the expected utility. 561 

 
rank based on expected utility 

No.1 No.2 No.3 No.4 

l = 0.1 WR BAU WS RF 

l = 1.0 WR WS BAU RF 

l = 1.6 WS WR BAU RF 

l = 4.0 WS WR BAU RF 

 562 

Table 6. AFSD relations for the four mitigation decision alternatives.  563 

mitigation option BAU RF WS WR 

BAU N ε = 0 (FSD) N N 

RF N N N N 

WS ε = 0.22 ε = 0 (FSD) N N 

WR ε = 0.02 ε = 0 (FSD) ε = 0.36 N 

  564 
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Figures 565 

 566 

Fig. 1. Illustration of VaR, CVaR and RVaR using the CDF of life-cycle cost LCC. 567 
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 569 

Fig. 2. Scaled power utility functions to reflect different risk preferences. 570 
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 572 

Fig. 3. Graphical interpretation of stochastic dominance: (a) FSD; (b) AFSD. 573 
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 577 

Fig. 4. Comparison of risk measures of life-cycle costs associated with the nine design 578 

candidates at different probability levels: (a) VaR; (b) CVaR; (c) RVaR. 579 
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 585 

Fig. 5. Comparison of expected utility for the nine design candidates: (a) l = 0.1; (b) l = 1.7;  586 

(c) l = 3.0; (d) l = 4.0; (e) l = 5.0. 587 
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 589 

Fig. 6. CDFs of x = − LCC corresponding to design candidates S1-S9. 590 
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 592 

Fig. 7. Histograms of life-cycle costs corresponding to four wind mitigation decisions: (a) 593 

BAU; (b) RF; (c) WS; (d) WR. 594 
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 599 

Fig. 8. Comparison of risk measures of life-cycle costs associated with the four mitigation 600 

decisions at different probability levels: (a) VaR; (b) CVaR; (c) RVaR. 601 
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