

3D Microfluidic System to Study of Tumour Microenvironment

by Hamidreza Aboulkhyer Estarabadi

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Prof. Majid Ebrahimi Warkiani

University of Technology Sydney Faculty of Engineering and Information Technology

April 2022

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, **Hamidreza Aboulkheyr Estarabadi** declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Biomedical Engineering at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution. This research is supported by the Australian Government Research Training Program.

Signature:

Date: 21-09-2022

Production Note: Signature removed prior to publication.

Impact of COVID-19 on the completion of the thesis

This thesis's research aims, and objectives have been planned to complete within three years of candidature; however, the Covid-19 crisis and pandemics followed by long term lockdowns and restrictions in laboratory experiments significantly affected the few numbers of objectives of this research. Among all chapters, Chapter 8 of this thesis is affected extremely by Covid-19 restrictions ruled by the state government, campus lockdowns, and limitations in a daily laboratory working time. A detailed explanation of these impacts on methodology and results of Chapter 8 has been stated on the starting page of this chapter.

Acknowledgement

I would like to express my sincerest gratitude and appreciation to my supervisor, Prof. Majid Ebrahimi Warkiani, for his invaluable guidance, encouragement, patience, and, most importantly support through my PhD. He is an exceptional role model for both my academic and personal life. I am grateful for giving me the opportunity to be a member of his research team and for all that I have learned from him. My PhD research always benefited from his constructive and invaluable scientific guidance. I would like to thank my co-supervisor Prof. Dyong Jin, for his guidance and constant support through my PhD and for serving on my examination committee. Also, a sincere thank you to Prof. Thomas R Cox from the Garvan Institute of Medical Science for his insightful biological inputs and for sharing his invaluable expertise with me.

I extend my thanks to all past and present members of Warkiani Lab. It was an amazing experience and honour to work with a group of friendly, motivated, and knowledgeable scholars and students during my PhD. I would like to additionally thank to Sydney Vital Translational Cancer Research for awarding me a prestigious supporting grant.

Finally, my deepest gratitude and appreciation goes to my wonderful and lovely wife Monireh for her unconditional and endless encouragement and love. She dedicated her precious time and life to support me during my PhD journey. I am extremely lucky to have her in my life. Thank you, Monireh, for being my best friend and always believing in me. A special thank you to my father, Mohammad-Masoud and my mother, Malihe, for their unconditional love, dedication, and many years of moral support during my life. I am sincerely thankful to my brother and sister in Iran who have made it possible for me to focus on my work by supporting our parents.

Format of Thesis

This thesis is prepared in one introduction and six chapters, including published and underpublication research articles. The chapter 1; "Introduction" provides an overview of the tumour microenvironment (TME) and its cellular and molecular features, emphasizing the importance of modelling TME and current TME models. In Chapter 2, the current application of microfluidic technology in cancer research and therapy is discussed comprehensively and the remain challenges that required to be addressed are highlighted as well. Following these, in Chapter 3, a comprehensive in-silico data analysis has been performed to figure-out the association of cellular components of TME with tumour immunity and activation of invasion and migration. Moreover, in this chapter we highlighted potential of drug repurposing in cancer treatment and targeting TME. The findings and output of this chapter are modeled in our microfluidic system through the next chapters. Chapter 4 – Chapter 8 are the applicationspecific chapters showcasing the application of microfluidic-based 3D cell culture in particular modelling features of TME and drug discovery. Chapter 4 demonstrates modelling tumour stromal cells and cancer cell interaction and its effect on immune suppression on cancer cells which has not been before. Moreover, in this chapter, the application of an antifibrotic drug on reversion of immune sensitivity has been shown for the first time. Following this, in Chapter 5, the immune-modulation role of mesenchymal stem cells in the stimulation of immune escape and drug response is explored using a microfluidic device. To model the biological and molecular aspect of initiation and invasion of cancer cells, Chapter 6 illustrates the application of microfluidic for mimicking cancer and tumour-stromal cells invasion and cancer-stem cells formation using the culture of organotypic tumour spheroids containing stromal cells in the device. Moreover, this chapter highlights the therapeutic potential of an anti-fibrotic agent discovered in Chapter 3 on targeting key cytokines and suppression of invasion. As ECM is the main component of TME, in Chapter 7, we modeled the role of matrix stiffness on cancer cells immunity and invasion. In Chapter 8, the formation of microvasculature and pre-vascular tumour organoids in the microfluidic device has been shown. Finally, in last chapter, "Conclusion and Future Work", the limitations and challenges of this thesis project and future research direction are discussed.

List of publications

- Azadi, Shohreh, Hamidreza Aboulkheyr Es, Arutha Kulasinghe, Pritam Bordhan, and Majid Ebrahimi Warkiani. "Application of microfluidic technology in cancer research and therapy." In Advances in clinical chemistry, vol. 99, pp. 193-235. Elsevier, 2020.

- Aboulkheyr Es, Hamidreza, Sareh Zhand, Jean Paul Thiery, and Majid Ebrahimi Warkiani. "Pirfenidone reduces immune-suppressive capacity of cancer-associated fibroblasts through targeting CCL17 and TNF-beta." Integrative Biology 12, no. 7 (2020): 188-197.

- Aboulkheyr Es, Hamidreza, Bahareh Bigdeli, Sareh Zhand, Amir R. Aref, Jean P. Thiery, and Majid E. Warkiani. "Mesenchymal stem cells induce PD-L1 expression through the secretion of CCL5 in breast cancer cells." Journal of Cellular Physiology 236, no. 5 (2021): 3918-3928.

- Es, Hamidreza Aboulkheyr, Thomas R. Cox, Ehsan Sarafraz-Yazdi, Jean Paul Thiery, and Majid Ebrahimi Warkiani. "Pirfenidone Reduces Epithelial–Mesenchymal Transition and Spheroid Formation in Breast Carcinoma through Targeting Cancer-Associated Fibroblasts (CAFs)." Cancers 13, no. 20 (2021): 5118.

- Azadi, Shohreh, Hamidreza Aboulkheyr Es, Sajad Razavi Bazaz, Jean Paul Thiery, Mohsen Asadnia, and Majid Ebrahimi Warkiani. "Upregulation of PD-L1 expression in breast cancer cells through the formation of 3D multicellular cancer aggregates under different chemical and mechanical conditions." Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1866, no. 12 (2019): 118526.

Table of Contents

Chapter I	
Introduction	
1.1 Tumour microenvironment	19
1.2 Cancer-Associated Fibroblasts (CAFs)	21
1.2.1 CAF in tumour development and metastasis	21
1.2.2 CAF and tumour immune suppression	22
1.2.3 CAF and drug resistance	23
1.3 Tumour Associated Mesenchymal Stem Cells (TA-MSCs)	25
1.4 T-cells in TME	26
1.5 Tumour associated blood vasculature	27
1.6 Extracellular Matrix (ECM)	
1.7 Importance of modeling TME	29
1.7.1 Conventional Models of TME	29
1.7.2 Organoid culture technology	
1.7.3 Microfluidic technology for modeling TME	
1.8 Conclusion	
Chapter 2	
Literature Review	
1.1 Microfluidic device in modelling cancer biology and metastasis	
1.2 Modelling Tumour growth	42
1.3 Modelling cancer cell-endothelial cell interactions	42
1.4 Modelling the tumour microenvironment (TME)	46
1.4.1 Biochemical cues	47
1.4.2 Biomechanical cues	48
1.4.3 Cellular components of TME	49
1.5 Modelling migration and invasion	51
1.5.1 Initial migration	51
1.5.2 Intravasation	
1.5.3 Extravasation	52

1.6 Microfluidic systems for circulating tumour cells detection, characterization and analy Circulating tumour cells (CTCs).	ysis 56
1.6.1 CTCs enumeration	57
1.6.2 Circulating tumour cell (CTC) clusters	57
1.6.3 Single Cell CTC characterization	58
1.6.4 Immunotherapeutic biomarkers	58
1.6.5 Shift towards high throughput CTC isolation	59
1.7 Microfluidic CTC enrichment technologies	59
1.7.1 Inertial microfluidics	59
1.7.2 Nanovelcro	61
1.7.3 Acoustic Separation	61
1.7.4 Parstotix	62
1.7.5 Vortex	62
1.8 Microfluidic approach in cancer treatment	62
1.9 Microfluidic and modeling anticancer drug response	65
1.10 Microfluidic and personalized cancer treatment	68
1.11 Challenges and limitations	71
Chapter 3	73
In-silico Study of Tumour Microenvironment in Triple-Negative Breast Cancer	73
3.1 Introduction	75
3.2 Materials and Methods	76
3.2.1 Datasets	76
3.2.2. The EMT scores and immune feature analysis	77
3.2.3 Cell, ligand and receptor abundance diagram	77
3.2.4 Statistical analysis	78
3.3. Results	78
3.3.1 Fibroblasts in the TME and its association with EMT and immunity	78
3.3.2 EMT score positively associates with stromal score and negatively with the immune score in different subtypes of breast cancer	82
3.3.3 EMT scores negatively associate with infiltration of immune cells in the TME	83
3.3.4 Association between EMT-TFs and infiltration of immune cells in TME	87
3.3.5 Hot TME versus cold TME	89
3.4 Discussion	91
Chapter 4	95

The r	ole of CAF in Tumour Microenvironment and Tumour Immunity	95
4.1	Introduction	97
4.2	Materials and Methods	98
4.2	.1 In-silico data analysis	
4.2	.2 Generation of CAF cells from normal fibroblasts	
4.2	Production of conditioned medium from CAF cells	
4.2	 Microfluidic Device Design and cell culture	
4.2		microfluidic device.101
4.2		
4.2	2.7 Cytokine array	
4.2	2.8 Statistical analysis	
4.3	Results	
4.3	Association between CAF derived cytokines with PD-L1	
4.3	.2 CAFs induce a phenotype switch in cancer cells	
4.3	CAFs induce expression of PD-L1 on PD-L1 low cancer cell	s109
4.3	.4 Pirfenidone reduces invasion and migration capacity of CAF	and cancer cells109
4.3 cyt	9.5 Pirfenidone reduces expression of PD-L1 on CAF cells by tax tokines 111	rgeting various
4.4	Discussion	
Chapte	er 5	
The F	Role of Tumour-Associated Mesenchymal-Stem Cells in Regulation	of Tumour Immunity
		117
5.1	Introduction	119
5.2	Materials and Methods	
5.2	Cell culture	
5.2	Preparation of conditioned medium	
5.2	Microfluidic device design and cell culture	
5.2	Culturing single and multi-cellular aggregate (MCA) in the n	nicrofluidic device 122
5.2	Immunofluorescent staining	
5.2	2.6 Cytokine array	
5.2	2.7 Statistical analysis	
5.3	Results	
5.3	MSC in various stages of breast cancer and its correlation wi 124	th immune suppression

5.3	2 MSC induces breast cancer cell proliferation and invasion behavior	127
5.3	3 MSC induce expression of PD-L1 on low PD-L1 breast cancer cells	129
3.3	4 Cytokine expression	130
5.4	Discussion	134
Chapte	r 6	138
Targe	ting Epithelial-Mesenchymal Transition and Tumour Spheroid formation in Brea	ast
Carcin	noma	
6.1	Introduction	140
6.2	Materials and Methods	141
6.2	1 In-Silico Data Analysis	141
6.2	2 Cell lines and Media	141
6.2	3 Spheroid Formation	142
6.2	4 Preparation of CAFs Condition Medium	142
6.2	5 Microfluidic Device Design and Cell Culture	143
6.2	6 Cytokine Profiling Assays on Treated samples	144
6.2	7 Immunofluorescence Staining and Imaging Analysis	144
6.2	8 Statistical Analysis	145
6.3	Results	145
6.3	1 The Association of Tumour Stromal Content with the Expression of YAP	1 and
Me	tastasis Feature	145
6.3	2 Association of YAP1 with EMT and Stemness Markers	147
6.3	3 CAFs Induce Spheroid Formation	149
6.3	4 Pirfenidone Reduces the Migration of CAFs and Carcinoma Cells	
6.3. Cyt	5 Pirfenidone Reduces YAP1 and CD44 Expression in Spheroids by Target	ing Key
6 /	Discussion	155
6.5	Conclusions	160
0.5 Chanta	- 7	161
The	1 /	101
7 1	Set of ECM suffness in tumour immunity	101
/.l	Introduction	103
7.2 M	ateriais and methods	
7.2	2 Seleterte generation en la la statisti	
7.2	2 Substrate preparation and characterization	
7.2	3 Anti-EGFK treatment	166

7.2.4 I	Evaluation of the PDL-1 expression	167
7.2.5 I	mmunofluorescence staining of PDL-1	167
7.2.6 I	PDL-1 ELISA assay	168
7.2.7 \$	Spheroid formation	168
7.2.8 0	Cell seeding in the microwells	169
7.2.9 I	solation of the cancer spheroids from the microwells	169
7.2.10	Spheroid characterization	170
7.2.11	Cell viability of spheroids	170
7.2.12	Measurement of spheroid number and diameter	170
7.2.13	Immunofluorescence staining of PDL-1	171
7.2.14	Spheroid spreading	171
7.2.15	Statistic	172
7.3 Resu	lts	172
7.3.1 I	PDMS substrates elastic modulus	172
7.3.2 I	Expression of PDL-1 protein in breast cancer cells	173
7.3.3 (Characterization of the breast cancer spheroids	174
7.3.4	Assessment of the PDL1 expression in spread breast cancer spheroids	178
7.4 Discu	ussion	181
Chapter 8	8	
Generati	on of vascularized organoids	187
8.1 Iı	ntroduction	
8.2 N	Iethods and Materials	190
8.2.1	Cell culture and organoid formation	190
8.2.2	Culturing microvasculature in device	191
8.2.3	Generation of vascularized organoids	191
8.2.4	Immunofluorescence and Confocal Imaging	192
8.2.5 \$	Statistical analysis	192
8.3 R	esults	193
8.3.1	Microvasculature in device	193
8.3.2	Generation of vascularized organoids	195
8.4 D	Discussion	197
Chapter 9)	200
~ .		• • • •

List of Illustrations and Figures

Figure 1: Schematic of tumour microenvironment. 20
Figure 2: CAFs and their secretome remodel the TME
Figure 3.1: Overview of cell populations cluster and its signature identified in TME of TNBC
Figure 3.2: Gene-set enrichment analysis and association between EMT, immunity and CAFs activity
Figure 3.3: Pathway activity and the expression of 35 immuno-modulatory cytokines in breast cancer
Figure 3.4: The correlation between immune and stromal score with EMT scores in different subtypes of breast cancer
Figure 3.5: Comparison of TME features across three different EMT groups
Figure 3.6: Association between EMT scores and expression of immune-checkpoints, immuno-inhibitors and immuno-stimulators
Figure 3.7: Expression of cytokines/chemokines and their receptors in different EMT groups
Figure 3.8: Correlation coefficient analysis between classical EMT related genes with infiltration of various immune cells
Figure 3.9: Cell, ligand and receptor abundance analysis of tumour cells, T cells, macrophages, and DC cells
Figure 4.1: The workflow of study
Figure 4.2: In-silico analysis of PFD target proteins and their alterations across breast carcinoma samples in TCGA
Figure 4.3: Transformation of normal fibroblast to CAFs and its characterization 106
Figure 4.4: Migration of CAFs
Figure 4.5: Phenotypic transformation of MCF7 cells cultured with CAF-CM
Figure 4.6: Culturing MCF7-derived MCA with CAF-CM
Figure 4.7: Effects of PFD on phenotype transformation and migration of cells
Figure 4.8: Effects of PFD on expression of PD-L1 in CAFs
Figure 4.9: Cytokine profiling of CAF-CM
Figure 5.1: Schematic workflow of the study
Figure 5.2: Expression of MSC related genes and its correlation with PD-L1 126
Figure 5.3: Effects of MSC-CM on proliferation and invasion behavior of cancer cells127

Figure 5.4: EMT induction effects of MSC-CM on MCF7 cells
Figure 5.5: MSC-CM induces expression of the PD-L1
Figure 5.6: Cytokine expression profiling of MSC-CM and MSC-CM+PFD132
Figure 5.7: The expression profile comparison of identified cytokines between PD-L1- negative and PD-L1 negative samples
Figure 6.1: Genomic analysis of the TCGA breast cancer cohort
Figure 6.2: In-Silico data analysis between samples expressing high and low levels of <i>YAP1</i>
Figure 6.3: CAFs induces spheroid formation with increased diameter and expression of YAP1
Figure 6.4: Assessing the migration and invasion inhibitory effects of PFD on MDA-MB- 231 carcinoma cells and CAFs
Figure 6.5: PFD reduces CAFs activity and expression of CD44 and YAP1 through the blockade of key cytokine secretion
Figure 6.6: The association between targeted cytokines with EMT and YAP1 156
Figure 7.1: Regulation of PDL-1 expression by EGFR signaling and substrate stiffening.
Figure 7.2: Schematic of the SpheroFilm utilized to generate the spheroids and representative images of the spheroid formation of breast cancer cells
Figure 7.3: Spheroid characterization. 176
Figure 7.4: Role of the spheroid formation in the PDL-1 expression of breast cancer cells
Figure 7.5: PDL-1 expression of spread spheroids of breast cancer cells as a function of the EGFR activity and the substrate stiffness
Figure 7.6. Comparison of protein concentration of PDL-1 in the chemical and mechanical groups, before and after formation of the spheroids
Figure 8.1. Schematic of workflow for the generation of tumour microenvironment in vascularized device equipped with tumour organoids, cancer-associated fibroblasts, and T-cells
Figure 8.2. Generation of 3D microvasculature in a microfluidic device
Figure 8.3. Generation of vascularized tumour organoids

List of Abbreviations

- **αSMA:** Alpha Smooth Muscle Actin
- **CAF:** Cancer-Associated Fibroblasts
- **ECM:** Extra-Cellular Matrix
- **EGM:** Endothelial Growth Medium
- **EMT:** Epithelial-Mesenchymal Transition
- **FAP:** Fibroblasts-Activated Protein
- MCA: Multi-Cellular Aggregates
- **PD-L1:** Programmed Death-Ligand 1
- **PFD:** Pirfenidone
- TAM: Tumour-Associated Mesenchymal Stem Cells
- **TCGA:** The Cancer Genome Atlas
- **TIL:** Tumour Infiltration Lymphocytes
- TME: Tumour Microenvironment
- **TNBC:** Triple-negative Breast Cancer
- YAP: Yes-Activated Protein

3D microfluidic system to study of tumour microenvironment

Hamidreza Aboulkheyr Estarabadi Doctor of Philosophy School of Biomedical Engineering University of Technology Sydney 2022

Abstract

The tumour microenvironment (TME) plays a crucial role in cancer initiation, progression, and development. To better understand the cellular and molecular feature of TME, various in-vitro, ex-vivo and in-vivo models of TME have been developed, ranging from 2D cancer cells lines, 3D organoids to genetically engineered animal models. However, these models faced a series of challenges and drawbacks limiting the study of the particular feature of TME in a specific type of cancer. Recently, microfluidic technology introduced a new platform to mimic the TME ecosystem at the micro-scale through an advanced engineered system. This platform enables modelling a wide range of TME properties from ECM to the vasculature and the complex cellular structure by co-culturing 3D tumour cells cost-efficient, real-time, and controllable fashion. However, the major focus of the current microfluidic models of TME is on cancer cells rather than tumor-stromal cells and their effects on tumour immunity and immunotherapy. Moreover, these models unbale to provide a space for down-stream molecular analysis including cytokines analysis or RNA-sequencing. Additionally, the design of majority of these models is complex which might limit broad application of these models.

This thesis focuses on addressing these challenges using a low-cost and easy to use microfluidic device which enable wide range of applications from in-vitro to ex-vivo and drug discovery and immune-oncology. Using developed model in this thesis, the most impactful contributions of this thesis was the discovery of the role of the tumor stromal cells including cancer-associated fibroblasts (CAFs) and tumour-associated mesenchymal stem cells (TAMs) in tumour immunity and that targeting these populations can significantly reduce immune-suppression capacity in TME. We discovered and introduced potential of an anti-fibrotic drug called Pirfenidone for targeting CAFs and secreted cytokines through a comprehensive in-silico data analysis at both bulk and single cell level in breast cancer for the first time. Using our developed microfluidic model of TME, we showed that how pirfenidone reduce CAFs and MSC activity, invasion, immune-suppression, and tumor initiation in breast carcinoma. Moreover, we modeled the effects of matrix stiffness which is regulated by CAFs on tumour immunity and expression of immune checkpoints. Finally, we tried to develop a novel method for generation of vascularized tumor organoids in device which extremely affected by Covid-19 pandemics and lockdowns.