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An emerging real-time ground compaction and quality control, known as intelligent compaction (IC), has
been applied for efficiently optimising the full-area compaction. Although IC technology can provide
real-time assessment of uniformity of the compacted area, accurate determination of the soil stiffness
required for quality control and design remains challenging. In this paper, a novel and advanced nu-
merical model simulating the interaction of vibratory drum and soil beneath is developed. The model is
capable of evaluating the nonlinear behaviour of underlying soil subjected to dynamic loading by
capturing the variations of damping with the cyclic shear strains and degradation of soil modulus. The
interaction of the drum and the soil is simulated via the finite element method to develop a compre-
hensive dataset capturing the dynamic responses of the drum and the soil. Indeed, more than a thousand
three-dimensional (3D) numerical models covering various soil characteristics, roller weights, vibration
amplitudes and frequencies were adopted. The developed dataset is then used to train the inverse solver
using an innovative machine learning approach, i.e. the extended support vector regression, to simulate
the stiffness of the compacted soil by adopting drum acceleration records. Furthermore, the impacts of
the amplitude and frequency of the vibration on the level of underlying soil compaction are discussed.
The proposed machine learning approach is promising for real-time extraction of actual soil stiffness
during compaction. Results of the study can be employed by practising engineers to interpret roller drum
acceleration data to estimate the level of compaction and ground stiffness during compaction.
� 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Implementing the stiffness-based soil compaction has recently
gained an increasing interest during earthworks due to the popu-
larity of the mechanistic pavement design procedures (Mooney,
2010; Mooney and Facas, 2013; Nazarian et al., 2020; Fathi et al.,
2021a). The compacted soil must provide enough capacity to
withstand the stresses from the top layers of the road, or the dy-
namic loads transmitted from the vehicles or trains and experience
the minimal deformations (Ranasinghe et al., 2017; Scott et al.,
2020; Hu et al., 2021). Consequently, non-destructive testing
(NDT) as well as invasive testing, such as sand cone devices, are
i).
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generally used to certify the satisfactory subgrade quality at
discrete spots. Nevertheless, NDT spot testing methods cannot
precisely assess the full-area compaction level and could leave the
regions which are under-compacted or over-compacted unde-
tected, potentially interfering with the project costs and impacting
the road safety and the service life of the pavement. These issues
can be overcome by properly implementing continuous compac-
tion control (CCC) (Nazarian et al., 2020; Fathi et al., 2021a).

Fig. 1 shows a typical vibratory roller used for compaction of
geomaterials, while the magnitude of the centrifugal force (Fecc)
can be automatically adjusted based on the contact force between
the drum and soil (Fc). Adopting Newton’s second law, the steady-
state dynamic behaviour of the vibratory roller during vibration
due to the centrifugal force applied to the drum via rotating
eccentric mass can be written as below:
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Fig. 1. Interaction behaviour between vibratory roller and compacted soil.

Table 1
Five levels and precisions for roller data interpretation (modified after FHWA, 2017).

Level Description Measurement value Correlation Model
type

1 Empirical models based on
frequency response

Harmonic ratio Poor or
week

N/A

2 Empirical energy models
with rolling resistance

Energy index Poor or
weak

Dynamic/
static

3 Simplified static
mechanistic models

Stiffness, modulus,
resistance force

Satisfactory Dynamic

4 Dynamic models Modulus, resistance
force

Good Dynamic

5 Dynamic models with
artificial intelligence

Modulus, density Excellent Dynamic
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md€zd ¼ Fecc þmdg þ
�
_zd � _zf

�
cf þ

�
zd � zf

�
kf � Fc (1a)

mf €zf ¼ mfg þ
�
_zf � _zd

�
cf þ

�
zf � zd

�
kf (1b)

Fecc ¼ m0e0u
2 cosðutÞ (2)

where Fc is the contact force; zf , _zf and €zf denote the displacement,
velocity and acceleration of the vibratory roller frame, respectively;
zd, _zd and €zd denote the displacement, velocity and acceleration of
the vibratory roller drum, respectively; m0e0 and u are the eccen-
tric mass moment and circular vibration frequency, respectively;
md andmf are the masses of the drum and frame, respectively; and
kf and cf are the suspension modulus and suspension damping,
respectively.

CCC technologies for vibratory rollers, which have been
employed in the construction field for over 40 years, are associated
with the dynamic analysis of the coupled roller-soil systems.
Indeed, properties of the compacted layer during roller compaction
can be detected by analysing the data collected from the acceler-
ometer attached to the drum. Within CCC techniques, roller-
integrated monitoring can measure underlying soil properties
during compaction by incorporating the Global Positioning System
and using response of the vibratory roller changing due to the soil
stiffness to be used for real-time quality control during compaction
and avoid early pavement deterioration (Xu et al., 2012; Asif Imran
et al., 2018). Intelligent compaction (IC) technique is able to exhibit
more uniform compaction and a more endurable performance (Xu
et al., 2012). Hence, it is of prime importance to allow practising
engineers to thoroughly understand mechanism of the interaction
between the drum and the underlying soil (Bhandari et al., 2022;
Xu et al., 2022). IC measurement values (ICMVs) are generic terms
determined based on roller acceleration response during compac-
tion, which could be applied to evaluating the uniformity of the
compacted region and correlating to geomaterial for its physical
and mechanical characteristics. Indeed, historically, a dimension-
less parameter, known as compaction meter value (CMV), incor-
porating the harmonic signal of the drum and its acceleration
amplitude, can be correlated to stiffness of underlying geomaterial
and soil compaction level (Forssblad, 1980). Furthermore, by
measuring the sub-harmonic content of the roller acceleration and
temperature, compaction control value, an extension of CMV, could
be utilised to assess the compaction level of the asphalt (Chang
et al., 2011; Xu et al., 2012). More recently, an increasing
emphasis has been given to the investigation of the composite
nature of soil stiffness (ks) considering drum loading conditions
and roller responses, and generally based on the assumption of the
rigid cylinder vibrating on the elastic half-space (Lundberg, 1939;
Krober et al., 2001; Anderegg and Kaufmann, 2004; Van Susante
and Mooney, 2008; Kenneally et al., 2015).

US Department of Transportation (US DOTs) (FHWA, 2017)
identified five levels and precisions for roller data interpretation,
i.e. (i) empirical models based on frequency response, (ii) empirical
energy models with rolling resistance, (iii) simplified static mech-
anistic models, (iv) dynamic mechanistic models and (v) dynamic
models with artificial intelligence (Table 1). The empirical solutions
according to the frequency responses and rolling resistance are the
most basic ICMVs, which require specific machine parameters such
as energy loss and machine movement angle. The use of these
empirical approaches is computationally time-consuming and very
sensitive to machine parameters, which are complex to determine.
In more recent studies (Beainy et al., 2014; Adam and Pistrol, 2016),
the dynamic roller behaviour is employed to assess the compaction
quality according to the roller vibration displacement, velocity and
acceleration.

The physical models capturing the roller characteristics and the
properties of compacted geomaterial were also utilised to estimate
the interaction between drum and soil (Anderegg and Kaufmann,
2004; Mooney and Rinehart, 2007; Van Susante and Mooney,
2008; Pei and Yang, 2018). The majority of experimental studies
were conducted to better understand and assess the influences of
drum characteristics on the achieved soil stiffness during the
compaction process (Mooney and Rinehart, 2009). Van Susante and
Mooney (2008) applied the simplified numerical model based on
the added mass technique for soil modelling to evaluate the roller
integrated experimental data to reflect the interaction between the
soil and the drum. However, due to the excessively simplified as-
sumptions for dissipative and inertial properties in this technique, a
site-specific calibrationwould be necessary (Kenneally et al., 2015).
Additionally, Buechler et al. (2012) demonstrated that the discrete
element method (DEM) is capable of simulating the soil-structure
interaction and evaluating the mechanical responses as well as
macroscopic deformations based on microstructural interactions.
However, the very long computational time for DEM does not
yet allow this technique to be used for the real-time assessment of
compaction levels (Beainy et al., 2014; Fathi, 2020). Although
Mooney and Facas (2013) attempted to optimise the modelling
features and size using boundary element modelling (BEM), those
models still cannot explicitly portray the soil-drum system accu-
rately and need iterative processes and indirect means to capture
the soil response (Mooney and Facas, 2013; Fathi, 2020).
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Several researchers used the finite element method (FEM),
adopting a continuum-based computational technique to explain
the interaction mechanism between drum and soil (Xu et al., 2012;
Erdmann and Adam, 2014; Kenneally et al., 2015; Herrera et al.,
2018; Fathi, 2020; Nazarian et al., 2020). Kenneally et al. (2015)
used a two-dimensional (2D) FEM adopting a linear elastic
constitutive soil model for a uniform soil profile to explore the
impacts of the compacted layer modulus and thickness on the
dynamic response of the roller. Since the simplified 2D model as-
sumes a uniform load distribution along the drum length, three-
dimensional (3D) models capturing a more realistic distribution
of load below the roller are certainly more accurate and preferable.
For example, Fathi (2020) adopted a 3D finite model to evaluate
responses of the compacted soil layer during roller proof-mapping.
It should be noted that the majority of studies simulating the
interaction between the roller and drum explicitly considered the
linear elastic (Van Susante and Mooney, 2008; Mooney and Facas,
2013) or viscoelastic soil models (Erdmann and Adam, 2014;
Herrera et al., 2018). Indeed, many previous studies have shown
that considering soil nonlinearity subjected to cyclic loading is
paramount when soil deformation or reaction forces need to be
predicted, and thus suitable constitutive models often with many
model parameters need to be adopted in the modelling (Liu et al.,
2014; Saberi et al., 2020). However, practising engineers need
constitutive models with fewer parameters that can be obtained
from common geotechnical tests or from the existing correlations
to other soil parameters (Brinkgreve et al., 2010; Alzabeebee, 2021).
For example, the addition of the Rayleigh damping feature to linear
elastic models can somehow compensate for the missing hysteresis
damping, while stiffness degradation and dependency of parame-
ters to stress level and number of loading cycles needmore rigorous
constitutive models (Kontoe et al., 2011; Alzabeebee, 2021). In
general, a reasonable soil constitutive model needs to capture
variations of soil damping and stiffness with the cyclic shear strain
and cumulative plastic deformations during cyclic loading.

With the increasing demand for earthworks, particularly for
infrastructure projects advancement of IC, the solutions for the
dynamic behaviour of interacting systems have been utilised as the
prominent basis of more recent modellings. Fathi et al. (2021a)
integrated the data from the 3D numerical modelling and field to
assess the depth of influence of IC rollers. They exhibited an
interrelationship between the soil type and the influence depth.
Results illustrated that as geomaterial became more granular, the
depth of influence would increase, while the influence would
decrease as the soil became more cohesive. In addition, IC tech-
nology by integrating dynamic mechanical solutions with artificial
intelligence has recently been carried out to increase the compac-
tion quality. Cao et al. (2021) adopted an artificial neural network
(ANN) to predict CMV based on the roller-related factors, which is
consistent with the collected test data. An et al. (2020) proposed an
approach to optimise the compaction process using a genetic al-
gorithm (GA) to decide the number of passes. These solutions
demonstrate the possibility of using new techniques to efficiently
enhance the accuracy of IC results.

In this study, a hardening soil with small-strain stiffness (HS-
Small) constitutive model was employed to simulate the various
soil properties and investigate the interaction of the vibratory drum
and the soil beneath. The key motivation for this study is to
establish a rigorous and efficient method that can rapidly and
accurately extract the compacted soil stiffness according to the
vibratory response of the drum. Therefore, results of more than a
thousand 3D numerical models were adopted to develop a dataset
covering loose to dense sandy soils, roller weights, vibration am-
plitudes and frequencies. The developed dataset was then used to
train the inverse solver using extended support vector regression
(X-SVR) with the Gegenbauer kernel function to estimate the
stiffness of the compacted soil adopting drum acceleration records.

2. Development of 3D numerical model

2.1. Overview of the model

The dynamic response of the vibratory roller on the compacted
underlying soil was evaluated using the finite element program
PLAXIS 3D in this study (Brinkgreve et al., 2016). The 3D FEM was
carried out to predict the influences of interaction between the
drum and the soil beneath and the way in which the soil charac-
teristics impacted the drum response. A typical vibrating rigid,
smooth drum sitting on a uniform soil deposit was modelled using
the continuum-based approach with appropriate material proper-
ties and geometries assigned to each component. Fig. 2a exhibits
the 3D view of the cylindrical rigid drum roller resting on the soil
layer. The adopted roller drum was 1.5 m in diameter and 2.1 m in
length, corresponding to typical drum sizes used in Australia for
earthworks in major infrastructure projects. The weight of the
roller was considered as a variable changing between 6 t and 20 t.

Loading conditions for a given vibratory roller are defined by the
frequency and amplitude of the loading, which depends on the
frequency of its rotation, eccentricity and eccentric mass, and can
impact the productivity of the roller significantly (Lavin, 2003).
Therefore, to simulate the behaviour of a vibrating drum, an
eccentric mass m0 rotating around the axle of the drum with an
effective moment arm e0 was considered to induce the centrifugal
force corresponding to the eccentric mass moment m0e0 varying
between 1 kg m and 9 kg m (Fig. 2b). In addition, the applied
excitation frequency ranged from 20 Hz to 35 Hz, which together
with different eccentric mass moments, could result in a wide
practical range of centrifugal forces (Fecc) as in Eq. (2).

In this study, the vibration force as in Eq. (2) was applied to the
drum via distributed line load to simulate the vibratory behaviour
induced by the rotating eccentric mass. Table 2 summarises the
adopted roller specifications and the variation ranges used in this
study for parametric study.

The soil compaction via vibratory roller is induced by the
combination of static forces (weights of frame and drum) as well as
dynamic forces (the counter-rotating eccentric masses resulted in
centrifugal force). The multi-degree of freedom roller (MDOF) vi-
bration system with various components, including the drum,
frame, back tire and cabin, can represent the entire system more
accurately. However, for the sake of simplicity and practicality, the
single degree of freedom system for the drum is often implemented
which can capture the most significant impact force induced by the
vibrating drum (Herrera et al., 2018; Bhandari et al., 2022; Xu et al.,
2022). Additionally, low stiffness rubbers separate the compactor
frame from the drum, leading to the effects of the dynamic frame
being insignificant, resulting in frame dynamic effects often being
neglected in the analysis (Kenneally et al., 2015; Herrera et al., 2018;
Nazarian et al., 2020; Xu et al., 2022).

2.2. Modelling of soil

Consideration of soil nonlinearity when simulating soil-
structure interaction is of critical importance (Brinkgreve et al.,
2010; Han et al., 2016). Indeed, simple elastic or viscoelastic
constitutivemodels are unable to simulate the soil deformation and
forces transferred from the soil to the roller accurately, impacting
its acceleration response (Herrera et al., 2018; Zhang and Kimura,
2002; Fatahi et al., 2020). Thus, it is crucial to adopt a suitable
constitutive model for capturing the nonlinear stress-strain
response of the underlying soil properties subjected to cyclic



Fig. 2. Vibratory roller compactor system: (a) Sketch of the drum and (b) Free body diagram of one degree of freedom lumped mass model for vertical forces acting on compacted
soil.

Table 2
Operational values of vibratory roller adopted in this study.

Parameter Unit Minimum Maximum

Radius of drum m 0:75 0:75
Length of drum m 2:1 2:1
Mass of roller kg 5000 20; 000
Eccentric mass moment kg m 1 9
Vibration excitation frequency Hz 15 35
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loading, specifically by capturing damping with shear strain and
variations of soil stiffness and allowing the prediction of permanent
soil deformations during compaction (Brinkgreve et al., 2010;
Sharma and Kumar, 2018; Nazarian et al., 2020). In this study, the
soil response subjected to cyclic loading was evaluated by applying
the HS-Small model developed by Benz (2007). This model could
capture stiffness degradation as well as the stress-strain dependant
stiffness in the small and large strain ranges. The small-strain
stiffness is a fundamental characteristic of geomaterials, including
rocks, gravels, sands, silts and clays under different loading condi-
tions (Burland, 1989; Kuwano, 2018). According to Benz et al.
(2009), the HS-Small model is able to simulate the modulus
decay and hysteretic damping of the soils at the small strain range.
The model is suitable for modelling different soil types since the
vast of the model input parameters can simply be simulated on the
basis of triaxial drained test results, which can also be verified using
the cone penetration (CPT) field tests and seismic dilatometer
(SDMT) results (Kawa et al., 2021). Therefore, the model has gained
popularity for its application in geotechnical practice as all input
parameters have a clear geotechnical relevance (Schanz et al., 2019;
Kawa et al., 2021). In this study, the HS-Small model was applied for
simulating the cyclic behaviour of sandy soils from small to large
strains, and the pressure dependency of the modulus, which is
critical for sandy soils, was captured.

HS-Small model needs six stiffness related parameters defined
at a reference pressure of pref ð ¼ 100 kPa in this study), i.e. Eref50
and Erefoed, which are the secant and tangent stiffnesses, respectively;
Erefur representing the unloading/reloading stiffness; and vur indi-
cating the Poisson’s ratio for unloading/reloading cycles. The small-
strain shear stiffness (G0) and a shear strain (g0:7) are used to
describe the shape of the Gs-gc relationship. Additionally, three
measurable strength parameters were used for adopting the Mohr-
Coulomb failure criterion, known as cref (cohesion), j (angle of
dilatancy) and 4 (angle of friction). Moreover, two empirical inputs,
i.e. failure ratio (Rf ) and power for the stress-level dependency of
stiffness (m) are required in the model as explained below.

According to Brinkgreve et al. (2016), these key stiffness inputs
required in this model are: (i) the one-dimensional (1D) tangent
stiffness modulus ðEoed), (ii) the stress-dependent stiffness
modulus for highly nonlinear primary deviatoric loading ðE50), and
(iii) the unloading and reloading stress-dependent stiffness ðEur), as
captured in Eqs. (3)e(5), respectively:

Eoed ¼ Erefoed

0
BB@ c cos4 � s3 sin4

Knc
0

pref sin4 þ c cos4

1
CCA

m

(3)

E50 ¼ Eref50

�
c cos4 � s3 sin4
pref sin4 þ c cos4

�m

(4)

Eur ¼ Erefur

�
c cos4 � s3 sin4
pref sin4 þ c cos4

�m

(5)

where Knc
0 denotes the stress ratio, and s3 is the minor principal

stress. Furthermore, the hyperbolic function between the vertical
strain, ε1, and the deviatoric stress, q, is the fundamental concept
for the formulation of the HS-Small model and can be given by the
below equation:

�ε1 ¼ 2� Rf
2E50

q
1� q

qa

(6)

where qa is the asymptotic value of the shear strength. Additionally,
the HS-Small model is specifically designed to simulate the soil
plasticity and hysteretic damping of soil at large and small strains,
respectively, while considering isotropic hardening (Brinkgreve
et al., 2007; Schanz et al., 2019). The model incorporates the
modified Hardin and Drnevich (1972) model as proposed by Dos
Santos and Correia (2001) for strain-dependent stiffness, as in
Eqs. (7) and (8):

Gs ¼ G0

1þ agc
g0:7

(7)



Fig. 3. (a) Tangent shear modulus degradation curve for different relative densities and
(b) Damping ratio curves for different relative densities.
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G0 ¼ Gref
0

�
c cos4 � s3 sin4
pref sin4 þ c cos4

�m

(8)

where G0 and Gs are small-strain and secant shear stiffnesses,
receptively; gc is the shear strain; g0:7 represents the shear strain at
which Gs=G0 ¼ 0.7; and Gref

0 is the shear modulus at the reference
pressure pref . It is advised to set the model parameter a (the con-
stant in Eq. (7)) to 0.385 in order to reach a satisfactory agreement
with laboratory measurements. The small strain tangent shear
modulus (Gt) is calculated from Eq. (9), capturing the stiffness
degradation at the small strain range.

Gt ¼ G0�
1þ agc

g0:7

�2 � Gur (9)

where Gur is the unloading/reloading shear modulus. Additionally,
the model implicitly captures the soil hysteretic damping via
stiffness degradation with the governing equations as follows:

x ¼ ED
4pES

(10)

ED ¼ 4G0g0:7
a

2
642gc � gc

1þ g0:7
agc

� 2g0:7
a

ln
�
1þ agc

g0:7

�375 (11)

ES ¼ 1
2
GSg

2
c ¼ G0g

2
c

2þ 2agc
g0:7

(12)

where x is the hysteretic damping ratio; and ED and ES are the
dissipated energy and the cyclic maximum strain energy in a single
loading cycle, respectively.

The key motivation for this study is to develop an advanced tool
that can rapidly and reasonably extract the compacted soil stiffness
for sandy soil based on the vibration responses of the drum during
compaction. Thus, in order to investigate the drum responses under
various soil properties, different states of sandy soil ranging from
relative density RD ¼ 20%e90% were considered to address the soil
properties from loose to dense from early stages of compaction to a
well-compacted condition. Table 3 summarises the adopted soil
characteristics corresponding to different relative densities for the
HS-Small model following the formulations proposed by
Brinkgreve et al. (2010). Fig. 3a and b exhibits the damping ratio
Table 3
Adopted soil parameter for hardening soil model with small-strain stiffness for different

Parameter Value

RD ¼ 20% RD ¼ 30% RD ¼ 40% RD ¼ 50

pref ðkPaÞ 100 100 100 100
gðkN =m3Þ 15.8 16.2 16.6 17
Eref50 ðkPaÞ 12,000 18,000 24,000 30,000
ErefoedðkPaÞ 12,000 18,000 24,000 30,000
Erefur ðkPaÞ 36,000 54,000 72,000 90,000
Gref
0 ðkPaÞ 73,600 80,400 87,200 94,000

M 0.6375 0.6063 0.575 0.5438
g0:7 1.8 � 10�4 1.7 � 10�4 1.6 � 10�4 1.5 � 10
4 (�) 30.5 31.75 33 34.25
j (�) 0.5 1.75 3 4.25
Rf 0.975 0.963 0.95 0.938
wur 0.2 0.2 0.2 0.2
and stiffness degradation curves adopted in the paper, respectively.
In addition, the water table was considered to be deep, leading to
no significant excess pore water pressure being generated during
the compaction process (Fatahi et al., 2020).

To validate the reliability of the FEM prediction and assess the
suitability of the adopted soil constitutive model, the developed
numerical simulations with the HS-Small model results were
compared with the data reported by Wu (1990) for triaxial tests
conducted on Karlsruhe sand for different relative densities at
100 kN/m2 cell pressure, as shown in Fig. 4. It has been shown that
relative densities.

% RD ¼ 60% RD ¼ 70% RD ¼ 80% RD ¼ 90%

100 100 100 100
17.4 17.8 18.2 18.6
36,000 42,000 48,000 54,000
36,000 42,000 48,000 54,000
108,000 126,000 144,000 162,000
100,800 107,600 114,400 121,200
0.5125 0.4813 0.45 0.4188

�4 1.4 � 10�4 1.3 � 10�4 1.2 � 10�4 1.1 � 10�4

35.5 36.75 38 39.25
5.5 6.75 8 9.25
0.925 0.913 0.9 0.888
0.2 0.2 0.2 0.2



Fig. 4. Comparison between the drained triaxial test results on Karlsruhe sand and HS-
Small model predictions and those obtained based on proposed correlations for
different relative densities by Wu (1990): (a) Deviatoric stress vs. shear strain for
different relative densities, and (b) Volumetric strain vs. shear strain for different
relative densities.

Fig. 5. Adopted 3D numerical model capturing the interaction between drum and soil.
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the predicted results, which accept correlations for the model pa-
rameters as provided by Brinkgreve et al. (2010), are in a respect-
able agreement with the experimental data. The model can
reasonably predict the deviatoric stresses and volumetric strains of
both loose and dense sandy soils.
2.3. Geometrical characteristics of the model

Referring to Fig. 5, to characterise the interaction between the
drum and underlying soil, a 3D numerical model of a vibrating
drum on a soil deposit was established to predict the time history of
the roller acceleration response during vibration. To simulate the
weight of the roller, gravity load was employed on the rigid drum.
Moreover, the vibratory loading of the drum was achieved by
applying the eccentric force as in Eq. (2). It should be noted that no
horizontal forces were applied to the roller, assuming that the
eccentric mass configuration inside the drum, which rotates along
the longitudinal axis of the drum, nullified the horizontal forces
(Van Susante and Mooney, 2008).

For the sake of accuracy and minimising the boundary effects, a
block of soil that was 10 m in length, 10 m in depth, and 10 m in
width was modelled by applying the 10-node tetrahedral elements
(Fig. 5). Each node in the underlying soil had three degrees of
freedom which allowed a second-order interpolation for displace-
ment, making the arrangement suitable for dynamic analysis. In
addition, the influence depth of the adopted vibratory roller was
simulated to be 0.6e1 m (Adam, 2007). Consequently, a 10 m deep
soil deposit is deemed sufficient for minimising the boundary ef-
fects. There were nearly 190,000 elements in each of the finite
element models, and each of the numerical models adopted four
different loading phases, including initial equilibrium of soil de-
posit, application of weight of roller drum, application of cyclic
loading simulating roller vibration and equilibrium after removal of
the roller and completion of the compaction.
2.4. Roller-soil interface modelling and boundary conditions

Appropriate interfaces are required to simulate the soil-drum
interaction capturing stress transfer via interacting surfaces. In
this study, 12-node triangular interface elements with 6-point
Gaussian integration were utilised to capture any possible soil
deflection and drum vibratory displacement while the soil was
interacting with the drum (Fig. 5). The behaviour of the interface
was evaluated by implementing the linear elastic-perfectly plastic
constitutive model (Fatahi et al., 2020). The interface strength
reduction factor Rinter was adopted via the following equations:

ci ¼ csRinter (13)

tan4i ¼ tan4sRinter � tan4s (14)

st;i ¼ st;sRinter (15)

ji ¼ 0
�
for Rinter < 1; otherwise ji ¼ js (16)

Gi ¼ GsoilR
2
inter � Gsoil (17)

where i and s refer to the interface and soil, respectively; cs and ci
are the cohesions of the soil and interface, respectively; st is the
tensile strength of the soil; 4s and 4i are the friction angles of the
soil and interface, respectively; and ji, js, Gi and Gsoil are the
dilation angles of interface and soil, and shear moduli of interface
and soil, respectively. Similar to previous studies (Wehnert and
Vermeer, 2004; Aghayarzadeh et al., 2020; Xu et al., 2022),
Rinter ¼ 1 was adopted, while the zero tension limit was introduced
allowing separation of roller drum from the soil surface without
any resistance (Brinkgreve et al., 2016).



Fig. 6. Adopted numerical model designed for the unbound soil with free-field and
viscous boundaries conditions.
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Moreover, during the static and dynamic studies, two separate
sets of boundary conditions were employed. While considering the
gravity loading in the static case, the nodes of the bottom boundary
were completely constrained in all directions. In contrast, the
lateral displacements on the side boundaries of the model were
avoided. Referring to Fig. 6, during the dynamic analysis, while the
roller was vibrating, free-field boundaries coupled with indepen-
dent viscous dashpots were employed to transfer the free-field
motion from four side boundaries. Indeed, through the use of
resistant tractions in both the tangential and normal directions, the
proposed boundary conditions could prevent the wave energy
reflecting back into the soil (Fatahi et al., 2020). Moreover, a viscous
boundary (non-reflecting boundary condition) with the dampers
was used at the bottom boundary during dynamic analysis to
absorb the crossing waves without rebounding to reduce wave
reflection from the boundaries as suggested by Kenneally et al.
(2015) and Herrera et al. (2018) corresponding to the deep soil
deposits in situ. The adopted shear and normal tractions on the
boundaries to cancel the reflecting waves out were defined as fol-
lows (Lysmer and Kuhlemeyer, 1969):

ts ¼ � rVsCs (18)

tn ¼ � rVnCp (19)

where Vs and Vn are the shear and normal components of the ve-
locity, respectively; r is the density of the medium; ts and tn are
the tractions in the shear and normal directions, respectively; and
Cs and Cp are the S- and P-wave velocities, respectively. To ensure
minimal boundary effects, a block of soil that was 10 m in length,
10 m in width (more than five times larger than the roller length),
and 10m deep (more than six times larger than the roller diameter)
was simulated.
Fig. 7. The ε-insensitive band for a 1D linear SVR.
3. Development of X-SVR for machine learning

The X-SVR approach adopted for machine learning is briefly
introduced to make this paper self-contained. Wang et al. (2020)
demonstrated suitability of the X-SVR algorithm to capture the
nonlinear relationship among numerous parameters; indeed, the
input dataset of X-SVR is mapped into the empirical space by
employing the specified kernel function within the nonlinear
model, which is also the difference compared with linear X-SVR
method (Wang et al., 2020). Furthermore, the X-SVR method can
provide information by offering a sampling scheme regarding the
statistical moments, cumulative distribution functions and proba-
bility density. For readers interested in the detailed derivation of
the algorithm, it is recommended to refer to Wang et al. (2020) for
an in-depth theoretical description of the X-SVR.
3.1. Linear X-SVR

In typical double-class classification, the selected input xtrain ¼
½x1; x2; x3; :::; xm�T˛Rm�n, and the corresponding output ytrain˛R

m,
are considered as the training samples, where n represents the
corresponding input samples, and m denotes the quality of the
selected training dataset. The hyperplane that classifies the classes
are denoted by Vapnik (1999) and Drucker et al. (1997):

bf ðxÞ ¼ xwT � d (20)

where w ¼ ½w1;w2;w3; :::;wn�T˛Rn defines the normal to the hy-
perplane, i.e. the support vector; and d˛R denotes the bias.

Fig. 7 demonstrates the ε-insensitive band for the support vector
regression (SVR) and adopted ε is the tolerance deviation between
the prediction bf ðxÞ and true value ytrain. The linear regression
function Eq. (20) could be alternatively considered as solving the
following mathematical programming problem:

min
w;d;x

*
;x
: C

Xm
i¼1

�
x*i þ xi

�þ 1
2
kwk22 (21a)

s:t:

8>>><
>>>:

yi þ d� xiw
T � x*i þ ε

yi � d þ xiw
T � xi þ ε

x*i ; xi � 0

(21b)

where C˛Rþ :¼ fx˛Rjx> 0g denotes the penalty constant; k ,k2
denotes the L2-norm; and x*i and xi denote the slack variables.

By implementing a similar idea presented in the doubly regu-
larised support vector machine (Dr-SVM) (Wang et al., 2006), both
L1-norm and L2-norm penalties are applied in combinationwith the
hinge loss function. Moreover, a decomposition process (Dunbar
et al., 2010) is utilised to avoid the computation of L1-norm kwk1.
A quadratic ε-insensitive loss function (i.e. lε2ð ,Þ) is also used to
enhance the computational stability of the optimisation problems:

lε2
h
yi �bf ðxiÞi ¼

���� bf ðxiÞ þ yi
���2 (22)

As a result, the governing equation for the X-SVR technique is
simplified formulated as
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minbz ;d :
1
2

�bzTbCbz þ d2
�
þ l2baTbz (23a)

s:t:
�
Ið2mþ2nÞ�ð2mþ2nÞ þ bA �bz þ

�
dbG þ εIð2mþ2nÞ�ð2mþ2nÞ

�bb þ bd
� 02mþ2n

(23b)

where Ið2mþ2nÞ�ð2mþ2nÞ˛R
ð2mþ2nÞ�ð2mþ2nÞ represents an identity

matrix. In addition, to provide the benefits of simultaneously
optimising the location and orientation of the regression model, a
squared bias parameter (i.e. d2) is introduced to the objective
function (Mangasarian and Musicant, 2001; Dunbar et al., 2010).

Alternatively, the dual formulation of Eq. (23) could be used to
solve as

min
4

:
1
2
4TQ4�mT4 (24a)

s:t: 4 � 02mþ2n (24b)

where 4˛R2mþ2n represents the Lagrange multiplier vector; and
m˛R2mþ2n and Q˛Rð2mþ2nÞ�ð2mþ2nÞ are shown in the form of

m ¼ l2

�
Ið2mþ2nÞ�ð2mþ2nÞ þ bA�babC�1 � ε

bb � bd (25)

Q ¼ bC�1�bAþ Ið2mþ2nÞ�ð2mþ2nÞ
�
�
�
Ið2mþ2nÞ�ð2mþ2nÞ þ bA�T

þ bGbbbbT bG
(26)

Since Eq. (23) is convex, the corresponding dual problem could
be effectively solved using any available quadratic programming
(QP) solution to achieve the global optimum of the newly X-SVR
method, which results in the following linear regression function:

bf ðxÞ ¼ ðp� qÞTx� bbT bG4* (27)
Fig. 8. The framework of the nonlinear X-SVR.
3.2. Nonlinear X-SVR

In additional to the method mentioned above, the nonlinear
regression could be fulfilled via an alternative approach known as
the empirical kernel map (Scholkopf et al., 1999; Hofmann et al.,
2008). The applied empirical kernelisation could be shown as

xi ¼
	
xi;1; xi;2; :::; xi;n


T
1bkðxiÞ ¼2

666664

Fðx1ÞTFðxiÞ
Fðx2ÞTFðxiÞ

«

FðxmÞTFðxiÞ

3
777775 ¼

2
666664

kðx1; xiÞ
kðx2; xiÞ

«

kðxm; xiÞ

3
777775 ði ¼ 1;2; :::;mÞ

(28)

where FðxiÞ illustrates the implicit mapping function, which con-
verts the i th input data xi˛R

n into an infinitely dimensional Hilbert
feature space or a higher-dimensional Euclidian space; and bkðxiÞ
illustrates the i th component with the empirical degree m of the
empirical feature vector (Scholkopf et al., 1999). The empirical
feature space is a term given to the m-dimensional vector space
(Xiong et al., 2005). In addition, to build the learning model, the
empirical feature vector bkðxiÞ is utilised as the i th training sample.
The nonlinear X-SVR framework is described in Fig. 8.

Therefore, for a generalised training dataset xtrain and a pre-
selected kernel function kð ,; ,Þ, the initially selected training
samples are transformed through the kernel matrix ktrain˛R

m�m,
which can be expressed as

ktrain ¼

2
664
kðx1;x1Þ kðx1; x2Þ / kðx1; xmÞ
kðx2;x1Þ kðx2; x2Þ / kðx2; xmÞ
« « 1 «
kðxm; x1Þ kðxm;x2Þ / kðxm;xmÞ

3
775 (29)

Furthermore, by employing the kernel matrix ktrain as the
training dataset, the governing equation of the nonlinear X-SVR
could be formulated as

minbzk;d

:
1
2

�bzTk bCkbzk þ d2
�
þ l2baT

kbzk (30a)

s:t:
�bAk þ I4m�4m

�bzk þ �
εI4m�4m þ dbGk

�bbk þ bdk � 04m (30b)

The optimisation program described in Eq. (30) could also be
addressed by applying the Lagrange approach to its dual under the
Karush-Kuhn-Tucker (KKT) conditions. Consequently, the ker-
nelised X-SVR is expressed as

bf ðxÞ ¼ ðpk � qkÞTkðxÞ � bbT
k
bGk4

*
k (31)

The nonlinear counterpart of the X-SVR preprocesses the input
samples by the kernelised function into the empirical space, which
is in contrast to the linear X-SVR. Consequently, the convexity of the
model is well retained since the X-SVR with the kernel is similar to
the linear model with the manipulated input variables (Wang et al.,
2019).

The series expansion of the Gegenbauer polynomial (Wu et al.,
2006; Yin et al., 2016) is applied to the X-SVR as its kernelised
model, and the univariate Gegenbauer polynomials PbdaðxÞ satisfy
the recurrence relation:

Pa0ðxÞ ¼ 1 (32a)



Fig. 9. (a) Soil surface settlement and (b) Drum acceleration response for different
eccentric mass moments.
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Pa1ðxÞ ¼ 2ax (32b)

PbdaðxÞ ¼ 1bd
h
2x

�bdþa�1
�
Pabd�1

ðxÞ�
�bdþ2a�2

�
Pabd�2

ðxÞ
i

�bd ¼ 2;3;4; :::
�

(32c)

where bd˛Zþ
0 :¼ fx˛Zjx � 0g denotes the polynomial sequence,

and a denotes the parameter with a positive value. The Gegenbauer
weight function raðxÞ is orthogonal to the Gegenbauer polynomials
for a given a over x˛½ � 1;1�, which can be described as

Z1
�1

raðxÞPbiaðxÞPbjaðxÞdx ¼ hbiadbibj
�bi; bj ¼ 0;1; :::; bd� (33)

where raðxÞ, hbia and dbibj can be formulated as

raðxÞ ¼
�
1� x2

�a�1
2 (34)

hbia ¼
p21�2aG

�bi þ 2a
�

bi!�bi þ a
�
G2ðaÞ

(35)

dbibj ¼
8<
:

0
�bisbj�

1
�bi ¼ bj� (36)

In Eq. (35), Gð ,Þ denotes the Gamma function. By employing the
strategy utilised for characterising the generalised vector inputs of
the Chebyshev polynomial (Ye et al., 2006; Ozer et al., 2011;
Moghaddam and Hamidzadeh, 2016), the generalised Gegenbauer
polynomials can be demonstrated as

Pa0ðxÞ ¼ 1 (37a)

Pa1ðxÞ ¼ 2ax (37b)

PbdaðxÞ ¼ 1bd
h
2xT

�bdþa� 1
�
Pabd�1

ðxÞ�
�bdþ2a�2

�
Pabd�2

ðxÞ
i

�bd ¼ 2;3;4;.
�

(37c)

where x˛Rn illustrates the column vector of input samples.
Gaussian kernel function has a better capacity to capture the local
information when compared to the initially applied square root
function (Ozer et al., 2011; Cheng et al., 2017), and it is employed as
the weighting function for the generalised Gegenbauer kernel
(GGK). Therefore, the bd th order GGK function kGGK

bdðxi; xjÞ of two
arbitrary input vectors xi and xj is shown as

k
bd
GGK

�
xi; xj

� ¼
Pbdbk¼0

PbkaðxiÞTPbka�xj�
exp

���xi � xj
��2
2g

� (38)
3.3. Selection of the X-SVR model parameters

The X-SVR with GGK has seven hyperparameters, including two
positive kernel scale variables g and a, the polynomial order bd, the
insensitive tube width ε, the penalty parameter C, and two regu-
larisation parameters l1 and l2 (Wang et al., 2019).

Generally, to assure the generalised capability of the high pre-
dicting regression function, the k-fold cross-validation (CV) over
the training samples method is employed (Schölkopf et al., 2002).
This method is also applied in this regression method to elimi-
nating the overfitting. Err5CV is the 5-fold CV error, which is applied
to representing themeasurement of the training error, and it can be
shown as

Err5CV ¼ 1
5

X5
w¼1

errw (39)

where errw is the mean squared error between the prediction value
and the true function value. More specifically, we have

errw ¼ 1
mw

Xmw

6¼1

h
yw;6 � bf w�xw;6�i2 ðw ¼ 1;2; :::; 5Þ (40)

where yw;6 is the 6 th component of yw, mw is the number of
training samples in the fold w, xw˛Rmw�n holds the training samples
of the w th fold, xw;6˛Rn represents the 6 th component of xw, andbf wð ,Þ describes the model prediction in the w th fold. In addition, a
nonlinear programming solver named fmincon was used in the
MATLAB optimisation toolbox as the optimiser engine (Higham and
Higham, 2016), and it is utilised to figure out the minimum of a
constrained non-linear multivariable function. The logic of the
fmincon solver employed in this study is shown below:



Fig. 11. (a) Initial soil settlement and (b) Time-dependent soil displacement.
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min :
x

f ðxÞ (41a)

s:t:

8>>>><
>>>>:

A,x � b

Aeq,x ¼ beq

cðxÞ � 0

ceqðxÞ ¼ 0

lb � x � ub

(41b)

where f ðxÞ, cðxÞ and ceqðxÞ are the nonlinear functions; x0 is the
initial guess; Aeq and A are the matrices, which represent linear
equality constraints and linear inequality constraints, respectively;
beq and b are the vectors which are linear equality constraints and
linear inequality constraints, respectively; and ub and lb are a set of
upper bound and lower bound on the design variables in x,
respectively. It should be noted that x, lb and ub can be scalar or
vector. Additionally, it is required to consider three aspects of using
fmincon function for the optimisation approach: (i) objective
function, (ii) constraints, and (iii) the determination of initial
values. Appropriate selection of the initial values allows the fmincon
function to achieve a desired optimal solution.

4. Results and discussion

To better understand the response of roller sitting on the geo-
material subjected to drum vibration, impacts of amplitude, drum
frequency, weight of roller and the soil characteristics were inves-
tigated. This section also demonstrates the results of the training
datasets from the developed inverse solver using a novel kernel-
based machine learning technique to determine the soil proper-
ties according to the acceleration response of the roller and roller
characteristics.

4.1. Effects of vibration amplitude of the drum

Vibratory eccentric force amplitude, a fundamental parameter
in the compaction process, directly impacts the compaction quality.
Therefore, the eccentric mass moment varying from 1 kg m to
9 kg m was adopted to assess the influences of the excitation force
amplitude on the interaction between drum and soil. Fig. 9 shows a
predicted example corresponding to different eccentric force am-
plitudes for the soil relative density of 60%while keeping a constant
mass of drum (i.e. 10,000 kg) and a constant frequency (i.e. f ¼ 25
Hz). The compacted soil surface and the vibratory drum kept
Fig. 10. Soil settlement vs. dynamic time for different vibration frequencies.
continuous contact throughout the entire vibration period. It
should be cognizant that a lower eccentric mass moment is
frequently used for the finishing passes and proof rolling to prevent
over compaction, while a higher eccentric mass moment provides
larger excitation force amplitudes at the initial stage of construction
to achieve a higher degree of compaction (Kenneally et al., 2015).

Fig. 9a demonstrates the time history of soil surface settlement
beneath the drumwith various eccentric mass moments. Referring
to Fig. 9a, the cumulative soil settlement gradually increased as a
result of cyclic loading with the highest settlement observed when
m0e0 ¼ 9 kg m, and a reduction in geomaterial settlement was
observed as a result of a reduction in the eccentric mass moment,
similar to observations from other studies (Masad et al., 2016; Ma
et al., 2021). Because of the constant weight of the roller and
operation frequency, the excitation force was directly influenced by
the eccentric mass amplitude, where amplified eccentric mass
moment corresponded to the increased acceleration experienced
by the drum, as observed in Fig. 9b. Indeed, for the adopted case
here, to achieve a higher degree of compaction, a high eccentric
mass moment from the vibratory drum could help increase the soil
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compression level and vice versa. However, as Kenneally et al.
(2015) suggested, high eccentric masses should be avoided in the
finishing passes, which would induce irregular drum behaviour
caused by bifurcation of the chaotic jump for the densely com-
pacted underlying soil.
4.2. Effects of vibration frequency of the drum

The choice of vibratory roller frequency is crucial for soil
compaction (Wersäll et al., 2017). In this study, the operation fre-
quency of the vibratory roller was altered between 20Hz and 35Hz.
For example, prediction for RD ¼ 60%, corresponding to the unit
weight of 17.4 kN/m3, while the mass of the roller was equal to
10,000 kg and the eccentric mass moment was equal to 5 kg m, is
presented in Fig. 10. Referring to Table 3 for the corresponding soil
parameters, the average shear wave velocity (S-wave) and
compressional wave velocity (P-wave) of the soil deposit at pref ¼
100 kPa were 238.4 m/s and 389.3 m/s, respectively. The first nat-
ural frequency of underlying properties (i.e. Vp=ð4HÞ), considering
the roller influence depth of 0.6e1 m (Adam, 2007), was estimated
to be 97e162 Hz, which is well above the adopted vibration fre-
quency of the drum, and thus no resonance condition was
observed.

Fig. 10 presents the surface displacement of the compacted
subgrade with dynamic time as a function of changing vibratory
roller operation frequency. The results exhibit that an increase in
the operation frequency led to increased compacted soil settle-
ment. Numerical predictions show that the highest degree of soil
compaction for the adopted sandy soil was achieved when the
frequency was equal to 35 Hz, which illustrated that the roller could
achieve the optimum compaction when the roller frequency was
closer to the first mode natural frequency of the ground, which is
consistent with observations made by other researchers (Masad
et al., 2016; Wersäll and Larsson, 2016). Referring to the case with
a drum vibration frequency of f ¼ 35 Hz as in Fig. 10, the initial soil
displacement due to roller static gravity load was 7.7 mm, and the
maximumvertical displacement reached 25.9 mm at the end of the
dynamic phase, and then resumed to 23.98 mm permanent set-
tlement after removing the roller. The compacted soil bounced back
2 mm, which was well less than the initial settlement of 7.7 mm,
which clearly shows that the unloading phase comprised only
elastic deformation, whereas the initial loading stage subjected to
the weight of the roller included both plastic and elastic
components.

Fig. 10 explains that the plastic deformation increases due to soil
settlement on each dynamic loading cycle as the dynamic duration
raises. The irreversible deformation of the selected sandy material
Fig. 12. Drum acceleration vs. dynamic time for different roller masses.
reveals that the soil yield stress has gradually increased (Xu et al.,
2022). Indeed, the excitation frequency near the natural fre-
quency of compacted soil (i.e. f ¼ 35 Hz in this study) resulted in
more soil compaction and ground settlement as expected (Pietzsch
and Poppy, 1992). Thus, as the vibration frequency reduced (less
than the first mode natural frequency of the ground), the cumula-
tive soil displacement decreased, as shown in Fig. 10.

4.3. Effects of roller mass

The mass of the roller (mr) was incrementally changed from
6000 kg to 20,000 kg to investigate its effects on the drum-soil
interaction. As an example of results corresponding to the soil
relative density of RD ¼ 60%, the impacts of the mass of the roller
are presented in Fig. 11, while the frequency of vibratory roller was
equal to 25 Hz and the eccentric mass momentwasm0e0 ¼ 5 kgm.
Fig. 11a illustrates the impacts of the roller mass on the initial soil
displacement because of the weight of the roller and cumulative
soil displacement after 10 cycles of loading. Moreover, Fig. 11b
demonstrates the accumulated soil settlement varying with dy-
namic time for the 12,000 kg roller, which obviously examines how
the cumulative plastic deformations in the soil gradually increased.

The initial settlement due to gravity loading alone for the
heavier roller (i.e. 20,000 kg roller, 22.5 mm initial settlement) was
more than the initial settlement for the lighter roller (i.e. 6000 kg
roller, 4 mm initial settlement) because of the enhanced static
pressure implemented to the compacted soil. For the 12,000 kg
roller with operation eccentric mass moment m0e0 ¼ 5 kg m
(Fig. 11b), the unloading soil displacement (i.e. 2.25 mm) due to the
roller removal was smaller than the initial displacement (i.e.
9.85 mm) induced by the self-weight of the roller, highlighting that
the initial settlement included both plastic and elastic components.
Referring to Fig. 12, the lightest 6000 kg roller had the highest ac-
celeration responses and caused the highest values of the cumu-
lative soil displacement after the completion of roller compaction.
The predictions indicate that with increasing roller acceleration,
the total settlement of compacted soil increased, and it is consistent
with the observations made by Cao et al. (2010). For a given cen-
trifugal force, the added weight of the roller lowered the roller
acceleration and vibratory compaction.

4.4. Evaluation of the machine learning method

To illustrate the feasibility of using machine learning to back
calculate the soil stiffness based on the drum acceleration response,
the comprehensive results from the 3D numerical modelling were
used. The newly proposed generalised Gegenbauer, a series
expansion of the Gegenbauer polynomial (Stein and Weiss, 2016),
was implemented herein as the kernel for the X-SVR method to
train and test the experimental data. In this study, there were 1405
sets of data from the 3D numerical method, which were used to
examine the ability of machine learning to determine compacted
soil stiffness. Among them, 405 sets of data (around 30% of the total
datasets) were randomly selected to train the network, and 1000
sets of data (around 70% of the total datasets) were used to test the
trained network. It should be noted that several research studies
utilised a large portion of data for testing and evaluation. For
example, the selection of 30% training data and 70% testing data
was employed by Lin et al. (2017) for target classification through a
convolutional highway unit which is a novel architecture devel-
oped based on the convolutional neural network (CNN), and the
classification accuracy of the model could reach 94.47%. In addition,
experimental data by Zainudin et al. (2016) were split into different
distributions of training and testing data under different machine
learning classification techniques. They showed that the data group



Fig. 13. Comparison of finite element results (experiment) with machine learning
outputs (estimated) for (a) training data and (b) testing data.
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of 30% training and 70% testing had the best results for predictions
under the decision tree and random forest (RF) classification
techniques, and the data group of 20% training and 80% testing had
the best precisions for classification techniques of Naïve Bayes and
support vector machine.

The influence depth of compacted soil is primarily contingent
upon the operating parameters, dimensions, as well as weight of
the roller (Fathi et al., 2021a). Adjusting various independent
operating settings of the employed rollers by the driver, such as
frequency and eccentric mass moment, can directly impact the
progress in compaction and quality of compaction (Pietzsch and
Poppy, 1992). In addition, the acceleration response of the roller
is closely related to compaction level, impacting the soil stiffness
(Hua et al., 2018). Indeed, to assess the real-time stiffness extraction
of the proposed numerical model based on the vibration response
of the roller drum, the four physical parameters were selected as
the machine learning inputs, including: (1) the acceleration vs.
dynamic time of drum (€zd or ad), (2) frequency of dynamic loading
(f ), (3) ratio of eccentric mass to drum length (Rel ¼m0e0= l) and (4)
ratio of roller mass to drum length (Rml ¼ M=l), while the
unloading/reloading modulus (Eur) was selected as the output. It
should be noted that these input parameters can be directly
collected from the roller during compaction. Thus, in real practice,
engineers can use the developed machine learning technique to
determine equivalent properties of the soil below the roller within
the influence depth of the roller. Additionally, roller operation pa-
rameters (f , Rel and Rml) are independent and can be decided or
controlled by the manufacturer or operator, and drum acceleration
response (€zd �td) is influenced by the compacted soil characteris-
tics. These input parameters can be directly collected from the
roller without requiring further data from the soil. Moreover, to
cover a wide range of vibratory roller characteristics, the applied
excitation frequencies varied from 20 Hz to 35 Hz, with roller mass
ranging from 5000 kg to 20,000 kg and the excitation force induced
by the eccentric mass moment was set from 1 kg m to 9 kg m.
Furthermore, to confirm the accuracy of the established machine
learning method, the root mean square error (RMSE), coefficient of
determination (R2) and relative error (RE)were calculated from the
following equations:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
s

Xs
i¼1

ðyi � byiÞ2
vuut (42)

R2 ¼ 1�
P

ið � yi þ byiÞ2P
i
�� y

� þ byi�2 (43)

RE ¼ by � y
y

� 100% (44)
Table 4
Comparisons of the performance of adopted machine learning techniques with different

Kernel function RMSEtrain R2train REtr

Gegenbauer 7.3109 � 101 0.999996 0.00
Linear 6.0993 � 103 0.968795 0.26
Polynomial 6.2967 � 103 0.966725 0.28
Gaussian 7.2005 � 102 0.999568 0.01
Exponential 1.0801 � 102 0.999973 0.00
where y, by and y
�

denote the values of benchmark, prediction and
the mean of the true values, respectively; while s denotes the
number of samples.

To assess the accuracy of the machine learning technique for
real-time feedback control, the adopted machine learning function
should result in a high coefficient of determination on training and
testing experimental data. The root means square error (RMSE),
coefficient of determination (R2) and relative error (RE) for the
cases using different kernels, including the Gegenbauer kernel,
linear kernel, polynomial kernel, Gaussian kernel and exponential
kernel, are presented in Table 4. The training and testing unloading/
reloading moduli (Eur) exhibited the best correlation with the
kernel functions.

ainð%Þ RMSEtest R2test REtestð%Þ
044 7.7336 � 102 0.999485 0.5115
537 7.9158 � 103 0.9487 0.61204
918 7.9367 � 103 0.947896 0.55768
186 1.1838 � 103 0.998782 0.16686
262 2.4892 � 103 0.994455 0.30239



Fig. 14. The relative errors of the machine learning predictions adopting Gegenbauer
kernel for (a) training data and (b) testing data.

Fig. 15. Coefficient of determination and root mean square error of machine learning
method with Gegenbauer kernel vs. number of loading cycles.

Fig. 16. Comparison of finite element results (experiment) with machine learning
outputs (estimated) on three loading cycles for (a) training data and (b) testing data.
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experimental data with the Gegenbauer kernel and the coefficient
of determination for training and testing data with the Gegenbauer
kernel were 0.999996 and 0.999485, respectively (Fig. 13a). In
addition, the relative error of the adopted machine learning
method with the Gegenbauer kernel function exhibited the lowest
value, which is also reported in Fig.14. The average relative errors of
the adopted machine learning process with the Gegenbauer kernel
method for training and testing data were less than 0.00044% and
0.512%, respectively, indicating the adopted model had high pre-
cision for both training and testing data. The average computation
time of each numerical modelling case using selected parameters
for the X-SVR algorithm with the Gegenbauer kernel function was
0.2 s (Local workstationwith 8 Intel Core i7-6700 - 3.4 GHz cores e
32 GB RAM e 1 TB hard-drive), which makes the machine learning
technique suitable for real-time quality control by practising en-
gineers on site.

The proposed X-SVR method in this study can be theoretically
formulated as a QP problem, which can efficiently capture the
global optimum because of its strong convexity related to the QP
problem. Furthermore, the developed scheme has been integrated
with advanced kernels (e.g. GGK in this study) and an optimisation
toolbox to improve the efficiency and robustness of solving engi-
neering problems (Wang et al., 2020). In comparison to the con-
ventional SVR method, X-SVR can establish a higher-accuracy
regression model between the inputs and outputs by utilising
identical sizes of training datasets. This study applied the ANN
model for comparing its performances with the adopted X-SVR. The
accuracy of the predictive capacity (R2) of the ANN approach for
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training and testing experimental data were 0.996423 and
0.953048, respectively, and the adopted X-SVR with GGK function
represented the better training and testing unloading/reloading
moduli with 0.999996 and 0.999485, respectively. In addition, the
average relative errors of the adopted model in the study for
training and testing data were less than 0.00044% and 0.512%,
respectively, which is better than ANN for training and testing data,
which were 0.04072% and 0.53%, respectively. While this study has
clearly highlighted the great potential of machine learning in IC,
further studies to assess the potential use of othermachine learning
algorithms, such as the multi-layer perceptron (MLP) feed-forward
neural network model (Fathi et al., 2021b), machine learning sup-
port vector machine algorithm (Zhang et al., 2021) and RF and ANN
hybrid machine learning algorithm (Fathi et al., 2019) are also
recommended.

4.5. Effects of the number of loading cycles on predictions using
machine learning

Evaluating the minimum required time duration to collect drum
acceleration data as input for machine learning training and pre-
dictions of the unloading/reloading modulus (Eur) in real-time
depends on the vibration frequency of the drum. The results of
each loading cycle were analysed thoroughly, and Fig. 15 summa-
rises the accuracy of predictions considering the number of loading
cycles used for developing a machine learning inverse solver.
Referring to Fig. 15, the coefficient of determination gradually
increased due to the increased number of loading cycles used for
back calculation, and after three loading cycles, minor changes in R2

and RMSE were observed. According to the implemented machine
learning analyses, the results indicated that applying X-SVR with
GGK when the number of utilised loading cycles was equal to or
larger than three was reasonable.

Fig. 16 shows the comparison of estimated and experimental
unloading/reloading moduli (Eur) when three loading cycles were
used in the machine learning process for training data and testing
data, confirming acceptable coefficient of determination R2.
Therefore, the minimum field time interval needed to use for real-
time determination of Eur using the X-SVR method with the
Gegenbauer kernel can be calculated by

Ti ¼ Nc
1
f

(45)

where Ti and Nc denote the minimum input working period for
satisfactory machine learning precision and the minimum number
of loading cycles (determined to be Nc ¼ 3 as in Fig. 16), respec-
tively. This study can be used as preliminary research for properly
choosing training data and efficiently back-calculating the soil
unloading/reloading modulus in real time during the compaction
process. Thus, the proposed machine learning technique can be
used as feedback control, which can be used as potential guidance
by practising engineers for determining the soil unloading/
reloading modulus to be used for quality assurance.

In this study, total stress analysis was used, and the back-
calculated soil stiffness is for the entire soil matrix representing
the equivalent value as it is in situ and in the total stress domain.
Soil water content impacts the soil stiffness characteristics and the
response of the roller. It is recommended that more rigorous soil
constitutive models for unsaturated soils should be adopted for
future research studies; for example, advanced constitutive models
such as the extended Barcelona model (BBMx) (Pedroso and Farias,
2011), Barcelona basic model (BBM) (Alonso et al., 1990) and SFG
model (Sheng et al., 2008) can be the options to be explored in
future research studies. Moreover, Ng et al. (2020) adopted a
modified HS-Small model by incorporating suction effects on soil,
and such an option can also be considered. Furthermore, since a
single layer soil was adopted in the finite element modelling in this
study, the results can be used as a preliminary evaluation of the
equivalent soil parameters below the roller. Further studies are
required to obtain the individual soil layer stiffness values for
multi-layer soil profiles.

5. Conclusions

IC technology has emerged to provide uniform and high-quality
compaction with real-time feedback. As an integrated mechanism,
themagnitudes of roller parameters can be initiatively optimised to
achieve the most efficient compaction effort. Many of the existing
models employed simplified soil models as well as discrete dy-
namic analysis, while they cannot model hysteretic damping,
stiffness degradation, cyclic loading and dissipative properties of
the geomaterials. Since the continuum nature of the geomaterials
cannot be explicitly described by mass-elastic spring-linear
dashpot system often used in the literature, accurately back
calculation of the real soil parameters during the compaction pro-
cess remains a great challenge for practising engineers.

This paper presented details of a 3D numerical model to simu-
late the interaction between the vibratory roller drum and the soil
beneath to be used for real-time back calculation of the soil stiff-
ness. The effects of the amplitude, frequency and the weight of
roller were assessed numerically and used to develop a compre-
hensive database for machine learning. The database was used to
train the inverse solver using a newly proposed kernel-based X-SVR
approach to predict the unloading/reloading modulus of underly-
ing geomaterial according to the acceleration response of the drum
during compaction.

In this study, to numerically estimate the dynamic behaviour of
the soil-drum system, numerical modelling via PLAXIS 3D was
adopted. Indeed, more than a thousand 3D dynamic analyses were
implemented to assess the influences of different drum parameters
on the drum response and soil deformations during compaction.
The modified model adopted a typical drum size based on the
practice in Australia, which was 2.1 m in length and 1.5 m in
diameter, sitting on uniform soil. The adopted HS-Small constitu-
tive soil model was able to evaluate the nonlinear stress-strain
response of the soil subjected to cyclic loading, particularly varia-
tions of damping and soil stiffness with shear strain. The charac-
teristics of compacted soil used in the numerical modelling were
very diverse, covering a wide range from loose to dense states of
granular soils, corresponding to relative densities of 20%e90%.

The FEM predictions showed that the eccentric force amplitude
greatly impacted the soil surface settlement right below the drum.
Indeed, an eccentric mass m0 rotating along the axle of the drum
with an effective moment arm e0 induced the centrifugal force
corresponding to m0e0 altering between 1 kg m and 9 kg m in this
study. When the constant weight of the roller and operation fre-
quency was applied, the excitation force was directly influenced by
the eccentric mass amplitude. Therefore, a higher degree of
compaction could be achieved by adopting a high eccentric mass
moment. Considering the importance of the frequency of roller
vibration in the compaction process, this study also investigated
the effects of operation frequency in the common range of 20e
35 Hz. The simulated results showed that the vibratory compaction
could result in more compaction effort when the roller frequency
was closer to the natural frequency of the soil.

The newly proposed kernel-based X-SVR method integrated
with the IC system was proposed in this paper for real-time
extraction of underlying soil modulus during compaction. The
proposed method could predict the soil stiffness based on the X-
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SVR algorithm with the Gegenbauer kernel using the acceleration
response of the drum and basic roller properties. Both training and
testing unloading/reloading moduli (Eur) obtained from the ma-
chine learning method correlated well with the 3D finite element
predictions considering the nonlinear elastoplastic soil model and
dynamic soil-drum interaction. It is evident that the inverse solver
developed in this study could predict the soil stiffness utilising the
novel kernel-based X-SVR machine learning accurately and in the
reasonably short time required for real-time quality control by
practising engineers.
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List of symbols

C Penalty constant
Cp P-wave velocity
Cs S-wave velocity
c Soil cohesion
ci Cohesion of interface
cf Suspension damping (MN s/m)
cs Cohesion of soilbd Order of the polynomial
e0 Arm of the rotating mass
errw Mean squared error
E50 Primary deviatoric loading (kPa)
Eref50 Secant stiffness when pref ¼ 100 kPa
ED Dissipated energy
Eoed Tangent stiffness (kPa)
Erefoed Tangent stiffness when pref ¼ 100 kPa
ES Cyclic maximum strain energy in a single load cycle
Eur Unloading and reloading stress-dependent stiffness from

the drained triaxial test (kPa)
Erefur Unloading/reloading stiffness related to the reference

pressure (pref ¼ 100 kPa)
Fc Drum-soil system contact force (kN)
Fecc Centrifugal force (kN)
f Frequency of vibratory drum
G0 Small-strain shear stiffness
Gref
0 Shear modulus at the reference pressure (pref ¼ 100 kPa)

Gi Shear modulus of interface
Gs Secant shear stiffness
Gsoil Shear modulus of soil
Gt Small strain tangent shear modulus
Gur Unloading/reloading shear modulus
I Identity matrix
g Gravitational acceleration (9.81 m/s2)
Knc
0 Stress ratio in primary compressionbkðxiÞ The ith training sample for constructing the learning

model
kf Suspension stiffness (MN/m)
l Length of the drum
M Mass of the roller
m Power for the stress-level dependency of the soil stiffness
m0 Equipment rotating mass (kg)
md Drum mass (kg)
mf Frame mass (kg)
mr Roller mass (kg)
Nc Minimum number of loading cycles
pref Reference pressure (pref ¼ 100 kPa)
q Deviatoric stress
qa Asymptotic value of the shear strength
R2 Coefficient of determination
Rel Ratio of eccentric mass to drum length
Rf Failure ratio
Rinter Interface strength reduction factor
Rml Ratio of roller mass to drum length
s Number of samples
Ti Minimum input working period for superior machine

learning precision
t Time (s)
tn Tractions in the normal direction
ts Tractions in the shear direction
Vn Normal component of velocity
Vs Shear component of velocity
w Support vector
x Column vector of input variables
y Values of benchmarkby Prediction
y
�

Mean of the true values
zd Displacement of drum
_zd Velocity of drum
€zd Acceleration of drum
zf Displacement of frame
_zf Velocity of frame
€zf Acceleration of frame
a Constant value (a ¼ 0.385)
Gð ,Þ Gamma function
g0:7 Shear strain when Gs is reduced to 0.7 G0
gc Shear strain
d Bias
ε1 Vertical strain
x Hysteretic damping ratio
xi Allowable negative deviation
x*i Positive excessive deviation
r Density of medium
s3 Minor principal stress
st Tensile strength
FðxiÞ Implicit mapping function
4 Lagrange multiplier vector
4 Friction angle
4s Friction angle of soil
4i Friction angle of interface
js Dilation angle of soil
ji Dilation angle of interface
u Angular frequency (Hz)
k,k2 L2-norm
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