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Abstract on the recognition oprimitive actions such as running,
jumping, waving and similar basic actions which can be
Human action recognition can be approached by combirsed as a dictionary for the modelling of more complex
ing an action-discriminative feature set with a classifieactions. Many data sets have been publicly released and
However, the dimensionality of typical feature sets joimntensely utilised for research, including Weizmarii, [
with that of the time dimension often leads to a curse-dfTH [ 16], HumanEva [ 7] and, more recently, MuHAVi
dimensionality situation. Moreover, the measurement [&].
the feature set is subject to sometime severe errors. ThiFhe first step for recognition consists of extracting an
paper presents an approach to human action recognig@fion-discriminative feature set. Typical feature sets-c
based on robust dimensionality reduction. The obsergsst of either global o local features4). Global rep-
tion probabilities of hidden Markov models (HMM) argesentations imply the localization of the actor(s) and
modelled by mixtures of probabilistic principal compotheir subsequent representation based on shapes, silhou-
nents analyzers and mixturestediistribution sub-spaces,ettes, edges, splines or other. Local representations de-
and compared with conventional Gaussian mixture magct spatio-temporal interest points and use local patches
els. Experimental results on two data sets show that giound these points to compute local descriptdid. [
mensionality reduction helps improve the classificati®ince the number of local features in each frame and se-
accuracy and that the heavier-taitedistribution can help quence is variable, histograms are used to convert the
reduce the impact of outliers generated by segmentatigiracted local features to fixed-length feature sets (his-
errors. togram of oriented spatial gradient (HOG), histogram of
optical flow (HOF) etc) suitable for use with statistical
classifiers 11]. A single histogram may be computed
1 Introduction over the entire frame sequence, or the frame sequence
may be partitioned with a temporal grid and a histogram

Automated recognition of human actions has garnered @@mputed over each temporal segment. Local represen-
creasing interest in recent years for its potential usefign tations have gained momentum in recent years for their

in video surveillance systems, human-computer inter&ttong recognition performance, 14].

tion, multimedia annotation and other applications. A Once the feature set for the sequence is available, the
single, encompassing definition of “human action” is natassification problem can be solved by direct classifica-

possible since human actions entail varied levels of cotien (using conventional classifiers such as nearest neigh-
plexity and different semantics, from basic gestures uphiours, support vector machine or any others), or by tem-

articulated, composite actions. A noticeable trend in hperal state models which assume that the joint probability

man action recognition research has been that of focusofghe measurements can be simplified by use of latent-
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state dynamics. In a temporal state model, each state @y reduction and the selected techniques. Section 3 de-
resents a phase of the action and the transitions betwseribes the data set and the experimental set-up, while
states are governed by the assumed dynamics; at tiSsction 4 presents and discusses the results. Eventually,
turn, measurements are explained by state-conditionahclusive remarks are addressed relating to this work and
likelihoods. Temporal state models have been criticisés current extensions.
in various ways as either being too rigid or unrealistic.
However, one can see that they capture the full temporal
nature of the action better than any other approaches s(i)zce Classification of time series
the feature set is measured at every frame rather than ofice
for the entire sequence or over a grid of arbitrary size.
Nevertheless, a challenge to these classifiers is posedkgtistical properties of multivariate time series such as
the combined dimensionality of the feature set, s&y, O = {o1,...,0t,...,or} can be described by probability
and that of the number of frameg, leading to a possible density functionp(O) = p(o, ..., 0, ...,or). Yet, such
curse-of-dimensionality situation. For instance, for an a2 joint probability of all the observations (each, in turn,
tion instance occurring over 10 seconds, with a frame r&@ing ar-dimensional random variable) is regarded as
of 25 fps and a feature set wifh = 100 dimensions, the intractable or impractical. Therefore, the joint probabil
joint dimensionalityZ” - P is equal to 25,000. As muchity is often factorised into smaller terms, and conditional
as conditional independences may be assumed along taggpendencies between observations are explored. How-
the feature space and time, the actual dimensionality g¥€r, conditional independencies between observations
mains huge_ As an additional pr0b|em’ the chained eval€ hard to model in general and alternative models based
uation typical of temporal state models may fail in then the notion of latent, or hidden, states have been pre-
presence of outliers. ferred. Common models are based on two assumptions:
In this work, we stress the importance of designing eb) observations are mutually independent if conditioned
fective state-conditional observation likelihoods to mveOn the states that have “generated” them, and 2) dynamics
come the aforementioned prob|em5_ We propose to lggéhe model is explained by the transitions between states
dimensionality reduction techniques to overcome overfglone, often under first-order Markov hypotheses. In ad-
ting of observation likelihoods. Robustness to outliegition, for action recognition, models where the states are
is added by using heavy-tailed distributions such as tiscrete random variables with few state values are com-
Student'st. While previous work exists utilising dimen-monly adopted as they simplify analysis.
sionality reduction in time-series classifiers3] 7], to The hidden Markov model (HMM) is a prototypical ex-
the best of our knowledge this is the first work attemp&mple where state® = {q1, ..., q:, ..., gr} are posited,
ing a comparative analysis in the field of human acti@ach in correspondence with an observation. Each=
recognition. In this paper, we use the well-known hid-..T" is a discrete random variable taking values over a
den Markov model (HMM) as the time-series classifidinite set,S = {si,..., sk, ...,sn}. The parameters of
and we compare the classification accuracy achievatiie model consist of 1) the state transition probabilities,
with various models for the observation likelihoods. I = {a;; = P(q¢; = sjl¢t—1 = si)},4,5 = 1...N, 2)
addition to the usual Gaussian mixture model (GMMjhe observation probabilitied = {b;(0) = p(o|g: =
we have used dimensionally-reduced models, namely the},: = 1...N, which for our case of continuous obser-
mixture of probabilistic principal component analyzengations are actually probability density functions, and 3)
(MPPCA) and the mixture of-distribution sub-spacesthe initial state probabilitiesy; = {P(¢1 = s;)},¢ =
(Mt-ss) [L9, 6, 2]. Results show that dimensionality red...N. Given that the model is stationary,and B are the
duction helps improve the classification accuracy and ttsame for any. The three groups of parameters together,
heavy-tailed distributions are effective againsttypmatr A\ = {A, B, 7}, define the HMM completely. The obser-
liers. The rest of the paper is organised as follows: Se@tion probability density functions (pdfs) are often mod-
tion 2 describes time-series classification and the hiddelled by Gaussian mixture models with a pre-determined
Markov model, with sub-sections addressing dimensiomismber of componentd/, as in:



y minimising the total squared reconstruction error over the
) training set. Correspondingly, it maximises the sample
bi(0) = ZO‘”N(OWH’ Ba), i=1.N. (1) covariance inz-space, hoping to retain useful informa-
=1 tion. However, PCA models cannot be learned with max-
whereq; is the mixing parameter, or prior, of thhieéh imum likelihood or other fuller Bayesian methods due to
component ang,;, 3;; are its mean and covariance.  their incomplete probabilistic formulation.

The two problems we are interested in addressing withProbabilistic PCA (PPCA) amends the limitations of
HMM are learning and evaluation. Learning of an HMMPCA by proposing a full probabilistic model that can be
provides a set of parameters, from a set ofE training trained with maximum likelihood. PPCA assumes the ex-
examplesO.,e = 1..E. The most common algorithmistence of a latent, low-dimensional space where a point,
used for this step is the Baum-Welch algorithm which, is in correspondence with a sample in the original
belongs to the broad family of expectation-maximisatiapace. The relationship between samples and latent points
(EM) algorithms. Given a model), evaluation pro- is given by:
vides a density value for sequen@ep(O|\), efficiently
computed by forward-backward algorithms. Maximum- y=Waz+pu-+e 3

likelihood classification can therefore be provided based, naraiv is a P x D matrix describing a linear trans-

on p(O[A): given a number of trained models,, ¢ = ¢, mation ande is an additive noise component. Both
1..C, one for each of theC’ classes of interest, the;y  are treated as random variables and assumed nor-
maximum-likelihood class is given by mally distributed, withp(z) = A/(|0,1) and p(e) =
N (€|0,0°T), and independent. It follows immediately
enmr, = argmax(p(OfAe)),  e=1.C. (2) thatp(y) = N(ylu, C), with C = WWT + 52 [20].
i ) i As Gaussian models are highly sensitive to outliers dur-
The above can be easily adjusted to maximum-ay training, longer-tailed distributions such as the Stu-

posteriori or minimum Bayesian risk by addition of apgenys;_gistribution have been used for robust modelling

propriate priors and weights. [17]. To join robustness with dimensionality reduction, a
sub-space version of thedistribution was proposed in
2.1 Dimensionality reduction [8]. The sub-space-distribution uses the same model

) ) ) ) ~ of PPCA with the addition of a further random variable
In the case of high-dimensional spaces, density estimatjofjeq ascaling «. Probabilities forz ande are given as

is challenged by the relative scarcity and possible sparggrditional densities om, p(eju) = N(z|0,1/u) and
ness of the training data. The resulting models often sl elu) = N(€]0,0%1/u), andp(u) is assumed equal to
fer from little generalization capability over unseen dat@amma(y/z v/2) wherev is the number of degrees of
A common solution to this problem is offered by dimerkaaqom of the-distribution.

sionality reduction techniques. Amongst them, principal y; s rejatively straightforward to combine multiple
component analysis (PCA) is a term of reference. PCGfinensionally-reduced models into a mixture model. The
maps ay sarpple from a highP-dimensional space 10 araiignale for this is to obtain locally-linear models which
pointz = W (y —y) in a D-dimensional space, With - o4 anoroximate a nonlinear manifold. When mixtures
typically << P. Fromz, an approximated reconstructionyt s component distributions are considered, the single-
of y is obtained agy = Wz + y, with the reconstruc- oo mhonent pdf easily extends fa individual compo-

tion error defined as = § — y. The parameters of PCAqnts with mixing parameters;, [ — 1..M [4];
are theP x D transformation matrix}’, and offsety. ’

Both parameters are learned based on a given set of train- M

ing data,Y = {y;},i = 1..N,: W is given by theD py) = cupi(y) (4)
“largest eigenvectors” (the eigenvectors corresponding t 1=1

the largest eigenvalues) of their sample covariancegand Given that closed-form solutions for the direct maxi-
by their sample mean. This choice fdéf has the effect of mization of the likelihood are either impossible or simply



less practical, EM algorithms are commonly used for ppected value of the latent low-dimensional variable; how-

rameter estimation of mixtureg] ever, such a term would tend to nullify along the itera-
Several other models for dimensionality reduction ovéons). Tipping and Bishop in1[5] showed that matrix

manifolds have also been proposed such as local lin&&r and the noise variance? can be determined from

embedding and ISOMAPLE, 18]. Compared to mixture the responsibility-weighted covariance matrsy, (8) by

models, they have the advantage of not needing a ps&andard eigen-decomposition in the same fashion as for

determined number of components and being more flesxgle PPCA (0):

ible in the modelling of the manifold. However, they do

not suit this work since they to do not define proper den- 1 b1 B (ke

sities, do not obviously extend outside their training sg}ikﬂ) _ oLy (g — Mz( i ))(yi - Mz( i ))Tp(”yiyuz( )’Cz( ))

[3] and therefore cannot be easily plugged-in in tempo- Zf;lp(uyi,ugk’), Cl(k))

ral state models. In the rest of this paper we focus on the (8)

mixture of PPCA and the mixture atdistribution sub-

spaces (M+ss) as observation probabilities of HMM, and 2(k+1) 1 L

compare their performance with that of the usual GMM- I “P-D Z At

based HMM. The next two sub-sections sketch the basics

of these two dimensionality reduction techniques.

9)

h=D+1

kD — ) (D) _ 20012 (q0)

2.2 Mixture of probabilistic principal com-
ponents analyzers oY) = WD DT | 2D (17)

Mixture of principal component analyzers are GaussianwhereLl(’““) is a DxD diagonal matrix with theD
mixtures () whose covariance matrix is restricted to d‘?érgest eigenvalues Cﬁz,(kH)’ Ul(k+1) is a PxD matrix

scribe .aD-d_|menS|onaI sub-space. lee.for a gener%hose columns are given by th2 corresponding eigen-
Gaussian mixture, the E step of EM requires computi@iors and\,, note the discarded eigenvalueg.is an
the component posteriors, cesponsibilities, for each it- arbitrary DxD rotation matrix since the model can only
erationk: be identified up to an arbitrary rotation (an irrelevant de-
tail for its use as a probability density function).
o Nyl 1)

(k) ~(k)
p(l‘yiyﬂl 7Cl ) = M k k k
wy oI N (il s )

(3) 2.3 Mixture of ¢-distribution sub-spaces

h ¢ q imise th . The principal drawback of MPPCA is its sensitivity to
The M step of EM needs to maximise the expectan%t”ers during parameter estimation, particularly for co

of the complete data_ I(_)g-likelihood over the COMPONEN(S, iances. In order to mollify this problem, the mixture
p%rag"nste;]s. fT|r|1e mixing pa.ram(.aterfs andlm(.aans are RiOr_distribution sub-spaces (vss), also known as mix-
vided by the following re-estimation formulas: ture of robust probabilistic principal component analyz-
| ers, was introduced 2]. Its main advantage is that the
. . IR o :
alf ) = ~ Zp(”yiv u* o) (6) distribution is heavier-tailed than the Gaussian and there
=1 fore more robust. Parameterin the ¢-distribution con-
N k) (k) trols the “thickness” of the tails permitting coping with
) iy VipUye, g C) (7) Outliers without translating: or expanding¥. The -
l — k) k . . - . . .
Zﬁvzlp(”ywﬂz( ) Cz( >) distribution pdf is given by:

The formulas for the update of; andy; are the same
as those of a standard Gaussian mixture model (more ccg%( 5w =
rectly, (7) should include a term proportional to the ex-~"\YIF =) =

F(V—"Q-P)‘E|71/2 A2 _@
L(5)(vm)P/2



whereI'() is the Gamma functiony > 0 are the main results, discussing the advantages and drawbacks of
“degrees of freedom”P is the dimensionality ofy and each classifier.
A =(y—p)'S "y —p).

Liu and Rubin in [LZ] demonstrated that the maximum;
likelihood parameters of &distribution can be obtained?"1 Data Sets

with EM based on the following equality: The Weizmann institute datasét] [consists of 9 differ-
ent actors performing 10 primitive actions each. The 90
) D . sequences have a size of 180x144, de-interlaced from 50
St(ylu, X, v) =/ N(ylp, E)G(U\? §)du (13) fps. The actions carried out are '‘Bend’, 'Run’, "Walk’,
v 'Skip’, 'Jumping Jack’, 'Jump Forward On Two Legs’,
whereu, called thescaling, is a latent variable permit-'Jump In Place On Two Legs’, 'Gallop Sideways’, "Wave
ting reformulation of the distribution as an infinite mix- With Two Hands’ and 'Wave With One Hand'. The data
ture of Gaussians over which a Gamma prior is imposé&gt provides the original 2D human shapes or masks. Fig-
The Gamma prior over depends only om so that: ure 1 shows 20 frames of an action’s shape masks from

the data set.
vy §-1p5u
G (ul 5 2) xuz e (14)
Thet-distribution can be extended to accommodate f AL IR ALY
dimensionality reduction in a similar way to probabilis
tic PCA. First, p(z) is defined as the prior of th®-

dimensional latent variable;

p(x) = St(x]0,1,v) (15)

Second, conditional distribution(y|z) is defined as:

p(ylz) = St(yWz + p, 0L v) (16)

where o2 is the variance not captured by the low
dimensional vectors and the mean pfdepends one
through thePxD-dimensional matriXi’.

Finally, multiple ¢-distribution sub-spaces can be conf-i9ure 1: Weizmann actions’ masks examples for one

bined in a mixture model by a tailored EM algorithm©f the actors (daria’). From first row: "Bend’, 'Run’,

We implemented the equations for iterative computatic')Wa"f”,’Skip,' "Jumping Jack’, Jump ,Forward On Two
of the responsibilities and maximisationdn, ., v;, W, !_egs ,"Jump In Place 9” TW,O Legs’, "Gallop SldeV\,/ays ’
ando? (I = 1..M) derived by Archambeaet al in [2]. Wave With Two Hands’ and "Wave With One Hand'. All

the masks were resized to 16x16.

3 Experiments The masks are resized to 16x16 pixels by re-sampling
(Figure 1 shows the resized 16x16 images). While the
For the accuracy evaluation and comparison of the thmasks are binary, the resized images are mildly in grey-
proposed action classifiers (HMM with Gaussian mixtutevel from the interpolation of binary pixels. In the next
model, MPPCA and mixture afdistribution sub-spacesstep, we construct a single 256x1 feature vector per frame
as observation probabilities), we have conducted expday concatenating the columns of each 16x16 image. De-
ments over two data sets, Weizmanih pnd a version of spite its simplicity, this feature set enjoys the propertié
Weizmann corrupted by segmentation errors. The d#king a) of a fixed size for all frames, b) partially invariant
sets are briefly described in this section alongside ttieantropometry, and c¢) independent of the subject’s loca-



tion in the scene. As we conducted both training and test-the image area is intertwined every 3 frames at a ran-
ing from a fixed view, view invariance was not an issue itom position. The pixels within thisoisy square switch

this work. However, this feature set is highly dimension#ieir values from 0 to 255 or from any value different from
as it consists 0fP=256 features and is expected to cré to 0. This process simulates well the typical segmenta-
ate dimensionality issues. Subsequently, for each fratran errors of foreground extraction and makes the dataset
sequence we join its 256x1-dimensional vectors in timewch more realistic. Figurgshows the results of adding
frame order into an array of 256xelements, bein@ the noise to the original data set.

length of the sequence. The result is the input data for our

HMMs. An example is shown in Figuizfrom a sequence

of 20 frames 1'=20) of action 'Jumping Jack’. To follow AL AR

the evolution of a specific pixel during an action instanc :j},t_ﬁ-x,tu.g_t.}ﬁ},o&t-,t..{

one can select the corresponding row in the 2Z5@éxray. : ' .

fﬁtﬁMﬁMﬁktﬂﬁiﬁ
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Figure 3: Noisy Weizmann actions’ masks examples for
one of the actors (‘'daria’). An 8x&oisy square is in-
tertwined every 3 frames at a random position. From
first row: 'Bend’, 'Run’, 'Walk’, 'Skip’, 'Jumping Jack’,
'Jump Forward On Two Legs’, 'Jump In Place On Two
Legs’, 'Gallop Sideways’, 'Wave With Two Hands’ and
'Wave With One Hand'. All the masks were resized to
16x16.

Figure 2: The picture above shows a sequence of length

20 frames 1'=20) for the 'Jumping Jack’ action. For ev-

ery frame, a 256x1-column vector is built by concat% 2 Experimental set-up

nating each of the columns of the images. The picture

shows the corresponding 256x1-column vector for eathe experiments consist of training HMMs with the

mask image. three different probability density functions as observa-

tions probabilities: GMM, MPPCA and mixture af

Nonetheless, Weizmann presents ideal and clean ddisiribution sub-spaces (@vss). In addition, the HMM-

leaving no space for outliers. In a real application, ori@MM is trained for the cases of full, diagonal and spher-

expects segmentation errors to repeatedly occur dudctl covariance matrices. We used HMMs with 5 hidden

the varying appearance of the actor and the variable bastates, 2 components per mixture, 15 training iterations,

ground and illumination. Therefore, in order to obtain andv=5 and 3 (reported in this order since the heaviness

more suitable benchmark for testing the performande obf the tails increases) for the case of thdistribution.

distribution over other models in the presence of outliefspr both MPPCA and Mss we tested with reduced di-

we artificially created a noisy dataset from the originahensions ofD = 200 and D = 150. Lower values for

Weizmann. An 8x&oisy square corresponding to 25% D were tested, but not reported in the following as they




generally led to worse results. The remaining parametgrs Noisy Weizmann data sef]

are initialized as follows: ACCURACY (%) | STD
Y=full 94.7 +1.45
e The initial, 7, and transitionA, probabilities are ini- | GMM Y =diag. 93.1 +0.93
tialized uniformly random. Y =spher. 91.3 +0.93
o D=200 95.6 +0.79
e The meany, of each component distribution is chof MPPCA D=150 956 111
sen randomly from within the set of training samples: D=200 96.2 10.99
Mi-ss¢=5) | p=150 95.6 +1.11

e Thea weights are randomly initialized. : -
Mi-ss@=3) D=200 96.0 +0.61
e All covariances for the GMM are initialized with thel D=150 95.8 +0.93

identity matrix,I. In the case of the MPPCA andiM

i _ T 2
ss, covariances = W o= for all components Table 2: Average accuracy (%) and standard deviation for

are initialized ?SW U(L = o*1)""1 yvhereU five rounds on thaoisy Weizmann data set with HMM
is a PxD matrix whose columns are given by the

D eigenvectors of the training data covarianke Observation probabilities: GMM (full, diagonal, spheri-
9 ) ning -85 cal), MPPCA and-distribution sub-spaces (#vss). The
a diagonal matrixDxD with the corresponding® . .
. 2 1 P , reduced dimensions are = 200 and.D = 150.
eigenvalues andi = 5= > _;,_poq An» With Ap;

corresponding to the discarded eigenvalues.

_ .4 Discussion
We carried out deave-one-actor-out cross-validation
so that the same actor will not be used for training and val- . . ) )
idation. Every actor in turn is used for validation. In adkesults for the original Weizmann and theisy Weiz-
dition, we repeat the whole cross-validation 5 times frofffa" are reported in Tableand Table2, respectively.
different random starts in order to partially marginalis\é/'th the original datgs_et _(Tabl]a), HMM_ with MPPCA
the randomness of the HMM parameters' initialisation. Proved the best classifier in all cases, with 96.996200)
and 96.0% DP=150) average accuracy. Yet, the differ-

Weizmann data set] ences in accuracy between a full-parameter models such
ACCURACY (%) | STD as full GMM (94.0%) and MPPCA were not so remarked.
S=fall 94.0 1061 This was surprising to a degree as we were expecting a
GMM y=diag. 94.2 1145 full GMM to experience greater difficulties in training ef-
s=spher. 93.3 40.79 fectiV(_er over.a.256—dimensional space, especiglly in the
D=200 969 TS scarcity of training samples. However, results with diago-
MPPCA D=150 96.0 1197 nal and spherical GMMs were better or equivalent, prov-
D=200 956 111 ing that the degrees of freedom of a full Gaussian model
Mt-ssp=5) D=150 95.6 10'79 were redundant. Thedistribution sub-spaces proved to
D=200 94'7 i1'45 obtain higher performance than any GMM model, yet did
Mt-ssp=3) D=150 95.8 i0.93 not outperform MPPCA in any case (with performances

in the interval of 94.7% and 95.8%). Since longer tails
tend to “diffuse” class boundaries, this may be the cause
Table 1: Average accuracy (%) and standard deviation fef the increased misclassifications compared to MPPCA.
five rounds on the Weizmann data set with HMM observ¥/e also care to add that the standard Weizmann dataset is
tion probabilities: GMM (full, diagonal, spherical), MP-2 somehow “easy” datasgt over which other authors have
PCA andt-distribution sub-spaces (ss). The reduced reported 100% accuracy in the pask [However, results
dimensions aré® = 200 andD = 150. in Table1 are important to prove the point of this work.

When we analyse the results for theisy Weizmann



dataset presented in Tabke HMM with ¢-distribution and the mixture of-distribution sub-spaces (ss). The
sub-spaces instead obtained the best performance, widxperimental results showed that, in the presence of out-
maximum of 96.2% P=200 andv=5), comparableto the liers, ¢-distribution sub-spaces achieved the highest ac-
best results on the clean dataset. Thereforef-distribution curacy (96.24+ 0.99% vs 95.6+ 0.79% of the runner-
sub-spaces proved to provide a more suitable probabib method, MPPCA) while in the absence of signifi-
ity density model in the presence of outliers. Conversebant outliers MPPCA proved to obtain the best perfor-
MPPCA and the restricted GMMs achieved remarkabigance ((96.9+ 1.45% vs 95.8t 0.93% of the runner-up
worse results. In particular, the change in trend betweewthod,¢-distribution sub-spaces). These results prove
Mt-ss and MPPCA gives evidence to the robustness of that dimensionality reduction can be effective at increas-
former against the outliers. ing recognition accuracy and that thalistribution is a

From the experimental results, we can concludeore suitable density when the dataset contains segmen-
that HMM observation probabilities based on lowtation outliers which is always likely the case in real ap-
dimensional manifolds can help increase accuracy of hlications. Given that the Weizmann dataset is small in
man action recognition and that longer-tailed distribmticsize, in the immediate future we plan to extend these re-
can increase robustness if the dataset is likely to contairits to KTH and MuHAVi [L6, 9], and experiment with
outliers. Nonetheless, the number of reduced dimensiatber feature sets including histograms of special interes
must be carefully chosen to secure the desired resultspaints.
addition, thet-distribution can amend the Achilles’ heel
of sequential classifiers i.e. the risk that the entire aktin
evaluation collapse to zero in the presence of even oﬁ)eferences
one siglnificant outlier. This is parti.c_ularly true in high !7\11] Recognizing Human Activities from Silhouettes: Motion
dimensions where normalised densities take on very lo Subspace and Factorial Discriminative Graphical Model,
values and tend to underflow. 2007.6

Afinal consideration goes to the feature set used in this; ¢ archambeau, N. Delannay, and M. Verleysen. Mix-
work: this simple feature set was chosen as it lends it-" tyres of robust probabilistic principal component analyz-
self to immediate pictorial description and intuitive anal  ers. Neurocomputing, 71(7-9):1274-1282, 2008, 4
ysis. Local representations such as spatio-temporal i[B] Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. L.
terest points I(] enjoy a number of advantages over sil-  Roux, and M. Ouimet. Out-of-sample extensions for lle,
houettes and pixel masks. However, in multiple-actor isomap, mds, eigenmaps, and spectral clusterintn Aua-
scenarios, the problem of associating sets of extracted vancesin Neural Information Processing Systems, pages
spatio-temporal interest points with specific actors along 177-184. MIT Press, 2004
the frame sequence (data association/correspondence}is C. M. Bishop, editor. Pattern Recognition and Machine
obvious also for this type of descriptors. It is reasonable ~Learning. Springer, 20063

to expect that outliers be present regardless of how thel M. Blank, L. Gorelick, E. Shechtman, M. Irani, and
feature set is chosen. R. Basri. Actions as space-time shapesTdnth |EEE In-

ternational Conference on Computer Vision, ICCV 2005,
volume 2, 20051, 4, 6

D. de Ridder and V. Franc. Robust subspace mixture mod-
els usingt-distributions. INBMVC 2003, pages 319-328,

. . 2003.2, 4
In this paper, we have proposed performing human 3%7] A. Elgammal and C.-S. Lee. Inferring 3d body pose from

tion recqgnition by_l_—|_MM with d_imensionally-reduced silhouettes using activity manifold learning. Gomputer
observation probabilities. Experiments have been con- \jgon and Pattern Recognition, IEEE Computer Society
ducted on two datasets (Weizmann anoisy Weizmann) Conference on, volume 2, pages 681-688, 200%.
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