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ABSTRACT

R ecommender systems are an effective tool for solving problems

with information overload. As such, they have not only received

much attention from academia, they have also been widely used

in industry. However, although recommender systems have seen many sig-

nificant research outcomes, they also face some challenges and problems.

This thesis focuses on enhancing recommender systems through the

use of diffusion dynamics and machine learning, and solves four problems

faced by existing recommendation methods: 1) Can diffusion-based recom-

mendation methods get a better balance between accuracy and diversity;

2) How can trust diffusion processes be modeled in social networks and

how can social information be introduced into diffusion-based recommen-

dation methods; 3) Can opinion dynamics be integrated with machine

learning to make better recommendations; and 4) How can the issue of

preference conflicts in group recommender systems be alleviated such

that the recommendations generated meet the requirements of most of

the users in a group.

To address Problem 1), this thesis presents a mixed similarity diffusion

process that integrates two kinds of similarity measures from both explicit

and implicit feedback data. It also considers the degree of balance for
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ABSTRACT

different kinds of nodes in a bipartite network. This new diffusion process

enhances both the accuracy and diversity of the recommendations.

To address Problem 2), a trust diffusion process is simulated via a trust

network that introduces explicit trust into the diffusion process, while

the similarity between users indicates implicit trust. Moreover, a special

resource allocation process, designed for a tripartite network, combines

both kinds of trust to model user preferences in a more exact manner.

To address Problem 3), a social recommendation model is used to

integrate opinion dynamics and user influence into a matrix factorization

framework. The model characterizes the impact of neighbors on user

opinions through evolutionary game theory and uses a payoff matrix to

improve the training process of the matrix factorization. In addition, user

influence that originates from the trust network is added to the proposed

recommendation model.

To address Problem 4), a virtual coordinator combined with group

recommendation solves preference conflicts through a negotiation process.

The virtual coordinator brings a global perspective to optimizing the

evaluation processes of individual user preferences in a group in order to

create a balanced set of group recommendations. Additionally, personal

influence is inferred from the trust relations to define the impact of the

virtual coordinator on each group member.

To conclude, this thesis proposes a set of recommendation methods for

both personalized and group recommendation that go some way to solving

current challenges in recommender systems.
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