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With the rapid development of deep learning, automatic image recognition is widely used in
medical development. In this study, a deep learning convolutional neural network model
was developed to recognize and classify chronic cervicitis and cervical cancer. A total of
10,012 colposcopy images of 1,081 patients from Hunan Provincial People’s Hospital in
China were recorded. Five different colposcopy image features of the cervix including
chronic cervicitis, intraepithelial lesions, cancer, polypus, and free hyperplastic squamous
epithelial tissue were extracted to be applied in our deep learning network convolutional
neural network model. However, the result showed a low accuracy (42.16%) due to
computer misrecognition of chronic cervicitis, intraepithelial lesions, and free hyperplastic
squamous epithelial tissue with high similarity. To optimize this model, we selected two
significant feature images: chronic cervicitis and cervical cancer to input into a deep
learning network. The result indicates high accuracy and robustness with an accuracy of
95.19%, which can be applied to detect whether the patient has chronic cervicitis or
cervical cancer based on the patient’s colposcopy images.
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INTRODUCTION

Cervical cancer is one of the most common gynecological malignancies with high mortality in
women worldwide (Arbyn et al., 2020). According to 2020 Global Cancer statistics, cervical cancer
ranks in the top four for both incidence (6.5%) and mortality (7.7%) among women (Sung et al.,
2021). In recent years, the incidence of cervical cancer is declining in some developed countries.
However, it is still high in developing countries. In China, the incidence of cervical cancer tends to be
younger (Zhu et al., 2019). Chronic cervicitis is defined as the inflammation of the cervix. Patients
with chronic cervicitis are very common (Woods et al., 2011; Hester and Middleman, 2019). Early
screening for cervix precancerous lesions is essential to prevent or treat cervical cancer.

At present, colposcopy is the most commonly used cervical screening method for prescreening
cervical cancer, especially in some underdeveloped areas (Holme et al., 2017; Mezei et al., 2017).
However, as a visual diagnosis method, the diagnosis process of colposcopy is mainly dependent on
the doctors’ experience, which has strong subjectivity and poor repeatability (Wentzensen et al.,
2017; Hu et al., 2019; Guo et al., 2020). In addition, cervical cancer is a large-scale screening disease
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and has a huge workload, which leads to a certain possibility of
missed diagnosis and misdiagnosis by medical workers (Zhang
et al., 2020).

With the rapid development of deep learning, automatic
diagnosis of lesions is being widely used in computer-aided
diagnosis systems (Mehlhorn et al., 2012; Peng et al., 2021).
The application of deep learning convolutional neural networks
in colposcopy image analysis has been reported as an effective
way to recognize the automatic diagnosis of cervical cancer and
other pathology classification (Sato et al., 2018;Miyagi et al., 2020;
Yan et al., 2021; Fu et al., 2022). Therefore, we attempted to
develop and test a deep learning convolutional neural network
model to recognize the classifications of different colposcopy
images so as to detect whether the patient has chronic cervicitis or
cervical cancer.

MATERIALS AND METHODS

A deep learning convolutional neural network model is proposed
to recognize and classify whether the patient has chronic cervicitis
or cervical cancer in this research, Figure 1 illustrates the process
of the workflow diagram of a deep learning classification model.
The process stages are introduced as follows:

1. Resizing colposcopy images: Each original image from the
hospital is around 10–20 MB with pixels (6,000 * 4,000), which
contains more than 100 GB images in total. This is too large to
process, so we resized each image to 500 KB with the same
pixels and kept the quality as much as we could, eventually, the
total size of all the images was reduced to 5GB, which was
much faster to compute.

2. Extract colposcopy images: In the datasets, each patient has
about 10 images recorded, some of them are duplicated and
redundant and some of them are blurry and unclear. In order
to improve the accuracy of the classificationmodel, we selected
the most significant image for each patient. In this stage, 1,081
images were selected from 10,012 colposcopy images.

3. Extract features. There are five features extracted from the
clinical record for each patient, which include chronic
cervicitis, intraepithelial lesions, cancer, polypus, and free
hyperplastic squamous epithelial tissue for the cervix. All
the images are allocated into different classes. The two
most significant features are chronic cervicitis and cervical
cancer.

4. Design a deep learning network: A deep learning
convolutional neural network was designed to classify
different classes of images. This network included eight
layers including one image input layer, two convolution

FIGURE 1 | Workflow diagram of the deep learning classification model.

FIGURE 2 | Sample image of different features.
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layers, two relu layers, one fully connected layer, one softmax
layer, and one classification layer.

5. Train and validate the designed deep learning network: Five
classes of images with different features were trained and
validated, and the result indicated that the accuracy of the
classification model was 42.16%, which was low, accurate, and
unreliable. The reason was investigated, as a few images of
chronic cervicitis, intraepithelial lesions and free hyperplastic
squamous epithelial tissue were highly similar. Computer
misrecognized them and hardly classified the features. To
optimize this model, we selected the class of chronic
cervicitis, as this class has the most numbers of patients,
and selected the class of cancer, as this class has the most
serious patients. We input these two classes of images into our
designed deep learning network and process the training and
validation. The result indicates that the accuracy of the
classification model is 95.19%, which is highly accurate and
robust.

Datasets
The dataset we used in the article is from Hunan Provincial
People’s Hospital in China, which contains 1,081 patients. About
10 colposcopy images have been recorded for each patient, and
there are 10,012 images in total. Patients’ clinical reports
associated with images have been generated. Five different
features have been extracted including chronic cervicitis,
intraepithelial lesions, cancer, polypus, and free hyperplastic
squamous epithelial tissue for the cervix. Figure 2 illustrates a
sample image of each feature.

Deep Learning Classification Model
A deep learning convolutional neural network is a network class
which is usually used to process images. The convolutional neural
network consists of multiple layers of neurons. Neurons are
algorithms in mathematics, which processes multiple weighted
inputs to generate an activation value of outputs.

We have designed a deep learning network to classify image
features. This network contains eight layers with seven
connections, including one image input layer, two convolution
layers, two relu layers, one fully connected layer, one softmaxFIGURE 3 | Structure of the proposed deep learning network.

TABLE 1 | Descriptions of network layers.

Network layer Description

Image input layer To input and normalize images into a network
Convolution layers To learn and recognize images patterns. It is the main block

for convolutional neural networks
Relu layers Relu (Rectified Linear Unit) is one of the activation functions,

which outputs the positive part of the input
Fully connected
layer

To connect previous layer with all the inputs to all the
activation value in the next layer

Softmax layer To turn the value between 0 and 1
Classification layer To compute the class number from the input size
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layer, and one classification layer. The structure of the network is
displayed in Figure 3, and the descriptions of each layer have
been introduced in Table 1. The image input layer converted the
image pixels into 227*227 and normalized image data. The
convolution layer produced 32 filters with filter sizes [3 3].
The relu layer produced the same value as the input when the
input value is not less than 0, otherwise it produced 0. The fully
connected layer connected all the inputs from the previous layer,
the number of outputs needs to be set up based on the number of
classes. A softmax function was generated in the softmax layer.

The classification layer was used to weight the elements and
generated the cross-entropy loss to classify the features.

RESULTS AND DISCUSSION

In this research, we have five classes of images with different
features. Initially, we inputted these five classes of images into the
designed deep learning network to train and recognize the
images. After the training process was validated, a

FIGURE 4 | Process of training and validation for all classes.

FIGURE 5 | Examples of similar images of different features.

FIGURE 6 | Process of training and validation for chronic cervicitis and cancer classes.
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classification model was developed to classify images accurately.
This model can be used to determine which feature the patient
has according to the patient’s colposcopy images. In the training
process, we selected 70% images for training and 30% images for
validation randomly. The result presented that classification
accuracy was only 42.16% which is presented in Figure 4, due
to some high similarity images occurring in the class of chronic
cervicitis, intraepithelial lesions and free hyperplastic squamous
epithelial tissue. Figure 5 presents the example of similar images.

We inputted these two classes of images into the network and
assigned 70% images for training and 30% images for validation
randomly. Figure 6 displays the process of training and
validation. At the top diagram, the blue line indicated the
smoothed training data for accuracy, the grey line indicated
training data for accuracy, and the dotted black line is for the
validation of accuracy. At the bottom diagram, the red line
indicated the smoothed training data for loss. The pink line
indicated training data for loss, and the dotted black line is for the
validation of loss. The result indicate that the accuracy of this
model is 95.19% which is much higher than the previous model.
We believe this deep learning convolutional neural network based
on classification model is high, accurate, and robust, which can be
applied to detect whether the patient has chronic cervicitis or
cervical cancer based on the patient’s colposcopy images.

CONCLUSION

This present research proposed a deep learning convolutional
neural network model for recognition and classification of
chronic cervicitis and cervical cancer with colposcopy
images. Initially, five classes of colposcopy images with
different features which contained chronic cervicitis,
intraepithelial lesions, cancer, polypus, and free hyperplastic
squamous epithelial tissue were used in deep learning network.
Due to high similarity of chronic cervicitis, intraepithelial
lesions and free hyperplastic squamous epithelial tissue, the
features of these images were misrecognized by the network,
which resulted in low accuracy of the classification model. Then

two significant features images were selected to train and
recognize by our deep learning network model. The result
showed high accuracy and robustness. Compared with
previous network recognition, the proposed deep learning
model is effective and has promising prospects, which
provide an effective detection way of chronic cervicitis and
cervical cancer based on the patient’s colposcopy images.
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