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Adaptive-Resolution Field Mapping
Using Gaussian Process Fusion with Integral Kernels
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Abstract—Unmanned aerial vehicles are rapidly gaining pop-
ularity in a variety of environmental monitoring tasks. A key
requirement for their autonomous operation is the ability to
perform efficient environmental mapping online, given limited
on-board resources constraining operation time, travel distance,
and computational capacity. To address this, we present an
online adaptive-resolution approach for mapping terrain based
on Gaussian Process fusion. A key aspect of our approach is
an integral kernel encoding spatial correlation over the areas
of grid cells, which enables modifying map resolution while
maintaining correlations in a theoretically sound fashion. This
way, we can retain details in areas of interest at higher map
resolutions while compressing information in uninteresting areas
at coarser resolutions to achieve a compact map representation of
the environment. We evaluate the performance of our approach
on both synthetic and real-world data. Results show that our
method is more efficient in terms of mapping time and memory
consumption without compromising on map quality. Finally, we
integrate our mapping strategy into an adaptive path planning
framework to show that it facilitates information gathering
efficiency in online settings.

I. INTRODUCTION

Environmental monitoring plays a central role in helping us
better understand the Earth and its natural processes. However,
many commonly observed natural phenomena, e.g., tempera-
ture, humidity, etc., exhibit complex spatial variations that are
difficult to capture using traditional sensing methods, such as
manual sampling or static sensor networks [1–3]. Recently,
unmanned aerial vehicles (UAVs) have emerged as a more
flexible, cost-efficient alternative for data acquisition in a wide
range of applications, including biomass measurement [2, 4],
signal strength monitoring [5], weed detection [6] and thermal
mapping [2, 7]. To fully exploit these platforms, a key chal-
lenge is developing map representations that can accurately
capture heterogeneous natural variables, while also being com-
pact and computationally efficient for online interpretability
and decision-making on resource-constrained systems.

This paper focuses on mapping methods for terrain monitor-
ing scenarios, where the aim is to recover a continuous, non-
uniform 2D scalar field, e.g., of temperature, biomass cover,
etc., using measurement information from on-board sensors.
In this setup, our goal is to develop a mapping strategy that
can accommodate both high-fidelity field reconstruction in
targeted areas of interest, e.g., hotspots or anomalies, as well as
mapping with low computational and memory requirements.
By catering for these two aspects simultaneously, our work
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Fig 1: Our adaptive-resolution Gaussian Process fusion approach for
online field mapping. Left: Synthetic ground truth distribution. Yel-
lower shades indicate higher values we would like to map in greater
detail. Right: Mapping result with uncertainty. Our approach maps
areas of interest at higher resolutions while compressing information
in less interesting regions to increase computational and memory
efficiency. The checkerboard is added for visual interpretation of the
map uncertainty (high opacity means low uncertainty).

bridges the gap between environmental monitoring problems
and autonomous robotic applications, e.g., adaptive path plan-
ning based on the current map state.

There are several methods for field mapping in environ-
mental monitoring contexts. In the remote sensing community,
most existing approaches exploit aerial data to create high-
resolution reconstructions, e.g., terrain orthomosaics [2, 3].
Although they produce very detailed models, such procedures
often involve heavy postprocessing and are thus not suitable
for online applications. A common strategy to tackle this prob-
lem is to discretize the environment in a grid map and fuse new
measurements into it during a monitoring mission. However,
traditional grid-based methods [8–10] assume independence
between cells, neglecting important spatial correlations which
characterize environmental phenomena, and thereby limiting
the map quality.

We propose a new method for mapping continuous fields
online. Our approach is based on Gaussian Process (GP)
fusion [11, 12]: we exploit a GP model to capture the spatial
correlations in the underlying field and use it as a prior for
recursive Bayesian fusion. In this setting, our key goal is to
adaptively adjust the map resolution online based on the infor-
mation value of associated measurements, such that only areas
of interest are mapped at higher resolutions. Different from
traditional GP regression, which pools the entire measurement
history to predict the posterior map state at any resolution at
once, the usage of GP fusion, although more efficient, poses
a major challenge: in order to account for resolution changes,
we need to modify online not only the map mean, but also
the covariance while properly updating correlations between
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cells. In other words, adapting the map resolution leads to
varying map query points in the environment; however, spatial
correlations at these new points cannot be easily obtained
from the previous measurements or the current map state [13].
The covariance of an adaptive-resolution map is thus difficult
to retrieve in a theoretically sound and efficient manner and
constitutes an open research question.

To address this, we propose a novel approach based on an
integral kernel describing the spatial correlation over the areas
of grid cells instead of query points, e.g., grid cell center point.
Combined with a ND-tree structure, we can adapt the map
resolution online while preserving its spatial correlations. This
enables us to retain high-resolution details in targeted areas of
the field, while using coarser resolutions otherwise, as shown
in Fig. 1. This way, we achieve memory and computationally
efficient mapping without sacrificing on map quality, as nec-
essary for online application on platforms, e.g., UAVs, with
limited computing power. In sum, our contributions are:

1) A new method for incrementally mapping continuous
scalar fields online. Our approach combines GP fusion
with the ND-tree data structure to allow for efficiently
changing map resolution based on incoming sensor data.

2) An integral kernel function to encode the spatial corre-
lation of 2D grid cells in a continuous field map. This
enables us to merge grid cells at any scale to compress
information in uninteresting regions, while preserving
spatial correlations in the map.

Our mapping approach is evaluated and benchmarked against
state-of-the-art approaches using synthetic and real-world data.
Experimental results show that our method reduces memory
consumption and improves computational efficiency when
compared against mapping baselines. Further, we demonstrate
its applicability for online adaptive path planning.

II. RELATED WORK

A large body of literature has studied mapping methods
for monitoring continuous phenomena in different application
domains [4, 11, 14–17]. Our work focuses on online mapping
methods suitable for robotic monitoring scenarios. Our new
approach introduces an integral kernel for adaptive-resolution
mapping which brings together two key concepts: (1) GP
models and (2) ND-tree structure. The following subsections
review previous studies related to these topics.

A. Gaussian Processes Mapping

Grid maps are the most commonly used representation
for robotic mapping [18]. Despite their successful applica-
tion, traditional occupancy grid models assume the stochastic
independence of grid cells to enhance computational effi-
ciency [19]. However, this representation often poorly captures
the spatial correlations found in natural physical phenomena,
e.g., distributions of temperature, humidity, etc. To address
this, GP models are applied in environmental monitoring. For
instance, GPs are used to incorporate uncertainty and represent
spatially-correlated data in 2.5D pipe thickness mapping [11].
Vasudevan et al. [17] apply GP regression to predict elevation
on a field where sensory information is incomplete. Other

applications include gas distribution mapping [14], occupancy
mapping [19] and aquatic monitoring [15, 16]. Our work
follows these lines by using GPs to model a scalar field.

The main limitation of applying standard GP regression for
online robotic mapping is its cubically growing computational
complexity as measurements accumulate over time [20]. Pre-
vious work has tackled this problem by storing measurements
in a KD-tree structure and using local models to approximate
GPs [17, 19, 21]. To predict the mean and variance of query
points, only nearby measurements are considered. However,
local GPs require performing regression for each query point
individually. To alleviate this problem, the concept of extended
blocks was introduced [22], which applies GPs to the query
points in individual blocks of the map only using the mea-
surements in neighboring blocks. This approach decomposes
a large GP into sub-models and applies regression to infer the
posterior of each block. The multiple regression results are
then fused using a Bayesian Committee Machine (BCM) [23],
whose computational complexity scales cubically with the
number of query points. Based on that, Wang and Englot [24]
introduce test-data octrees, which prune nodes of the same
state to condense the number of query points in regression.

In GP-based occupancy grid mapping with range sensors,
O’Callaghan and Ramos [25] propose an integral kernel to
handle beam line observations directly rather than discretizing
them into point observations, thereby reducing the number of
measurements used for GP regression. Most similar to our
approach, Reid et al. [26] use an integral kernel to capture
spatial correlations between image areas and infer a high-
resolution estimate from a low-resolution observations in a
UAV-based setup. However, inference over the map is still
performed using standard GP regression, which suffers from
poor scalability, especially with dense image data.

In contrast to regression-based methods, our method lever-
ages GP fusion [11, 12] to reduce the computational burden for
online mapping. Namely, we exploit a GP as a prior and apply
recursive filtering to fuse new measurements incrementally
into the map. This procedure removes the need to preserve the
measurement history and infer the map posterior distribution
from scratch each time new data arrive [13]. A key differ-
ence in our approach with respect to previous fusion-based
works [11, 12] is the proposed integral kernel, which bridges
the gap between GP fusion and online adaptive-resolution
mapping.

B. Multi-Resolution Mapping

In practice, many monitoring scenarios exhibit a non-
uniform distribution of information in the environment, i.e.,
some regions are considered more interesting or informative
for mapping than others. Therefore, maintaining a map with
constant resolution over the whole environment is redundant
and costly. A common method to generate compact map
representations is by using tree structures. A well-known
algorithm in this category is OctoMap [8], which prunes child
nodes with the same state, e.g., occupied, to achieve both
memory-savings and highly precise maps. Funk et al. [9] use
the octree structure in an online mapping system that adjusts
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map resolution based on occupancy state. Similarly, Chen et al.
[27] apply quadtrees to build multi-resolution 2D maps. The
ND-tree generalizes these approaches by subdividing any d-
dimensional volume recursively with Nd children [10]. Rather
than compressing a map only in a postprocessing step, as
in OctoMap, we adapt the map resolution online based on
incoming measurements similarly to Einhorn et al. [10] and
Funk et al. [9]. Our approach shares the same motivation,
as we tailor the map structure to conserve memory and
computation time in applications requiring online mapping,
such as adaptive path planning [5, 12, 16].

Previous works in adaptive-resolution mapping assume cell
independence [8–10], such that no correlation information
needs to be maintained. This substantially simplifies mapping
at the cost of map quality. However, in our online map-
ping setup, the covariance must be modified to account for
resolution changes, which is challenging in the GP fusion
framework. In a similar setting, Popović et al. [4] introduce an
approach for incrementally fusing variable-resolution measure-
ments into a spatially-correlated map. However, their method
still considers a fixed-resolution map. In contrast, our new
strategy supports adaptive-resolution mapping while preserv-
ing spatial correlations, thereby reducing memory usage and
improving computational efficiency.

III. ADAPTIVE-RESOLUTION GAUSSIAN PROCESS FUSION

This section introduces our online field mapping approach
based on GP fusion. We define the map using a GP prior and
store it in an ND-tree structure. This map is then recursively
updated with new measurements using Bayesian fusion. We
first present the theory behind GPs with the integral kernel
function and define an ‘average measurement’ model, in which
the state of a grid cell represents the average value of a
latent scalar function in the area it covers. Then, we explain
our Bayesian fusion update and the merging operation for
incrementally building multi-resolution field maps. Bringing
together these elements, a key contribution in our approach is
the ability to efficiently merge grid cells without losing spatial
correlations. Note that our setting in this work considers a
UAV-based terrain mapping scenario. However, our approach
is also applicable for general 2.5D mapping problems.

A. Gaussian Processes and Integral Kernel

A GP is the generalization of a Gaussian distribution
over a finite vector space to an infinite-dimensional function
space. It is fully described by its mean µ(x) and covariance
function k(x, x′). In practice, a GP is used to model spatial
correlations in a probabilistic non-parametric manner and
infer function values at a finite set of query points given
observed data [20]. The mapping target in our problem is
assumed to be a continuous function described by a GP:
f(x) ∼ GP(µ, k) : E → R, where E ⊂ R2 is the 2D
rectangular input space and x ∈ E .

Given a pre-trained kernel function k(x, x′), we could
obtain the correlations between the function values at any two
points in our input space. However, a kernel function defined
on points limits the ability to handle resolution change in our

GP fusion setting with incremental updates. Previous studies
in GP fusion [11, 12] exploit a GP as the prior in predefined
query positions, e.g., the centers of grid cells. The posteriors
at these query points are then recursively updated with grid
cell measurements using Bayesian fusion. When adapting the
resolution online, we need the map posterior to be available
in new query positions, so that recursive update with new
measurements can be performed. However, this cannot be
achieved efficiently under current setting.

To address this problem, we propose a new GP fusion
approach leveraging an integral kernel. We first sequentially
discretize the input space into grid cells using an ND-tree
until maximal depth t is reached. Note that only the leaf grid
cells are shown and updated in the map C = {c1, . . . , cn},
where n = (Nd)t with d = 2 as we focus on 2D field
mapping; ci = [xmin

i , xmax
i ]×[ymin

i , ymax
i ] is the parametrization

of grid cell ci ⊂ E . We also define C = [c1, . . . , cn]
> as the

vectorization of C . Similar to Reid et al. [26], we then modify
the learned kernel function k(x, x′) to correctly encode the
spatial correlations between areas of grid cells in our mapping
framework. We define ζ(R) = 1

A

∫
R
f(x) dx to represent the

average of the latent function f over a rectangular domain
R ⊂ R2 with area A ∈ R. Since applying a linear operator
to a GP leads to another GP [28], we obtain the new GP
ζ(R) ∼ GP(µI, kI), whose mean and covariance function are
described as follows:

µI(Ri) =
1

Ai

∫
Ri

µ(x) dx , (1)

kI(Ri, Rj) =
1

AiAj

∫∫
Ri×Rj

k(x, x′) dx dx′ , (2)

where x and x′ are the point positions contained within the
rectangular domains Ri with area Ai and Rj with area Aj

respectively. The area-related terms in Eqs. (1) and (2) simply
transform the integral into average, which makes the physical
meaning of our mean and covariance in accordance with our
measurement model introduced in Sec. III-B. This way, we
encode the spatial correlations over the area of grid cells in our
map, which enables merging operation presented in Sec. III-D

For a grid map with rectangular cells and spatial correlations
defined by a squared exponential (SE) kernel, we can find a
closed-form solution to Eq. (2). In general, numerical integra-
tion is required to determine the kernel integration [25]. Note
that, in our fusion framework, the integral calculation only
initializes the map prior and does not burden online mapping.

B. Sensor Model

In our GP fusion setting, we consider a Gaussian sensor
model to account for noisy measurement data. For each
observed grid cell ci ∈ C , the sensor provides a measurement
zi capturing the average value of function f over the area of
this cell as zi ∼ N (µs,i, σ

2
s,i), where µs,i is the mean and σ2

s,i

is the noise variance expressing uncertainty in zi.
The noise variance can be decomposed into two parts. First,

we assume measurements taken from higher altitudes are more
susceptible to environmental noise such as light conditions. To
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Fig 2: The ‘average’ sensor model provides the measurements of av-
eraged function value over a grid cell. For instance, the measurement
z2 observed from c2 is the average of 4 single measurement values
{m2, m3, m5, m6}. For calculating σ2

c,i, Acover is the green area
on the terrain and Ac is the area of c2 itself.

this end, we describe the degraded accuracy of sensor informa-
tion at higher altitude by σ2

a,i = αh, where α ∈ R+ and h is
the sensor’s altitude. Second, we consider uncertainty caused
by observing incomplete grid cells. In our mapping framework,
some grid cells are only partially covered by the current
sensor footprint, especially when the grid cells occupy larger
area after they are merged. Directly assigning the average
measurements as the observation of these grid cells would be
an over-confident assumption, as the unobserved part of these
grid cells may contradict the current measurements, e.g., when
grid cells span over the domain of heterogeneous function
values. To tackle this problem, we propose the coverage-
ratio-dependent variance σ2

c,i = β
(
1− Acover

Ac

)
in our sensor

model, where β ∈ R+ is a weighting and Ac , Acover are the
area of the grid cell and the part covered by the footprint.
When a grid cell is fully observed in measurement zi, this
noise term disappears.

The measurement data in our sensor model are generated
as follows: the sensor footprint is determined given the known
intrinsic and extrinsic parameters. First, we query the grid
cells having overlap with the footprint using depth-first tree
search with pruning. Second, for observed grid cell ci, we
calculate the corresponding averaged measurement value zi
as illustrated in Fig. 2. Third, we sum the altitude-dependent
variance σ2

a,i and coverage-ratio-dependent variance σ2
c,i as the

total variance of each measurement zi.

C. Sequential Data Fusion

A major difference between GP regression and our GP
fusion approach lies in the map update rule. In our framework,
the map state is fully described by the mean vector µ(C)
and covariance matrix K(C,C). Our initial map state can be
obtained from Eqs. (1) and (2), which is then used as a prior
for sequentially fusing new measurements:

µ− =

µI(c1)
...

µI(cn)

 , K− =

kI(c1, c1) . . . kI(c1, cn)
...

. . .
...

kI(cn, c1) . . . kI(cn, cn)

 .
(3)

We define z to be a vector consisting of m new average
function value measurements observed from m corresponding

grid cells as introduced above. To compute the posterior
density p(ζ|z,C) ∝ p(z|ζ,C) · p(ζ|C), we directly apply
the Kalman Filter update equations [13]:

µ+ = µ− + Γv, (4)
K+ =K− − ΓHK− , (5)

where Γ =K−H>S−1 is the Kalman gain; v = z −Hµ−
and S =HK−H>+R are the measurement and covariance
innovations; R is a diagonal m × m matrix composed of
variance term σ2

a,i+σ
2
c,i associated with each measurement zi

and H is a m×n observation matrix denoting the part of the
map observed by z, where n and m are the number of grid
cells in the current map and observed grid cells respectively.
Note that the current map only contains leaf grid cells and a
small matrix S ∈ Rm×m is inverted at each update.

D. Merging

A key requirement for multi-resolution mapping is the
ability to manipulate the grid cell sizes on-the-fly. Given
a non-uniform target field for mapping, our goal is to use
coarser (larger) grid cells to map uninteresting regions and
denser (smaller) grid cells to retain details in interesting
parts. Previous works in GP fusion [11, 12] do not support
efficient resolution changes, as the spatial correlations are only
maintained in predefined grid cell center points. By using the
new GP fusion with integral kernel, however, we naturally
encode the states of parent nodes in their children, which
enables efficiently retrieving the parent’s posterior covariance
and mean value from their children on-the-fly.

Coriginal Cmerged

Fig 3: Illustration of our procedure for merging cells in a spatially-
correlated map. Top and bottom rows show the grid cell map and
its corresponding ND-tree (with N = d = 2) structure. Only leaf
nodes in the tree are shown in the map and updated during Bayesian
fusion. After merging (right), the children grid cells are replaced by
their parent in the new map.

The merging operation allows us to summarize information
in larger areas and thus monotonically reduce the total num-
ber of grid cells in the map, which facilitates the mapping
efficiency and memory usage. For this, we subdivide our map
into uninteresting regions (UR) and hotspots (HS):

CUR = {ci ∈ C | µi
+ + γKi,i

+ ≤ fth},CHS = C \ CUR,
(6)

where µi
+ and Ki,i

+ are the posterior mean and variance
of grid cell ci; the design parameter γ is chosen to specify
the margin to the threshold fth [15]. This setting avoids
merging grid cells with possibly high mean values, which
would cause detail loss in interesting regions. Thus, grid cells
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are only merged if there is a strong belief that they fall within
uninteresting bounds.

For a parent grid cell, if all of its P = Nd child grid cells
are uninteresting leaves (grid cells in CUR), these child grid
cells can be replaced by their parent grid cell. When we merge
the information of P children into their parent, based on the
definition of grid cell variable and the correlation encoded by
the integral kernel, we have the parent grid cell defined as:

ζparent =
1

P

P∑
i=1

ζchildi . (7)

The parent grid cell now represents the average function
value of the entire region covered by its children. For the
grid map, the merging operation can be described as a linear
transformation of the GP as follows:

µ+(Cmerged) =Mµ+(Coriginal) , (8)

K+(Cmerged,Cmerged) =MK+(Coriginal,Coriginal)M
>. (9)

where Coriginal represents the vectorized map including n
grid cells before merging and Cmerged is the newly-merged
vectorized map. In the simplest case, where only one parent’s
children cells are merged, Cmerged, Coriginal, and M can be
expressed as:

Coriginal =



c1
...

cn−P
cn−P+1

...
cn


, Cmerged =


c1
...

cn−P
cn−P+1

 , (10)

M =

 I
(n−P )×(n−P )

0
(n−P )×P

0
1×(n−P )

Q
1×P

 , (11)

assuming that cn−P+1 in Cmerged represents the parent of grid
cells {cn−P+1, . . . , cn} in Coriginal and Q is

[
1
P , . . . ,

1
P

]
. A

simple illustration is given in Fig. 3. The merging operation
is performed after every measurement update for eligible grid
cells. As the linear transformation of GP leads to another GP,
we now treat the resulting GP after the merging operation as
a prior map for the next Bayesian update cycle.

IV. EXPERIMENTAL RESULTS

This section presents our experimental results. First, we
evaluate our proposed mapping strategy by comparing it
against different benchmarks in terrain mapping scenarios.
Then, we validate our approach using real-world surface
temperature data and integrate it into an adaptive path plan-
ning framework to demonstrate its benefits for online robotic
applications.

A. Mapping Evaluation

We evaluate the mapping performance with total mapping
time, mapping quality in terms of root mean square error
(RMSE), intersection over union (IoU) of hotspots, memory

consumption ratio and number of grid cells in the final maps.
The total mapping time is calculated by aggregating the
individual update times over the mapping task. RMSE and IoU
are obtained by comparing the resulting maps with synthetic
ground truth. We compare six different mapping approaches:

• FR-IDP: vanilla fixed-resolution mapping under indepen-
dence assumption [18];

• AR-IDP: adaptive-resolution mapping under indepen-
dence assumption. Uninteresting grid cells are pruned
during mapping as proposed in [10];

• AR-BCM: adaptive-resolution mapping using BCM and
test-data tree, as adapted from [24]. Uninteresting grid
cells are pruned to reduce the number of query points in
BCM. Note that we do not follow nested BCM approach
as our whole map can be seen as a block in their case;

• AR-GPR-IK: adaptive-resolution GP regression with in-
tegral kernel based on the original approach proposed in
[26]. We take one step further to recursively merge grid
cells if they are uninteresting after each regression update;

• FR-GPF: fixed-resolution GP fusion proposed in [4];
• Ours: our new adaptive-resolution mapping strategy

based on GP fusion with integral kernel, as described
in Sec. III.

We simulate 20 20m × 20m Gaussian random fields as
ground truth environments representing a spatially-correlated
field on a terrain. For simplification, the ground truth field
values are normalized to [0, 1] and we define regions with
values > 0.7 as hotspots of interest. To assess mapping
performance at different scales, we conduct experiments at 3
different maximal resolutions: 16×16, 32×32, and 64×64 grid
cell maps corresponding to adaptive-resolution approaches
with maximum tree depths of 4, 5, and 6, respectively, in a
quadtree configuration. Note that a quadtree is a special case
of an ND-tree, thus different mapping settings are possible by
adapting the general ND-tree decomposition.

The terrains are mapped using a lawnmower pattern to focus
on comparing the methods in terms of mapping performance
only, excluding the influence of path variations. To simulate
a UAV monitoring mission, we take 16 non-overlapping mea-
surements as shown in Fig. 4a to fully cover the terrain, assum-
ing a flight altitude of 2.5m and 5m×5m sensor footprint on
the ground. For all GP-based mapping approaches (AR-BCM,
AR-GPR-IK, FR-GPF and Ours), the SE kernel function with
hyperparameters θ = {σ2, l} = {1, 2.36} and constant prior
mean of 0.5 are applied. For approaches using an integral ker-
nel (AR-GPR-IK, Ours), we follow Eqs. (1) and (2) to calculate
the prior maps. For mapping under independence assumption
(FR-IDP, AR-IDP), we use the same prior mean and variance,
while setting all cross-correlation terms to 0 to isolate each
grid cell. We consider the ‘average measurements’ model in all
mapping approaches. For merging cells in adaptive-resolution
approaches, we choose {γ, fth} = {2, 0.7} in Eq. (6). Note
that all these hyperparameters are manually tuned but used
consistently in all experiments.

The results are summarized in Tab. I and Fig. 4. In all
cases, approaches relying on the cell independence assumption
yield least accurate maps with highest RMSE and lowest
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(a) Ground truth (b) FR-IDP (c) AR-IDP (d) AR-BCM

(e) AR-GPR-IK (f) FR-GPF (g) Ours

Fig 4: Qualitative comparison of our approach (g) against benchmarks (b)-(f). The terrain is mapped using a lawnmower strategy, as shown
in (a). The red line and black dots indicate the travelled path and measurement locations. All approaches use a map size of 32 × 32 grid
cells. By mapping adaptively, our method compresses information in areas with low information value (blue) while preserving details in
higher-value areas of interest (yellow) to achieve an efficient, compact map representation for online applications.

Map
size Method RMSE ↓ RMSE

(hotspots) ↓
IoU
(hotspots) ↑

Mapping
time [ms] ↓

Memory
usage ratio [%] ↓

Number of
map cells ↓

16× 16 FR-IDP 0.045± 0.002 0.045± 0.002 0.813± 0.024 5.575± 0.466 4.187± 0 256± 0
AR-IDP 0.071± 0.003 0.046± 0.002 0.812± 0.024 7.299± 0.901 2.155± 1.127 125.2± 18.258
AR-BMC 0.071± 0.003 0.038± 0.003 0.856± 0.023 273.546± 69.549 49.892± 11.433 115.22± 16.167
AR-GPR-IK 0.065± 0.003 0.037± 0.002 0.856± 0.024 59.379± 20.680 40.692± 8.282 118.62± 16.907
FR-GPF 0.037± 0.002 0.037± 0.002 0.857± 0.023 11.375± 0.965 100± 0 256± 0
Ours 0.065± 0.003 0.037± 0.002 0.857± 0.026 10.168± 1.119 38.729± 9.416 114.4± 19.754

32× 32 FR-IDP 0.065± 0.004 0.065± 0.004 0.723± 0.021 28.968± 0.834 1.067± 0 1024± 0
AR-IDP 0.079± 0.005 0.067± 0.003 0.725± 0.020 63.796± 6.880 0.529± 0.068 508± 65.121
AR-BMC 0.071± 0.005 0.025± 0.003 0.864± 0.023 13100.225± 2009.709 26.433± 5.359 356.25± 74.012
AR-GPR-IK 0.066± 0.004 0.026± 0.003 0.866± 0.024 1747.631± 677.670 17.538± 5.640 371.3± 74.279
FR-GPF 0.027± 0.002 0.026± 0.002 0.867± 0.024 430.843± 7.447 100± 0 1024± 0
Ours 0.065± 0.004 0.026± 0.003 0.867± 0.025 261.763± 24.443 16.632± 5.112 360.4± 71.003

64× 64 FR-IDP 0.123± 0.003 0.123± 0.008 0.625± 0.056 123.562± 4.271 0.268± 0 4096± 0
AR-IDP 0.127± 0.004 0.124± 0.008 0.623± 0.058 586.427± 43.362 0.218± 0.023 2687.14± 383.364
AR-BMC 0.104± 0.004 0.025± 0.003 0.869± 0.028 68645.365± 4606.239 15.782± 4.125 1258.5± 473.78
AR-GPR-IK 0.073± 0.004 0.025± 0.003 0.872± 0.021 18620.558± 6448.663 11.552± 4.221 1387± 443.744
FR-GPF 0.024± 0.002 0.024± 0.002 0.875± 0.023 9977.749± 251.003 100± 0 4096± 0
Ours 0.073± 0.004 0.024± 0.002 0.876± 0.023 4098.029± 548.881 8.877± 4.824 1271.25± 484.191

TABLE I: Comparison of our approach against benchmarks for varying map sizes. By combining GP fusion and adaptive-resolution mapping
using an integral kernel, our strategy reduces runtime while delivering highly accurate maps. Note that memory usage is reported as a ratio
relative to the fixed-resolution GP fusion (FR-GPF) approach.

IoU, since they are most vulnerable to sensor noise or sparse
measurements. This is because they neglect correlations for
mapping, which are key for capturing continuous variables.
In contrast, the four GP-based approaches reflect the smooth
structure of the Gaussian random field, as they incorporate
covariance information into the map update. As expected, the
averaging effect caused by merging cells in adaptive-resolution
approaches leads to higher total RMSE compared to FR-GPF.
However, all GP-based approaches show the same accuracy
in mapping hotspots as well as IoU scores, as required in
our problem setup. In terms of mapping efficiency, AR-BCM
performs the worst as it executes large matrix inversion and
BCM fusion at every update step, leading to prohibitively slow

mapping. Note that BCM benefits from parallelizing several
GP regressions. However, in online mapping scenarios, where
measurements are accumulated incrementally, BCM loses this
strength. AR-GPR-IK is slower than two GP fusion approaches
(FR-GPF and Ours), due to regression using accumulated
measurements. We point out that by using the integral kernel
together with the average measurement model, AR-GPR-IK
already achieves significant speed-up compared to vanilla GP
regression. In all cases, AR-IDP is slower than FR-IDP due to
overhead caused by tree search. The same overhead is expected
in our approach, however, as the major bottleneck in fusion
is the matrix inversion and multiplication in Eqs. (4) and (5),
this can be compensated by faster Bayesian fusion update with
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less grid cells in our approach. In terms of memory usage, FR-
GPF consumes the most memory space as it maintains a large
constant number of grid cells and a large covariance matrix.
Among the adaptive-resolution approaches, AR-IDP shows the
worst merging ability, as indicated by the number of grid cells
in the final map. This can be explained by heterogeneous
states in children nodes caused by inaccurate mapping, which
potentially reduces the chance of merging operation. Among
the GP-based approaches, our new approach achieves the
fastest mapping updates and best memory compression ratios
with competitive map quality. In all cases, our approach
outperforms AR-IDP and FR-IDP in terms of map quality.

B. Validation on Real-World Data

We demonstrate our mapping approach using real-world
surface temperature data. The data was collected in a 150m×
150m crop field (50.86◦ lat., 6.45◦ lon.) near Jülich, Germany
on June 25, 2021 using a DJI Matrice 600 UAV platform
equipped with a Vue Pro R 640 thermal sensor. During data
acquisition, the UAV followed a lawnmower path at 100m
altitude to collect images at 15cm spatial ground resolution.
The images were processed using Pix4D software to create
an orthomosaic used as a proxy for ground truth in our
experiment. We use a maximal map resolution of 64×64. The
entire mapping takes 28.31s considering a 81 measurements
with 50% overlap. The aim is to validate our method for
adaptively mapping temperature hotspots (> 28◦C) at finer
resolutions using this real data. The mapping result in Fig. 5
confirms that our approach can adapt the map resolution in
a targeted way. For mapping at larger scales or at higher
resolutions, our approach could be used to generate local
sub-maps which are then fused by a BCM or the approach
proposed by Sun et al. [29].

Fig 5: Validation of our approach for surface temperature mapping.
Top: Experimental setup showing our UAV over the crop field.
Bottom-left: temperature data of a crop field. Bottom-right: result
of mapping this area using our method. High-temperature areas of
interest (red) are mapped at higher resolutions to preserve detail in
these regions.

C. Application for Adaptive Path Planning

Finally, we integrate our mapping approach into an adap-
tive path planning framework for UAV-based terrain moni-
toring [12] to demonstrate its applicability for online robotic
scenarios. The goal of the planning task is to efficiently detect
regions of interest in an initially unknown environment under
time constraints. For this, the UAV must adaptively plan its
path based on the current map to trade off between exploration
and exploitation. In this experiment, we consider the same
setup as described in Sec. IV-A except setting our prior
mean to 0.7 to initially encourage exploration. We compare
the FR-IDP, AR-IDP, FR-GPF methods to our approach, as
regression-based mapping approaches prohibitively slow for
online planning. We use a 3D lattice consisting of 300 total
waypoints at altitudes of 2m and 5m to represent the discrete
action space. The planner applies greedy search among these
candidates to find the next best measurement position by
forward-simulating the map update and calculating the reward.
The information-theoretic reward is defined by the posterior
variance reduction in regions of interest divided by the flight
time to the waypoint candidate. For more technical details,
please refer to the planning framework of Popović et al. [12].

We conduct experiments on 10 simulated Gaussian random
fields and plot the evolution of RMSE in hotspots and IoU
over mission time in Fig. 6. The mission time is composed of
planning time, map update time, and flight time. The results
show that planning using our mapping approach achieves
the best IoU and RMSE (hotspots) scores with the shortest
mission time, which is favorable for autonomous monitoring
tasks using resource-constrained UAVs. Planning using our
approach outperforms FR-GPF due to more efficient map
updates, which significantly accelerates forward-simulation
during predictive planning. The poorer planning performance
using FR-IDP and AR-IDP is a direct consequence of inac-
curate mapping results. As observed in Sec. IV-A, mapping
approaches using independence assumption neglect important
spatial correlation and are thus more susceptible to sensor
noise. At the start of the mission, the UAV explores the
unknown environment at a higher altitude, as quickly covering
the unexplored areas results in the highest reward. Note
that measurements from higher altitudes are noisier, therefore
severely degrading the map quality. After exploration, the UAV
focuses on the observed hotspots. However, due to inaccurate
mapping from previous measurements, the false positive inter-
esting areas mislead the UAV, leading to the close inspection
of actually uninteresting regions. This inaccuracy deprives FR-
IDP and AR-IDP of their advantage in fast planning.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new approach for online field
mapping. We introduce a novel use of an integral kernel in
GP fusion framework and use ND-tree to store our map.
Combining these two elements enables us to adapt the map
resolution on-the-fly while neatly maintaining spatial corre-
lations. Results show that our approach achieves competitive
performance in terms of mapping efficiency, memory usage,
and map quality. The applicability of our approach is validated
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Fig 6: Comparison of mapping approaches for adaptive path planning
in terrain monitoring scenarios. Our strategy (red) performs best to
efficiently reconstruct hotspot regions in an unknown environment
with highest mapping accuracy (top) and map quality (bottom). Solid
lines represent means over 10 trials and shaded regions indicate
standard deviations.

using real-world data in a surface temperature mapping sce-
nario. Moreover, we demonstrate that faster and more accurate
map updates facilitate adaptive path planning for efficient
information gathering in robotic applications.

A major drawback of our approach is the irreversible
merging operation, which could limit its applicability in dy-
namic environments, as merged grid cells cannot be efficiently
partitioned again. Future work will study adaptive-resolution
mapping approach for large-scale and dynamic environments.
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