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a b s t r a c t

In light of the emergence of deep reinforcement learning (DRL) in recommender systems research
and several fruitful results in recent years, this survey aims to provide a timely and comprehensive
overview of recent trends of deep reinforcement learning in recommender systems. We start by
motivating the application of DRL in recommender systems, followed by a taxonomy of current DRL-
based recommender systems and a summary of existing methods. We discuss emerging topics, open
issues, and provide our perspective on advancing the domain. The survey serves as introductory
material for readers from academia and industry to the topic and identifies notable opportunities for
further research.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recent years have seen significant progress in recommen-
ation techniques from traditional recommendation techniques
e.g., collaborative filtering, content-based recommendation and
atrix factorization [1]) to deep learning based techniques. Deep

earning is increasingly used in recommender systems, due to its
apability to capture non-linear user–item relationships and deal
ith various types of data sources such as images and text. It has
hown strong advantages in solving complex tasks and dealing
ith complex data. However, deep learning-based recommender
ystems have limitations in capturing interest dynamics [2,3]
ue to distribution shifts, i.e., the training phase is based on an
xisting dataset which may not reflect real user preferences that
ndergo rapid change. In contrast, deep reinforcement learning
DRL) aims to train an agent that can learn from interaction tra-
ectories provided by the environment by combining the power of
eep learning and reinforcement learning. Since an agent can ac-
ively learn from users’ real-time feedback to infer dynamic user
references in DRL, DRL is especially suitable for learning from
nteractions, such as human–robot collaboration. It has driven sig-
ificant advances in interactive applications ranging from video
ames, Alpha Go to autonomous driving [4]. While, before the
RL is widely used in RS, contextual bandit based methods are the
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main stream to handle such interactive process [5]. However, the
contextual bandit cannot deal with the dynamic environment [2].
Hence, DRL would be a better choice for RS. In light of the signifi-
cance and recent progresses in DRL for recommender systems, we
aim to timely summarize and review DRL-based recommendation
systems in this survey.

1.1. Differences with existing surveys

There is a recent published survey [6] reviews reinforcement
learning in recommender systems but does not investigate the
growing area of deep reinforcement learning comprehensively.
Moreover, it just provides an overview of the existing works with-
out providing a systemic taxonomy, deep discussion for emerging
topics, open questions and, future directions of DRL RS. There
is another survey about deep learning based RS did cover some
aspects about DRL RS [3]. While the works that mentioned in [3]
is out-of-date and did not provide a in deep analysis about the
DRL RS. While, it is notable that, there is another work available
on arXiv [7]. However, it is later than ours but with very similar
structures and taxonomy and being considered as a follow up
work with this survey.

1.2. Our contributions

Our survey distinguishes from the past published survey in
providing a systematic overview of existing methods, along with
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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discussion of emerging topics, open issues, and future direc-
ions. This survey introduces researchers, practitioners and ed-
cators to this topic and fosters an understanding of the key
echniques in the area. The main contributions of this survey are
s follows:

• We provide an up-to-date comprehensive review of deep re-
inforcement learning in recommender systems, with state-
of-the-art techniques and pointers to key references. To
the best of our knowledge, this the first comprehensive
survey in deep reinforcement learning-based recommender
systems.
• We present a taxonomy of the literature of deep reinforce-

ment learning in recommender systems. Along with the
outlined taxonomy and literature overview, we discuss their
benefits and drawbacks.
• We shed light on emerging topics and open issues for DRL-

based recommender systems. We also point out future di-
rections for advancing DRL-based recommender systems.

The remainder of this survey is organized as follows: Section 2
rovides an overview of recommender systems, DRL and their
ntegration. Section 3 provides a taxonomy and classification
echanism. Section 4 reviews the emerging topics. Section 5
oints out open questions, and finally, Section 6 gives a few
romising future directions.

. Background

In this section, we introduce the key concepts related to dy-
amic recommender systems (RS) and deep reinforcement learn-
ng (DRL), and motivate the introduction of DRL to dynamic
ecommender systems.

.1. Why deep reinforcement learning for recommendation?

Recommender systems require coping with dynamic environ-
ents by estimating rapidly changing users’ preferences and
roactively recommending items to users. Let U be a set of users
f cardinality |U| and I be a set of items of cardinality |I|. For

each user u ∈ U , we observe a sequence of user actions Xu
=

[xu1, x
u
2, . . . , x

u
Tu ] with item xut ∈ I, i.e., each event in a user

sequence comes from the item set. We refer to a user making
a decision as an interaction with an item. Let F by users’ feed-
back (e.g., ratings or clicking behavior), a dynamic recommender
system maintains a recommendation policy πu

t , which will be
updated based on the feedback f ui ∈ F received during the
interaction for item i ∈ I at the timestamp t .

The marriage of deep learning and reinforcement learning
has fueled breakthroughs in recommender systems. DRL-based
RS consists of a pipeline of three building blocks: environment
construction, state representation and recommendation policy
learning. Environment construction aims to build an environment
based on a set of users’ historical behaviors. State represen-
tation is provided by the environment containing certain user
information, such as historical behavior and demographic data.
Recommendation policy learning is the key component to un-
derstand and predict users’ future behavior. DL-based RS learns
about users’ interests and update the recommender based on user
feedback, while DRL-based RS receives the reward provided by
the environment to update the policy. The reward provided by the
environment is a pre-defined function containing several factors.
The detailed processes of DL-based RS and DRL-based RS mapping
can be found in Fig. 3.
2

2.2. Preliminaries of deep reinforcement learning

DRL has the characteristic of leveraging deep learning to
approximate reinforcement learning’s value function and solve
high-dimensional Markov Decision Processes (MDPs) [4]. A MDP
can be represented as a tuple (S,A,P,R, γ ). The agent chooses
an action at ∈ A according to the policy πt (st ) at state st ∈ S. The
environment receives the action and produces a reward rt+1 ∈ R;
then, it produces the next state st+1 according to the transition
probability P(st+1|st , at ) ∈ P . The transition probability P is
unknown beforehand in DRL.

Such a process continues until the agent reaches the terminal
state or exceeds a pre-defined maximum time step. The overall
objective is to maximize the expected discounted cumulative
reward:

Eπ [rt ] = Eπ

[ ∞∑
0

γ krt+k
]

(1)

where γ ∈ [0, 1] is the discount factor that balances the future
reward and the immediate reward.

Deep reinforcement learning can be either model-based and
model-free (a detailed taxonomy can be found in Fig. 2). Their
major difference is whether the agent can learn a model of the en-
vironment: model-based methods aim to estimate the transition
function and reward function, while model-free methods esti-
mates the value function or policy from experience. In particular,
in model-based methods, the agent accesses the environment
and plans ahead; in contrast, model-free methods gain sample
efficiency from using models that require extensive development
and testing than model-based methods [4].

Deep reinforcement learning approaches are divided into three
streams: value-based, policy-based and hybrid methods. In value-
based methods, the agent updates the value function to learn
a policy; policy-based methods learn the policy directly; hybrid
methods or actor–critic methods, which combine value-based and
policy-based methods by using two different networks, where an
actor network uses a policy-based method and the critic uses a
value-based method to evaluate the policy learned by the agent.
The notations used in this manuscript can be found on Table 1.

Deep reinforcement learning includes on-policy and off-policy
methods. Off-policy methods, use the behavior policy πb for ex-
ploration and the target policy π for decision-making. For on-
policy methods, the behavior policy is the same as the target
policy.

Q-learning [8] is an off-policy value-based learning scheme
for finding a greedy target policy:

π (s) = argmax
a

Qπ (s, a) (2)

where Qu(s, a) denotes the Q -value and is used in a small discrete
action space. For a deterministic policy, the Q value can be
calculated as follows:

Q (st , at ) = Eτ∼π [r(st , at )+ γQ (s′t , a
′

t )]. (3)

Deep Q learning (DQN) [9] uses deep learning to approx-
imate a non-linear Q function parameterized by θq: Qθq (s, a).
DQN designs a network Qθq that is asynchronously updated by
minimizing the MSE:

L(θq) = Eτ∼π

[
Qθq (st , at )− (r(st , at )+ γQθq (s

′

t , a
′

t ))
]2

(4)

where τ is the sampled trajectory containing (s, a, s′, r(s, a)). In
particular, s′t and a′t come from the behavior policy πb while
s, a comes from the target policy π . The value function Vπ (s)
represents the expected return. V (s) is used to evaluate the state,
π
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Table 1
Notations used in this manuscript.
Notations Name Notations Name Notes

Q (·) Q-value function s State Users’ preference
V (·) Value function a Action Recommended item(s)
γ Discount factor π , µ(·) Policy Recommendation policy
E Expected value r(·, ·) Reward Users’ click behavior
θ Model parameter α constant ∈ [0, 1] –
p(·) Transition probability τ Sampled trajectory A tuple (st , at , s′t , rt )
Fig. 1. Taxonomy of deep reinforcement learning-based recommender systems in this survey.
V

h
h
θ

m

J

Fig. 2. Taxonomy of deep reinforcement learning in recommender systems.
3

and Qπ (st , at ) is used to evaluate the action. Vπ (s) can be defined
as

Vπ (s) = Eτ∼π

[ T∑
t=0

γ t r(s, a)|s0 = s
]
. (5)

Vπ (·) and Qπ (·) have the following relationship:

π (s) = Ea∼π [Qπ (s, a)]. (6)

The value function is updated using the following rule with
the Temporal Difference (TD) method,

Vπ (st )← Vπ (st )+ α[r(s′t , a
′

t )+ γVπ (s′t )− Vπ (st )  
TD-error

] (7)

where α is a constant.
Policy gradient [10] is an on-policy method that can handle

igh-dimensional or continuous actions which cannot be easily
andled by Q-learning. Policy gradient aims to find the parameter
of πθ to maximize the accumulated reward. To this end, it
aximizes the expected return from the start state:

(πθ ) = Eτ∼πθ
[r(τ )] =

∫
πθ (τ )r(τ )dτ (8)
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Fig. 3. Difference between deep learning based RS and DRL-based RS. Deep learning based RSs may only update the recommendation policy during the training
tage. They often require re-training, which is computationally inefficient, when users’ interests change significantly. DRL-based RS will update the recommendation
olicy time over time as new rewards are received.
here πθ (τ ) is the probability of the occurrence of τ . Policy gra-
ient learns the parameter θ by the gradient ∇θ J(πθ ) as defined
elow:

θ J(πθ ) =
∫

πθ (τ )r(τ )dτ =
∫

πθ (τ )∇θ logπθ (τ )r(τ )dτ

= Eτ∼dπθ
[

T∑
t=1

r(st , at )
T∑

t=1

∇θ

× logπθ (st , at )]. (9)

The above derivations contain the following substitution:

πθ (τ ) = p(s1)
T∏

t=1

πθ (st , at )p(st+1|st , at ) (10)

where p(·) is independent from the policy parameter θ , which
is omitted during the derivation. Monte-Carlo sampling has been
used by previous policy gradient algorithm (e.g.,. REINFORCE) for
τ ∼ dπθ

.
Actor–critic networks combine the advantages from

Q-learning and policy gradient. They can be either on-policy [11]
or off-policy [12]. An actor–critic network consists of two com-
ponents: (i) an actor, which optimizes the policy πθ under the
guidance of ∇θ J(πθ ); and (ii) a critic, which evaluates the learned
policy πθ by using Qθq (s, a). The overall gradient is represented as
follows:

E [Q (s, a)∇ logπ (s, a)]. (11)
s∼dπθ
θq θ θ

4

When dealing with off-policy learning, the value function for
πθ (a|s) can be further determined by deterministic policy gradi-
ent (DPG):

Es∼dπθ
[∇aQθq (s, a)|a=πθ (s)∇θπθ (s, a)]. (12)

While traditional policy gradient calculates the integral for
both the state space S and the action space A, DPG only requires
computing the integral to the state space S. Given a state s ∈ S ,
there will be only one corresponding action a ∈ A : µθ (s) =
a using DPG. Specifically, deep Deterministic Policy Gradients
(DDPG) is an algorithm that combines techniques from DQN and
DPG, and the structure can be found on Fig. 5. DDPG contains four
different neural networks: Q Network Q , policy network, target
Q network Q tar , and target policy network. It uses the target net-
work for both the Q Network Q and policy network µ to ensure
stability during training. Let θq, θπ , θq′ and θπ ′ be parameters of
the above networks. DDPG soft-updates the parameters for the
target network [13]:

Actor: θπ ′ ← αθπ + (1−α)θπ ′ Critic: θq′ ← αθq+ (1−α)θq′ (13)

2.3. DRL meets RS: Problem formulation

DRL is normally formulated as a Markov Decision Process
(MDP). Given a set of users U = {u, u1, u2, u3, . . .}, a set of
items I = {i, i1, i2, i3, . . .}, the system first recommends item
i to user u and gets feedback f u. The system incorporates the
i
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Table 2
List of publications in model-based DRL-based RS.
Method Work

Value-based [14–17]
Policy-based [18,19]
Hybrid [20,21]

feedback to improve future recommendations and determines an
optimal policy π∗ regarding which item to recommend to the
user to achieve positive feedback. The MDP modeling treats the
user as the environment and the system as the agent. The key
components of the MDP in DRL-based RS include the following:

• State S: A state St ∈ S is determined by both users’
information and the recent l items in which the user was
interested before time t .
• Action A: An action at ∈ A represents users’ dynamic

preference at time t as predicted by the agent. A represents
the whole set of (potentially millions of) candidate items.
• Transition Probability P: The transition probability

p(st+1|st , at ) is the probability of state transition from st
to st+1 when action at is executed by the recommendation
agent. In a recommender system, the transition probability
refers to users’ behavior probability. P is only used in
model-based methods.
• Reward R: Once the agent chooses a suitable action at based

on the current state St at time t , the user will receive the
item recommended by the agent. Users’ feedback on the
recommended item accounts for the reward r(St , at ). The
feedback is used to improve the policy π learned by the
recommendation agent.
• Discount Factor γ : The discount factor γ ∈ [0, 1] is used to

balance between future and immediate rewards. The agent
only focuses on the immediate reward when γ = 0 and
takes into account all the (immediate and future) rewards
otherwise.

The DRL-based recommendation problem can be defined by
MDP as follows. Given the historical MDP, i.e., (S,A,P,R, γ ), the
oal is to find a set of recommendation polices ({π} : S → A) that
aximizes the cumulative reward during interaction with users.

roblem Formulation 1. Given an environment that contains all
tems I, when user u ∈ U interacts with the system, an initial
tate s is sampled from the environment which contains a list of
andidate items and users’ historical data. The DRL agent works out
recommendation policy π based on the state s and produces a

ist of recommended items a. The user will provide feedback on the
ist (through ‘click’ or ‘not click’). The DRL agent then utilizes the
eedback to improve the recommendation policy and move to the
ext interaction episode.

. Deep reinforcement learning in recommender systems

DRL-based RS has unique challenges like state construction,
eward estimation and environment simulation. We categorize
he existing work of DRL-based recommendation into model-
ased and model-free methods (the taxonomy is shown in Fig. 2).

.1. Model-based deep reinforcement learning-based methods

Model-based methods assume an expected reward or action
vailable for the next step to help the agent update the policy
see Table 2).
5

olicy-based methods. IRecGAN [18] is a model-based method
hat adopts generative adversarial training to improve the ro-
ustness of policy learning. It can reduce the cost of interaction
or RS by using offline data instead of the simulated environ-
ent. IRecGAN employs a generative adversarial network [22] to
enerate user data based on the offline dataset. It trains a rec-
mmendation agent using a policy gradient-based DRL method
alled REINFORCE. The agent aims to learn a policy based on the
ollowing gradient,

τ∼{g,data}
[ T∑
t=0

T∑
t ′=t

γ t ′−tqD(τ n
0:t )rt∇θact ∈ πθa (st )

]
, (14)

qD(τ n
0:t ) =

1
N

N∑
n=1

D(τ n
0:T ), τ

n
0:T ∈ MCU (N)

where MCU (N) represents the sampled N sequences from the
interaction between U and the agent using the Monte-Carlo tree
search algorithm, D is the discriminator, T is the length of τ , g
represents the offline data, and data represents the generated
data.

Hong et al. [19] propose NRSS for personalized music rec-
ommendation. NRSS uses wireless sensing data to learn users’
current preferences. It considers three different types of feedback:
score, option, and wireless sensing data. Since NRSS considers
multiple factors are considered as the reward, it designs a reward
model consisting of users’ preference reward rp and a novel tran-
sition reward rtrans which are parameterized by θrp and θrtrans . On
the above basis, NRSS finds the optimal parameters θrp and θrtrans
by using the Monte-Carlo tree search. Wireless sensing feedback
lacks generalization ability as it is only available for certain tasks
or scenarios, making it hard to determine dynamic user interest.

Value-based methods. Prior to Q-learning, value iteration is a
traditional value-based reinforcement learning algorithm that fo-
cuses on the iteration of the value function. Gradient Value It-
eration (GVI) [14] is proposed to improve the traditional value
iteration algorithm by utilizing the transition probability and
a multi-agent setting to predict chronological author collabora-
tions. It introduces a new parameter named ‘status’ to reflect
the amount of knowledge that the agent needs to learn from
this state. The policy is updated only when the distance between
the new status and the old status is lower than a pre-defined
threshold. Since value iteration requires the transition proba-
bility, which is hard to obtain in most cases, Q-learning and
its variants are widely used in DRL-based RS. Cascading DQN
(CDQN) with a generative user model [15] aims to deal with
environments with unknown reward and environment dynamics.
The generative user model adopts GANs to generate a user model
based on offline data. Different from previous work, it generates
a reward function for each user to explain the users’ behavior. As
such, the user model can be written as,

argmax
φ∈△k−1

Eφ[r(st , at )] − R(φ)/η (15)

here △k−1 is the probability simplex, R(φ) is the regularization
term for exploration, and η is a constant.

Pseudo Dyna-Q (PDQ) [16] points out that Monte-Carlo tree
search may lead to an extremely large action space and an un-
bounded importance weight of training samples. It thereby pro-
pose a world model to reduce the instability of convergence and
high computation cost for interacting with users by imitating the
offline dataset. With the world model, the agent will interact with
the learned world model instead of the environment to improve

the sample efficiency and convergence stability. The learning
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Fig. 4. Left is the general structure of model-free methods. Right is the structure for GoalRec which is a model-based method. A sample trajectory is used to
demonstrate the difference between them [17].
3

a
M
t
c

process of the world model in PDQ can be described as finding
the parameter θM :

rgmin
θM

Eξ∈Pπ
ξ
[

T−1∑
t

γ t
t∏

j=0

π (sj, aj)
πb(sj, aj)

∆t (θM )] (16)

here ξ is generated by the logged policy πb,
∏t

j=0
π (sj,aj)
πb(sj,aj)

is
the ratio used for importance sampling and ∆ is the difference
between the reward in the world model and real reward.

Furthermore, GoalRec [17] designs a disentangled universal
value function to be integrated with the world model to help the
agent deal with different recommendation tasks. The universal
value function is defined as

Vπ (s) = E[
∞∑
t=0

r(st , at )
t∏

k=0

γ sk|s0 = s]. (17)

Besides, GoalRec introduces a new variable goal g ∈ G used to
represent users’ future trajectory and measurement m ∈ M . m
is an indicator of users’ response to the given future trajectory
based on historical behaviors. Based on that, the optimal action
will be selected based on

a∗ = max
a

U(M(s, a), g) (18)

with a customized liner function U(·) (see Fig. 4).

Hybrid methods. Hybrid methods are in the middle of value-
based and policy gradient-based methods. DeepChain [20] uses
the multi-agent setting to mitigate the sub-optimality problem
caused by the one for all setting, i.e., optimizing a single policy
for all users. Hence, DeepChain designs a multi-agent setting
that adopts several agents to learn consecutive scenarios and
jointly optimizes multiple recommendation policies. The main
training algorithm used is DDPG. To this end, users’ actions can
be formulated in a model-based form as follows:∑
m,d

[psm(st , at )γQθ (s′t , πm(s′t ))+ pcm(st , at )(rt + γQθ (s′t , πd(s′t )))

+ plm(st , at )rt ]1m (19)

where m represents the number of actor networks, c, l, s rep-
resent the three different scenarios, 1m is used to control the
ctivation of two actors and (m, d) ∈ {(1, 2), (2, 1)}.
Montazeralghaem and Allan [21] design a model-based
ethod called RelInCo, which incorporates the sentence-BERT h

6

[23] into the policy network to compute the representations
of context and world model. RelInCo is based on Actor–critic
method but contains two different pairs of actor–critic networks:
Arrangement-Actor-Critic and Selector-Actor-Critic. The arrange-
ment network can provide the order of words in the user utter-
ance, while the selector network is designed distinguish the word
is relevant to utterance or not.

Discussion. Model-based methods aim to learn a model or repre-
sentation to represent the whole environment so that the agent
can plan ahead and receive better sample efficiency. The main
drawback of such methods is that the environment might dynam-
ically change and consequently the ground-truth representation
of the environment could be unavailable or biased in recom-
mendation scenarios. Moreover, model-based methods use the
transition probability function P to estimate the optimal policy.
As mentioned, the transition probability function is equivalent to
users’ behavior probability and is hard to determine in recom-
mender systems. In view of the above issues, existing work [14–
18,20] approximate P using a neural network or embedding it
into the world model; besides, Zhao et al. [20] design a probability
network to estimate P , and [15,18] uses a GAN to generate user
behavior where P is embedded in the latent space. Different from
the above, [16,17] relies on the world model to predict users’ next
behavior and feed it into the policy learning process.

In summary, model-based DRL are not widely used in RS due
to following reasons:

• P is hard to determine in real-world recommender systems.
• If approximation is used to estimate P , the overall model

complexity will substantially increase as it requires approx-
imating two different functions P and the recommendation
policy π by using a large amount of user behavior data.
• World model-based methods require periodic re-training to

ensure the model can reflect user interests in time, which
further increases the computation cost.

.2. Model-free deep reinforcement learning-based methods

Compared with model-based methods, model-free methods
re relatively well-studied. Different from model-based methods,
odel-free methods assume P is unknown and enable the agent

o learn it from previous experiences. Model-free based DRL in RS
an be put into three categories: value-based, policy-based and

ybrid methods (see Table 3).
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Fig. 5. The typical structure of DQN and DDPG.
Table 3
List of reviewed publications in model-free DRL-based RS.
Tasks Note Work

Value-based

Vanilla DQN and its extensions [24–26]
DQN with state/action space optimization [27–30]
DQN with graph/image input [31–37]
DQN for joint learning [38–40]

Policy-based
Vanilla REINFORCE [41–50]
REINFORCE uses graph structure/input [51–54]
Non-REINFORCE-based [55,56]

Hybrid Vanilla DDPG [25,57–60]
With Knowledge Graph [2,61–64,64–67]
Value based methods. As mentioned, Deep Q-learning and its
ariants are typical value-based DRL methods widely used in DRL-
ased RS. DRN [24] is the first work utilizing Deep Q-Networks
DQN) in RS. It adopts Double DQN (DDQN) [68] to build a user
rofile and designs an activeness score to reflect how frequently a
ser returns after one recommendation plus users’ action (click or
ot) as the reward. DRN provides a new approach to integrating
RL into RS when dealing with a dynamic environment, with the
bjective function defined as follows,

[rt+1 + γQθ ′t
(st+1, argmax

a′
Qθt (st , a

′))] (20)

here a′ is the action that gives the maximum future reward ac-
ording to θt , θt and θ ′t are different parameters for two different
QNs.
Zhao et al. [25] points out that negative feedback also affect

ecommendation performance, which is, however, not considered
y DRN. Positive feedback is usually sparse due to the large num-
er of candidate items in RS. Hence, only using positive feedback
ould lead to convergence problems. In this regard, DEERS is
roposed to consider both positive and negative feedback simul-
aneously by using DQN, and Gated Recurrent Units (GRU) are
mployed to capture users’ preferences for both a positive state
+ and negative state s−. The final objective function can be
computed as follows:

E[rt+1 + γ maxQθq (s
+

t+1, s
−

t+1, at+1)|s
+

t , s−t , at ]. (21)

at+1

7

Lei et al. [26] introduces attention mechanisms into the DQN
to leverage social influence among users. Specifically, a social
impact representation Uv is introduced for state representation.
Matrix factorization is adopted to determine the similarity among
users and hence present the social influence. Social attention is
introduced to distill the final state representation. In addition, a
few studies focus on user profiling to improve recommendation
performance [27–29]. Lei and Li [28] claims that user feedback
contains useful information in the previous feedback even when
the user does not like the recommended items. Some studies
focus on final feedback without considering the influence of the
freshness of the feedback. User-specific DQN (UQDN) is proposed
to consider multi-step feedback from users. It employs Matrix
Factorization to generate user-specific latent state spaces and
defines the objective function with the user-specific latent state
space as follows:

E[rt+1 + γ max
at+1

Q θq (st+1, at+1)+ bu − Qθq (st+1, at+1)] (22)

where bu is the learned user latent representation.
Zou et al. [29] points out that most studies do not con-

sider users’ long-term engagement in the state representation
as they focus on the immediate reward. FeedRec is proposed
that combines both instant feedback and delayed feedback into
the model to represent the long-term reward and optimize the
long-term engagement by using DQN. Specifically, time-LSTM
is employed to track users’ hierarchical behavior over time to
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epresent the delayed feedback which contains three different
perations: hskip, hchoose, horder . The state space is the concatena-
ion of those operations and users’ latent representation. Xiao
t al. [27] focuses on the user privacy issue in recommender
ystems. Deep user profile perturbation (DUPP) is proposed to
dd perturbation into the user profile by using DQN during the
ecommendation process. Specifically, DUPP adds a perturbation
ector into users’ clicked items as well as the state space, which
ontains users’ previous behavior.
Distinct from previous studies, which focus on optimizing

ser profiles or state spaces, some studies aim to optimize the
ction space formed by interactions with items. In the situation of
asket recommendation, the user is suggested multiple items as a
undle, which is called a recommendation slate. It leads to combi-
atorially large action spaces making it intractable for DQN-based
ecommendation models. SlateQ [30] is proposed to decompose
late Q-value to estimate a long-term value for individual items,
nd it is represented as,

θq (st , at ) =
∑
i∈at

p(i|st , at )Q θq (st , i) (23)

where Q θ (s, i) is the decomposed Q-value for item i. The decom-
osed Q-value will be updated by the rule similar to traditional
QN:

Q θq (st , i)← α

(
rt + γ

∑
j∈at+1

p(j|st+1, at+1)Q θq (st+1, j)
)

+ (1− α)Q θq (st , i). (24)

ifferent from other mode-free methods, Slate-Q assumes that
he transition probability p(i|st , at ) is known.

Vanilla DQN methods may not have sufficient knowledge to
andle complex data such as images and graphs. Tang and Wang
69] firstly models users’ click behavior as an embedding matrix
n the latent space to include the skip behaviors of sequence
atterns for sequential recommendation. Based on that, Gao et al.
36] propose DRCGR, which adopts CNN and GAN into DQN to
elp the agent to better understand high-dimensional data, e.g., a
atrix. Two different convolution kernels are used to capture
sers’ positive feedback. In the meantime, DRCGR uses GANs to
earn a negative feedback representation to improve robustness.
nother typical data format is the graph, which is widely used
n RS, including knowledge graphs. Lei et al. [31] propose GCQN,
hich adopts Graph Convolutional Networks (GCN) [70] into the
QN and constructs the state and action space as a graph-aware
epresentation. Differently, GCQN introduces the attention ag-
regator:

∑
w∈N (i) αiueu which demonstrates better performance

han the mean-aggregator and pooling-aggregator. For item i, the
raph-aware representation can be represented as,(
Wfc[ei ⊕

∑
w∈N (i)

αiueu + bfc]
)

(25)

here Wfc, bfc are the parameters for the fully-connected layer,
u is the embedding for user u and N (i) is the set of one-
ot neighbors of item i in graph G(i). Zhou et al. [37] propose
GQR uses a similar strategy to transform the information into
knowledge graph which is fed into the GCN to generate the

tate representation. Notably, KGQR presents a different state
epresentation generation method. For given node i, the neigh-
orhood representation with a k-hop neighborhood aggregator
an be represented as,

k
i = σ

(
Wk

1
|N (i)|

∑
ek−1t + Bkek−1i

)
(26)
t∈N (i) w

8

where N (i) is the set of neighboring nodes, Wk, Bk are the param-
eter of the aggregator. Those neighborhood representations will
be fed into a GRU, and the state representation will be generated.
Another application domain for using graph data is job recom-
mendation which requires considering multiple factors jointly,
such as salary, job description, job location etc. SRDQN [71] con-
structs a probability graph to represent a candidate’s skill set and
employs a multiple-task DQN structure to process these different
factors concurrently.

Some studies target recommendation and advertising simul-
taneously in e-commerce environments [38–40]. Pei et al. [38]
mentions when deploying RS into real-world platforms such as
e-commerce scenarios, the expectation is to improve the system’s
profit. A new metric, Gross Merchandise Volume (GMV), is pro-
posed to measure the profitability of the RS to provide a new
view of evaluating RS in advertising. Different from GMV, Zhao
et al. [39] separates recommendation and advertising as two
different tasks and proposes the Rec/Ads Mixed display (RAM)
framework. RAM designs two agents: a recommendation agent
and an advertising agent, where each agent employs a CDQN to
conduct the corresponding task. Zhao et al. [40] find that adver-
tising and recommendation may harm each other and formulate
a rec/ads trade-off. Their proposed solution, DEARS, contains two
RNNs. Two RNNs are employed to capture user preferences to-
ward recommendations and ads separately. Based on that, DQN
is employed to take those two outputs as the input to construct
the state and output the advertising.

Policy-based methods. Policy-based DRL can be divided into two
parts: Policy Optimization (CPO) [72] and policy gradient. Zhang
et al. [56] uses CPO to identify the contradiction between text
feedback and historical preferences. It provides a solution for
using DRL in the situation where users’ feedback is entirely differ-
ent from previous feedback in RS. Policy gradient-based methods
are the other stream in policy-based DRL methods for RS. These
methods aim to optimize the policy π directly instead of estimat-
ing the Q-value like DQN. A well-known and widely used policy
gradient method in RS is REINFORCE, which uses the following
rule for policy πθπ :

θ ← θ + αEτ∼dπθπ

[ T∑
t=1

r(sit , a
i
t )

T∑
t=1

∇θπ logπθπ (s
i
t , a

i
t )
]

(27)

here i is sampled trajectories from πθ (at |st ). Pan et al. [41]
ropose Policy Gradient for Contextual Recommendation (PGCR),
hich adopts REINFORCE and considers contextual information.
GCR assumes that the policy follows the multinoulli distribu-
ion, in which case the transition probability can be estimated
asily through sampling from previously seen context. Wang et al.
42] incorporate CNNs and attention mechanisms in REINFORCE
or explainable recommendation. Specifically, this work designs
coupled agent structure where one agent generates the ex-
lanation and the other makes recommendations based on the
enerated explanation. Chen et al. [43] increases the scalability of
EINFORCE to ensure it can deal with the extremely large action
pace under recommendation scenarios. Specifically, it introduces
policy correction gradient estimator into REINFORCE to reduce
he variance of each gradient by doing importance sampling. The
ew update rule becomes

π ← θπ + α
∑
τ∼β

[ T∑
t=1

πθπ (st , at )
πβ (st , at )

r(sit , a
i
t )

T∑
t=1

∇θπ logπθπ (s
i
t , a

i
t )
]

(28)

here πβ is the behavior policy trained by state–action pairs
ithout the long-term reward and π is trained based on the
θ
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ong-term reward only. It is worth mentioning that the vanilla
EINFORCE algorithm is on-policy, and importance sampling will
ake REINFORCE behave like an off-policy method with the

ollowing gradient format,

τ∼dπθ

[ t∏
t ′=1

πθ (st , at )
πθs (st ′ , at ′ )

T∑
t ′=t

r(st , at )
T∑

t=1

∇θ logπθ (st , at )
]

(29)

where πθs is the sample policy parameter. Xu et al. [44] finds
that the REINFORCE method suffers from a high variance gradient
problem and proposes Pairwise Policy Gradient (PPG). Different
from policy correction, PPG uses Monte Carlo sampling to sample
two different actions a, b and compare the gradient to update θ ,

Eτ∼dπθπ

( ∑
a

∑
b

(r(s, a)− r(s, b))
T∑

t=1

(∇θπ logπθπ
(st , at )

−∇θπ logπθπ
(st , bt ))

)
. (30)

Ma et al. [45] extends the policy correction gradient estimator
into a two-stage setting which are p(st , ap) and q(st , a|ap) and the
policy can be written as∑
ap

p(st , ap)q(st , a|ap). (31)

In addition, weight capping and self-normalized importance sam-
pling are used to further reduce the variance. Moreover, a large
state space and action space will cause the sample inefficiency
problems as REINFORCE relies on the current sampled trajectories
τ . Chen et al. [46] finds that the auxiliary loss can help improve
the sample efficiency [73,74]. Specifically, a linear projection is
applied to the state st , and the output is combined with action
at to calculate the auxiliary loss and appended into the final
overall objective function for optimization. Moreover, Wang et al.
[75] attempt to use different metrics to measure users’ long-term
goal and design a reward surrogate mechanism to enhance the
capability of REINFORCE-based methods.

Another prototype of vanilla policy gradient in DRL-based RS
is the policy network. Montazeralghaem et al. [47] designs a
policy network to extract features and represent the relevant
feedback that can help the agent make a decision. Similar to
DQN, this work uses a neural network to approximate the Q-
value and the policy directly without theoretical analysis. Ji et al.
[48] extend the policy network by introducing spatio-temporal
feature fusion to help the agent understand complex features.
Specifically, it considers both the current number and the future
number of vacant taxis on the route to recommend routes for
taxis. Yu et al. [49] introduces multi-modal data as new features
to conduct vision-language recommendation by using historical
data to train REINFORCE. ResNet and attention are used to encode
vision and text information, respectively. Moreover, two rewards
are introduced with a customized ratio λ to balance vision and
text information. Li et al. [50] find that the REINFORCE algo-
rithm can also be used to determine or generate loss functions
for recommender systems. It designs a reward filtering mecha-
nism for customized loss function generation suitable to different
recommender systems and datasets. It adopts the REINFORCE
algorithm to optimize the parameter in neural architecture search
(NAS) algorithms to find the suitable loss function, demonstrating
enhancement of generalization capability.

Knowledge Graphs (KG) are widely used in RS to enrich side
information, provide explainability and improve recommendation
performance. Similar to DQN, vanilla REINFORCE cannot properly
handle graph-like data. Wang et al. [51] propose a method named
Knowledge-guided Reinforcement Learning (KERL), which inte-
grates knowledge graphs into the REINFORCE algorithm. Specifi-
cally, KERL adopts TransE [76] to transfer the knowledge graph
9

into a graph embedding and utilizes a multilayer perceptron
(MLP) to predict future knowledge of user preferences. The state
representation can be written as follows:

ht ⊕ TransE(G)⊕MLP(TransE(G)) (32)

where ht is the hidden representation from the GRU for sequen-
tial behavior and G is the knowledge graph.

Different from KERL, Xian et al. [52] propose Policy-Guided
Path Reasoning (PGPR), which formulates the whole environment
as a knowledge graph. The agent is trained to find the policy to
find good items conditioned on the starting user in the KG by
using REINFORCE. PGPR uses the tuple (u, et , ht ) to represent the
state instead of the graph embedding where et is the entity the
agent has reached at t for user u and ht is the previous action
before t . The action in PGPR is defined as the prediction of all
outgoing edges for et based on ht . Wang et al. [53] propose a
knowledge graph policy network (KGPolicy) which puts the KG
into the policy network and adopts REINFORCE to optimize it. In
addition, KGPolicy uses negative sampling instead of stochastic
sampling to overcome the false negative issue—sampled items
behave differently during training and inference. Similar to GCQN,
attention is also employed to establish the representation of its
neighbors.

Due to the on-policy nature of REINFORCE, it is difficult to
apply it to large-scale RS as the convergence speed will be a
key issue. To relieve this, Chen et al. [54] propose TPGR, which
designs a tree-structured policy gradient method to handle the
large discrete action space hierarchically. TPGR uses balanced
hierarchical clustering to construct a clustering tree. Specifically,
it splits large-scale data into several levels and maintains multiple
policy networks for each level to conduct the recommendation.
The results are integrated at the final stage. As mentioned, policy
gradient can be further extended to deterministic policy gradient
(DPG) [77]. Hu et al. [55] propose Deterministic Policy Gradient
with Full Backup Estimation (DPG-FBE) to complete a sub-task
of recommendation. DPG-FBE considers a search session MDP
(SSMDP) that contains a limited number of samples, where the
stochastic policy gradient method like REINFORCE cannot work
well.

Hybrid methods. The most common model-free hybrid method
used would be the actor–critic algorithm, where the critic net-
work uses the DQN and the actor uses the policy gradient. The
common algorithm used to train actor–critic is DDPG with the
following objective function,

E[rt + γQθ ′q
(st+1, µθ ′π

(st+1))− Qθq (st , at )] (33)

here θq, θ
′
q is the parameter for Q-learning at time t, t+1 while

θ ′π is the parameter for deterministic policy gradient at time t+1.
Zhao et al. [57] propose LIRD, which uses the vanilla actor–critic
framework to conduct list-wise recommendations. To demon-
strate the effectiveness of LIRD, a pre-trained user simulator is
used to evaluate the effectiveness of LIRD, where the transition
probability is approximated using the cosine similarity for a given
state–action pair st , at . Zhao et al. [25] further extend LIRD into
page-wise recommendation and propose DeepPage. Similar to
other previous work, GRU is employed to process the sequential
pattern. Moreover, similar to DRCGR, DeepPage formulates the
state as a page, then CNNs are employed to capture features
and fed to the critic network. The final state representation con-
catenate the sequential pattern and the page features. Besides,
some studies focus on different scenarios such as top-aware
recommendation [58], treatment recommendation [59], allocat-
ing impressions [60] etc. Liu et al. [58] introduces a supervised
learning module (SLC) as the indicator to identify the difference
between the current policy and historical preferences. SLC will
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onduct the ranking process to ensure the recommendation pol-
cy will not be affected by positional bias – the item appearing on
op receives more clicks. Similarly, Wang et al. [59] also integrates
he supervised learning paradigm into DRL but in a different way.
n expert action ât is provided when the critic evaluates the
olicy. The update rule is slightly different than normal DQN,

q ← θq+α
∑
t

[Qθq (st , ât )− rt − γQθq′
(st , µθπ ′

(st ))]∇θqQθq (st , at ).

(34)

However, such a method is not universal as the acquisition of
expert action is difficult and depends on the application domain.

Similar to policy gradient and DQN, Knowledge Graphs (KG)
are also used in actor-critic-based methods. Chen et al. [2] pro-
pose KGRL to incorporate the substantial information of knowl-
edge graphs to help the critic to evaluate the generated policy
better. A knowledge graph is embedded into the critic network.
Unlike previous studies that use the KG as the environment or
state representation, KGRL uses KG as a component in the critic,
which can guide the actor to find a better recommendation policy
by measuring the proximity from the optimal path. Specifically,
a graph convolutional network is used to weight the graph and
the Dijkstra’s algorithm is employed to find the optimal path
for finally identifying the corresponding Q-value. Zhao et al. [61]
claim that human’s demonstration could improve path searching
and propose ADAC. ADAC also searches for the optimal path
in the KG but further adopts adversarial imitation learning and
uses expert paths to facilitate the search process. Feng et al.
[62] propose MA-RDPG, which extends the standard actor–critic
algorithm to deal with multiple scenarios by utilizing a multi-
actor reinforcement learning setting. Specifically, two different
actor networks are initialized while only one critic network will
make the final decision. Those two actor networks can commu-
nicate with each other to share information and approximate the
global state. Zhang et al. [63] find multiple factors can affect the
selection of electric charging stations. Hence, it uses a similar idea
to recommend the electric vehicle charging station by considering
current supply, future supply, and future demand. He et al. [64]
figure out that the communication mechanism in MA-RDPG will
harm actors as they are dealing with independent modules, and
there is no intersection. Hence, He et al. [64] extend MA-RDPG
into multi-agent settings which contain multiple pairs of actors
and critics and remove the communication mechanism to ensure
independence.

Different from [62], He et al. [64] use ‘soft’ actor–critic (SAC)
[65], which introduces a maximum entropy term H(π (st , φt )) to
actor–critic to improve exploration and stability with the stochas-
tic policy π (st , φt ). Similar to the multi-agent idea, Zhao et al.
[66] use a hierarchical setting to help the agent learn multiple
goals by setting multiple actors and critics. In comparison, hier-
archical RL uses multiple actor–critic networks for the same task.
It splits a recommendation task into two sub-tasks: discovering
long-term behavior and capturing short-term behavior. The final
recommendation policy is the combination of the optimal policies
for the two sub-tasks. Similarly, Xie et al. [67] use the hierar-
chical setting for integrated recommendation by using different
sourced data. The objective is to determine the sub-polices for
each source hierarchically and form the final recommendation
policy afterward.

Discussion. In RS, model-free methods are generally more flexible
than model-based methods as they do not require knowing the
transition probability. We summarize the advantages and dis-
advantages of the three types of methods described under the
model-free category. DQN is the first DRL method used in RS,
which is suitable for small discrete action spaces. The problems
with DQN in RS are:
10
Table 4
List of publications reviewed in this section.
Component Work

Environment [79–86]
State [87–90]
Reward [91]

• RS normally contains large and high-dimensional action
spaces.
• The reward function is hard to determine, leading to inac-

curate value function approximation.

Specifically, the high dimensional action space in the context
of recommender systems is recognized as a major drawback of
DQN [9,78]. The reason lies in the large number of candidate
items. Hence, DQN, as one of the most popular schemes, is not the
best choice for RS in many situations. Moreover, some unique fac-
tors need to be considered when designing the reward function
for RS, such as social inference. It introduces extra parameters
to the Q-network and hinders convergence. Policy gradient does
not require the reward function to estimate the value function.
Instead, it estimates the policy directly. However, policy gradient
is designed for continuous action spaces. More importantly, it will
introduce high variance in the gradient. Actor–critic algorithms
combine the advantages of DQN and policy gradient. Nonetheless,
actor–critic will map the large discrete action space into a small
continuous action space to ensure it is differentiable, which may
cause potential information loss. Actor–critic uses DDPG and thus
inherits disadvantages from DQN and DPG, including difficulty in
determining the reward function and poor exploration ability.

3.3. Component optimization in deep reinforcement learning-based
RS

There are a few studies that use DRL in RS for goals other
than improving recommendation performance or proposing new
application domains. We split the literature based on the follow-
ing components: environment, state representation, and reward
function. Existing studies usually focus on optimizing one single
component in the DRL setting (as illustrated in Fig. 1) (see
Table 4).

3.3.1. Environment simulation and reconstruction
Many environments are available for evaluating deep rein-

forcement learning. Two popular ones are OpenAI gym-based
environment [92] and MuJoCo.1 Unfortunately, there is no stan-
dardized simulation platform or benchmark specific to reinforce-
ment learning-based recommender systems. Existing work on
DRL in RS is usually evaluated through offline datasets or de-
ployment in real applications. The drawback of evaluating offline
datasets include:

• Existing studies use different environment construction
methods, leading to unfair comparison. For instance, some
studies use the KG as the environment, while some studies
assume the environment is gym-like or design a simulator
for specific tasks.
• With offline datasets, users’ dynamic interest, and environ-

ment dynamics are hard to maintain. Deploying the method
into a real application is difficult for academic research
as it takes time and costs money. Hence, a standardized
simulation environment is a desirable solution (see Fig. 6).

1 http://mujoco.org/.

http://mujoco.org/
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Fig. 6. Left is the traditional MDP transition; Right is the POMDP which considers the environmental confounders such as social influence [83].
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Several studies provide standardized gym2-based simulation
latforms for DRL-based RS research in different scenarios. Rec-
im [82] is a configurable platform that supports sequential in-
eraction between the system and users. RecSim contains three
asks: interest evolution, interest exploration and long-term sat-
sfaction. RecoGym [80] provides an environment for recom-
endation and advertising. In addition, RecoGym also provides
imulation of online experiments such as A/B-tests. However,
ecSim and RecoGym are designed for bandit behavior, which
eans users’ interest does not change over time. VirtualTB [81] is
roposed to relieve such problems. VirtualTB employs imitation
earning to learn a user model to interact with the agent. GANs
re employed to generate users’ interests. Similar to VirtualTB,
ecsimu [86] uses a GAN to tackle the complex item distribution.
n addition, PyRecGym [79] accommodates standard benchmark
atasets in a gym-based environment. MARS-Gym [85] provides
benchmark framework for marketplace recommendation. [84]
uggests that existing simulation environments are biased be-
ause of biased logged data. Two common biases are discussed:
opularity bias and positivity bias. To reduce the effect of those
iases, SOFA introduces an Intermediate Bias Mitigation Step for
ebiasing purposes.
One work discusses environment reconstruction by consider-

ng confounders [83]. claims that users’ interests may be affected
y social networks, which may introduce extra bias to the state
nd affect the decision-making process. A multi-agent setting is
ntroduced to treat the environment as an agent, which can par-
ially relieve the hidden confounder effect. Specifically, a decon-
ounded environment reconstruction method DEMER is proposed.
ifferent from the aforementioned methods, DEMER assumes the
nvironment is partially observed and models the whole recom-
endation task as a Partially Observed MDP (POMDP). Different

rom an MDP, a POMDP contains one more component observa-
ion o ∈ O and the action at is derived based on the observation
t instead of the state st by at = πa(ot )(see Fig. 6). DEMER

assumes there is a confounder policy πh for observation oh which
is composed by at and ot : ah = πh(at , ot ). Moreover, another
observation ob is introduced to observe the transition as well.
πb is the corresponding policy and ab = πb(ob) = πb(ot , at , ah).
DEMER uses generative adversarial imitation learning (GAIL) to
imitate the policy A, B. Given trajectory {ot , oh, ob} for different
policies A and B, the objective function is defined as

(πa, πb, πh) = argmin
(πa,πb,πh)

Es∼τ (L(s, at , ab))

where L(s, at , ab) = E(πa,πb,πh)[logD(s, at , ab)] − λ
∑

π∈{πa,πb,πh}

H(π )

(35)

where L(·) is the loss function, D(·) is a discriminator and H(π ) is
introduced in GAIL.

2 https://gym.openai.com/.
11
Fig. 7. State representation used in works [88,89]. ht is the output of an
attention layer that takes the representation of users’ history at time t as input
nd g(·) is the pooling operation.

.3.2. State representation
State representation is another component in DRL-based RS

hich exists in both model-based and model-free methods. Liu
t al. [87] find that the state representation in model-free meth-
ds would affect recommendation performance. Existing stud-
es usually directly use the embedding as the state representa-
ion. Liu et al. [88,89] propose a supervised learning method to
enerate a better state representation by utilizing an attention
echanism and a pooling operation as shown in Fig. 7. Such
representation method requires training a representation net-
ork when training the main policy network, which increases
he model complexity. Huang et al. [90] further study that the
ttention-based state encoder can boost the performance of those
QN-based methods in RS. It validates that integrating atten-
ion mechanism can learn a better state representation when
esigning the recommendation environment.

.3.3. Robustness of reward functions
The reward function is crucial for methods involving DQN. A

obust reward function can significantly improve training effi-
iency and performance. Kostrikov et al. [93] find that the DQN
ay not receive the correct reward value when entering the
bsorbing state. That is, when the absorbing state is reached, the
gent will receive a zero reward and harm policy learning. The
eason behind this is that when designing the environment, zero
eward is implicitly assigned to the absorbing state as it is hard
o determine the reward value in such a state. Chen et al. [91]
ropose a robust DQN method, which can stabilize the reward
alue when facing the absorbing state. The new reward formula
an improve the robustness, which is defined as follows:

=

{
rt if st+1 is an absorbing state
rt + γQθ ′ (st+1, at+1) otherwise.

(36)

The major difference is that rt is assigned to the absorbing state to
ensure the agent can continue learning. One remaining problem
in current DRL-based RS is the reward sparsity, i.e., the large state
and action spaces deteriorate the reward sparsity problem. One

https://gym.openai.com/
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ossible solution would be a better-designed reward by using the
eward shaping [94].

. Emerging topics

While existing studies have established a solid foundation for
RL-based RS research, this section outlines several promising
merging research directions.

.1. Multi-agent and hierarchical deep reinforcement learning-based
S

Recommender systems are monolithic systems containing
asks such as searching, ranking, recommendation, advertising,
ersonalization, and diverse stakeholders such as users and items.
ost existing methods are based on a single agent. Multi-Agent
einforcement Learning (MARL) is a subfield of reinforcement
earning and it is capable of learning multiple policies and strate-
ies. While a single-agent reinforcement learning framework can
nly handle a single task, many studies consider the multi-task
ituation in RS and employ multi-agent DRL (MADRL) or hier-
rchical DRL (HDRL). HDRL [95] is proposed to handle complex
asks by splitting such tasks into several small components. It let
he agent determine sub-policies. HDRL belongs to a single-agent
einforcement learning framework such that the agent contains
meta-controller and several controllers. The meta-controller

plits the task, and the controllers learn the value and reward
unctions for designated tasks to get a series of sub-policies. There
re a few studies already utilizing HDRL in RS. Xie et al. [67]
arget integrated recommendation to capture user preferences on
oth heterogeneous items and recommendation channels. Specif-
cally, the meta-controller is used for item recommendation, and
ontrollers aim to find the personalized channel according to user
hannel-level preferences. Zhang et al. [96] uses HDRL for course
ecommendation in MOOCs, which contains two different tasks:
rofile reviser and recommendation. The meta-controller aims
o make course recommendations by using the revised profile
runed by the controllers.
Different from HDRL, MADRL [97] introduces multiple agents

o handle the sub-tasks. Gui et al. [32] uses the MADRL for
witter mention recommendation where three agents are initial-
zed. The three agents need to generate different representations
or the following tasks: query text, historical text from authors
nd historical text from candidate users. Once the representa-
ions are finalized, the model will conduct the recommendation
ased on the concatenation of representations. Feng et al. [62]
nd He et al. [64] provide two different views of the communi-
ation mechanism in MADRL and demonstrate that agents could
ork collaboratively or individually. Zhao et al. [39] designs a
ADRL framework for two tasks where two agents are designed

o conduct advertising and recommendation respectively. Zhang
t al. [14] uses MADRL for collaborative recommendation where
ach agent is responsible for a single user. MADRL is adopted to
elp the recommender consider both collaboration and potential
ompetition between users. Zhang et al. [63] designs a charging
ecommender system for intelligent electric vehicles by using
ecentralized agents to handle sub-tasks and a centralized critic
o make the final decision.

Hierarchical multi-agent RL (HMARL) [98] proves that MARL
nd HRL can be combined. Recently, Yang et al. [99] introduces
MADRL into the continuous action space, which provides a di-
ection for RS. Zhao et al. [66] uses HMARL for multi-goal recom-
endation where the meta-controller considers users’ long-term
references and controllers focus on short-term click behavior.
hile the meta-controller and controllers in HDRL deal with sub-

asks that belong to a single task, HMARL focuses on multi-task
12
or multi-goal learning where the meta-controller and controllers
belong to different agents and deal with different tasks or goals.
HMADRL would be a suitable solution for future research work
in DRL-based RS where HDRL can be used to split a complex
task into several sub-tasks such as users’ long-term interests
and short-term click behavior, and MADRL can jointly consider
multiple factors such as advertising Zhao et al. [66].

4.2. Inverse deep reinforcement learning for RS

As mentioned, the reward function plays a critical role in
DRL-based recommender systems. In many existing works, re-
ward functions are manually designed. The common method
uses users’ click behavior to represent the reward and to reflect
users’ interests. However, such a setting can not represent users’
long-term goals [29] as clicking or not only depicts part of the
feedback information from users. It requires significant effort to
design a reward function, due to the large number of factors
that can affect users’ decision, such as social engagement or
bad product reviews, which may adversely affect recommenda-
tion performance. It is difficult to include all potential factors
into the reward function because not every factor can be rep-
resented properly. A few works [100,101] show that manually
designed reward functions can be omitted by employing inverse
reinforcement learning (IRL) [102] or generative adversarial im-
itation learning (GAIL) [103]. Such inverse DRL-based methods
require using expert demonstration as the ground truth. How-
ever, expert demonstration is often hard to obtain for recom-
mendation scenarios. Those two studies conduct experiments in
an offline dataset-based simulation environment that can access
expert demonstration. In contrast, Chen et al. [101] use IRL as the
main algorithm to train the agent while Gong et al. [100] use
both demonstration and reward to train the agent. Zhao et al.
[61] also employ GAIL to improve recommendation performance.
In this work, GAIL is used to learn the reasoning path inside the
KG to provide side information to help the agent learn the policy.
Although IRL achieves some progress in RS, the lack of demon-
stration is a key shortcoming that impedes adoption in RS. One
possibility is to use the IRL method in casual reasoning to help
improve interpretability [104], thus boosting recommendation
performance. Alternately, IRL may be suitable for learning users’
long-term and static behavior to support the reward function.

Differently, Hu et al. [105] use the IRL as the recommender
to make recommendation in multi-round conversational recom-
mender systems. It mainly relies on a system-ask and user-
respond procedure the train the model. Moreover, different from
mentioned algorithms, Hu et al. [105] uses several pre-defined
rules to supervise the learning process and provide the reward to
the agent.

4.3. Graph neural networks for boosting DRL-based RS

Graph data and KG are widely used in RS. Graph modeling
enables an RS to leverage interactions between users and the rec-
ommender for reasoning or improving interpretability. According
to existing studies about deep learning-based RS [3], embed-
ding is a technique used to get the representation for the input
data. Graph embedding is a common solution to handle graph-
like data. GCN is a type of graph embedding method which are
broadly used in RS to process graph data. Wang et al. [106] pro-
pose a variant of GCN to learn the embedding for KG. Specifically,
they propose knowledge graph convolutional networks (KGCN) to
capture the high-order structural proximity among entities in a
knowledge graph.

In DRL-based RS, graph data are handled similarly—the whole
graph will be transformed into an embedding and fed to the
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gent. Wang et al. [51] uses a traditional graph embedding
ethod TransE [76] to generate the state representation for
RL-based RS. There are several studies that use GCN in DRL
or recommendations under different settings. Jiang et al. [107]
ropose a graph convolutional RL (DGN) method which integrates
he GCN into the Q-learning framework for general RL problems
y replacing the state encoding layer with the GCN layer. Lei
t al. [31] extend this method into the deep learning field and
pply it to recommender systems. Specifically, multiple GCN
ayers are employed to process the sub-graphs for a given item
. Chen et al. [2] employs KG inside the actor–critic algorithm to
elp the agent learn the policy. Specifically, the critic network
ontains a GCN layer to give weight to the graph and conduct
earches in the graph to find an optimal path and hence guide
he optimization of policy learning. However, such a method is
elatively computationally expensive as it requires jointly training
he GCN and the actor–critic network. Gong et al. [100] adopts
Graph Attention Network (GAT) [108] into the actor–critic

etwork to conduct recommendation. In addition, the GAT is used
s an encoder to obtain a state representation. A common way of
sing GCN or its variants in DRL-based RS is the state encoder. The
elated challenge is the difficulty for the environment to provide
graph-like input to the GCN.

.4. Self-supervised DRL-based RS

Self-supervised learning (SSL) is a technique in which the
odel is trained by itself without external label information. SSL-
RL is receiving growing interest in robotics [109,110]. Kahn
t al. [109] shows that SSL can be used to learn the policy when
oing navigation by providing real-world experience. Zeng et al.
110] demonstrates that SSL-DRL can be used to help the agent
earn synergies between two similar policies, thus empowering
he agent to conduct two different tasks. Recent advances in SSL
L show that SSL can also provide interpretability for RL, which
s promising for interpretable RS research [111]. Shi et al. [111]
hows that SSL based RL can highlight the task-relevant infor-
ation to guide the agent’s behavior. Moreover, Xin et al. [112]
hows that SSL can be used to provide negative feedback for DRL-
ased RS to improve recommendation performance. Specifically,
self-supervised loss function is appended into the normal DRL

oss function,
n∑

i=1

Yi log
(

eyi∑n
i′=1 e

yi′

)
+ LDRL (37)

here Yi is an indicator function to show users interact with the
item i or not. LDRL could vary, if the DQN is adopted, Eq. (4) should
e used. If other RL algorithms are adopted, LDRL can be changed to
he RL algorithms that are used. SSL demonstrates promising per-
ormance in visual representation in recent years, which would
e a possible solution to generate the state representation as
here are a few DRL-based RS studies that adopt CNNs to process
mage-like data and transform it into a state [36,58]. Furthermore,
s an unsupervised learning approach, SSL would provide a new
irection about defining the reward function by learning common
atterns between different states as well as multi-task learning.

. Open questions

In this section, we outline several open questions and chal-
enges that exist in DRL-based RS research. We believe these
ssues could be critical for the future development of DRL-based
S.
13
5.1. Sample efficiency

Sample inefficiency is a well-known challenge in model-free
DRL methods. Model-free DRL requires a significant number of
samples as there is no guarantee that the received state is use-
ful. Normally, after a substantial number of episodes, the agent
may start learning as the agent finally receives a useful state
and reward signal. A common solution is the experience replay
technique, which only works in off-policy methods. Experience
replay still suffers the sample inefficiency problem [113] as not
every past experience is worth replaying. Isele and Cosgun [114]
propose selected experience replay (SER) that only stores valuable
experience into the replay buffer and thus improves sample effi-
ciency. While traditional DRL environments only contain several
candidate items, in DRL-based RS, the agent must deal with a sig-
nificantly larger action space as RS may contain lots of candidate
items. Existing DRL-based RS studies on traditional experience
replay methods often demonstrate slow converge speed. Chen
et al. [46] design a user model to improve the sample efficiency
through auxiliary learning. Specifically, they apply the auxiliary
loss with the state representation, and the model distinguishes
low-activity users and asks the agent to update the recommenda-
tion policy based on high-activity users more frequently. Wu et al.
[115] find that in cross-domain recommendation, those abundant
logged interaction data from a source domain can be used to
improve the recommendation quality in the target domain. It is
achieved by using the reward correlation between two domains.
Moreover, Chen et al. [116] design a new experience replay
method for DRL based RS to improve the sample efficiency by
prioritizing the sampling and storing procedure to those more
valuable experience.

On the other hand, model-based methods are more sample
efficient. However, they introduce extra complexity as the agent
is required to learn the environment model as well as the pol-
icy. Due to the extremely large action space and possibly large
state space (depending on users’ contextual information) in RS,
approximating the environment model and policy simultaneously
becomes challenging.

5.2. Exploration and exploitation

The exploration and exploitation dilemma is a fundamen-
tal and challenging problem in reinforcement learning research
and receives lots of attention in DRL. This dilemma describes
a trade-off between obtaining new knowledge and the need to
use that knowledge to improve performance. Many DQN-based
methods focus on exploration before the replay buffer is full and
exploitation afterward. Consequently, it requires an extremely
large replay buffer to allow all possibilities in recommendation
can be stored. DRN employs Dueling Bandit Gradient Descent
(DBGD) [117] to encourage exploration while [15,64] introduces
a regularization or entropy term into the objective function to do
so. [30] uses the sheer size of the action space to ensure sufficient
exploration. [51–53] uses a separate KG or elaborated graph
exploration operation to conduct exploration. [43] employs Boltz-
mann exploration to get the benefit of exploratory data without
negatively impacting user experience. In addition, ϵ-greedy is the
most common technique used to encourage exploration [16,17,
26,28,29,31,58,60,67]. Remaining studies rely on a simulator to
conduct exploration. However, it may suffer from noise and over-
fitting [67] because of the gap between simulation and real online
application. For most DRL-based methods such as vanilla DQN,
policy gradient, or actor-critic-based methods, ϵ-greedy would be
good choice for exploration. In addition, injecting noise into the
ction space would also be helpful for those actor-critic-based
ethods [13]. For methods involving KGs, ϵ-greedy may help,

but the elaborated graph exploration methods may receive better
performance.
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.3. Generalizing from simulation to real-world recommendation

Existing work generally trains DRL algorithms in simulation
nvironments or offline datasets. Deploying DRL algorithms into
eal applications is challenging due to the gap between simu-
ation and real-world applications. Simulation environments do
ot contain domain knowledge or social impact. They cannot
over the domain knowledge and task-specific engineering in the
eal-world recommendation. How to bridge the gap between sim-
lation and real applications is a challenging topic. Sim2real [118]
s a transfer learning approach that transfers DRL policies from
imulation environments to reality. Sim2real uses domain adap-
ion techniques to help agents transfer learned policy. Specifi-
ally, it adopts GANs to conduct adaption by generating different
amples. RL-CycleGAN [119] is a sim2real method for vision-
ased tasks. It uses CycleGAN [120] to conduct pixel-level domain
daption. Specifically, it maintains cycle consistency during GAN
raining and encourages the adapted image to retain certain
ttributes of the input image. In DRL-based RS, sim2real would
e a possible solution for generalizing the learned policy from
imulation environments to reality. However, sim2real is a new
echnique still under exploration. It shows an adequate capability
n simple tasks and requires more effort to handle the com-
lex task such as recommendation. We believe it is a workable
olution for generalizing from simulation to reality.

.4. Bias (Unfairness)

Chen et al. [121] observe that user behavior data are not
xperimental but observational, which leads to problems of bias
nd unfairness.
There are two reasons why bias is so common. First, the inher-

nt characteristic of user behavior data is not experimental but
bservational. In other words, data that are fed into recommender
ystems are subject to selection bias [122]. For instance, users in a
ideo recommendation system tend to watch, rate, and comment
n those movies that they are interested in. Second, a distribution
iscrepancy exists, which means the distributions of users and
tems in the recommender system are not even. Recommender
ystems may suffer from ’popularity bias’, where popular items
re recommended far more frequently than the others. However,
he ignored products in the ‘‘long tail’’ can be equally critical for
usinesses as they are the ones less likely to be discovered. Fried-
an and Nissenbaum [123] denote the unfairness as that the
ystem systematically and unfairly discriminates against certain
ndividuals or groups of individuals in favor of others.

A large number of studies explore dynamic recommenda-
ion systems by utilizing the agent mechanism in reinforcement
earning (RL), considering the information seeking and decision-
aking as sequential interactions. How to evaluate a policy ef-

iciently is a big challenge for RL-based recommenders. Online
/B tests are not only expensive and time-consuming but also
ometimes hurt the user experience. Off-policy evaluation is an
lternative strategy that historical user behavior data are used to
valuate the policy. However, user behavior data are biased, as
entioned before, which causes a gap between the policy of RL-
ased RS and the optimal policy. To eliminate the effects of bias
nd unfairness, Chen et al. [43] use the inverse of the probability
f historical policy to weight the policy gradients. Huang et al.
84] introduce a debiasing step that corrects the biases presented
n the logged data before it is used to simulate user behavior. Zou
t al. [16] propose to build a customer simulator that is designed
o simulate the environment and handle the selection bias of
ogged data.
14
5.5. Explainability

Although deep learning-based models can generally improve
the performance of recommender systems, they are not easily in-
terpretable. As a result, it becomes an important task to make rec-
ommender results explainable, along with providing high-quality
recommendations. High explainability in recommender systems
not only helps end-users understand the items recommended but
also enables system designers to check the internal mechanisms
of recommender systems. Zhang and Chen [124] review different
information sources and various types of models that can fa-
cilitate explainable recommendation. Attention mechanisms and
knowledge graph techniques currently play an important role in
realizing explainability in RS.

Attention models have great advantages in both enhancing
predictive performance and having greater explainability [125].
Wang et al. [42] introduce a reinforcement learning framework
incorporated with an attention model for explainable recom-
mendation. Firstly, it achieves model-agnosticism by separating
the recommendation model from the explanation generator. Sec-
ondly, the agents that are instantiated by attention-based neural
networks can generate sentence-level explanations.

Knowledge graphs contain rich information about users and
items, which can help to generate intuitive and more tailored
explanations for the recommendation system [124]. Recent work
has achieved greater explainability by using reinforcement and
knowledge graph reasoning. The algorithm from [52] learns to
find a path that navigates from users to items of interest by
interacting with the knowledge graph environment. Zhao et al.
[61] extract imperfect path demonstrations with minimum la-
beling effort and propose an adversarial actor–critic model for
demonstration-guided path-finding. Moreover, it achieves better
recommendation accuracy and explainability by reinforcement
learning and knowledge graph reasoning.

5.6. Robustness on adversarial samples and attacks

Adversarial samples demonstrate that deep learning-based
methods are vulnerable. Hence, robustness becomes an open
question for both RS and DRL. Specifically, adversarial attack and
defense in RS have received a lot of attention in recent years [126]
as security is crucial in RS. Moreover, DRL policies are vulnerable
to adversarial perturbations to agent’s observations [127]. Gleave
et al. [128] provide an adversarial attack method for perturbing
the observations, thus affecting the learned policy. Hence, im-
proving the robustness is the common interest for DRL and RS,
which would be a critical problem for DRL-based RS. Cao et al.
[129] provide an adversarial attack detection method for DRL-
based RS which uses the GRU to encode the action space into a
low-dimensional space and design decoders to detect the poten-
tial attack. However, it only considers Fast Gradient Sign Method
(FGSM)-based attacks and strategically-timed attacks [127]. Thus,
it lacks the capability to detect other types of attack. Chen et al.
[130] design KGAttack, a DRL based knowledge graph-enhanced
method to generate fake user profiles and conduct the attack to
the recommendaer systems. KGAttack utlizes KG to generate the
state representation and designs a Anchor Item Selection Policy
to produce the fake profile. If the fake profiles are not rejected by
the recommender systems, the attack is recognized as successful.

Based on those existing works, we find that, the current stud-
ies are mainly focusing on the attack detection or attack gener-
ation while the defence is still an opening question. We believe
zero-shot learning techniques would be a good direction for train-
ing a universal adversarial attack detector. For defence, it is still
an open question for DRL-based RS, though recent advances in
adversarial defence in DRL may provide some insights [131–133].
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. Future directions

In this section, we provide a few potential future directions of
RL-based RS. Benefiting from recent advances in DRL research,
e believe those topics can boost the progress of DRL-based RS
esearch.

.1. Causal and counterfactual inference

Causality is a generic relationship between a cause and effect.
oreover, inferring causal effects is a fundamental problem in
any applications like computational advertising, search engines,
nd recommender systems [134]. Recently, some researchers
ave connected reinforcement learning with learning causality
o improve the effects for solving sequential decision-making
roblems. Besides, Learning agents in reinforcement learning
rameworks face a more complicated environment where a large
umber of heterogeneous data are integrated. From our point
f view, causal relationships would be capable of improving
he recommendation results by introducing the directionality of
ause and the effect. The users’ previous choices have impact on
he subsequent actions. This can be cast as an interventional data
enerating the dynamics of recommender systems. By viewing
policy in RL as an intervention, we can detect unobserved

onfounders in RL and choose a policy on the expected reward
o better estimate the causal effect [83]. Some studies improve
L models with causal knowledge as side information. Another
ine of work uses causal inference methods to achieve unbiased
eward prediction [135] or data augmentation [136–138].

Yang et al. [139] propose a Causal Inference Q-network which
ntroduces observational inference into DRL by applying extra
oise and uncertain inventions to improve resilience. Specifically,
n this work, noise and uncertainty are added into the state
pace during the training state, and the agent is required to
earn a causal inference model by considering the perturbation.
asgupta et al. [140] give the first demonstration that model-free
einforcement learning can be used for causal reasoning. They
xplore meta-reinforcement learning to solve the problem of
ausal reasoning. The agents trained by a recurrent network able
o make causal inferences from observational data and output
ounterfactual predictions. Forney et al. [141] bridge RL and
ausality by data-fusion for reinforcement learners. Specifically,
nline agents combine observations, experiments and counter-
actual data to learn about the environment, even if unobserved
onfounders exist. Similarly, Gasse et al. [142] make the model-
ased RL agents work in a causal way to explore the environment
nder the Partially-Observable Markov Decision Process (POMDP)
etting. They consider interventional data and observational data
ointly and interpret model-based reinforcement learning as a
ausal inference problem. In this way, they bridge the gap be-
ween RL and causality by relating common concepts in RL and
ausality. Wang et al. [143] introduce the counterfactual risk
inimization to correct policy learning bias in REINFORCE-based
S which can maximize the long-run rewards. It designs a meta-
raph to guide the policy learning direction thus reduce the bias.
hile the high-variance issue is not identified.
Regarding explainability in RL, Madumal et al. [144] propose to

xplain the behavior of agents in reinforcement learning with the
elp of causal science. The authors encode causal relationships
nd learn a structural causal model in RL, which generates ex-
lanations based on counterfactual analysis. With counterfactual
xploration, this work can generate two contrastive explanations
or ‘why’ and ‘why not’ questions. Considering traditional meth-
ds rely on local heuristics and predefined score functions, Zhu
t al. [145] propose to use reinforcement learning to search DAG
or causal discovery. Taking observational data as an input, they
se RL agents as a search strategy and output the causal graph
enerated from an encoder–decoder NN model.
 t

15
6.2. Offline DRL and meta DRL

Since recommender systems often facejoint recommendation
and adverting scenarios, offline DRL and meta DRL provide the
promising directions for dealing with multiple scenarios at the
same time. Offline DRL is a new paradigm of DRL that can be
combined with existing methods such as self-supervised learning
and transfer learning to move toward real-world settings. Offline
DRL [146] (also known as batch DRL) is designed for tasks which
contain huge amounts of data. Given a large dataset that contains
past interactions, offline DRL uses the dataset for training across
many epochs but does not interact with the environment. Offline
DRL provides a solution that can be generalized to new scenarios
as it is trained by a large sized dataset. Such generalization ability
is critical to RSs for deal with multiple scenarios or multiple
customers. While offline DRL provides a new direction for DRL-
based RS, it still faces a few problems regarding the distributional
shifts between existing datasets and real-world interactions. Meta
DRL [147] is defined as meta learning in the field of DRL. Meta DRL
is another approach to help agents to generalize to new tasks or
environments. Different from offline DRL, meta DRL contains a
memory unit formed by the recurrent neural network to memo-
rize the common knowledge for different tasks. Therefore, meta
DRL does not require a large amount of data to train.

6.3. Further developments in actor–critic methods

An actor–critic method uses the traditional policy gradient
method, which suffers from the high variance problem due to the
gap between behavior policy (i.e., the policy that is being used
by an agent for action select) and target policy (i.e., the policy
that an agent is trying to learn). A method commonly used to
relieve the high variance problem is Advantage Actor–critic (A2C).
A2C uses an advantage function to replace the Q-function inside
the critic network. The advantage function A(st ) is defined as the
expected value of the TD-error. The new objective function for
policy gradient is as follows:

Eτ∼dπθ
[

T∑
t=1

(Q (st , at )− V (st ))  
A(st )

T∑
t=1

∇θ logπθ (st , at )]. (38)

A2C still uses DDPG as the main training algorithm and therefore
may suffer function approximation errors when estimating the
Q value. Twin-Delayed DDPG (TD3) [148] is designed to improve
the function approximation problem in DDPG which uses clipped
double Q-learning to update the critic. It defines the gradient
update as follows:

Eτ∼dπθ
[

T∑
t=1

r(st , at )+ γ min(Q1(st , at + ϵ),

Q2(st , at + ϵ))
T∑

t=1

∇θ logπθ (st , at )]. (39)

where ϵ ∼ clip(N (0, σ ,−c, c)), σ is the standard deviation and c
is a constant for clipping.

Other ways to improve actor–critic methods include Trust
Region Policy Optimization (TRPO) [149] and Proximal Policy
Optimization (PPO) [150], which focus on modification of the
advantage function. TRPO aims to limit the step size for each
gradient to ensure it will not change too much. The main idea
is to add a constraint to the advantage function:
π (a|s)

πold(a|s)
A(s), (40)

here the KL divergence is used to measure the distance between
he current policy and the old policy is small enough. PPO has
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he same goal as TRPO and aims to find the biggest possible
mprovement step on a policy using the current data. PPO is a
implified version of TRPO which introduces the clip operation,

in
(

π (a|s)
πold(a|s)

A(s), clip
(

π (a|s)
πold(a|s)

, 1− ϵ, 1+ ϵ

)
A(s)

)
. (41)

Soft Actor–Critic (SAC) [65] is another promising variant of the
actor–critic algorithm and is widely used in DRL research. SAC
uses a entropy term to encourage the agent to explore, which
could be a promising direction towards solving the exploration
and exploitation dilemma. Moreover, SAC assigns an equal prob-
ability to actions that are equally attractive to the agent to capture
those near-optimal policies. An example of the related work [64]
uses SAC to improve the stability of the training process with the
multi-task objective in RS. Zhang et al. [151] also employs SAC
and multi-task fusion to model the Long-Term User Satisfaction
in RS. Zhang et al. [151] shows that SAC can outperform than TD3
in the real industry environment.

7. Conclusion

In this survey, we provide a comprehensive overview the
application of deep reinforcement learning in recommender sys-
tems. We introduce a classification scheme for existing studies
and discuss them by category. We also provide an overview of
such existing emerging topics and point out a few promising
directions. We hope this survey can provide a systematic un-
derstanding of the key concepts in DRL-based RS and valuable
insights for future research.
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