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Abstract—Mission-critical Internet-of-Things (IoT) applica-
tions require communication interfaces that provide ultra-
reliability and low latency. Acquiring knowledge regarding the
number of active devices and their latency-reliability require-
ments becomes essential to optimize resource allocation in
heterogeneous networks. Due to the inherent heavy compu-
tation overheads, the conventional centralized decision-making
approaches result in large latency. The distributed computing
and device-level prediction of network parameters can play a
significant role in designing mission-critical IoT applications
operating in dynamic environments. This paper considers the
medium access control (MAC) layer of heterogeneous networks
employing a framed-ALOHA-based restricted transmission strat-
egy to enhance reliability. We present a statistical learning-
based device-level network exploration mechanism in which end-
devices use their transmission history to predict different network
parameters. The IoT devices share the learned parameters with
the base station (BS) to identify different groups presented in
the network. The simulation results show that the mean square
error (MSE) in predicting different network parameters can be
reduced by increasing the history window size. In this regard,
the optimal size of the history window under the given accuracy
constraints is also determined. We demonstrate that the proposed
device-level network load prediction mechanism is more robust
as compared to the BS-centered approach.

Index Terms—5G wireless networks; Mission-critical Internet
of Things; Industry 4.0; Statistical learning; Device-level learning

I. INTRODUCTION

M ISSION critical Internet-of-Things (IoT) applications
require ultra-reliable and low latency communication

(URLLC) interfaces to transmit delay-sensitive data. These
applications form an essential dimension of IoT 2.0 systems,
which includes intelligent transportation systems, unmanned
aerial vehicles (UAVs), public safety communication networks,
telesurgery, smart grids, and Industry 4.0, covering smart
factories [1]. Different mission-critical applications can have
different latency and reliability specifications; some of those
are highlighted [2]. From the vehicular communication per-
spective, different vehicle-to-everything (V2X) communica-
tion use-cases in which a vehicle communicates with other
vehicles (V2V), with wayside infrastructure (V2I) and with
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mobile users (V2P), can involve delay-sensitive data trans-
mission, which requires ultra-reliability [3], e.g., self-driving
vehicles. Similarly, intelligent transportation systems aided by
the vehicular ad-hoc networks (VANETs) aim to exchange
safety-critical messages under strict latency and reliability
requirements. It becomes very challenging to fulfill the desired
latency-reliability requirements for the V2X based systems in
heterogeneous networks.

Latency experienced by data packets in a wireless communi-
cation system is composed of deterministic and random com-
ponents. The information processing delays at the transmitter
and receiver determine the deterministic component, while the
delays involved in retransmissions and back-off phases define
the random part of the latency [4]. The reliability of a commu-
nication system can be affected by many factors, including the
time-varying nature of the wireless channel, different sources
of interference causing random changes in the signal to noise
ratio (SNR) at the receiver, type of a particular constellation
being used, error detection and correction codes, and nature
of the medium access control (MAC) mechanism [4]. In
the context of mission-critical IoT applications, reliability is
interpreted as the probability of meeting the prescribed latency
bound [5]. The real-time processing of a massive amount of
data generated by a large number of sensors in these networks
requires that the data be transferred from the source to the data
centers within the application-specific latency while ensuring
desired levels of reliability. It becomes challenging to meet
these requirements in heterogeneous networks where different
groups of IoT devices can have different latency-reliability
criteria and network parameters change dynamically.

For the optimal utilization of the available radio resources
in heterogeneous networks to meet the application-specific
latency-reliability criterion, it is essential to know the number
of active devices and their latency-reliability requirements. The
conventional centralized decision-making approaches in which
these tasks are performed at the base station (BS) suffer from
heavy computation overheads, which result in higher latency.
Therefore, the use of distributed computing and device-level
learning of network parameters can play a significant role in
designing mission-critical IoT applications by reducing the
computation burden at the BS. Fog computing is a distributed
computing paradigm that aims to address the bandwidth, la-
tency, and reliability constrained applications in heterogeneous
networks by providing cloud-like functionalities near the data
source [6-8]. The growing number of vehicles equipped with
intelligent IoT devices makes it necessary to design such
vehicular networks in which these vehicles can learn and adapt
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to the network dynamics by themselves without depending
upon the additional infrastructure. Hou et al. [9] proposed
a vehicular fog computing (VFC) design paradigm that uses
moving and parked vehicles as infrastructure for computation
and communication in vehicular networks. The VFC paradigm
can better utilize the available resources, enhance the overall
system performance, and support the latency-sensitive appli-
cations in vehicular networks.

The choice of a particular network access mechanism
plays a major role in meeting the application specific QoS
requirements. The grant-based MAC protocol in Long Term
Evolution (LTE) allows the IoT devices to transmit their data
over dedicated resources if they are successful in a contention-
based random access channel (RACH) phase. The RACH
phase introduces additional signaling overheads, and the grant-
based protocols are suitable for a smaller number of IoT
devices. In comparison, the data transmission in grant-free
network access mechanisms is performed over shared radio
resources in a random-access manner without requesting a
resource grant. The grant-free network access approach has
many benefits over the grant-based strategies to support the
uplink connectivity for massive IoT, generating sporadic traffic
[10], [11]. However, while achieving the massive connectivity
target, the latency and reliability can be compromised in the
grant-free MAC protocols. Several retransmission schemes
have been proposed to enhance the reliability in mission-
critical IoT applications [12-15]. Another important constraint
is the energy consumption in critical-IoT applications. Since
the IoT devices can have limited power storage capacity,
the design of energy-efficient grant-free MAC protocols is
indispensable [16].

While communicating over shared radio resources, the avail-
ability of knowledge regarding the number of active devices
plays a crucial role in optimizing radio resource allocation
and to control the congestion efficiently [17], [18]. However,
in the absence of any feedback, the BS lacks the knowledge
of the exact cardinality of collisions, i.e., the number of
users colliding per channel. In multichannel slotted ALOHA
(framed-ALOHA) based systems, the BS can estimate the
number of active devices in a frame by using the number of
idle channels [17], [19]. However, for heterogeneous networks
with dynamically varying parameters, tracking the number of
active devices at the BS gets complicated and less accurate
under a higher network load.

On the other hand, in order to address the stringent re-
quirements of URLLC for mission-critical IoT applications
in heterogeneous networks where network parameters change
dynamically, acquiring knowledge of probability distributions
associated with these parameters is equally essential [20]. In
this regard, statistical learning is a promising tool to learn
the network parameters probabilistically in a dynamic environ-
ment. Therefore, a statistical learning framework has been pro-
posed in [20] for the physical layer design of URLLC systems.
In this framework, the authors considered the limited channel
knowledge and model mismatch to design a transmitter that
can statistically learn and adapt the transmission rate, such
that the desired reliability constraint is met probabilistically.
This framework uses two necessary statistical measures for

URLLC systems named the average reliability (AR) and the
probably correct reliability (PCR). The AR criterion is helpful
in a dynamic environment, while the PCR approach is more
appropriate for relatively static environments.

The above discussion highlights the fact that supporting
mission-critical applications in dynamic heterogeneous net-
works with a large number of IoT devices is very challenging.
This fact motivates us to use the statistical learning paradigm
to design such mechanisms where IoT devices can assist the
BS in predicting different network parameters and the associ-
ated probability distributions. This paper considers the MAC
layer of the uplink communication interface in heterogeneous
networks. A large number of IoT devices communicate with
one BS over shared radio resources in a grant-free manner.
This uplink communication follows a framed-ALOHA-based
restricted transmission strategy. Following are the key contri-
butions and novelty of this paper:

• We propose a statistical learning-based device-level net-
work exploration mechanism at the MAC layer for delay-
sensitive IoT applications. The end-devices are enabled to
learn network parameters under a dynamic environment.

• The proposed mechanism uses the information available
at the devices in the history of their previous transmis-
sions and enables the devices to predict different network
parameters. Consequently, the end-devices can predict the
number of active devices, the probability of collision in
each frame, the average number of successful devices per
round, and the average behavior of random latency.

• For the optimal radio resource allocation, the statistical
knowledge of dynamic network parameters learned by the
end-devices is shared with the BS to identify different
IoT groups present in the network. Consequently, the
computation burden at the BS is reduced, which can
reduce the overall latency offered by the network.

• Using the mean square error (MSE) criterion, the optimal
size of the transmission history window is determined un-
der the given accuracy constraints in predicting different
network parameters.

• The probability of exception is used to measure the ro-
bustness of the proposed statistical learning-based device-
level network load prediction mechanism. Results show
that the proposed mechanism is more robust than the BS-
centered approach of [17] under the higher network load.

The rest of the paper is organized as follows: a summary of
the related literature and the critical analysis is presented in
Section II. The system model is explained in Section III, and
the network exploration process is presented in Section IV. The
performance analysis, simulation results, and the optimal size
of the history window are given in Section V. A comparison of
the proposed mechanism with the BS-centered approach is also
presented in Section V. The paper is concluded in Section VI
while highlighting some future research directions. Different
notations used in this paper are defined in Table. II. This work
is the first of its kind to the best of our knowledge, which uses
statistical learning at device-level for network exploration at
the MAC layer.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

II. RELATED WORKS

In this section, we review the related works from the
perspectives of retransmission mechanisms and the estimation
of the number of active devices, which are also interrelated.
In order to provide ultra-reliability in mission-critical IoT
applications, several retransmission mechanisms have been
proposed. Abreu et al. [21] proposed a scheme in which
URLLC users with similar traffic characteristics are grouped
by the BS following the block error rate (BLER) criterion.
Each group uses a pre-scheduled shared resource for single
retransmission if the initial transmission fails. The efficiency
of this scheme is primarily dependent upon the right grouping
of users at the BS. Abreu et al. [12] proposed a scheme
in which active devices perform T attempts such that the
first transmission is performed on dedicated channels, while
(T − 1) retransmissions are performed on shared channels,
and the receiver uses successive interference cancellation (SIC)
for decoding messages over shared resources. Galinina et
al. [14] presented a scheme in which an active device with
a certain transmission probability sends single or multiple
replicas over the shared channels in one slot. In this work,
an optimal control algorithm is presented that guarantees the
minimal channel access delay by controlling the probability
of transmission and the number of replicas. For both cases
of single and multiple transmissions, corresponding practical
implementations are also discussed. The probability of trans-
mission and the number of replicas is decided at the BS level.

While considering PHY-layer abstraction, the optimum
number of retransmissions depends upon the number of
transmitting devices (network load), available resources, and
nature of the MAC protocol being used. Most of the existing
techniques either assume perfect knowledge of the network
load or rely on the BS to estimate the number of transmitting
devices to update the resource allocation strategy.

Astudillo et al. [22] proposed a mechanism for LTE based
cellular IoT networks which enables the end-devices to es-
timate the number of active devices in a frame by using the
information regarding the number of detected preambles at the
BS in that frame. The end-devices can determine the number of
detected preambles by counting the number of random access
response (RAR) messages sent by the BS. This approach
performs well as long as the BS is capable of transmitting the
RAR messages against all the detected preambles. In order to
perform the estimation under incomplete information at the
device-level, which happens when the number of transmitting
devices is higher, Astudillo et al. [22] proposed to use the
value of Access Class Barring (ACB) probability. The ACB
probability is a function of the number of active devices and
number of channels, and it is broadcasted by the BS regularly.
On the other hand, the computation of ACB-probability at the
BS involves estimation of the number of active devices.

Oh et al. [17] proposed a mechanism to estimate the number
of active devices at the BS in a given frame by computing
the probability that a preamble remains idle in that frame.
The proposed mechanism works as long as the probability of
having an idle preamble is non-zero. However, for the higher

TABLE I
LIST OF NOTATIONS USED.

Notation Definition

Am,n Outcome of a transmission

αm,n Probability of collision in a frame

α̂n Prediction of αm,n,∀m

ε
(i)
r Reliability constraint of the ith-group

G No. of groups

H Transmissions history matrix for network exploration

K No. of orthogonal channels in each frame

Km,n No. of idle channels in the nth frame of the mth round

L
(i)
max Group specific maximum affordable latency

L Random component of the latency

M(i) No. of active IoT devices in the ith-group

M Total no. of active IoT devices

Mm,n No. of active devices in a frame

M̂n Prediction of Mm,n,∀m

MSES MSE in prediction of Sav

MSEP MSE in prediction of Ps

MSEµ MSE in prediction of µL

N No. of frames in one round

Pr (.) Probability measure

Psm Probability of success in the mth round

Ps Average probability of success per round

P̂s Prediction of Ps

R(i) Reliability constrained no. of rounds for the ith-group

R
(i)
max Rounds according to affordable latency for the ith-group

R̂ Optimal no. of rounds for network exploration

R No. of rounds

Sav Average no. of successful devices in one round

Ŝav Prediction of Sav

µL Average (re)transmissions for a successful transmission

µ̂L Prediction of µL

ζS MSE constraint to predict Sav

ζP MSE constraint to predict Ps

ζµ MSE constraint to predict µL

number of active devices, the number of idle preambles in a
frame can become zero with high probability. Moreover, due
to the channel impairments, an RB originally selected by one
or more devices can be erroneously detected as an idle one
[23]. Thus, the accuracy of this estimation method deteriorates
in a dynamic environment.

For the framed-ALOHA networks, Jiang et al. [23], pro-
posed an online supervised learning method that enables the
BS to predict current traffic load. In this work, the BS keeps
the history of idle, successfully decoded, and collided resource
blocks in previous and current frames to predict the current
traffic load. This work also incorporated the case where a
detection error can occur, and a resource block can be detected
as an idle one with a non-zero probability. The proposed
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mechanism outperformed the existing method of moments
(MoM) and maximum likelihood (ML) prediction techniques.

The works mentioned above perform a centralized decision-
making approach in which end-devices follow a BS-driven
strategy. The performance of these schemes relies on the avail-
ability of accurate knowledge of network load at the BS. These
schemes also involve significant control signaling, which can
cause additional latency. In addition to that, these retrans-
mission methods do not address the network heterogeneity
because of the different latency-reliability requirements, and
the end-devices are unable to adapt to the network dynamics
by themselves. Therefore, the IoT devices in heterogeneous
networks should have the capability to adapt to network
dynamics without relying much on the BS, which can be
accomplished by equipping the IoT devices with reasonable
computation resources, allowing them to learn the network
parameters and share the knowledge with the BS [24]. Shafiq
et al. [25] proposed a random access protocol for V2I commu-
nications. The protocol enabled vehicular entities to optimize
their transmission probability for the given network density
to maximize network throughput. The optimal transmission
probability was computed using exhaustive search approach.
Ye et al. [26] reviewed the potential use of different data-
driven techniques on several aspects of vehicular networks.
Due to the highly dynamic nature of vehicular networks,
intelligent resource management is critical in these networks.
This feature of vehicular networks leads to the demand for
resource optimization methods capable of adapting to dynamic
changes [27].

In the context of device-level learning at the MAC layer,
Raza et al. [28] proposed a statistical learning-based dynamic
retransmission mechanism for the homogeneous mission-
critical-IoT applications. This mechanism enables the IoT de-
vices to predict retransmissions limit under the given latency-
reliability constraint by using the history of their previous
transmissions. The work in [28], assumes that all the IoT
devices have identical latency-reliability requirements, the
number of active IoT devices remain fixed in each frame of the
observation interval, and every active device has a packet to
transmit in each frame. Under these assumptions, the collision
probability remains fixed in each frame. In this paper, we
present a statistical learning-based mechanism that enables
the end-devices to predict different MAC layer parameters
while covering more general heterogeneous mission-critical-
IoT applications in a dynamic environment. We present the
analytical modeling of the restricted transmission strategy
that involves variable collision probability, also discussed in
[28]; and device-level prediction of the number of active
devices, the average number of successful devices per round,
average latency, and optimal size of the history window. The
robustness of the proposed device-level statistical learning-
based network load prediction method is measured through
the probability of exception, and it is compared with the BS-
centered approach. The device-level network exploration helps
the end-devices adapt to the network dynamics while meeting
the desired levels of latency-reliability probabilistically. The
proposed mechanism can also assist the BS in optimizing
radio resource utilization and enhancing the performance of

Fig. 1. Framed-ALOHA-based restricted transmission strategy overN frames
in the mth round of an observation interval of R rounds.

the existing radio resource management methods by using the
knowledge available at the end-devices.

III. SYSTEM MODEL

We consider a heterogeneous network composed of J IoT
devices virtually partitioned into G groups such that each group
in the network contains IoT devices with identical latency-
reliability requirements. Each group of IoT devices can be
part of a particular mission-critical application generating short
data packets. The parameter J is expressed as J =

∑G
i=1 

(i)

where (i) is the number of IoT devices in the ith-group,
∀i = 1, 2, ...,G. The total number of active devices in the
network is M =

∑G
i=1M

(i), where M (i) ≤ (i) is the number
of active devices in the ith-group, ∀i. As shown in Fig. 1,
the active devices from different groups communicate over K
orthogonal shared resource blocks (RBs) for the transmission
of their messages to a single BS in a grant-free manner by
employing a framed-ALOHA based restricted transmission
policy. In this protocol, each time slot is composed of multiple
resource blocks (RB), called a frame, and an RB can be a
time, frequency, or code-based resource. In each frame, an
active device selects one of the RBs randomly such that the
selection is uniform across all the RBs and independent from
other active devices. If two or more IoT devices select the
same RB, the transmission fails, and the colliding devices
attempt again in the next frame. We consider physical layer
abstraction to the MAC layer in which transmission fails
only because of the collisions. We use the terms RB and
channel interchangeably. All active devices begin to transmit
at the start of a round only, which is composed of N -
frames, and an observation interval of R independent rounds is
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Fig. 2. Network state: number of active devices in each frame of R rounds.

considered. Upon successful transmission, the devices receive
an acknowledgment from the BS, and they stop transmitting in
the current round. The restricted transmission strategy helps
improve the latency-reliability performance by reducing the
collision probability in successive frames of any round. It is
assumed that the size of the data packet is the same across
all the groups and can be completely transmitted within one
frame duration.

The value of parameter M can change from one obser-
vation interval to another. The end-devices do not need to
know the probability distribution associated with M . The IoT
devices capture the status of parameter M regularly in each
observation interval and share it with the BS, as explained
in the next section. As shown in Fig. 2, the time index
T representing the frame number can be expressed as a
function of the round number (m), and the frame number
(n) as: T = (m− 1)N + n, where m = 1, 2, ..., R and
n = 1, 2, ..., N . Fig. 2 shows the network state in terms of the
number of transmitting devices in each frame of the history
window. While, the number of transmitting devices in each
frame of the mth round is defined as:

Mm,n =

{
M, n = 1;

M −
∑n−1
j=1 M

′
m,j , n = 2, 3, ..., N.

(1)

where M
′

m,n denotes the number of successful devices in the
nth frame of the mth round. Due to the restricted transmission
strategy in each round, we have Mm,1 ≥ Mm,2 ≥, ...,≥
Mm,N ≥ 0, ∀m, and Mm,1 = M, ∀m. The number of
transmitting devices in a frame depends upon the number
of transmitting and successful devices in the previous frame.
Thus, two situations can arise: for the first case in which
Mm,n−1 > K, we have (Mm,n−1 −K) < Mm,n ≤Mm,n−1,
and in the second case when Mm,n−1 ≤ K, we get 0 ≤
Mm,n ≤Mm,n−1.

The latency-reliability requirements of the V2I communica-
tion interface can be different from other IoT devices present
in the network. The number of active devices also changes
when vehicular IoT entities leave or exit the coverage area of
a serving BS. Therefore, the proposed framed-ALOHA-based
grant-free network access is suitable for the V2I communica-
tion scenario in which vehicular IoT entities communicate with
a common BS over shared radio resources under a dynamic
network load. Moreover, the proposed grant-free access with a
restricted transmission strategy helps end-devices reduce their
energy consumption. This is because after having a successful
transmission, the corresponding devices stop transmitting in
the current round.

Due to the time-varying nature of the number of transmitting
devices, it becomes challenging to assess the feasibility of
running a particular mission-critical application in heteroge-
neous networks, and acquiring the statistical knowledge of the
network dynamics becomes essential. The following section
demonstrates how the end-devices can explore the network to
learn different network parameters at the MAC layer.

IV. DEVICE-LEVEL NETWORK EXPLORATION

In this section, we present a statistical learning-based pro-
cedure to explore the network at the device-level. The number
of successful devices in each round Sm =

∑N
n=1M

′

m,n, is a
random quantity, as a statistical measure, we are interested in
getting the knowledge of average successful devices per round
at the device-level which is defined as:

Sav :=
1

R

R∑
m=1

N∑
n=1

M
′

m,n. (2)

A related parameter is the probability of success per round
(Psm ) derived in the Subsection IV-A, and it depends on the
number of transmitting devices in each frame of the given
round. There can be possibly different patterns of the number
of active devices in each round; the quantity Psm can vary
from round to round. Thus, acquiring the average behaviour
of Psm denoted by Ps is essential for network exploration.

The third important parameter is the latency offered by the
network. In this paper, we focus on the random component
of the latency (L) experienced by a data packet due to the
(re)transmissions and its average behavior denoted by µL.
For mission-critical-IoT applications, a statistical reliability
constraint can be defined as: Pr

(
L ≤ L(i)

max

)
≥ 1 − ε

(i)
r ,

where ε(i)r and L(i)
max are the group-specific reliability criterion

and maximum affordable latency, respectively. Under the given
values of K and N , each group requires a minimum number of
rounds R(i),∀i within which it can meet the desired reliability
constraint probabilistically. This fourth parameter R(i),∀i is
also learned dynamically at the device-level and, the end-
devices share their knowledge with the BS, which can identify
the number of groups present in the network. In summary,
we aim to enable the end-devices to predict four important
network parameters

(
Sav, Ps, µL, R

(i)
)

so that the BS can
utilize their knowledge for the better utilization of the available
resources.

A. Device-level prediction of Ps and Sav
The only information provided to the IoT devices is the

number of channels (K) in each frame and the size (N ) of
a round. The number of transmitting devices (Mm,n) in each
frame of a round is not known by the BS and the IoT devices
a-prior. In order to explore the network, each device keeps the
record of transmission outcomes from last R rounds. When a
device of interest performs a transmission in the nth frame of
the mth round, a Bernoulli random variable Am,n is used to
show outcome of the transmission as follows:

Am,n =

{
1, Collision with other device/s;
0, Successful transmission. (3)
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The probability that a device of interest will have a collision
with at least one of the other transmitting devices in the nth

frame of the mth round, is computed as:

αm,n := Pr (Am,n = 1)

= 1−
(
1− 1

K

)Mm,n−1

. (4)

The probability of a successful transmission is computed as:

Pr (Am,n = 0) := 1− αm,n. (5)

After having a successful transmission, the corresponding
devices wait until the next round. The successful devices can
use a constant value other than 0 and 1 to keep the history
of the frames in which these devices do not perform any
transmission. Thus, each element hm,n in the history matrix
H is defined as follows:

hm,n =

{
Am,n, Grant-free transmission;
−1, No transmission. (6)

Once a device has built its history of R rounds, it can predict
different network parameters as explained below.

As shown in Fig. 1, all the active devices start transmitting
at the beginning of a round, and each device can have only
one successful transmission in a round. So, the probability
that a device of interest remains successful in the mth round
is computed as:

Psm :=

N∑
n=1

(1− αm,n)
n−1∏
j=1
n>1

αm,j

= (1− αm,1) + (1− αm,2)αm,1 + ...

+ (1− αm,N )αm,1αm,2...αm,N−1

= 1− αm,1 + αm,1 − αm,1αm,2 + αm,1αm,2 + ...

− αm,1αm,2...αm,N−1αm,N . (7)

All the terms except first and last terms of Eq. (7), are
cancelled out and Eq. (7) is reduced to:

Psm = 1−
N∏
n=1

αm,n. (8)

Thus Psm can be computed by applying Eq. (4) in Eq. (8) and
it gets the following form:

Psm = 1−
N∏
n=1

{
1−

(
1− 1

K

)Mm,n−1
}
. (9)

As indicated in Eq. (9), for the given values of K and N ,
the computation of Psm at device-level requires knowledge of
the number of transmitting devices (Mm,n) in each frame of a
round, and this information is not available at the end-devices
directly. Although, the number of active devices (M1,m) at
the start of a round is assumed to remain constant for a
given observation interval, but the number of transmitting
devices in the successive frames decreases randomly, and
the collision probability varies accordingly. Thus, we have:
0 ≤ αm,N ≤ αm,N−1 ≤, ...,≤ αm,1 < 1, ∀m. Consequently,
the probability of a successful transmission Psm , can vary in

different rounds. So, as a statistical measure of Psm , we aim
to predict the average probability of success Ps in the given
observation interval defined as:

Ps :=
1

R

R∑
m=1

Psm . (10)

By using Eq. (9) in Eq. (10), Ps gets the following form:

Ps =
1

R

R∑
m=1

[
1−

N∏
n=1

{
1−

(
1− 1

K

)Mm,n−1
}]

. (11)

The IoT devices can predict the quantities Sav and Ps by
first predicting the number of transmitting devices in each
frame. For that purpose, we define a parameter vector Θ̂ =[
M̂1, M̂2, ..., M̂N

]
, where M̂n is the prediction of Mm,n,∀m,

and accordingly α̂n is the prediction of αm,n,∀m. We consider
the case where the number of transmitting devices in a given
frame of all rounds represents a wide-sense stationary process,
and the number of transmitting devices in the nth frame can
be predicted as E [Mm,n], and the corresponding collision
probability is predicted as E [αm,n]. However, due to the
random nature of the number of failures in each frame, the
system can have huge number of states, and the computation
of E [Mm,n] and E [αm,n] becomes cumbersome for n > 1.

In this paper, we enable the end-devices to predict the de-
sired quantities Sav and Ps statistically from the transmissions
history matrix H which involves the prediction of the number
of transmitting devices and the associated collision probability
in each frame. The proposed prediction method uses the fact
that all elements in the first column of H are independent
and identically distributed (IID) random variables, and the ML
estimator of α1,m,∀m is given as [28]:

α̂1 =
1

R

R∑
m=1

Am,1. (12)

Moreover, we can readily show that α̂1 is an unbiased estima-
tor of αm,1, ∀m, i.e., E [α̂1] = αm,1, ∀m. We can determine
M̂1 by applying α̂1 in Eq. (4) and it comes out to be:

M̂1 = 1 +
ln (1− α̂1)

ln
(
K−1
K

)
= 1 +

ln
(
1− 1

R

∑R
m=1Am,1

)
ln
(
K−1
K

) . (13)

When R is large, α̂1 approaches to αm,1, ∀m, and as a result
M̂1 approaches Mm,1, ∀m. Thus, for the given round size,
accuracy in the prediction of Mm,1 can be enhanced by using
an appropriate value of R. Since the failed devices from the
current frame transmit in the next frame of a given round, we
use the average number of failures from the current frame as
a prediction of the number of transmitting devices in the next
frame:

M̂n = M̂n−1α̂n−1, n = 2, 3, ..., N

= M̂1

n−1∏
j=1

α̂j . (14)
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Fig. 3. Identification of different IoT groups at the BS.

The corresponding average collision probability in each frame
for n > 1 is predicted as:

α̂n = 1−
(
1− 1

K

)M̂n−1

; n = 2, 3, ..., N. (15)

Thus, the overall process to predict Θ̂ at the device-level is
described as follows:

M̂n =



1 +
ln

(
1− 1

R

∑R
m=1Am,1

)
ln(K−1

K )
, n = 1;

1 + ln

(
1− 1

R

∑R
m=1Am,1

)
ln(K−1

K )

∏n−1
j=1 α̂j ,

n = 2, 3, ..., N.

(16)

where

α̂n =


1
R

∑R
m=1Am,1, n = 1;

1−
(
1− 1

K

)M̂n−1
, n = 2, 3, ..., N.

(17)

The average number of successful devices in the nth-frame
can be predicted as M̂n (1− α̂n), thus Sav is predicted as:

Ŝav :=

N∑
n=1

M̂n (1− α̂n)

= M̂1 (1− α̂1) + M̂1α̂1 (1− α̂2) + M̂1α̂1α̂2 (1− α̂3)

+ ...+ M̂1α̂1α̂2...α̂N−1 (1− α̂N )

= M̂1 (1− α̂1 + α̂1 − α̂1α̂2 + α̂1α̂2 − α̂1α̂2α̂3

+...+ α̂1α̂2...α̂N−1 − α̂1α̂2...α̂N−1α̂N ) . (18)

All the terms except first and last terms inside the parenthesis
are cancelled out, and Eq. (18) is reduced to:

Ŝav = M̂1

(
1−

N∏
n=1

α̂n

)
. (19)

By using Eq. (17) in Eq. (19), Ŝav can be computed as:

Ŝav = M̂1

[
1−

N∏
n=1

{
1−

(
1− 1

K

)M̂n−1
}]

. (20)

We can compute P̂s as the prediction of Ps as follows:

P̂s :=

N∑
n=1

(1− α̂n)
n−1∏
j=1
n>1

α̂j

= (1− α̂1) + (1− α̂2) α̂1 + ...+ (1− α̂N ) α̂1α̂2...α̂N−1

= 1− α̂1 + α̂1 − α̂2α̂2 + α̂1α̂2 + ...− α̂1α̂2...α̂N−1α̂N .
(21)

All the terms except first and last terms of Eq. (21) are
cancelled out, and Eq. (21) is reduced to:

P̂s = 1−
N∏
n=1

α̂n. (22)

Thus P̂s can be computed by applying Eq. (4) in Eq. (22) and
it gets the following form:

P̂s = 1−
N∏
n=1

{
1−

(
1− 1

K

)M̂n−1
}
. (23)

We can see through Eq. (20) and Eq. (23) that both
parameters Ŝav and P̂s are functions of the predicted number
of transmitting devices in each frame i.e., the vector Θ̂. It
is worth noting that the end-devices can predict Θ̂, P̂s and
Ŝav by employing a statistical learning approach that uses
the outcomes of their previous transmissions. The end-devices
share the predicted network load with the BS as shown in
Fig. 3, which can utilize this knowledge to optimize the radio
resource allocation. Moreover, the computation burden at the
BS is reduced by allowing the end-devices to predict the net-
work load, which can result in overall latency reduction. This
device-level network exploration strategy does not require any
additional assistance from the BS except the values of N and
K. Thus, we can use these features to design self-configuring
networks where network parameters change dynamically.

B. IoT-groups identification

For URLLC based systems, the reliability is defined as the
probability of satisfying a latency bound in a given network
[5]. The heterogeneous IoT devices present in a network can
be grouped virtually based upon their application specific
statistical reliability constraints. This grouping of IoT devices
can assist the BS to optimize the radio resource allocation
in conditions where network parameters change dynamically.
The mobile vehicular IoT entities belong to the same group
as long as their latency-reliability requirements do not change
and remain in the serving BS’s coverage area. However, if
they leave the coverage area, the total number of active devices
changes, leads to changes in the resources required by different
groups to meet their application-specific QoS requirements.

For the system model under consideration, we develop a
statistical learning based strategy to identify different groups at
the BS. This scheme involves the device level prediction of the
number of rounds required to have a successful transmission
such that desired statistical reliability constraint is satisfied.
Each device shares this statistical knowledge with the BS
which can identify the number groups and their latency-
reliability constraints.
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Our problem of identifying different groups at the BS
reduces to predict the vector parameter Θ̂ and P̂s at device-
level. After predicting Θ̂ and P̂s the end-devices can com-
pute the optimal number of rounds needed for a successful
transmission against their group-specific reliability criterion
ε
(i)
r ,∀i = 1, 2, ...,G. In order to do that, we let the random

variable X indicate the number of rounds that a device from
group-i executes to get its first successful transmission, i.e.,
the device remains unsuccessful in X − 1 consecutive rounds
before getting a successful transmission in the round number
X . The random variable X follows the geometric distribution.
Under the group-specific reliability constrain ε(i)r , the optimal
value of X can be predicted as follows:

R(i) =

inf
X

{
1 ≤ X ≤ R(i)

max : P̂s

X∑
x=1

(
1− P̂s

)x−1
≥ 1− ε(i)r

}
.

(24)

where R(i)
max is related to the group specific maximum afford-

able latency. The value of R(i)
max depends upon the nature of

the environment in which communication is being carried out.
If a device could not find an appropriate value of R(i) from Eq.
(24), this indicates that the current environment cannot support
the particular mission-critical communication application and
the event is termed as an outage. Since the IoT devices can
predict the outage event; therefore we can design an intelligent
back-off mechanism which is part of our future research work.

As shown in Fig. 3, each device shares the locally learned
value of R(i) with the BS, which uses this information to
identify different groups present in the network and also their
latency-reliability requirements. In addition to that, the BS can
determine the number of successful devices from each group.
The BS can utilize the information shared by the IoT devices to
optimize the radio resource allocation based upon the latency-
reliability criteria of different groups in the network. Moreover,
as explained in Subsection V-B, the BS uses the information
of the number of active devices to determine the optimal value
of R such that the end-devices can predict different network
parameters under desired prediction accuracy constraints.

C. Device-Level prediction of average latency (µL)

When the number of active devices vary dynamically, the
random component of latency causes significant variations in
the overall latency offered by the network. For example, in
V2X communication scenarios, the mobile vehicles can cause
random variations in the network latency. So, it becomes
very essential for the heterogeneous devices to evaluate the
feasibility of executing a particular mission-critical application
in a dynamic environment. Acquiring the statistical knowledge
of the random latency can be very useful in this regard. The
average number of (re)transmissions performed by a device for
a successful transmission is a measure of the average latency
(µL), and we devise a statistical learning method to acquire
knowledge of µL at the end-devices.

In order to have an analytical model for the prediction of
average latency, which can be used at the device-level, let

the random variable Y show the number of rounds a device
remained failed before a successful transmission. Since we
assume that the number of active devices at the start of each
round remains fixed for the given observation interval, this
makes all rounds independent of each other with a constant
average probability of success per round predicted as P̂s. Thus,
the random variable Y follows the geometric distribution, and
the expected value of Y is computed as: E [Y ] = 1−P̂s

P̂s
. By

applying Eq. (23), the E [Y ] comes out to be:

E [Y ] =

∏N
n=1 α̂n

1−
∏N
n=1 α̂n

. (25)

Now given that a device of interest remains successful in the
round followed by the Y failed rounds, let the random variable
Z denote the number of (re)transmissions performed for the
successful transmission in that round. Since the probability of
collision varies in each frame of a round, the random variable
Z follows a truncated geometric distribution with a variable
probability of success in each frame. The probability mass
function (PMF) of the random variable Z is defined as:

Pr (Z = z)

=


1

1−
∏N
n=1 α̂n

(1− α̂z)
z−1∏
j=1
z>1

α̂j , z = 1, 2, ..., N ;

0, Otherwise.
(26)

We can readily show that
∑N
z=1 Pr (Z = z) = 1. While E [Z]

is computed as:

E [Z] :=

N∑
z=1

z Pr (Z = z)

=
1

1−
∏N
n=1 α̂n

N∑
z=1

z (1− α̂z)
z−1∏
j=1
z>1

α̂z

=
1

1−
∏N
n=1 α̂n

1− α̂1 + ...+N (1− α̂N )

N−1∏
j=1

α̂j

 .
(27)

Eq. (27) is reduced to:

E [Z] =
1

1−
∏N
n=1 α̂n

1 +

N−1∑
z=1
N>1

z∏
j=1

α̂j −N
N∏
j=1

α̂j

 .

(28)

Thus, the average latency in terms of no. (re)transmissions per
successful transmission can be predicted as follows:

µ̂L := N E [Y ] + E [Z]. (29)

By using Eq. (25) and Eq. (28) in Eq. (29), we get following
expression of µ̂L:

µ̂L =
1

1−
∏N
n=1 α̂n

1 +

N−1∑
z=1
N>1

z∏
j=1

α̂j

 . (30)
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We can see through (30) that the end-devices are enabled
to predict average latency present in the network by using the
prediction of collision probability in each frame of a round.
On the other hand, as shown in (17), the computation of
collision probability in each frame requires the availability
of knowledge regarding the number of transmitting devices
which is computed through (16). For the system model under
consideration, the average latency per successful transmission
is upper bounded by N

P̂s
, i.e., µ̂L ≤ N

P̂s
.

Remarks: An interesting insight of the PMF given in Eq.
(26) is that the truncated geometric distribution presented in
[29] can be obtained directly from Eq. (26) as a special case
when collision probability remains constant in each frame. It
is also worth noting that when N = 1, Eq. (30) provides
the expectation of a geometric random variable that shows
the expected number of (re)transmissions performed for a
successful transmission under constant collision probability,
and the optimal number of (re)transmissions under the given
latency-reliability constraint is presented in [28]. Thus, the
PMF in Eq. (26) can be useful in analyzing networks in which
the probability of collision varies as a result of the variable
number of transmitting devices.

Algorithm 1 describes the steps of the proposed device-level
network exploration mechanism, and each active device runs
the algorithm every R rounds. The BS periodically broadcasts
the values of K, N , and R to be used by the end-devices as the
inputs for Algorithm 1. Initially, the BS broadcasts an initial
value of R to explore the network. As explained in Subsection
V-C, the initial value of R is selected such that the probability
of exception in the network load prediction remains negligibly
small for relatively low to high network load. After executing
R rounds of the restricted grant free transmissions as shown
in Fig. 1, the active devices predict Θ̂, Sav , Ps, R(i) and µL.
The devices share their knowledge of the current network load
with the BS, as shown in Fig. 3. For a given network load,
the BS broadcasts the optimal value of R, which is computed
according to the desired prediction accuracy constraints, as
explained in Subsection V-B. Thus after every R rounds, the
end-devices update their knowledge of network conditions by
capturing the current network load, and the status of different
QoS metrics.

V. PERFORMANCE ANALYSIS AND COMPARISON

In this section we discuss the performance of the pro-
posed statistical learning-based device-level network explo-
ration mechanism. Since, for the given values of K and N , the
only information available at the end-devices is the history of
their transmissions, the performance of the proposed prediction
mechanisms under the given network load is affected by the
size of the history window. The value of R is also related to the
amount of time required by the end-devices to learn different
network parameters. So, in order to analyze the performance
of the device-level network exploration, we evaluate the MSE
associated with the prediction of the parameters Sav , Ps, and
µL denoted by MSES , MSEP , and MSEµ respectively.

Algorithm 1 Device-Level Network Exploration
Input: K, N and R
Output: Θ̂, P̂s, Ŝav , µ̂L and R(i)

1: for m = 1 to R do
2: for n = 1 to N do
3: Select a channel randomly
4: Transmit data
5: if (success) then
6: Am,n := 0
7: Stop transmitting in current round
8: hm,j := −1; ∀j = n+ 1, n+ 2, ..., N
9: else

10: Am,n := 1
11: end if
12: end for
13: end for
14: Predict Θ̂ =

[
M̂1, M̂2, ..., M̂N

]
from Eq. (16)

15: Predict Ŝav from Eq. (20)
16: Predict P̂s from Eq. (23)
17: Predict R(i) from Eq. (24)
18: Predict µ̂L from Eq. (30)
19: Share learned parameters Θ̂ and R(i) with the BS
20: Get the optimal R̂ from the BS
21: Update number of rounds R := R̂
22: return Θ̂, P̂s, Ŝav , µ̂L and R(i)

The MSE in the prediction of Sav is computed as follows:

MSES = E

[{
Sav − Ŝav

}2

| H
]
. (31)

Expectation is taken with respect to Sav defined in Eq. (2).
By using Eq. (2) and Eq. (20), in Eq. (31), the MSES can be
computed as:

MSES = E

[{
1

R

R∑
m=1

N∑
n=1

M
′

m,n − M̂1

+M̂1

N∏
n=1

{
1−

(
1− 1

K

)M̂n−1
}}2

 .
(32)

The MSE in the prediction of average probability of success
per round is given as:

MSEP = E

[{
Ps − P̂s

}2

| H
]
. (33)

Expectation is taken with respect to Ps defined in Eq. (11).
By using Eq. (11) and Eq. (23) in Eq. (33), the MSEP can
also be written as:

MSEP = E

[{
− 1

R

R∑
m=1

N∏
n=1

{
1−

(
1− 1

K

)Mm,n−1
}

+

N∏
n=1

{
1−

(
1− 1

K

)M̂n−1
}}2

 . (34)
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Fig. 4. Average successful devices per round with different values of K and
N against active devices.

The MSE in the prediction of average latency is given as:

MSEµ = E
[
{µL − µ̂L}2 | H

]
. (35)

Expectation is taken with respect to µL defined in Eq. (37).
In order to define µL, we use the average collision probability
in each frame for the given observation interval defined as:

αn :=
1

R

R∑
m=1

αm,n. (36)

By using Eq. (4) in Eq. (36), and replacing α̂n in Eq. (30) with
the resultant expression of αn, we get the following expression
for µL:

µL :=

1 +

N−1∑
z=1
N>1

 z∏
j=1

1

R

R∑
m=1

{
1−

(
1− 1

K

)Mm,j−1
}

1−
N∏
n=1

1

R

R∑
m=1

{
1−

(
1− 1

K

)Mm,n−1
} .

(37)

By applying Eq. (37) and Eq. (30) in Eq. (35), the MSEµ gets
the following form:

MSEµ

= E





1 +

N−1∑
z=1
N>1

 z∏
j=1

1

R

R∑
m=1

{
1−

(
1− 1

K

)Mm,j−1
}

1−
N∏
n=1

1

R

R∑
m=1

{
1−

(
1− 1

K

)Mm,n−1
}

−

1 +

N−1∑
z=1
N>1

z∏
j=1

{
1−

(
1− 1

K

)M̂n−1
}

1−
N∏
n=1

{
1−

(
1− 1

K

)M̂n−1
}



2
. (38)

Due to the random nature of Mm,n and M ′m,n in each frame
of the history window, it gets complicated to obtain the closed-
form expressions of MSEs through Eqs. (32), (34) and (38). In
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Fig. 5. Average probability of success per round with different values of K
and N against active devices.

this paper, we compute them numerically by using the Monte
Carlo simulation method.

A. Simulation results

The Monte Carlo simulation method is used to analyze
the performance of the proposed mechanisms for device-
level network exploration. First, we analyze the behaviour of
different network parameters against varying network load. For
different values of N and K, we take a range of the number
of active devices and use R = 10, 000 number of independent
rounds for the averaging purpose. The average number of
successful devices per round defined in (2) is plotted in Fig.
4. The average probability of success per round is computed
according to (10) and plotted in Fig. 5. It is observed that for
lower values of M , the parameter Ps does not change much,
and consequently, Sav increases. However, for the higher
values of M , the parameter Ps decreases and Sav decreases
accordingly. The average number of (re)transmissions for a
successful transmission is presented in Fig. 6, where we can
see that the parameter µL increases slowly under the smaller
values of M , and rapidly under the larger values of M .

For IoT groups identification, three groups are consid-
ered with the respective reliability criterion ε

(1)
r = 10−3,

ε
(2)
r = 10−4, and ε

(3)
r = 10−5. The optimal number of

rounds required by these three different IoT groups to meet the
required latency-reliability criteria are plotted in Fig. 7. It is
observed that for the lower number of active devices at the start
of each round, due to the discrete nature of the parameter R,
different groups can have the same optimal number of rounds
against their latency-reliability requirements. However, as the
probability of success decreases as a result of an increase in
the number of active devices, different groups start attaining
distinct values of R(i).

The end-devices are enabled to predict different network
parameters as explained in Section IV. In order to analyse
MSES , MSEP , and MSEµ, associated with prediction of Sav ,
Ps, and µL, respectively, simulations are performed over a
range of rounds for different values of M by using K = 40
and N = 4. While Ns = 10, 000 iterations are used for each
value of R to compute the MSEs numerically. The MSEs of
Ŝav , P̂s and µ̂L are demonstrated in Fig. 8, Fig. 9 and Fig. 10
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Fig. 6. Average (re)transmissions per successful transmission with different
values of K and N against active devices.

respectively. It is observed that for a given network load, these
MSEs are decreased as the number of rounds is increased.
Thus, the desired performance of these prediction methods can
be achieved by using an appropriate value of R. In addition to
that, as demonstrated in Figs. 8-10, when the number of active
devices is increased, the IoT devices need to use a higher value
of R to maintain the desired MSEs.

1) Network exploration delay: The time required by IoT
devices for network exploration also reflects the performance
of the proposed statistical learning-based prediction mecha-
nisms. The end-devices run Algorithm 1 to predict different
network parameters after each R number of rounds. Therefore,
considering PHY-layer abstraction, the number of rounds exe-
cuted by the end-devices measures the time required to explore
the network. Since each round is composed of N frames, the
network exploration delay is NR frames, while the PHY layer
defines the frame duration. We can see through Figs. 8-10, that
a higher prediction accuracy requires a larger value of R. In
other words, the end-devices would need more time to predict
different network the parameters if desired accuracy level
increases. Moreover, when network load changes, the required
number of rounds against the desired prediction accuracy also
changes. Therefore, the network exploration delay is variable.
In the following subsection, we explain the computation of the
optimal value of R under the desired accuracy constraints.
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Fig. 7. No. of rounds required to meet the desired reliability with K = 40
and N = 4.
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Fig. 8. MSE in the prediction of average successful devices per round with
K = 40 and N = 4.

B. Optimal size of the history matrix

From the perspective of mission-critical applications, the
end-devices need to adapt to the network dynamics in the
least possible time. Since the end-devices have limited power,
computation, and memory resources, they need the minimum
amount of data (transmissions history) to predict different
network parameters. On the other hand, the prediction of these
parameters should provide reasonable accuracy, which depends
on the value of R for the fixed network load. Thus, an optimal
value of R is essential to know so that the end-devices can
learn different network parameters while meeting the related
constraints of time to learn, storage and accuracy. For that
purpose, we can use the asymptotic behavior of the above-
defined MSEs against R. Let ζS , ζP and ζµ be the acceptable
MSE in the prediction of Sav, Ps, and µL respectively, the
optimal number of rounds can be obtained by solving the
following:

R̂ = minR (39)
subject to :

R ≥ 1,

MSES ≤ ζS ,
MSEP ≤ ζP ,
MSEµ ≤ ζµ.
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Fig. 9. MSE in the prediction of average probability of success per round
with K = 40 and N = 4.
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Since the closed-form expressions of the MSEs related to
different parameters are not available, the MSEs are computed
numerically for a range of R against different values of the
network load. These MSEs decrease monotonically when the
value of R is increased, as shown in Figs. 8-10, . Therefore,
for each value of M and the given values of K, N , ζS ,
ζP , and ζL, the BS can have a lookup table to store the
corresponding unique value of R̂. Initially, the BS broadcasts
an initial value of R such that the end-devices can predict
the current network load with a very small probability of
exception, as demonstrated in the following Subsection V-C.
After receiving the information regarding the current network
load from the end-devices, the BS periodically broadcasts the
optimal value R̂ according to the desired prediction accuracy
constraints and current network load. Thus, the end-devices
can update the size of their history matrix accordingly. We
illustrate the impact of M on the computation of R̂ through
an example. When M = 60, K = 40, N = 4, ζS = 1,
ζP = 0.001, and ζµ = 0.1, by using the MSEs plotted in Fig.
8-10, we obtain R̂ ≈ 650. However, for M = 80, under the
same prediction accuracy constraints, we get R̂ ≈ 2300.

The significance of the optimal value of R, denoted by R̂,
has many folds. The parameter R̂ can be used to determine the
devices’ storage requirements and the minimum time required
to explore and adapt to the network dynamics. In addition,
the optimal value of R can be used to determine the energy
requirements of the IoT devices for network exploration. In
this regard, for the given network load, the transmission
energy of NR̂ frames can be used as an upper bound for the
energy consumption in device-level network exploration. Since
a change in the current network load can impact the value of
R̂, the energy consumption during network exploration varies
accordingly.

C. Performance comparison

This Subsection presents a performance comparison regard-
ing the robustness of the proposed statistical learning-based
device-level network load prediction and an existing BS-level
network load estimation. For the given size of an observation
interval R, the performance of the proposed device-level
network exploration mechanism is affected by the number of
active devices Mm,1 present in the network. Thus, the accuracy

0 50 100 150 200 250 300
Active Devices

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

li
ty

 o
f 

E
xc

ep
ti

on

Device-Level: R = 500

Device-Level: R = 1000

BS-Level: R = 1000

Fig. 11. Comparison of the probability of exception in the estimation of M

in the prediction of the number of active devices M̂1 plays
a significant role in improving the overall performance of
the proposed mechanism. The computation of M̂1 through
Eq. (13), requires α̂1 < 1 so that we can have a valid
argument for the ln (.) function. We define exception as an
event in which the argument of function ln (.) becomes zero
which corresponds to the case when α̂1 = 1. The probability
of exception ηM1

in the computation of M̂1 is obtained
empirically as follows:

ηM1
:=

1

Ns

Ns∑
i=1

1
(
α̂
(i)
1 = 1

)
. (40)

where

1
(
α̂(i) = 1

)
=


0 if α̂

(i)
1 6= 1;

1 if α̂
(i)
1 = 1.

(41)

For the given value of R, Eq. (40) provides the relative fre-
quency of the exception occurring in Ns iterations (observation
intervals) i.e., the number of times α̂1 gets value 1 in Ns
iterations, while α̂

(i)
1 is the prediction of αm,1 in the ith

iteration, and it is computed through (12).
We compare the probability of exception of the proposed

device-level method with the one presented in [17, Section
IV-C] to estimate the number of active devices at the BS. The
estimation method in [17] uses the number of idle preambles in
a frame during the contention phase in LTE-A random access
procedure. By following the BS centered approach of [17], the
number of transmitting devices in each frame can be estimated
as follows:

M̂ (BS)
n =

1

R

R∑
m=1

ln
(
Km,n

K

)
ln
(
K−1
K

) . (42)

where M̂ (BS)
n is an estimate of number of transmitting devices

and Km,n is the number of unused channels in the nth frame.
This method works well as long as the argument of ln (.)
function is greater than zero i.e., Km,n > 0. However, when
value of Mm,n gets larger, the probability of having zero
idle channels becomes significantly large. Thus, an exception
occurs when Km,n = 0, and the probability of exception in
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this case is computed empirically as follows:

η
(BS)
Mn

:=
1

NsR

Ns∑
i=1

R∑
m=1

1
(
K(i)
m,n = 0

)
. (43)

where

1
(
K(i)
m,n = 0

)
=


0 if K

(i)
m,n 6= 0;

1 if K
(i)
m,n = 0.

(44)

where K(i)
m,n is the number of idle channels in the nth frame

for the ith iteration. For the given value of R, Eq. (43)
provides the relative frequency of the exception occurring in
Ns iterations (observation intervals) i.e., the number of times
Km,n gets value 0 in Ns iterations.

In Fig. 11, we have demonstrated ηM1
and η(BS)M1

against a
range of number of transmitting devices for different values
of R with K = 40 and N = 4. For each value of M , we
performed Ns = 2500 iterations to compute the probability
of exception empirically. It is observed that both ηM1 and
η
(BS)
M1

are extremely small for a low to moderate network
load. However, as the number of active devices is increased
further, η(BS)M1

becomes significantly large as compared to
ηM1

. Moreover, for the given network load, ηM1
is further

reduced by increasing value of R. In contrast to that, the
computation of M̂ (BS)

m,n only depends upon the number of
idle channels in a frame, and increasing value of R does
not reduce the probability of exception η

(BS)
M1

. Hence, the
proposed statistical learning-based device-level network load
prediction mechanism is more robust than the BS-centered
approach in an environment where a large number of IoT
devices communicate with a single BS over limited shared
resources.

The above discussion highlights that the proposed statistical
learning-based network exploration mechanism enables the
IoT devices to get an insight of the network condition by
predicting Sav , Ps, µL, and R(i). At the same time, a variation
in the number of active devices impacts these network parame-
ters. Therefore, the significance of the knowledge regarding the
number of active devices available at the end-devices is further
strengthened. It is noteworthy that any change in the number
of active devices can be tracked and adapted accordingly by
the IoT devices as long as that change remains stable for at
least R̂ number of rounds. This feature can be used to design
adaptive networks in which end-devices can learn the network
dynamics with the least amount of data according to the
desired accuracy. Since the BS utilizes information provided
by the end-devices, this approach can yield overall latency
reduction by reducing the computational overheads at the BS.
Therefore, the proposed grant-free access can also improve the
energy consumption in the energy-constrained delay-sensitive
IoT applications.

VI. CONCLUSION AND FUTURE WORK

Providing the URLLC interfaces for mission-critical IoT
applications in dynamic heterogeneous networks is challeng-
ing, and vehicular communication is an important use case

of such systems. Statistical learning is a promising tool for
predicting dynamically varying parameters and learning as-
sociated probability distributions in heterogeneous networks.
At the same time, the device-level network exploration can
reduce the computation overheads at the BS, which results
in overall latency reduction. This paper presents a statistical
learning-based network exploration mechanism for hetero-
geneous mission-critical-IoT applications employing framed
ALOHA-based restricted transmission strategy, enhancing re-
liability. The proposed grant-free network access mechanism
is greatly suitable for designing heterogeneous networks in
which mobile vehicular IoT entities communicate with other
IoT devices over shared radio resources. The work presented
in this paper enables the end devices to use their transmis-
sion history to predict different dynamic parameters in a
probabilistic manner. Through simulations, the performance
of the proposed prediction mechanisms is evaluated, and the
optimal size of the history matrix is determined, enabling
the end-devices to explore the network under the given accu-
racy constraints. Compared to the BS-centered approach, the
device-level statistical learning-based network load prediction
mechanism proposed in this paper is more robust against heavy
network load.

This work can open new research avenues in on-device in-
telligence for 5G and beyond wireless communication systems.
In this regard, as future research work, we aim to extend
the current approach for fully decentralized heterogeneous
networks while covering device-assisted radio resource man-
agement. Moreover, we also aim to design an intelligent back-
off algorithm that can be executed by the IoT devices in case
of an outage event.
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