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Abstract

Simultaneous Localization and Mapping (SLAM) techniques play a key role towards long-
term autonomy of mobile robots due to the ability to correct localization errors and produce
consistent maps of an environment over time. Contrarily to urban or man-made environ-
ments, where the presence of unique objects and structures offer unique cues for localization,
the apperance of unstructured natural environments is often ambiguous and self-similar, hin-
dering the performances of loop closure detection. In this paper, we present an approach to
improve the robustness of place recognition in the context of a submap-based stereo SLAM
based on Gaussian Process Gradient Maps (GPGMaps). GPGMaps embed a continuous
representation of the gradients of the local terrain elevation by means of Gaussian Process
regression and Structured Kernel Interpolation, given solely noisy elevation measurements.
We leverage the image-like structure of GPGMaps to detect loop closures using traditional
visual features and Bag of Words. GPGMap matching is performed as an SE(2) alignment
to establish loop closure constraints within a pose graph. We evaluate the proposed pipeline
on a variety of datasets recorded on Mt. Etna, Sicily and in the Morocco desert, respec-
tively Moon- and Mars-like environments, and we compare the localization performances
with state-of-the-art approaches for visual SLAM and visual loop closure detection.

1 Introduction

Within the last decades, the field of mobile robotics underwent a significant technological leap in terms
of enhanced mobility, sensory perception and planning of actions. The resulting increased capabilities are
crucial, within our modern society, as they provide tools for disaster mitigation [Klamt et al., 2018], search
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Figure 1: Impressions of the Moon-like landscape on the volcano Mt. Etna (top) and of the Mars-like
landscape in the Moroccan desert (bottom).

and rescue operations [De Cubber et al., 2013, Delmerico et al., 2019] and exploration of hazardous and
unreachable environments, such as in the case of exploration of planetary bodies [Wedler et al., 2021]. In
many occasions, the robotic assets need to operate autonomously, without relying on the intervention of
human operators. This is the case of robotics for the exploration of Mars or the Earth’s moon, where
communication delays limit the possibility of manual intervention [Heverly et al., 2013]. On Earth, the
scenario of subterranean exploration imposes similar constraints, due to the possibility of communication
dropouts [Otsu et al., 2020].

A key skill towards prolonged robotic autonomy is the ability to localize in previously unknown environments
without the need of global positioning systems. Simultaneous Localization and Mapping (SLAM) [Durrant-
Whyte and Bailey, 2006] solves this problem by utilizing sensory inputs to concurrently build a map, or
a representation of the environment, and localize an observer with respect to it. Visual SLAM techniques
exploit cameras for ego-motion estimation, mapping and place recognition and, to this day, are mature
enough to find commercial application in the domains of autonomous driving [Cadena et al., 2016a] or
augmented reality (AR) [Li et al., 2017].

Traditional Visual SLAM approaches [Mur-Artal and Tardos, 2017, Qin et al., 2018], based on detection
and tracking of visual features, are proven to be accurate and robust against failures and drift in the
pose estimation over time, thanks to well-developed loop closure detection techniques [Galvez-Lopez and
Tardos, 2012a, Cummins and Newman, 2008], which allow to establish global optimization problems to
correct trajectory and map by enforcing pose constraints while revising places. However, the typical scenarios
where this family of algorithms is developed and tested comprise often man-made or, in general, feature-rich
environments [Geiger et al., 2013, Sturm et al., 2012]. As an example, the task of visual place recognition
from the point of view of a moving car is subject to strong prior constraints on the camera perspective: the
car would likely revisit a place from the same direction or the opposite, as its motion is constrained by the
lanes on the road.

Contrarily, visual place recognition in unstructured natural environments is challenging due to aliasing and
lack of unique visual or structural features that suggest unambiguously a previously visited location [Giubilato
et al., 2020]. This is the case in the planetary exploration scenario, where unique landmarks are scarce and



Figure 2: Pictures of the Lightweight Rover Unit (LRU) rovers on Mt. Etna (left) and the Sensor Unit for
Planetary Exploration Rovers (SUPER) handheld system in the Morocco desert (right).

hardly recognizable due to the environment appearance as well as the perceptive behaviors of mobile robots
performing autonomous navigation in such context. The necessity to use visual inputs for the purpose of
traversability estimation and hazard avoidance results in arbitrary viewpoints for cameras, usually mounted
on pan-tilt units, hindering the likelihood of collecting images of the same landscapes from repeatable
positions and view directions. This is further aggravated by the fact that robots do not necessarily traverse
the same paths as there are typically no designated roads or pathways on such rough terrains.

This paper builds on our previous work [Le Gentil et al., 2020] where we introduced the concept of Gaussian
Process Gradient Maps (GPGMaps): local representations of the environment obtained by fitting an elevation
model on submaps [Schuster et al., 2019] through Gaussian Process regression and applying linear operators
to compute the spatial derivatives. Thus, instead of relying on the visual similarity of camera images, the
similarity of the terrain elevation is leveraged to both, select candidate matches between GPGMaps as well
as establishing loop closures. Through Gaussian Process regression, GPGMaps represent the environment in
a continuous manner, robust to measurement noise, allowing to detect the similarity of the terrain regardless
of the direction of travel and the distance of the viewpoints. We exploit GPGMaps to build a graph-based
SLAM architecture targeted at stereo vision-based perception systems for robots operating in challenging
natural and unstructured environments.

Thanks to the involvement in the Helmholtz alliance ROBEX ”Robotic Exploration of EXtreme Environ-
ments” [Wedler et al., 2017] in 2012-2017 and the project ARCHES ”Autonomous Robotic Networks to
Help Modern Societies” [Schuster et al., 2020], 2018-2022¡, the DLR (German Aerospace Center) Institute
of Robotics and Mechatronics is conducting specific research on enabling autonomy for an team of het-
erogeneous robots which comprises an UAV, ARDEA [Lutz et al., 2020], and a planetary-like rover, the
Lightweight Robotic Unit (LRU) [Schuster et al., 2017]. Within the final demonstration mission of project
ROBEX, a variety of datasets has been recorded with accurate differential GPS ground truth, where the
LRU robots perform different tasks, e.g. waypoint navigation, autonomous exploration, and long-range
traversing [Vayugundla et al., 2018]. The mission took place on Mt. Etna, Sicily, a volcanic environment
designated as a Moon-analogue site and especially challenging for the purpose of localization for the reasons
previously introduced.

In the context of collecting datasets in remote planetary-like environments, in 2018 the DLR Institute of
Robotics and Mechatronics recorded the Morocco-Acquired Dataset of Mars-Analogue eXploration (MAD-
MAX) [Meyer et al., 2021] on a variety of Mars-analogue sites in Morocco. This dataset specifically addresses
the purpose of benchmarking localization algorithms in challenging Mars-like scenarios and was recorded with
a perception system, the Sensor Unit for Planetary Exploration Rovers (SUPER), analogous to the one of
the LRU rovers and the ARDEA UAV. Figure 1 shows a variety of views of the Etna and Morocco sites
respectively on the top and bottom rows, highlighting the similarity of both locations to lunar and martian



scenes. Figure 2 gives instead an impression of the LRU rover and the SUPER system.

By evaluating the proposed SLAM system on the Mt. Etna and Morocco datasets, we analyze the performance
of our approach in unstructured environments, which closely represent the challenges in localization and
mapping brought by planetary-like scenarios where no prior assumptions can be made. We furthermore
compare the localization performances of GPGM-SLAM with state of the art visual SLAM systems, ORB-
SLAM2 [Mur-Artal and Tardos, 2017] and VINS-Mono [Qin et al., 2018], as well as its pure place recognition
capabilities with the visual loop closure detector iBoW-LCD [Garcia-Fidalgo and Ortiz, 2018]. We therefore
highlight the specific problems that hinder the chances of establishing loop closures and report our lessons
learned for the researchers working on SLAM systems on similar field robotics applications.

More specifically, this paper presents the following contributions going beyond our previous works on
GPGMaps:

• we improve on [Le Gentil et al., 2020] by implementing an efficient GP regression method based
on Structured Kernel Interpolation (SKI) [Wilson and Nickisch, 2015] to infer the gradient of the
terrain elevation using solely noisy elevation measurements. SKI allows us to sample the GP output
on a denser domain and reduce the computational complexity from O(n3) to O(n). Furthermore,
we propose a variation of the SKI method, which permits to generate gradients with only elevation
as input.

• we present a full SLAM system based on GPGMaps with loop closing capabilities showing unprece-
dented localization performances on completely unstructured scenarios.

• we perform extensive testing of our pipeline on challenging datasets recorded during field tests on
Mt. Etna, Sicily and in the Morocco desert, which are respectively designated as Moon- and Mars-
analogue environments. We demonstrate higher localization performances compared to our current
SLAM system, targeted at teams of heterogeneous robots [Schuster et al., 2019], and compared to
the state of the art visual SLAM systems ORB-SLAM2 and VINS-MONO.

• we analyze in detail the properties of structure- and visual-based loop closure detection in the
context of unconstrained camera trajectories in natural environments. We then demonstrate how
our approach leads to higher chances of detecting previously observed terrain structures compared
to pure visual similarity, also when revisiting places from opposite travel directions.

This paper is structured as follows: In Section 2 we give an overview of related works about SLAM in
outdoor unstructured environments, in Section 3 we introduce the components of our SLAM system and the
integration of GPGMap matching as an alternative to our baseline configuration. In Section 4 we introduce
the concept of GPGMap and in Section 5 we explain how GPGMaps are used in the context of detecting loop
closures. Section 6 presents a preliminar assessment of the precision of selecting candidate GPGMap matches
using the BoW paradigm. Section 7 contains the evaluation of GPGM-SLAM on a variety of sequences in
planetay analogue environments and is followed by a discussion on the different behaviour of structure-
and visual-based loop closure detection. Finally, we draw the conclusions and potential developments of
GPGM-SLAM in Section 8.

2 Related Works on Outdoor SLAM

Visual localization in challenging outdoor scenarios has been successfully performed for many decades now.
A notable example is the implementation of Visual Odometry (VO) onboard the Mars Exploration Rovers
(MER) Spirit and Opportunity [Olson et al., 2003] to decrease localization drift accumulated from the wheel
slippage on soft grounds. This allowed the rovers to travel on longer traverses for many years without the
need of global localization [Maimone et al., 2007]. Although VO techniques have been proven to be a robust



manner to estimate a vehicle’s ego motion, the ever present drift, albeit low, is never compensated. To this
end, Simultaneous Localization and Mapping (SLAM) techniques [Durrant-Whyte and Bailey, 2006] have
been developed to solve both the localization and mapping problems concurrently, reducing localization drift
thanks to the ability of establishing loop closures when revisiting known places. The earliest formulations
of the probabilistic SLAM problem leveraged Kalman Filters (EKF) [Bailey et al., 2006] and particle filters
[Montemerlo et al., 2003], the first limited by the growing computational complexity with the increasing
number of landmarks and the second limited by the memory consumption proportional to the number of
particles. A turning point was reached with graph-based formulations [Thrun and Montemerlo, 2006,Grisetti
et al., 2010] and smoothing approaches [Kaess et al., 2008,Kaess et al., 2012] where the sparsity of the SLAM
problem was leveraged to increase computational efficiency.

Visual SLAM is traditionally performed through detection and tracking of visual features [Bay et al.,
2006, Rublee et al., 2011, Lowe, 2004]. The task of recognizing previously visited places relies on detect-
ing the occurrence of already observed features, mostly by means of aggregation techniques such as Bag
of Words [Galvez-Lopez and Tardos, 2012b] or Vectors of Locally Aggregated Descriptors (VLAD) [Arand-
jelovic and Zisserman, 2013]. In recent years, visual SLAM systems, such as ORB-SLAM2 [Mur-Artal and
Tardos, 2017] or LSD-SLAM [Engel et al., 2014], reached a maturity such that they can successfully be
deployed in mobile robots or devices to perform mapping and localization in feature-rich environments. To
this day, however, modern visual SLAM systems have yet to demonstrate successful long term operations in
unstructured and homogeneous scenarios, while excelling in the fields of augmented reality and autonomous
driving [Bresson et al., 2017,Cadena et al., 2016b]. The self similarity and lack of diverse visual features, in
fact, challenges the ability of recognizing already visited places and therefore the possibility to compensate
localization drift. This is aggravated by the strict dependency of visual place recognition on the repeatability
of viewpoints, which is not guaranteed for the case of unconstrained robot navigation in outdoor scenes. To
this end, earlier approaches, targeting the specific application scenario of exploring planetary-like environ-
ments, leveraged visual saliency to segment repeatable regions in the image and track them through visual
features [Bajpai et al., 2016]. Although compensating for the self-similarity of the environment and minimiz-
ing the computational load, the possibility of detecting loop closures is still dependent on the repetition of
viewpoints. The presence of pan-tilt mechanisms on planetary rovers allows to plan the camera viewpoints
in order to maximize the accuracy of VO [Otsu et al., 2017] and potentially facilitating the detection of
loop closures, the success of which is however dependent on the localization uncertainty and can become
hard to tackle. A different path towards visual place recognition belongs to the SeqSLAM approach [Milford
and Wyeth, 2012, Siam and Zhang, 2017], proven to work with some adaptations also on very challenging
unstructured and self-similar scenarios [Grixa et al., 2018]. This approach, however, consists in matching
continuous sequences of images, which poses again strong constraints on the sequence of viewpoints and is
more targeted to path following or homing tasks.

The utilization of range sensors in the context of SLAM helps to overcome the limitations of traditional visual
sensing. Earlier approaches leveraged plane scanning LiDARs mounted on pan-tilt units to produce scans
with 360 degree coverage, using the scans for either obstacle detection [Schafer et al., 2008] or trajectory
planning and localization [Rekleitis et al., 2009] in outdoor environments. Following the recent democrati-
zation of LiDAR sensors, many odometry and SLAM systems have been developed using 3D LiDARs as the
main sensing source [Zhang and Singh, 2014,Shan and Englot, 2018,Le Gentil et al., 2021] and demonstrated
to work reliably and accurately in urban landscapes where the surrounding structures (e.g., buildings, cars,
and trees) well constrain rigid registration algorithms such as Iterative Closest Point (ICP). Even though
modern LiDAR odometry methods achieve high accuracy in pose estimation on long travels, the ever grow-
ing localization drift must be compensated by establishing loop closures. Many approaches for loop closure
detection based on LiDAR scans have been developed recently and follow different strategies. Similarly
to visual methods, the detection of 3D features, such as SHOT [Salti et al., 2014] or FPFH [Rusu et al.,
2009] and their variations, allow to perform place recognition by matching keypoints from point clouds in
moderately unstructured scenarios. In [Guo et al., 2019], SHOT descriptors augmented by LiDAR intensity
are used in a probabilistic voting scheme to find candidate point cloud matches from a database. Intensity
of LiDAR measurements is used also in [Cop et al., 2018], to produce spatial histograms as global point
cloud descriptors. Other approaches employ projection of ranges or intensity from point clouds to perform



feature extraction on images. NARF (Normal Aligned Radial Features) are used in [Steder et al., 2011] in a
Bag of Word scheme to find candidate matches from urban and indoor scenes, and discard ambiguous point
clouds through a self similarity test. Other approaches rely on global descriptors of LiDAR scans, such as
ScanContext [Kim and Kim, 2018], or on segmentation and accumulation of distinct point clusters, such as
SegMap [Dubé et al., 2018, Dubé et al., 2020]. The dependency on specific assumptions about the target
environment, such as the presence of evident structures that can be easily segmented either by removing a
traversable ground or by matching primitive shapes [Pierzcha la et al., 2018], makes these approaches un-
suitable for generic natural and planetary-like landscapes. Furthermore, to this day no mechanical or, in
general, 3D LiDAR sensor has been deployed on an autonomous rover mission for planetary exploration,
with the exception of NASA’s Ingenuity helicopter which carried an 1D LiDAR altimeter for the purpose
of altitude estimation. Therefore, in our work we will leverage structural information but in the context of
stereo vision.

Among SLAM systems that specifically address the target application of rovers in planetary-like scenarios,
[Hidalgo-Carrió et al., 2018] implements a SLAM system where an odometry model is inferred through
the usage of Gaussian Process regression to complement a visual pipeline where the extracted keyframes are
added to a graph in an adaptive manner, as to maximize the information gain and minimize the computational
load. The overall system has been successfully tested on analogue planetary terrains, where however the
authors highlight the challenging nature of the acquired images, difficult to use for loop closure detection
due to the strong perceptual aliasing. The authors of [Geromichalos et al., 2020] propose a SLAM system
based on a particle filter that includes global localization constraints. 2.5D local maps are built from stereo
data and matched to the current map using a variant of ICP, whose scores are used to resample particles.
Global localization is performed by performing template matching between local and global elevation images.
The method is interesting and it shares with our system the idea of using local elevation and registration
techniques from the domain of image matching to perform localization. However, the usage of plain elevation
is insufficient to provide enough visual details for matching and the transformation of local point clouds to
2.5D maps loses the 3D information that is delivered by the original point clouds.

3 The SLAM Architecture

GPGM-SLAM is built upon a distributed visual SLAM system based on submaps, designed to enable localiza-
tion and mapping within teams of heterogeneous robots equipped with stereo vision systems [Schuster et al.,
2019], such as the Lightweight Rover Unit (LRU) rovers [Schuster et al., 2017] and the UAV ARDEA [Lutz
et al., 2020] developed at the DLR (German Aerospace Center) Institute of Robotics and Mechatronics. On
both systems, stereo images are processed with the Semi-Global Matching (SGM) algorithm [Hirschmüller,
2007] implemented on an FPGA to obtain per-pixel depth information, which is used to evaluate the terrain
traversability but also to compute visual odometry.

Local state estimation is performed as a fusion of visual odometry, IMU measurements and, if available,
wheel odometry. The fusion is based on a loosely coupled approach and estimates 6D poses as well as
sensor biases using an Extended Kalman Filter (EKF), implemented as a Local Reference Filter [Schmid
et al., 2014]. It allows long-term operation by enabling a consistent estimation of all the unobservable state
variables within the system, i.e. translations in x, y, z and yaw angle, with locally bounded uncertainties.
Switching to a new local reference frame is actively triggered by a set of conditions, which include the length
of the local trajectory, the accumulated yaw rotation of the robot body, and exceeding a threshold on the
state covariances.

Each local reference frame defines also the origin of a submap, which is a local representation of the envi-
ronment with a bounded size and error due to the aforementioned frame switching conditions. It represents
the geometry of the environment in form of a 3D point cloud as well as an additional probabilistic 3D voxel
grid. Submaps are aggregated from stereo depth measurements using the pose estimated from the local
reference filter. In the original SLAM system from [Schuster et al., 2019], submaps distinguish obstacles and
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Figure 3: Overview of the GPGM-SLAM pipeline: (a) GPGMaps are generated using 3D submaps from
aggregated stereo clouds. Visual features, computed on the gradient images, are used to create BoW vectors
and detect loop closures from a database. (b) Validated GPGMap matches are used to establish loop
closure constraints in a pose graph, where submap origins (blue ellipses) are joined by VIO (Visual-Inertial
Odometry) pose constraints.

traversable parts, and obstacles are not only utilized for local navigation but also to define 3D keypoints
to extract C-SHOT features using the normals of the full point cloud. With that, the annotated submap
point clouds are utilized for the goal of establishing loop closures by matching 3D features and validating a
transformation from Hough3D clusters followed by a 4D ICP step.

Submap matches produce rigid transformation constraints between the associated local reference filters,
which define the nodes of a graph optimized by iSAM2 [Kaess et al., 2012] using the GTSAM library.
Subsequent nodes are constrained by inter-pose constraints between the local reference frames defined by
the local state estimation. Loop closures constrain non-adjacent nodes, and are followed by an update of the
iterative iSAM2 optimizer. The optimized poses are finally used to correct the appearance of the full map,
which is built by assembling the rigid submaps’ point clouds and voxel grids according to the positions of
their local reference frames.

In the course of this paper, we will refer to this configuration of the SLAM system as a baseline for comparison.
Furthermore we will also refer to a variation of the system [Giubilato et al., 2021], which refers to an improved
formulation of local submaps with the inclusion of visual keyframes captured from the camera images along
the local trajectory. In this variation, keyframes are used to compute ORB features on locations of the
image with valid depth values. ORB features are finally matched to compute inter-pose constraints between
keyframes, which are constrained to the local reference frames from visual-inertial constraints.

The system denoted GPGM-SLAM, see Figure 3, substitutes the point cloud-based submaps with GPGMaps
to increase the performances in the loop closure detection stage. GPGMaps are built by leveraging Gaussian



Processes to infer a continuous elevation given the submap point cloud as a set of training points. This
allows to overcome the traditional issues with the point cloud data structure, e.g. noise and occlusions, to
the end of matching on challenging unstructured scenes. Compared to the baseline system, GPGMaps are
not only matched given the overlap from the prior on poses, but also using a Bag of Words approach with
SIFT features computed on the gradient of the elevation. Each GPGMap also contains the “parent” submap
to refine the final transformation with a 4D ICP step. We will present details on construction of GPGMaps
in the following section.

4 Gaussian Process Gradient Maps

The concept of GPGMap was initially introduced in our previous work [Le Gentil et al., 2020] to address the
challenge of noisy and sparse geometric data in the context of submap-based place recognition in unstructured
planetary environments. GPGMaps are a continuous and probabilistic representation of the gradient of the
terrain elevation. In this representation a direct prediction of the elevation’s derivatives is inferred from 3D
point clouds of the system’s environment using GPs and linear operators [Särkkä, 2011]. While GP models
allow for data-driven accurate interpolation, they suffer from a cubic O(n3) computational complexity for
the first inference and linear O(n) for each additional prediction, with n the number of sample data. In our
previous work [Le Gentil et al., 2020], this constraint was simplistically addressed with a naive index-based
downsampling of the submap point clouds. While improving computation time, this naive method reduces
the data information used in the inference.

In this work, to improve on the processing time and to allow the use of denser information, we employed a
variant with derivatives of the Structured Kernel Interpolation (SKI) scheme [Wilson and Nickisch, 2015].
SKI is a GP-kernel approximation method based on interpolation/inducing points used to alleviate the
cubic complexity of regular GP regression. Work on derivatives with SKI-based GP interpolation [Eriksson
et al., 2018], so-called D-SKI, was later introduced to leverage the SKI scheme and the signal’s derivatives
(as input) to improve the inference output. D-SKI allows for the inference of the signal’s derivatives but
requires observations of the derivatives in the first place. Unfortunately these derivatives, which in our case
are equivalent to the normal vectors of the submap point clouds, are not readily available as an observation.
Instead, if required as input, the normal vectors have to be computed from the point cloud using numerical
methods that require manual parameter tuning. As an example, to generate Figure 4, we estimate the
submap normal vectors with a closest-neighbor search and a principal component analysis to provide D-SKI
GPs with both elevation and derivative information. By looking at the gradient inferences with different
parameters for the closest-neighbor search, it is clear that the output greatly depends on the ad-hoc derivative
estimation method and the original spatial point distribution. Consequently, one can conclude that using
D-SKI over model-based generated derivatives (as opposed to actual observations of the derivatives) fails the
data-driven nature of GP regression and can significantly degrade its performance. In this work, we propose
a variation of the SKI scheme to directly infer the elevation derivatives using elevation measurements solely.
We will further refer to this variation as SKI-D.

This section first presents the required GP regression and SKI background before detailing the concepts
involved in the generation of GPGMaps as shown in Figure 5.

4.1 Gaussian Process regression and SKI

Let us consider a signal h, function of t, with a GP [Rasmussen and Williams, 2006] as

h(t) ∼ GP
(
0, kh(t, t′)). (1)



(a) (b) (c) (d)

Figure 4: Inference of the gradient of the terrain elevation using D-SKI [Eriksson et al., 2018]. (a) is the
input point cloud (colours correspond to different elevation values). (b), (c), and (d) are the D-SKI inferences
using both as inputs the elevation information and ad-hoc normals computed using 10, 50, and 100 closest
points, respectively.

The function kh(t, t′) is called the kernel function and represents the covariance between two instances of
the signal h:

cov
(
h(t), h(t′)

)
= kh(t, t′). (2)

Given noisy N observations of that signal

yi = h(ti) + ηi, ηi ∼ N
(
0, σ2

y), (i = 1, · · · , N), (3)

the mean and variance of h at any input t, h∗(t) and σ∗h(t) respectively, can be inferred as

h∗(t) = kh(t, t)
[
Kh(t, t) + σ2

yI
]−1

y, (4)

σ∗h(t) = kh(t, t)− kh(t, t)
[
Kh(t, t) + σ2

yI
]−1

kh(t, t)>, (5)

with y the column vector of the noisy observations
[
y1, · · · , yN

]>
, kh(t, t) the row vector of covariances

of h between the inference input and the observations’ inputs
[
kh(t, t1), · · · , kh(t, tN )

]
, and Kh(t, t) the

covariance matrix of the observations
[
kh(t1, t)>, · · · ,kh(tN , t)>

]
.

As discussed above, the main drawback of GP regression is its computational complexity of O(n3) due to
the matrix inversion in (4). The SKI principle [Wilson and Nickisch, 2015] relies on the use of inducing
points U arranged as a regular grid. By formulating the approximation Kt,U ≈WtKU,U with Wt a matrix
of interpolation weights, it is possible to approximate Kt,t = Kh(t, t) + σ2

yI as

Kt,t ≈WtKU,UW>
t = KSKI. (6)

By choosing a local interpolation method, the matrix Wt can be extremely sparse and the inversion K−1
SKIy

is solved using a linear conjugate gradient only requiring matrix vector products. Similarly the covariance
vector kh(t, t) is computed with a fixed amount of operations as kh(t, t′) ≈

∑
i

wi(t)kh(ui, t
′). It results in a

computationally efficient method to infer the signal’s mean for any input t: linear time O(n) inference with
O(1) for additional predictions.

4.2 SKI-D for Gaussian Process Gradient Maps generation

Unless in the context of specific exploration tasks (e.g. exploration of caves or lava tubes [Léveillé and Datta,
2010]), the environment surrounding the rover is unlikely to contain overhanging or vertical structures.
Accordingly, we assume that the environment can be modeled as a 2.5D map without losing significant



structural details. Given that submaps are gravity-aligned, their elevation, or the z component of the point
cloud, can be expressed as a function f(x) with x the x and y spatial coordinates within the submap’s local
reference frame. Considering the elevation function modelled with a zero-mean GP as

f(x) ∼ GP
(
0, kf (xi,xi′)

)
,

zi = f(xi) + ηi, ηi ∼ N (0, σ2
z), (7)

and leveraging the application of linear operators for GP regression [Särkkä, 2011], the derivatives of the
elevation can exactly be inferred solely as a function of the noisy elevation observations:

∂f(x)

∂x
=
∂kf (x,X)

∂x

[
Kf (X,X) + σ2

zI
]−1

z,

∂f(x)

∂y
=
∂kf (x,X)

∂y

[
Kf (X,X) + σ2

zI
]−1

z. (8)

As per [Eriksson et al., 2018], based on the SKI formulation, the differentiation operator can be applied to

the kernel as
∂kf (x,X)

∂x ≈
∑
i

∂wi(x)
∂x kf (ui,X) and

∂kf (x,X)
∂y ≈

∑
i

∂wi(x)
∂y kf (ui,X). Consequently, the elevation’s

derivatives are approximated as

∂f(x)

∂x
≈
(∂w(x)

∂x
KU,U

)
K−1

SKIz, (9)

∂f(x)

∂y
≈
(∂w(x)

∂y
KU,U

)
K−1

SKIz. (10)

The gradient component of the GPGMaps is then obtained as the norm of the derivatives:

g(x) =

√(∂f(x)

∂x

)2

+
(∂f(x)

∂y

)2

. (11)

4.3 Elevation’s variance approximation

Unfortunately, the SKI scheme as presented in [Wilson and Nickisch, 2015] and [Eriksson et al., 2018] does
not allow for efficient inference of the signal’s variance. In order to provide a proxy for the variance of the
elevation inferences, we leverage the kernel function between an inference input x and the centroid of the
noisy observations that are present in an arbitrary radius around the inference input. For efficiency, a k-d
tree is used for the neighbor search in the x-y plane. If no point is present in the radius search, the closest
neighbor is used instead of the neighbors’ centroid. Formally, the approximation of the variance is defined
as ˜var(f(x)) = kf (x, x̃), with x̃ being the centroid of the neighbors in a certain radius around x in the noisy
observation’s input X, or simply the closest observation input if none is present in the radius search.

5 Loop Closure with GPGMaps

Establishing loop closures in our SLAM system is accomplished by attempting pairwise matching of
GPGMaps. The procedure leverages the representation of elevation, variance, and gradient of elevation
as images to use elements of standard image registration pipelines. More specifically, as new GPGMaps
are created, SIFT features are extracted on the gradient image. To avoid extracting features on uncertain
regions, where the elevation is inferred far from neighboring training points, the variance image is used to
establish a binary mask. Let the i-th GPGMap of a mapping session be denoted as:

Gi = 〈Tw
LRF, P, I, V,G,K, F 〉i (12)



Local Reference Frame

Point cloud

Gradient image

Elevation image

Variance image

u

v

∼10m

x

y
z

Figure 5: Anatomy of a GPGMap: A point cloud, inherited from the parent submap, is used to train a
Gaussian Process which infers elevation in a spatially continuous manner using SKI. The colormap of the
elevation image highlights negative and positive elevation values, which are normalized on a zero mean. The
variance of the elevation is instead approximated given the distance to the closest training point and the
length scale of the squared exponential kernel, darker colors suggest higher variances which grow rapidly
with the distance from the closest train point (the variance image is trimmed for the purpose of visualization,
however the high variance regions extend to infinity in the spatial domain). The gradient image encodes
the magnitude of the spatial gradients of the elevation image and is used to compute SIFT features for loop
closure detection and matching of GPGMaps.

where Tw
LRF is the pose of Local Reference Frame for the i-th GPGMap with respect to a world coordinate

frame. P is the original point cloud, I and V are elevation and variance images, G is the elevation gradient,
K and F represent the sets of keypoints and feature descriptors. The task of establishing matches between
GPGMaps is split in two main parts. First, a preliminary candidate selection is made relying either on
appearance or prior pose information. Second, the candidate matches are validated by attempting to fit
an SE(2) transformation between gradient images. The relative pose between the local reference frames of
matched GPGMaps enforces loop closure constrains in the SLAM graph.

5.1 Loop Closure Detection

As new GPGMaps are created, the ensemble of SIFT descriptors computed on the gradient image is translated
into a lightweight representation using the Bag of Words paradigm. More specifically, we use a modified
version of the DBoW2 [Galvez-Lopez and Tardos, 2012b] library introduced in [Giubilato et al., 2020].
By means of a vocabulary of visual words, built appropriately considering the potential features that can
appear during execution, the Bag of Words model in DBoW2 summarizes feature occurrences into a map of
indexes and corresponding weights, called BoW vector. The weighting scheme is based on the tf-idf (i.e.,
term frequency–inverse document frequency) metric, which weights the effectiveness of a word to suggest a
visual context depending on the number of times the word was observed in the images used to build the
vocabulary. That ensures that common features have little impact on the similarity metric between BoW
vectors. Finally, an additional weight is applied to the feature occurrences to account for the incompleteness



of the vocabulary. Vocabularies built on sparse and partial data might not fit well the operational scenario,
and the feature descriptors parsed to the vocabulary might lay far from the closest word in the descriptor
space. This distance is accounted for, as explained in more detail in [Giubilato et al., 2020], to downweight
the contribution of the word to the similarity of BoW vectors.

Let be vi the BoW vector for GPGMap Gi:

vi = {〈id0, w̄0〉, ..., 〈idj , w̄j〉} (13)

w̄j = w∗j · idf · tf

where idj is the index of the j-th word and w̄j is the corresponding weight, which is computed as the product
of all weighting factors including w∗j which encodes the distance to the closest visual word and idf · tf which
is the tf-idf term. All new GPGMaps are compared with a database of the GPGMaps previously built from
the beginning of the session to identify potential matches. The similarity of GPGMaps is computed in a fast
and approximate manner by comparing the BoW vectors through a similarity score s(vi,vdb), computed as
in [Galvez-Lopez and Tardos, 2012b]:

s(vi,vdb) = 1− 1

2

∣∣∣∣ vi

|vi|
− vdb

|vdb|

∣∣∣∣ ∈ [0, 1] (14)

For every GPGMap, we select the two most similar ones and attempt match validation.

In addition, all GPGMaps are associated with a Local Reference Frame, the pose of which is added to the
SLAM graph. Thus, it is possible at all times to use the prior pose information to select matching candidates
based on spatial overlap. This is not only the strategy employed by our baseline SLAM system [Schuster
et al., 2019] but also from the majority of structure-based SLAM systems [Ebadi et al., 2020,Mendes et al.,
2016] usually relying on LiDAR point clouds. Specifically, we compute a bounding box for each GPGMap
considering the extend of the original point cloud. The bounding box is then inflated considering the
variance on the pose coordinates. For every new GPGMap, we compute the Intersection over Union (IoU)
of its bounding box with the GPGMaps in the database. Furthermore, we monitor the status of the pose
graph, maintained by the SLAM node, and in case significant changes are observed the IoU is recomputed for
all pairs of GPGMaps. Non-matched and sufficiently overlapping GPGMaps are then selected as candidates
for match validation.

A match queue is built by adding first the candidate matches based on BoW similarity and secondly the
candidates from overlap. This way, in case a match of the first type is validated, the pose graph is immediately
updated correcting poses and covariances of all GPGMaps. This allows to more accurately compute the
overlap metric and, as covariances decrease, to reduce the number of candidates to be validated, reducing
the computational overhead.

5.2 Loop Closure Validation

In this step of the pipeline, candidate GPGMap matches are validated to select true matches and compute
a final rigid transformation between the original point clouds that is used to constrain their local reference
frames in the SLAM graph. The validation is articulated in two steps. A first stage concerns the gradient
images and, more specifically, their SE(2) alignment through SIFT features matching. A second stage consists
in deriving the final transformation between the original point clouds given a prior alignment from the first
step.

5.2.1 SE(2) Alignment of Elevation Images

The SIFT features f1 and f2 of a candidate GPGMap pair (G1,G2) are matched to determine an SE(2)
transformation between the gradient images G1 and G2. Feature matching is performed either in a brute
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Figure 6: Estimation of the z offset from the aligned elevation I and variance V images of GPGMaps G1 and
G2. The SE(2) transformation for the alignment is obtained from SIFT correspondences kj and k′j computed
on the gradient images.

force manner or using the ratio test [Lowe, 2004]. The matching strategy is selected by the user at runtime.
In our experiments we find that the ratio test allows to efficiently reject outliers. However, in the more
challenging sequences, the stricter check results in losing good matches compared to the simpler brute force
approach, performed in both directions. The choice between the two can be therefore made empirically
depending on the appearance of the environment. The resulting set of matching features is used to fit an
SE(2) transformation between the images in a RANSAC scheme as explained in [Le Gentil et al., 2020]. A
first check is performed on the number of inliers, which must be higher than a predefined threshold. This
value is preliminarily set to 5 and is generally valid for all test datasets.

Compared to [Le Gentil et al., 2020], to reduce the computational overhead, we here accept the result of
RANSAC based solely on the elevation of matched features instead of the whole elevation images. Let be
I1(kj) and I2(k′j) be elevations corresponding to the locations of the matched SIFT keypoints in GPGMaps G1

and G2. Let also V1(kj) and V2(k′j) be the associated variances. Having computed the SE(2) transformation
that aligns I1 to I2, the goal here is to determine the remaining parameter to align the point clouds in the
3D space, which is the z offset. This offset is due to the fact that elevations are determined relatively to the
local reference frame of G1 and G2, leading to potential differences between the local elevations of matching
SIFT keypoints. Furthermore, as a variance is known over the elevation, every offset can be represented as
a Gaussian distribution:

zoff,j = N (I1(kj)− I2(k′j), V1(kj) + V2(k′j)) (15)

For all n correspondences, the offset that best aligns in z the two GPGMaps can be estimated as:

z̄off =

∑n
j=1

I1(kj)−I2(k′
j)

V1(kj)+V2(k′
j)∑n

j=1
1

V1(kj)+V2(k′
j)

(16)

which is the average of all offsets weighted on their variance, or the results of weighted least squares regression
for a constant function.

After applying z̄off to the elevation, we perform a final check to ensure that the pair of GPGMaps is a true
match. This is done by examining the Bhattachayyya distances between the aligned elevations z1 and z2:

z1 = N (I1(kj)− z̄off, V1(kj)) (17)

z2 = N (I2(kj), V2(kj))

DB(z1, z2) =
1
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If the GPGMap match is true, the z offset should determine low Bhattacharyya distances for all keypoint
pairs. Therefore we accept the match if more than 70% of the pairs lead to DB(z1, z2) < tDB

where tDB
is

set to 2 from empirical considerations.



Figure 7: Comparison of the classification performances of matching GPGMap pairs using different visual
feature descriptors in a BoW scheme with traditional 3D feature matching in a RANSAC scheme. The
results refer to the etna 03 sequence. In the top row, a precision-recall plot as well as a ROC (Receiver
Operating Characteristic Curve) illustrate the different performances of the evaluated classifiers compared
to the performances of a random selection. The bottom row shows heatmaps of the spatial overlap between
GPGMaps compared with the pairwise scores of BoW vectors built using SIFT descriptors. Red circles
highlight examples of true loop closures corresponding to high BoW scores and overlap.

5.3 Point Cloud Alignment

Having validated a match between a pair of GPGMaps, a transformation between the original point clouds
has to be derived in order to establish a loop closure constraint in the pose graph. A transformation
TG1G2 ∈ SE(2) is known from the last step as well as an offset z̄off that aligns the elevations I1 to I2. A
transformation in the 3D space from the Local Reference Frames of the original point clouds is obtained as:

TLRF2

LRF1
= TLRF2

G2 TG2G1 TG1LRF1
(18)

=
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ryo
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
−1  I
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0

0 0 0 1

 (19)

where R(φ) is the rotation component of TG2G1 with roll and pitch angles set to zero, r is the resolution of
elevation and variance images (m/pix), and xo and yo are the origins of the elevation and variance images in
the Local Reference Frame of the original submaps. To account for potential misalignments after validation,
we perform an 4D ICP on the point clouds using TLRF2

LRF1
as the initial transformation. Finally, the RMSE

error of the point-to-point distances at the last iteration of ICP is used to approximate a covariance for the
refined transformation. This transformation is then used to establish a loop closure constraint in the pose
graph.

6 Evaluation of Loop Closure Detection

We perform here a first evaluation of the performances that can be expected in recollecting similar GPGMaps
from a database. As visual place recognition using the Bag of Words paradigm is very mature and has
been implemented in many visual SLAM systems, we aim to evaluate the feasibility of utilizing the same
techniques and apply them to the structure-oriented case. Furthermore, this preliminar assessment also
aims at motivating the choice of the visual descriptor which we utilize in GPGM-SLAM given the superior
classification performances.

Here we implement a Bag of Word framework in the MATLAB environment, in order to easily analyze
various descriptor choices. Although the performances might differ from the DBoW2 library that we use in



GPGM-SLAM, we expect them to be comparable and, most of all, we expect the different descriptors to
exhibit a similar behaviour between the two implementations. We evaluate the SIFT [?], SURF [Bay et al.,
2006] and KAZE [Alcantarilla et al., 2012] feature descriptors, extracted on the gradient images from the
Etna sequences, see the dataset presentation in Section 7. A vocabulary of features is constructed using the
gradient images from a subset of GPGMaps built while evaluating GPGM-SLAM on the sequences. To every
GPGMap, a single BoW vector is associated given the set of descriptors extracted on the relative gradient
image. Higher scores between BoW vectors denote higher similarity between the GPGMaps, and we compare
it with the overlap of the bounding boxes of the original point clouds given the prior pose from SLAM. This,
in fact, can be generally considered accurate enough to discriminate potentially matching GPGMaps between
all the possible pairs.

Figure 7 reports precision-recall and ROC (Receiver Operating Characteristic Curve) curves built by varying
a threshold between the minimum and maximum BoW scores to classify GPGMap pairs as matching. True
GPGMap matches are instead selected using the Intersection over Union (IoU) metric between bounding
boxes, choosing empirically a threshold to discriminate between matching and non-matching. Among all the
evaluated visual descriptors, SIFT is the one which obtains the highest classification performances. Note
that these performances are related to non-validated candidate GPGMap matches. We expect, in fact, that
the precision after validation will be 100% in order to avoid validating any false GPGMap match. Overall,
the SIFT descritptor allows here to select a wider set of true GPGMap matches and therefore facilitating
the task of detecting numerous loop closures along the trajectory. Figure 7 also compares the overlap of
GPGMaps, or IoU values, and the BoW scores between all GPGMap pairs, highlighting with red circles
three examples of correct loop closure detections.

We also compare the performances of a traditional approach for structure registration, using the original
point clouds that are used to generate the GPGMap. 3D-SHOT and 3D-CSHOT refer to matching key-
points from high curvature regions [Giubilato et al., 2020] using the SHOT and CSHOT descriptors [Salti
et al., 2014] followed by RANSAC to determine a relative 6D rigid transformation given pairs of matching
3D keypoints. The precision-recall curves for these configurations are determined by varying the distance
threshold between descriptors to get keypoint matches between the two point clouds. As the precision-recall
curves show, the structure-based approach is able to correctly select a small set of matching pairs and the
performances degrade with an immediate loss of precision for low recall values. Note that this alternative
is order of magnitudes more computationally expensive than evaluating the similarity between BoW vectors
and therefore completely infeasible for larger GPGMap sets. Furthermore, the approach depends on the pos-
sibility of extracting 3D keypoints which, as will be later discussed, is the main limitation of structure-based
approaches in our target scenarios.

7 Performance Evaluation of SLAM System in Planetary-like
Environments

We evaluate the localization performances of GPGM-SLAM on two datasets recorded in planetary-like
environments on Mt. Etna, Sicily and in the Morocco desert. The first dataset [Vayugundla et al., 2018]
was recorded in 2017 during the final demonstration mission of the Helmholtz project ROBEX, where the
volcanic environment of Mt. Etna appears as a lunar landscape. The lack of visual and structural features,
along with the repetitiveness of the visual appearance, makes place recognition a hard task, challenging the
ability of robots to recognize previously visited places and correct localization drift. Similarly, the second
dataset, named MADMAX and collected on the Moroccan desert [Meyer et al., 2021] aims at evaluating
localization algorithms in challenging outdoor environments. The appearance of this dataset is similar to
the one of Martian landscapes, and covers a wide variety of scenarios. A summary of the sequences used to
test GPGM-SLAM is given in Table 1 and Table 2.

GPGM-SLAM is evaluated in a comparative performance analysis with our baseline SLAM system, in two
configurations, as well as the plain output of the visual-inertial odometry. A global trajectory is assembled



Table 1: Presentation of the Etna sequences

Sequence Time [min] Length [m] Example Image Description

etna 01 8 30 - Short rectilinear travel forward and back to the start.
Rover is teleoperated

- Sandy, featureless flat ground

etna 02 65 820 - Long distance travel. Rover is teleoperated, pan-tilt
mechanism not used, camera pointing to the same di-
rection
- Sandy and hilly terrain, does not contain rocks or ob-
stacles

etna 03 25 125 - Rover performs waypoint-based autonomous navi-
gation, using often the pan-tilt mechanism to assess
traversability.
- Hilly terrain containing plenty of visual and structural
features

etna 04 39 112 - Autonomous exploration sequence, no user interven-
tion. The rover moves frequently using the pan-tilt
mechanism, therefore jerky camera motions pose chal-
lenges to the state estimation
- Traversable terrain, few rocks scattered and observed
at a safe distance

etna 05 40 170 - As etna 04

by transforming in world coordinates the local trajectories that belong to each submap, or GPGMap. Let
be pGi = {pj , j = 1, .., n}Gi trajectory of the camera belonging to GPGMap i. The full trajectory at the
end of a SLAM session can be reconstructed through the optimized poses from the pose graph TGw

i
. The

reconstructed trajectory is aligned to a D-GPS ground truth leveraging temporal correspondences. The first
corresponding positions between trajectory and ground truth are fixed, and Horn’s quaternion-based method
is used to find the rotation matrix that ensures the best fit. We then evaluate the Root Mean Square (RMS)
error between corresponding positions to define a final performance metric:

RMSE =

√√√√ 1

nc

nc∑
j=0

||pj − pD-GPS
j ||2 (20)

Furthermore, we compute the final error, or the absolute trajectory error evaluated at the final correspondence
with the D-GPS track, as well as the relative errors which are normalized with respect to the trajectory
length. For all sequences and for each compared configuration of the SLAM system we perform 5 runs to
account for non-deterministic effects due to RANSAC and scheduling of processes in the operative system.
The algorithms are tested on a laptop equipped with an Intel i7-4810MQ CPU and 16 Gb of RAM, whose
computational performances are on par with the PC mounted on the LRU rover.



Table 2: Presentation of the Morocco sequences

Sequence Time [min] Length [m] Example Image Description

E0 15 223 - Traverse on a hiking path through a rocky slope. SU-
PER frequently stops and looks around.
- Traversing same exact path on the way back from the
opposite direction, start and end of the trajectory coin-
cide.
- Rough terrain with big stones.

E1 16 309 - As E0

E2 25 374 - Same environment as E0 and E1. Big traverse off the
hiking path with little to no overlap. Return on the ini-
tial spot while traversing on previously observed places.

7.1 Mt. Etna Datasets

Sequences from the Mt. Etna datasets are recorded from the perspective of the LRU rover while performing
a variety of tasks involving different levels of autonomy and environments. More specifically, the etna 02
sequence is recorded while imparting direct commands to the rover through a joystick with the aim of
traversing a long path with two overlapping loops to evaluate long-term localization [Grixa et al., 2018].
As the rover is fully operated, the pan-tilt mechanism of the camera head is not used, and cameras are
generally pointed towards the ground. This, together with the locally straight trajectory, result in very
narrow submaps which contain little structure (see impression in Table 1) and are very challenging to match.
A similar type of environment is observed in etna 01 although in this sequence, together with etna 03, the
rover is navigating autonomously across waypoints. In this case, the obstacle avoidance mechanism requires
to frequently observe the environment in the proximity of the rover, which causes submaps to both have
a wider extent and include more obstacles and peculiar structures. The etna 03 sequence is the easiest
sequence of the set for the purpose of establishing loop closures through submap and GPGMap matching.
The rover follows here a trajectory shaped as a “figure 8” with two long overlapping sequences of about 15
meters length, the first on a rocky area and on the same driving direction, the second on a flat and sandy
area and traversed from the opposite direction. In the etna 04 and etna 05 sequences, the rovers move in
a fully autonomous manner as a tradeoff between exploring a scene, covering as much ground as possible,
and revisiting places [Lehner et al., 2017]. These two sequences are the most challenging, in this evaluation,
for the purpose of loop closure detection. Fully autonomous behaviors require the rovers to acquire as much
information as possible about the environment, this results in frequent and jerky motions of the camera
head. This limits the spatial extent of submaps, as new ones are more frequently triggered by rapid increase
in the covariance of local pose estimation. In order to maximize traversability, the environment also contain
very little amount of rocks and patterns on the sand to recognize. Furthermore, unlike the other datasets,
the trajectories from etna 04 and etna 05 do not overlap after long distances (e.g. start to end) but contains
only few and short term loops, which limits the effectiveness of establishing loop closures to the overlall
localization accuracy. However, the challenging nature of the appearance of the environment allows to
benchmark the ability of detecting hard to find loop closures.

Results for the Etna sequences are summarized in Table 3, where GPGM-SLAM is compared with our
baseline SLAM system as well as the visual-inertial odometry alone (i.e. no submap matching), denoted



Table 3: Results for the Etna dataset averaged on 5 runs. Relative errors are normalized on the approximate
length of the trajectory. Matches are average number of validated submap matches

Dataset ETNA
Sequence etna 01 etna 02 etna 03

Config filter 3D 3D-KF GPGM filter 3D 3D-KF GPGM filter 3D 3D-KF GPGM
RMSE (avg) 0.44 0.50 0.48 0.41 9.39 7.88 9.06 2.84 0.92 0.44 0.37 0.34
EndErr (avg) 0.98 1.23 1.18 0.67 32.26 26.44 30.37 10.95 1.05 1.34 1.00 0.88
RMSE (%) 0.75 0.87 0.82 0.71 1.14 0.96 1.10 0.35 0.75 0.36 0.30 0.27
MaxErr (%) 1.68 2.11 2.03 1.15 3.93 3.22 3.70 1.33 0.85 1.08 0.81 0.70

Matches - - - 0.83 - 0.25 - 19.4 - 1.2 3 8

Dataset ETNA
Sequence etna 04 etna 05

Config filter 3D 3D-KF GPGM filter 3D 3D-KF GPGM
RMSE (avg) 1.50 1.48 1.30 1.25 3.01 3.04 3.03 1.97
EndErr (avg) 2.94 2.80 2.55 2.27 7.73 7.75 7.85 4.98
RMSE (%) 1.33 1.31 1.15 1.11 1.78 1.79 1.79 1.16
MaxErr (%) 2.60 2.48 2.25 2.01 4.56 4.57 4.63 2.93

Matches - - 2.2 4.6 - - - 2

Figure 8: RMSE errors and submap or GPGMap matches for the Etna sequences

“filter”. Bold faces denote the best results for all the sequences, and it is immediately apparent how GPGM-
SLAM outperforms all configurations, delivering better fitting trajectories to the D-GPS track and therefore
lower maximum and final errors.

As all SLAM configuration share the same inputs, i.e. submaps, the sole reason for the higher performances
of GPGM-SLAM is the ability to establish more, and more sparsely distributed, constraints in the pose
graph from GPGMap matches. Results are particularly impressive for the etna 02 and etna 01 cases, where
submaps do not contain rocks or evident structures in general. In fact, on etna 01 no submaps are matched
from CSHOT correspondences and on etna 02 only one match happens and only in 1 run out of 5. GPGM-
SLAM instead matches consistently around 20 GPGMaps on etna 02, when the rover drives on the same
path for the second time, as well as 1 to 2 GPGMaps on etna 02 out of a total of 8 submaps in the sequence.
Figure 10 displays a variety of GPGMap match examples including the alignment of gradient images and
point clouds. Specifically for etna 01, the lack of structure is immediately apparent also from the point cloud
view, where rocks emerging from the sand are shaded in darker colors. Submap pairs from etna 02 have a
similar appearance to the ones from etna 01 although being narrower. The etna 03 sequence is the easiest of
the set, giving many opportunities to match either submaps or GPGMaps. The trend of RMSE errors from
Figure 8, in fact, show decreasing errors for the 3D, 3D-KF and GPGM configurations. The environment
from etna 03 is rocky and the rover frequently repeats the same path also observing the scene from similar
perspectives. This facilitates place recognition from multiple modalities, i.e. visual and structural perception,



Table 4: Results for the Morocco dataset averaged on 5 runs, single runs for ORB-SLAM2 and VINS.
Relative errors are normalized on the approximate length of the trajectory.

Dataset MOROCCO
Sequence E0 E1 E2

Config filter GPGM ORB VINS filter GPGM ORB VINS filter GPGM ORB VINS
RMSE (avg) 0.61 0.50 1.52 0.82 1.52 0.88 - 1.00 2.34 1.82 3.02 3.83
EndErr (avg) 1.14 0.33 0.19 1.29 3.42 0.48 - 0.03 6.45 2.93 7.44 11.36
RMSE (%) 0.25 0.21 0.68 0.37 0.46 0.27 - 0.32 0.54 0.42 0.75 1.01
MaxErr (%) 0.46 0.14 0.09 0.57 1.03 0.15 - 0.01 1.49 0.68 1.85 2.99

Matches - 6.60 - - - 7.40 - - - 2.50 - -

favoring the 3D-KF case over the 3D only configuration. Both of the approaches, however, are only able to
match submaps from the parts of the sequence richer of structure, where also the rover revisits the place
from the same driving direction. GPGM-SLAM instead, matches submaps also in the parts of the sequence
where the rover revisits from the opposite driving direction, due to the inherent benefit of Gaussian Process
regression to infer elevation where it is missing (e.g. obstructed from direct line of sight). Finally, for etna 04
and etna 05, although obtaining lower errors than the baseline, performances of GPGM-SLAM in terms of
absolute localization are not impressive due to the pose drift accumulated by jerky camera motions which
are not compensated by the lack of long range loop closures. On etna 05, the most challenging sequence on
the dataset, the baseline SLAM system is unable to perform any submap matches, while GPGM-SLAM is
able to match a few GPGMaps and partially compensate for localization drift. In Figure 9 all the best fitting
trajectories are plotted against the D-GPS ground truth, reflecting the different behaviour of the rover as
previously stated.

To contextualize the performance figures with respect to the state of the art of Visual SLAM systems, we
attempted to evaluate ORB-SLAM2 [Mur-Artal and Tardos, 2017] and ORB-SLAM3 [Campos et al., 2020].
However, as cameras are mostly looking downward towards the sandy ground, and the visual appearance is
highly ambiguous and aliased, both algorithms frequently lose tracking of ORB features. For ORB-SLAM2
this translate into failure, unless the camera revisits similar viewpoints. For ORB-SLAM3 instead, this
translates into frequent creation of new maps, which the place recognition scheme is unable to match. As
fragments of the reconstructed trajectories are too short to be evaluated (less than a couple of meters in
general), we refer/postpone their evaluation to the Morocco dataset, where the camera motion from the
hand-held unit facilitates visual tracking.

7.2 Morocco Datasets

The sequences denominated E0, E1 and E2 take place on and off an hiking trail located on a rocky slope
in the “Kess Kess” formations, Erfoud area, Morocco. The sequences are named, for consistency, as within
the released MADMAX dataset [Meyer et al., 2021]. Compared to the sequences from the Etna dataset, the
environment on these sequences is scattered with rocks, see the impressions from Table 2, whose uniformity
again challenges the ability to recognize specific places. Furthermore, compared to the frequent panning
motions of the LRU rover camera, in all the sequences from the Morocco dataset, the camera usually
points forward along the direction of motion resulting in narrower GPGMaps and therefore comprising less
structural details. As an additional challenge, while returning to the starting location, the path is traversed
from the opposite direction. This compromises the ability of performing place recognition using visual cues
and we specifically evaluate this in Section 7.5.

We compare the performances of GPGM-SLAM here against our visual-inertial localization as a baseline, as
well as with ORB-SLAM2 and VINS-MONO in order to contextualize our results with well known algorithms
from the SLAM community. For reasons of consistency, we utilize the trajectories estimated from ORB-
SLAM2 and VINS as released as part of the MADMAX dataset. A single trajectory from both algorithms is
provided for every sequence, resulting from evaluating both with an optimal parameter set. Table 4 reports
the errors of all tested algorithms and configurations, which are graphically represented in Figure 11. For
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Figure 9: Trajectories for all sequences and algorithms on the Etna and Morocco datasets. Squares and
circles highlight respectively the start and end of the trajectories
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Figure 10: Impressions of GPGMap matches for the Etna (top) and Morocco (bottom) datasets. G1 and G2

denote the gradient images of the GPGMap pair, ”Matches” denotes validated SIFT feature matches as well
as aligned gradients. The last row shows the original point clouds from submaps aligned in the 3D space.



Figure 11: RMSE errors and submap or GPGMap matches for the Morocco sequences

the Morocco dataset we avoided to report the performances of our baseline configuration 3D and 3D KF,
already evaluated on the Etna sequences. The opposite viewpoints combined with the uniformity of the
structure, lead to a significant degree of occlusions and complementarity between potentially matchable
submaps. Therefore due to the lack of shared surface details and unique 3D keypoint detections, submap
matching on the level of point clouds show poor performances and often producing establishing wrong loop
closures. We consider therefore these approaches unable to produce satisfactory results on the Morocco
sequences and we avoid to report performance metrics for them.

In all the Morocco sequences GPGM-SLAM produces the closest trajectory to the D-GPS ground truth,
achieving RMSE errors as low as the 0.2% of the trajectory length. This is due to the many GPGMap
matches established along the overlapping parts of the trajectories, even if traversed from the opposite
direction. Examples of matched GPGMaps are collected in Figure 10. Interestingly, although both ORB-
SLAM2 and VINS obtain higher RMSE errors, in E0 and E1 they score the lowest final errors due to the
fact that they detect loop closures at the very end of the sequences, where the camera observes objects and
equipment from similar perspectives. The inability of detecting visual loop closures within the trajectory,
however, does not permit to recover the inevitable pose drift which degrades the fit to the D-GPS track.
Results of ORB-SLAM2 are not reported for E1 as it was unable to reconstruct more than approximately
25% of the trajectory due to non recovered tracking loss.

7.3 SIFT features design choices

Using SIFT features on GPGMaps corresponds to the detection of corner-like keypoints on the elevation’s
gradient associated with descriptors computed based on the gradients of the elevation’s gradient. This set-up
aims to justify empirically the choice of using SIFT over elevation’s gradient compared to other variations.

The standard procedure to match two images using SIFT features consists in computing differences of Gaus-
sians at different scales on both images to extract salient keypoints. Then, descriptors based on orientation
histograms of the intensity gradients are computed over scaled patches around each keypoints. Technically,
it requires the algorithm to calculate the gradient of the images numerically. Finally, the descriptors are used
to match features between the images using various distance functions and matching strategies. Regarding
this pipeline and the availability of both the elevation and elevation’s gradients as image-like data (using GP
regression without or with differentiation linear operators), our first design choice concerns the data used for
keypoint detection; should the keypoints be extract over the terrain elevation or its gradient?

Let us consider five true loop closures in the dataset etna 03 with given SE(2) transformations between each
GPGMap pairs. Keypoints are extracted in each submap using independently both the elevation and the
elevation’s gradient. For each submap pair, the keypoints of one submap are projected in the second submap
using the associated SE(2) transformation. Then, keypoint pairs across maps are classified as true matches



or not according to a distance threshold of three centimeters. Using the elevation for keypoints extraction
results in an average of 5.8 true matches per loop closure, while the gradient-based keypoints results in an
average of 11.2 true matches. These results coincide with the intuition that the elevation’s gradient presents
more corner-like patterns than the elevation data itself. The rest of this experiments will only consider
keypoints detected over the gradient image of the GPGMaps.

Given the availability of the GP-inferred derivatives of the elevation, (9) and (10), one can consider using
these analytical derivatives instead of the numerical differentiation of the elevation’s gradient performed when
using standard SIFT features over GPGMaps. For each keypoint, we computed the SIFT descriptors using
independently both the GP-inferred elevation derivatives (i) and the numerical gradient of the elevation’s
gradient as per the classic use of SIFT features (ii). Note that these approaches are fundamentally different

as (i) uses ∂f(x)
∂x and ∂f(x)

∂y , while (ii) uses ∂g(x)
∂x and ∂g(x)

∂y with g(x) defined in (11).1 We analysed the
matching distances for inliers and outliers using both techniques. The results are shown in Table 5. The
significantly bigger difference between inlier and outlier distances for the standard SIFT descriptors confirms
that the gradient of the elevation’s gradient (ii) offers more distinctive features and lead to better loop-
detection performances. Additionally, the extra computation needed for the numerical differentiation is not
penalising the real-time abilities of our system as shown in the following section (the descriptors computation
represents less than 3% of the total GPGMap generation and processing time).

Table 5: L1 distances between feature descriptors using the GP-based gradient or the standard SIFT over
the elevation’s gradient (leveraging numerical differentiation over the elevation’s gradient).

Method Avg inlier desciptor dist. Avg outlier descriptor dist. Nb loop detected

(i) SIFT variant using GP derivatives 1656.7 1704.0 2
(ii) Standard SIFT over elevation’s gradient 1692.1 2337.3 5

7.4 Timings

Table 6: Times (in seconds) for every step of GPGM-SLAM averaged on all datasets.

Step Time (avg) [s]

create gpgpmap 6.22
pose callback 0.01

compute descriptors 0.19
compute bow vector 0.01

compute scores 0.01
(avg. / Submap) 6.43

match validation: RANSAC 0.01
match validation: ICP 0.62

Table 6 reports the execution time for all the principal parts of GPGM-SLAM involved during the processing
of GPGMaps. All times are referred to single thread implementations, except during GP inference of elevation
where 2 threads are used, and are measured while evaluating the pipeline using a laptop. Nevertheless, the
times are comparable, if not equal, to those that can be expected from the computers onboard the LRU
rovers. The most computationally expensive step is the creation of GPGMaps. The highest contributions
are in order the Gaussian Process inference from SKI (with 1 centimeter resolution) and the computation of
the approximate variance. The second highest time is spent on the extraction of SIFT features while all the
remaining tasks, including generation of BoW vectors and retrieval from the database, are performed in less
than 10 milliseconds. It must be noted that the extent of submaps greatly affects the inference time for the
elevation: frequent panning motions of the camera head lead to accumulating points in the original submap
in all directions, therefore growing the set of training points for the Gaussian Process. For larger submaps,
the time of generating GPGMaps can reach up to 5 or 6 seconds in the tested sequences. The computation
time must, however, be compared with the time span of an individual submap which generally varies from 20

1The derivatives of g(x) cannot be directly inferred using linear operators over GP kernels as per the non-linear operations
in (11)



to 60 seconds while the camera is moving. Therefore, the generation of GPGMap from submaps only takes
a small fraction of the temporal extent of submaps, inducing a small and relatively constant delay between
concluding the creation of one submap and performing loop closure detection with the respective GPGMap.
In terms of match validation, which only occurres while evaluating candidate matches, fitting an SE(2)
transformation between gradient images requires a negligible amount of time. The highest contribution to
the validation time is the 4D ICP step on the original point clouds, which takes in average about 0.6 seconds.

7.5 Comparison with visual relocalization

Overlap

GPGMap LC

iBoW LC

E0 E1 E2

Overlap

GPGMap LC

iBoW LC

etna 01 etna 02 etna 03

Overlap

GPGMap LC

iBoW LC

etna 04 etna 05

Etna sequences

Morocco sequences

Figure 12: Frequency of loop closure occurrences for GPGM-SLAM and the visual loop closure detector
iBoW-LCD. Heatmaps show the frequency over 5 runs for each algorithm, to account for randomness. The
first field, denoted overlap, is proportional to the proximity of the camera for every time step to a past
location, if closer than 5 meters. For GPGM-SLAM, a single loop closure occurrence covers the time interval
of the relative GPGMap, for iBoW-LCD a single loop closure occurrence is related to a keyframe match and
slightly inflated for visualization purposes.

We compare the loop closure detection performances of GPGM-SLAM with the ones of a state of the art visual
loop closure detector, iBoW-LCD [Garcia-Fidalgo and Ortiz, 2018]. This method is a recent incremental
loop closure detector which eliminates the need of a vocabulary of visual word and exploits the concept of
visual islands to group consequent images and reduce the computational time to detect a loop closure. The
authors report higher retrieval performances than DBoW2, used by ORB-SLAM2, and therefore we use it
to evaluate the different behavior of visual-only methods to detect loop closures on our challenging datasets.

We implement iBoW-LCD extracting a maximum of 1500 ORB features per image, using the left frame of
the stereo setup. Loop closure validation is performed by fitting a fundamental matrix using RANSAC as



Figure 13: Number of shared or exclusive occurrences of loop closures between GPGM-SLAM and iBoW-
LCD. One occurrence of visual loop closure from iBoW-LCD is determined by the presence of any number
of frame matches within the time interval of a GPGMap. Occurrences are either shared, if both algorithm
procude a loop closure for the same GPGMap interval, otherwise exclusive for one of them.

implemented in the OpenCV library. We consider a visual loop closure successful if a minimum of 30 inliers
is selected after RANSAC. All parameters are selected empirically such that the chance of establishing false
loop closures is minimized.

In Figure 12 we report the frequency of loop closures from both GPGM-SLAM and iBoW-LCD. For GPGM-
SLAM, loop closures consists in validated GPGMap matches and their occurrence is registered in the time
frame of the query GPGMap, or the one that is matched with one from the past. For iBoW-LCD an
occurrence of visual loop closure is registered as a sparse event in a specific time. The time refers to the
extent of the D-GPS track. We visually compare the frequencies of loop closure detections with an overlap
value. The overlap is computed proportionally to the proximity of the current camera pose, taken from the
D-GPS ground truth, with the closest one from the past trajectory. Figure 13 reports the number of shared
and exclusive loop closures from GPGM-SLAM and iBoW-LCD. As loop closures are defined differently from
the two algorithms, we consider an occurrence for iBoW-LCD the presence of any frame matches within the
time span of an individual GPGMap. Occurrences of loop closures are either “shared” if they happen within
the time frame of the same GPGMap, otherwise they are “exclusive” for one of the two methods. A higher
number of exclusive matches denotes a higher loop closure detection power.

The aim of this evaluation is to highlight the different properties of both sensing modalities, i.e. struc-
tural properties for GPGM-SLAM and visual appearance for iBoW-LCD. Specifically, we want to evaluate
the benefits of matching structure instead of images in unstructured scenarios where the observer path is
unconstrained, but also highlight the limitations of performing loop closure detection with a single modality.

Although the environment on the Etna sequences is mostly sandy with a only a few clusters of rocks scattered
around, the frequent panning of the camera leads to frequently observing the surrounding landscape at a
distance. On etna 01, the rover mostly observes a featureless ground without using the pan-tilt mechanism,
and returns to the starting position from the opposite direction. In this case only GPGM-SLAM is able
to match GPGMaps and close loops, while iBoW-LCD does not detect any. Differently, on etna 03 and
etna 02, iBoW-LCD detects many loop closures as the rover revisits frequently the same places from very
close positions and viewpoints. However, GPGM-SLAM is able to match more numerous portions of the
trajectory and because of that, matches are either shared between the two algorithms or detected exclusively
by GPGM-SLAM, see Figure 13. The different modality of iBoW-LCD favors it in th etna 04 and etna 05
sequences, where many visual loop closure happen in places where GPGM-SLAM does not detect any
similarity between GPGMaps, see the high number of exclusive loop closures for iBoW-LCD from Figure 13.
iBoW-LCD, in fact, detect loop closures given image features which lie far beyond the range of stereo
measurements, a few examples are given in Figure 14.

The sequences from the Morocco datasets are challenging for visual loop closure detection, as most of the



Figure 14: Examples of loop closures detected by iBoW-LCD within the time span of GPGMaps that were
not matched by GPGM-SLAM. Visual features driving the detection of a loop closure lie far from the stereo
sensing range, which limits the spatial extent of GPGMaps. Note how wrong feature matches happened in
the proximity of the cameras, on sandy terrains. These examples suggest the benefit of embedding multiple
modalities to detect loop closures in the context of SLAM.

overlapping parts of the trajectory are traversed from the opposite direction. While the elevation, inferred
from the Gaussian Process, is continuous and its gradient offers repeatable features regardless of the camera
viewpoint, the appearance of the images is completely different. This explains the higher performances of
GPGM-SLAM in this case, or the high number of exclusive matches reported in Figure 13.

The presence of exclusive loop closure detections from iBoW-LCD in both the Etna and Morocco datasets
suggests that multiple modalities could be exploited to improve the chances of relocalization. GPGMap
matches infact rely on the proximity of the environment to the camera, as the input point clouds are built
from stereo depth, while visual loop closures can happen while observing landmarks far from the sensing
range of a stereo setup.

8 Conclusions

In this paper we presented GPGM-SLAM, a submap-based SLAM system for mobile robots based on Gaus-
sian Process Gradient Maps targeted at stereo vision systems. The continuous elevation inferred by a
Gaussian Process is used to compute gradient images which contain sufficient and repeatable visual in-
formation to make structure-oriented place recognition possible in challenging self similar and ambiguous
environments. Real time operations are permitted by Structured Kernel Interpolation (SKI) which reduce
the computational load for inferring the local elevation by orders of magnitude compared to the standard
GP formulation with O(n3) time complexity. We tested GPGM-SLAM on sequences from two datasets
captured on Mt. Etna, Sicily and in the Morocco desert, both planetary-like environments, demonstrating
higher performances than our baseline SLAM system [Schuster et al., 2019] as well as state of the art vi-
sual SLAM systems. Through a specific analysis of the loop closure detection capabilities of our approach



compared to visual approaches, we demonstrated that the performance improvements are principally due
to the ability of matching GPGMaps produce while traversing on opposite directions. We in fact find out
that the slow and unconstrained motion of mobile robots while operating in the field, often constrained by
task specific requirements such as obstacle avoidance and traversability estimation, prevents the possibility
to make any assumption on viewpoint repeatability which is, instead, paramount in common datasets ori-
ented to autonomous driving. The inherent properties of Gaussian Processes, to compensate measurement
noise and missing data in the training set (due to holes in the original point clouds), make robust match-
ing possible and opens the possibility of performing robust multi-agent SLAM with different instrument
setups in unstructured environments following unconstrained paths. Furthermore, we highlighted the fact
that, although generally performing worse in our specific datasets, visual place recognition is not limited
by the availability of depth and therefore the approaches can be fused exploiting multi-modality for more
comprehensive relocalization capabilities. As part of additional future works, we plan to exploit semantic
segmentation of known and unknown terrain classes to enhance the understanding and categorization of data
within GPGMaps, allowing to improve matching performances in the face of extremely ambiguous structural
cues.
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