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ABSTRACT

R ecommender systems are an effective tool for solving problems

with information overload. As such, they have not only received

much attention from academia, they have also been widely used

in industry. However, although recommender systems have seen many sig-

nificant research outcomes, they also face some challenges and problems.

This thesis focuses on enhancing recommender systems through the

use of diffusion dynamics and machine learning, and solves four problems

faced by existing recommendation methods: 1) Can diffusion-based recom-

mendation methods get a better balance between accuracy and diversity;

2) How can trust diffusion processes be modeled in social networks and

how can social information be introduced into diffusion-based recommen-

dation methods; 3) Can opinion dynamics be integrated with machine

learning to make better recommendations; and 4) How can the issue of

preference conflicts in group recommender systems be alleviated such

that the recommendations generated meet the requirements of most of

the users in a group.

To address Problem 1), this thesis presents a mixed similarity diffusion

process that integrates two kinds of similarity measures from both explicit

and implicit feedback data. It also considers the degree of balance for
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ABSTRACT

different kinds of nodes in a bipartite network. This new diffusion process

enhances both the accuracy and diversity of the recommendations.

To address Problem 2), a trust diffusion process is simulated via a trust

network that introduces explicit trust into the diffusion process, while

the similarity between users indicates implicit trust. Moreover, a special

resource allocation process, designed for a tripartite network, combines

both kinds of trust to model user preferences in a more exact manner.

To address Problem 3), a social recommendation model is used to

integrate opinion dynamics and user influence into a matrix factorization

framework. The model characterizes the impact of neighbors on user

opinions through evolutionary game theory and uses a payoff matrix to

improve the training process of the matrix factorization. In addition, user

influence that originates from the trust network is added to the proposed

recommendation model.

To address Problem 4), a virtual coordinator combined with group

recommendation solves preference conflicts through a negotiation process.

The virtual coordinator brings a global perspective to optimizing the

evaluation processes of individual user preferences in a group in order to

create a balanced set of group recommendations. Additionally, personal

influence is inferred from the trust relations to define the impact of the

virtual coordinator on each group member.

To conclude, this thesis proposes a set of recommendation methods for

both personalized and group recommendation that go some way to solving

current challenges in recommender systems.
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1
INTRODUCTION

1.1 Background

As information technology develops, more and more people are communi-

cating and sharing information over the Internet. Internet technologies

have accelerated the integration of all fields of society. The digital economy

has gradually formed and become an important force in promoting the

economic growth of various countries (Zhang et al., 2021). Internet plat-

forms, such as e-commerce sites, social networks and video websites, have

developed rapidly and their powerful information processing capabilities

are bringing individuals into the information era (Bakos and Katsamakas,

2008). Internet information services are now the most convenient way to

gain knowledge and, as such, they have become an indispensable part of

1



CHAPTER 1. INTRODUCTION

most people’s daily lives. However, at the same time, these information

services often struggle to filter information, which can lead to problems

with information overload (Rutkowski and Saunders, 2010).

To solve these information overload problems, researchers have devised

various tools, including search engines (Langville and Meyer, 2011) and

recommender systems (Adomavicius and Tuzhilin, 2005). While being

good at locating specific information, search engines do not consider a

user’s preferences, and they return the same results to all people no matter

their different habits. The typical modus operandi of search engines is

to let users provide suitable keywords and to passively return results

in accordance with those keywords (Morita and Shinoda, 1994), with

the results being the same every time - that is, the results will not be

personalized. To the contrary, recommender systems are a personalized

information filtering technology that predicts whether an active user

will like a particular object based on his/her particular history of choices

(Ghorab et al., 2013). Recommender systems integrate many kinds of

diverse user information as history or profile of choices, such as transaction

records, rating scores, social relations, location information, and so on -

all of which are mined to generate personalized recommendations based

on that user’s unique preferences.

Recommender systems have been regarded as one of the most effective

methods for solving information overload problems and have therefore

been widely applied in the e-commerce field. For instance, some shop-

2



CHAPTER 1. INTRODUCTION

ping websites including Amazon and JD.com have built their own product

recommender systems (Smith and Linden, 2017; Liu et al., 2020). Addition-

ally, YouTube and Netflix have developed video and movie recommender

systems to offer better services to customers (Zhou et al., 2010a; Amatriain

and Basilico, 2015).

At present, ways to effectively evaluate user preferences and make

reasonable recommendations based on big data and a plethora of user

features have become an important research topic. This is because online

user behaviours are so complex and so diverse. For this reason, researchers

are turning to the theory of complex networks and advanced machine

learning techniques for answers. With these tools, it should be possible

to improve the performance of recommender systems for better and more

accurate results.

1.2 Motivation

Recommender systems have attracted much attention, not only from

academia but also from industry. In past years, many multi-disciplinary

research results and industrial applications have been developed to make

recommender systems more accurate. However, user behaviors on the

Internet is often complicated and is growing more so with the develop-

ment of information technology and exploding volumes of data. Modeling

user preferences and making recommendations can therefore be a highly

3
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problematic task, and one fraught with many challenges.

One of the greatest challenges to recommender systems today is data

sparsity. Although the number of users and items on e-commerce sites

might be growing rapidly, the amount of information available on the

interactions between those users and items is limited. Thus, in propor-

tional terms, data sparsity is actually increasing (Guo et al., 2014, 2017a).

This is a serious problem that has no fundamental solution, as the rate

that relationship information is growing is falling far behind the amount

of entity information. The current workaround typically involves a data

filling method or enhancing the anti-sparsity capacity of the algorithms.

That said, data sparsity remains a long-term challenge.

The second challenge is the dilemma of accuracy versus diversity. In

studies on recommendation algorithms, accuracy is generally considered

to be the most important indicator. Most recognize that recommending

popular items leads to higher accuracy because highly popular items are

easier for users to accept (Lü and Liu, 2011). Diversity reflects the differ-

ences between recommendation results for different users. If there are

significant variations between the recommendations given to each user,

diversity values will be high. However, there is a contradiction between

accuracy and diversity (Zhou et al., 2010b). The traditional idea of rec-

ommending popular items to users provides promising results when it

comes to improving accuracy. However, it tends to lead to similar rec-

ommendation results for each user, which reduces the diversity of the
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recommendations. Therefore, finding a balance between accuracy and

diversity is a challenge in recommender systems.

The third challenge is recommendation with auxiliary features. With

the combination of e-commerce and social networks, user behaviors have

become complicated, and the application scenarios of recommender sys-

tems have gradually diversified. The combination has given rise to many

kinds of additional features related to users and objects (Hyun et al., 2021;

Ni et al., 2022a,b), including social relations, geographical location infor-

mation, group information, product reviews, and so on. These features are

useful supplements to the interaction information between users and ob-

jects. Some studies have demonstrated that integrating auxiliary features

into recommender systems not only improves the accuracy of recommen-

dations but also alleviates the issue of data sparsity (Guo et al., 2017a; Yu

et al., 2019; Sun et al., 2020). Hence, research on how to effectively use

auxiliary features to make better recommendations is important.

This thesis presents some methods that contribute to solving the

outlined challenges.

1.3 Research Questions and Objectives

This thesis aims to develop several methods of enhancing recommender

systems using diffusion dynamics and machine learning. In the process,

the following research questions will be answered.
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Research Question 1 (RQ1): Can diffusion-based recommendation

methods get a better balance between accuracy and diversity?

Research Question 2 (RQ2): How can trust diffusion processes be

modeled in social networks and how can social information be introduced

into diffusion-based recommendation methods?

Research Question 3 (RQ3): Can opinion dynamics be integrated

with machine learning to make better recommendations?

Research Question 4 (RQ4): How can the issue of preference con-

flicts in group recommender systems be alleviated such that the recom-

mendations generated meet the requirements of most of the users in a

group?

Achieving the following objectives is expected to answer the above

research questions.

Research Objective 1 (RO1): (in answer to RQ1) To discover the

factors that impact the accuracy and diversity of recommendations and

create an improved diffusion-based recommendation model that supports

diffusion processes in bipartite networks so as to achieve a better balance

between accuracy and diversity.

Research Objective 2 (RO2): (in answer to RQ2) To develop a trust-

aware diffusion model for making recommendations within social net-

works.

Research Objective 3 (RO3): (in answer to RQ3) To develop a social

recommendation method that integrates the advantages of both opinion
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dynamics and machine learning.

Research Objective 4 (RO4): (in answer to RQ4) To find a solution

that alleviates preference conflicts in groups and to develop a group rec-

ommendation method to can make compromises in the recommendations

generated such that most group members are satisfied.

1.4 Research Innovation and Contributions

The work of the thesis advances recommender systems through diffusion

dynamics and machine learning. The main innovations are summarised

as follows.

Innovation 1: This study is the first to consider both explicit and

implicit feedback in diffusion processes and to integrate the similarity

measures from these two kinds of feedback in a diffusion-based recommen-

dation model. Compared to existing diffusion-based methods, the proposed

diffusion process models user preferences more accurately.

Innovation 2: This study is the first to introduce trust relations into

diffusion-based recommendation models. The trust diffusion process is

designed to capture the impacts of explicit trust between users in tripartite

networks. This process can not only be used for combining trust relations

but also for combining other additional features.

Innovation 3: This study is the first to introduce opinion dynamics

into a matrix factorization model so as to bring interpretability and physi-
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cal meaning to machine learning models. As a result of this combination,

social information can be organized well for recommendation tasks.

Innovation 4: This study is the first to put forward the concept of

virtual coordinators as negotiators for clearing up user preference conflicts

in group situations. The approach takes advantage of both the result and

the profile aggregation strategies to improve group recommendations.

These innovations lead to the following contributions.

Contribution 1 is a mixed similarity diffusion model called MSD

that makes recommendations balanced between accuracy and diversity

through a bipartite network. MSD introduces both cosine similarity with

explicit feedback and a resource allocation index with implicit feedback

into the diffusion process. The impacts of node degrees are also considered

to make the diffusion process more reasonable. Experiments on real-world

datasets demonstrate the MSD model concurrently enhances both the

accuracy and the diversity of the recommendations.

Contribution 2 is a trust-aware diffusion-based recommendation

model called DBRT that captures explicit trust relations and the implicit

trust inferred by user similarity to improve resource-allocation processes.

Experiments indicate that considering the effects of trust makes the

diffusion process more reasonable and enhances the performance of the

recommender system.

Contribution 3 is a social recommendation model called REOD that

applies opinion dynamics theory to improving recommendation models.
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REOD imparts a new perspective on integrating opinion dynamics with a

matrix factorization model. The framework updates user opinions accord-

ing to a payoff matrix built on game theory during the training process.

Experiments show that REOD outperforms several existing social recom-

mendation models given both normal users and cold-start users.

Contribution 4 is a trust-aware group recommendation model called

TruGRC. This model introduces a virtual coordinator into group recom-

mendation, which brings a global perspective to optimizing the evaluation

processes of individual user preferences. Moreover, TruGRC considers the

interactions between group users and the virtual coordinator to represent

a negotiation process. Experiments indicate that the virtual coordinator

improves group recommendation performance at a range of group sizes.

From the methodological perspective, contributions 1 and 2 apply

diffusion dynamics to improve recommender systems, and contributions 3

and 4 enhance recommender systems by machine learning. From the data

perspective, contribution 1 only uses rating data and contributions 2, 3

and 4 introduce additional features into recommender systems.

1.5 Research Significance

With the rapid popularization of e-commerce and social networks, user

features are growing more and more abundant. These data resources are

a good foundation for research in recommender systems as they have both
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theoretical and practical significance.

From the perspective of research, recommender systems are a research

hotspot in the field of information technology. For example, in recent years,

the number of submissions to the annual ACM conference on recommender

systems has dramatically increased, which indicates how much attention

researchers are paying to developing and improving recommender sys-

tems. This thesis proposes several methods for using diffusion dynamics

and machine learning to enhance the performance of recommendation

algorithms. Specifically, this is the first research to integrate both explicit

and implicit similarity into a diffusion process with a bipartite network.

This is a new idea for modeling trust relations in diffusion processes. The

results show that considering multiple similarity measures can make

diffusion processes more reasonable and additional features can be used

to improve the accuracy and diversity of diffusion-based recommender

systems. Moreover, this thesis brings a novel perspective in the form of

using both opinion dynamics and machine learning to make better recom-

mendations, which is significant to multi-disciplinary integration. Lastly,

this thesis is the first to regard group recommendation as a negotiation.

This inspired the concept of using virtual coordinators to model user

preferences in a way that involves compromise between group members.

This is an innovative way to solve the issues of preference conflicts in

traditional group recommender systems.

From the perspective of practice, many e-commerce websites and enter-
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prises have their own recommender systems. A good recommender system

will exactly predict a customer’s requirements and attract a large number

of customers to interact with items. In real terms, this is likely to bring eco-

nomic benefits to the platform. To this end, this thesis focuses on proposing

efficient recommendation algorithms for a range of different scenarios,

such as movie review websites and social networks. All the methods in

the thesis have been tested and validated on real-world datasets, which

means practitioners can directly use the methods proposed in their own

real-world business scenarios.

1.6 Thesis Structure

The structure of this thesis is shown in Figure 1.1 and the chapters are

organized as follows.

Chapter 1 introduces the background and challenges of recommender

systems and shows the research questions, objectives and contributions of

the thesis.

Chapter 2 presents the research overview along with a literature

review on the different kinds of recommender systems.

Chapter 3 presents a mixed similarity diffusion model called MSD

that integrates both cosine similarity with explicit feedback data and a

resource-allocation index with implicit feedback data into the diffusion

process. The proposed MSD considers the balance of different kinds of
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node degrees in a bipartite network so as to strike a balance between

accuracy and diversity. This chapter addresses RQ1 to achieve RO1.

Chapter 4 presents a novel diffusion-based recommendation method

called DBRT that extends the resource-allocation process from a bipartite

network to a tripartite network. The proposed DBRT simulates a trust

diffusion process to integrate explicit trust relations into the resource-

allocation process. It also uses a cosine index between nodes to indicate

implicit trust, further improving the resource-allocation process. This

chapter addresses RQ2 to achieve RO2.

Chapter 5 presents a model-based recommendation method with

opinion dynamics called REOD that considers both the dynamic processes

of real society and the rating predictions of recommender systems. The

proposed REOD model further integrates opinion dynamics and user

influence with a matrix factorization framework. This chapter addresses

RQ3 to achieve RO3.

Chapter 6 presents a trust-aware group recommendation method

called TruGRC that integrates both result and profile aggregation strate-

gies. The method introduces a virtual coordinator to group recommen-

dation, which brings a global perspective on optimizing the evaluation

processes of individual user preferences and creates a balanced set of

group recommendations. This chapter addresses RQ4 to achieve RO4.

Chapter 7 summarises the findings of this thesis and points to direc-

tions for future work.
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Figure 1.1: Thesis structure.
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LITERATURE REVIEW

The research on recommender systems began in the 1990s. With the rapid

development in recent years, recommender systems have gradually be-

come a research content involving multidisciplinary domains (Bobadilla

et al., 2013; Zhou et al., 2017; Yang et al., 2021; Lü et al., 2012; Chen

et al., 2020b). A lot of disciplines and subjects have made outstanding

contributions to the development of recommender systems, such as com-

puter science, physics, management and etc. At present, the research on

recommender systems mainly focuses on using complex network theory

(Zhou et al., 2007; Zhang et al., 2010; Zhu et al., 2015) and machine learn-

ing technologies (Jannach et al., 2021; Portugal et al., 2018; Karatzoglou

and Hidasi, 2017; Pan et al., 2019; Jiang et al., 2015) to improve the

performance of both personalized and group recommendation tasks. A

literature review is presented in this chapter, which is divided into six
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parts: 1) content-based recommendation, 2) neighborhood-based collabo-

rative filtering, 3) model-based collaborative filtering, 4) diffusion-based

recommendation, 5) social recommendation, 6) group recommendation.

2.1 Content-based Recommendation

Content-based recommender systems are one of the earliest types of rec-

ommender systems (Lops et al., 2011; Thorat et al., 2015; Shu et al., 2018;

Pérez-Almaguer et al., 2021). The principle of content-based recommender

systems is that analyzing the description and inherent information of

items to find out the items’ characteristics, and then recommend other

items which are in the same category or similar to the items that have

been chosen by users in the past (Li and Kim, 2003; Cantador et al., 2010).

For example, a content-based recommender system of online shopping

websites can be considered that a user may be more interested in such

products similar to the products have purchased many times by the user

than the products in a new category. Being different from collaborative

filtering, content-based recommender systems only pay attention to items’

features and ignore the interactions between users and items (Balabanović

and Shoham, 1997).

Content-based recommender systems have the advantage of strong

independence between users, which means they only consider the behav-

iors made by the target user without the impacts of other users. In some
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situations, using other users’ historical data brings noise, because some

users make cheat behaviors on the Internet so that their data is not true

or reliable. Furthermore, recommendation results made by content-based

recommender systems are easier explained to users than those made by

collaborative filtering, because the results are based on the description

and characteristics of items compared to complex interactive information

used in collaborative filtering. Currently, some enhanced models based on

the principle of content-based recommender systems have been proposed

to handle recommendation tasks in fields with abundant item features

(Lops et al., 2019), e.g. news recommendation (Kompan and Bieliková,

2010), music recommendation (Oord et al., 2013) and etc. Rutkowski et al.

(2018) considered the rich content of movies, including ratings, tags, gen-

res, years and TMDB, and applied the neuro-fuzzy approach to make

recommendations for users. Reddy et al. (2019) assumed movie genres

are a very important factor in making recommendations and built a rec-

ommender system based on content-based filtering. Zhong et al. (2018)

proposed a music recommendation method based on convolutional neural

networks to improve the accuracy of recommendations, which uses the

representation ability of neural networks to learn music segments from

more than 60 thousands songs.

However, the shortcomings of content-based recommender systems

cannot be ignored. First of all, the content information of items is generally

more difficult to obtain than interactive information. In social networks,
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the interactions between users and items are plentiful, by contrast, the

information about items is limited and sometimes hard to be discovered.

In addition, content-based recommender systems only depend on users’

preference for the intrinsic content of certain items in the past and the

content updates very slowly, which means the recommendations proposed

by content-based recommender systems may be hysteretic. Because of

these shortcomings, some researchers started to integrate both content

and interactive information to make hybrid solutions (Arampatzis and

Kalamatianos, 2017). Basilico and Hofmann (2004) was the first attempt

to systematically integrate user-item interactions as well as the attributes

of items or users to learn an unified prediction function. Yao et al. (2014)

applied a recommendation method to make web service recommenda-

tions, which simultaneously considers both QoS rating data and seman-

tic content data of web services using a probabilistic generative model.

De Campos et al. (2010) handled the issue of combining content-based and

collaborative features by using Bayesian networks. Ronen et al. (2013)

proposed an algorithmic framework to automated select or generate mean-

ingful informative content-based features, e.g. text and tags, and regraded

these features as supplementary information for collaborative filtering in

commercial systems.
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2.2 Neighborhood-based Collaborative

Filtering

Collaborative filtering is the most widely used recommendation method

(Bobadilla et al., 2011; Ekstrand et al., 2011; Shi et al., 2014; Yang and

Li, 2009; Sarwar et al., 2001) and has attracted lots of attention by re-

searchers starting from the Netflix Prize in 2006 because of its outstanding

performance in making recommendations (Bennett et al., 2007; Amatri-

ain, 2013). Collaborative filtering considers that users may be impacted

by others’ opinions or behaviors when they are making decisions, which

fully implements both user-item and user-user interactive information to

evaluate user preference to propose suitable recommendations (Mahmood

and Ricci, 2009).

Figure 2.1: The schematic diagram of neighborhood-based collaborative
filtering.
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Neighborhood-based collaborative filtering is a classical recommenda-

tion method that evaluates the relevance between users by calculating

the similarity and finds out neighbors for a target user (Aggarwal, 2016).

It assumes that if there exists a high similarity between two users, these

users may have analogous preferences and each other’s opinions will be

accepted easily. A schematic diagram of neighborhood-based collaborative

filtering is shown in Figure 2.1. It can be seen from the figure, that two

users like the same two movies, so they have similar preferences and can

be defined as neighboring users. According to the assumption, the user on

the left will be more interested in the movie at the bottom chosen by the

user on the right.

Neighborhood-based collaborative filtering is commonly used in rating

prediction tasks. If we want to predict the rating of an item α given by a

target u, we can calculate the similarities between the target user u and

other users and then find out top-K similar users who have already rated

the item α. The prediction r̂uα means the rating of the item α given by the

target u, defined as

(2.1) r̂uα = ru +
∑K

k=1 sim (u,k)× (rkα− rk)∑K
k=1

∣∣sim (u,k)
∣∣

where ru and rk mean the average rating scores of user u and its top k

similar users, sim(u,k) means the similarity between users u and k, and

rkα means the item α’s rating given by user k. It can be seen from Eq. 2.1,

user u will get more impacts from other users who are more similar to it.
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Table 2.1: Similarity measures frequently used in neighborhood-based
collaborative filtering.

Measure Definition

Cosine similarity Cosine(u,k)=
∑

α∈I′ ruα×rkα√∑
α∈I′ r2

uα×
√∑

α∈I′ r2
kα

Pearson correlation coefficient PCC(u,k)=
∑

α∈I′ (ruα−ru)×(rkα−ru)√∑
α∈I′ (ruα−ru)2×

√∑
α∈I′ (rkα−ru)2

Constraint Pearson correlation coefficient CPCC(u,k)=
∑

α∈I′ (ruα−rmed)×(rkα−rmed)√∑
α∈I′ (ruα−rmed)2×

√∑
α∈I′ (rkα−rmed)2

Jaccard similarity Jaccard(u,k)=
∣∣Iu∩Ik

∣∣∣∣Iu∪Ik

∣∣
Mean square Mean(u,k)= 1−

∑
α∈I′ (ruα−rkα)2∣∣I ′

∣∣
An important part of neighborhood-based collaborative filtering is

similarity measures and those frequently used in recommender systems

are shown in Table 2.1, such as cosine similarity, Pearson correlation

coefficient, Jaccard similarity and etc. In Table 2.1, Iu and Ik are item sets

respectively rated by users u and k, I ′ is an item set rated by both users

u and k at the same time, ruα and rkα mean the ratings of item α given

by users u and k respectively, and rmed means the median of all ratings.

Based on the above common similarity measures, some further im-

provements have been proposed by researchers. Ahn (2008) analyzed the

distribution of rating data and proposed a heuristic similarity measure

with the popularity and impacts of rating objects, which focuses on improv-

ing recommendation performance under cold-start conditions. Bobadilla

et al. (2010) combined mean square and Jaccard correlation coefficient

to propose a similarity measure called JMSD that extends Jaccard corre-
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lation coefficient to rating prediction tasks. In the meantime, Bobadilla

et al. (2012) integrated both rating scores and the probability distribu-

tions of user ratings to enhance the rationality of similarity measures.

To alleviate the dilemma of data sparsity, Patra et al. (2015) applied the

Bhattacharyya coefficient in signal and image processing domains to cal-

culate similarities between item vectors and regarded these results as

global similarities when common rated items by users are very few.

2.3 Model-based Collaborative Filtering

Machine learning is a vital research domain in computer science, which

has been widely applied in data mining (Teng and Gong, 2018; Li et al.,

2017a) and recommender systems (Weimer et al., 2008; Singh and Gordon,

2008; Hu et al., 2021; Xiao et al., 2022). Inspired by machine learning,

model-based collaborative filtering makes recommendations based on

mining users’ and items’ features in latent feature spaces rather than

calculating similarities (Koren, 2008). Most model-based approaches are

developed on matrix factorization (MF) which is a typical model in ma-

chine learning to solve prediction problems. Koren et al. (2009) firstly

applied MF in recommender systems and achieved excellent results in the

Netflix Prize competition.

The principle of MF is to get the latent feature matrices of users and

items by decomposing a user rating matrix, and then predicts rating
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Figure 2.2: The schematic diagram of the matrix factorization algorithm.

scores through the latent feature vectors of users and items (Chen and

Peng, 2018). Figure 2.2 shows the progress of MF where P and Q are

low-rank matrices to represent the latent features of users and items. If

the number of users and items are m and n and the dimension of the

feature space is d, the dimensions of P and Q can be expressed as m×d

and n×d respectively and the rating matrix R is a m×n sparse matrix.

The target of MF is to predict unknown ratings in the rating matrix R

using latent features, defined as

(2.2) R=PQT

where T is the symbol of matrix transpose. Each rating prediction in the

rating matrix R can be defined as

(2.3) r̂u,i =puqT
i

where r̂u,i means the predicted rating of item i given by user u, pu and

qi are user u’s and item i’s latent feature vectors. In order to learn latent
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feature vectors, a loss function is necessary to be used for minimizing the

gap between observed ratings and predictions (Guo et al., 2016a). Square

loss is the most frequent function in MF, defined as

(2.4) min
pu,qi

L= 1
2

m∑
u=1

n∑
i=1

δu,i
(
ru,i − r̂u,i

)2

where δu,i is an indicator when δu,i = 1 means ru,i has been observed and

δu,i = 0 otherwise. Gradient descent is an useful and efficient optimization

method for finding the local optimal values of the loss function (Pan et al.,

2015b; Loni et al., 2016; Guo et al., 2016c). According to Eq. (2.4), the

gradients of pu and qi are as follows.

(2.5)

∂L
∂pu

=
n∑

i=1
δu,i

(
ru,i − r̂u,i

)
pu

∂L
∂qi

=
m∑

u=1
δu,i

(
ru,i − r̂u,i

)
qi

Updating pu and qi with a certain learning rate η until the algorithm

converges, shown in Eq. (2.6).

(2.6)
pu ←pu −η

∂L
∂pu

qi ←qi −η
∂L
∂qi

The approximate rating can be calculated by Eq. (2.3) based on the local

optimal pu and qi.
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Because of the great success of MF in recommender systems, many

further improvements have been proposed. Koren (2010) integrated both

the ideas of neighborhood-based collaborative filtering and singular value

decomposition (SVD) to propose SVD++ that considers users’ latent fea-

tures and explicit feedback. Because of users’ preferences are dynamically

changed, Koren (2009) introduced the concept of the time window in

SVD++ to propose an algorithm named TimeSVD++ based on dynamic

temporal series for predicting the user preferences of specific periods. Guo

et al. (2016a) introduced the concept of direct and indirect trust in so-

cial networks into the SVD algorithm and proposed the TrustSVD model

that improves the recommendation effect of both normal and cold-start

users. Ma et al. (2011) calculated the similarity between users by Pear-

son correlation coefficient and assumed that users with a high similarity

have strong social influence. Based on this assumption, a social constraint

MF algorithm was proposed to apply potential social relations in rating

prediction tasks. Li et al. (2019b) analyzed the impact of social network

topology and introduced this impact into MF algorithms to evaluate the

global influence of users in social networks through topology structures.

To enhance the effect of recommendations under data sparse conditions

based on the principle of cross-domain recommendation, Ji et al. (2016) di-

vided user scoring modes into several categories and then constructed the

mappings between different modes using the CodeBook method. Ranking-

based prediction is a vital part of recommender systems, Shi et al. (2010)
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proposed a list-wise ranking method that expands MF algorithms from

scoring-based predictions to ranking-based predictions. Hu et al. (2008)

proposed a weight-based MF algorithm that uses implicit feedback such as

shopping records and browsing records to predict users’ clicks on websites.

He et al. (2016) proposed a fast MF algorithm that greatly reduces the

computing complexity of the weight-based MF algorithm. The probabilistic

matrix factorization (PMF) explained MF from a probability perspective,

which performs very well when datasets are sparse and samples are im-

balanced (Mnih and Salakhutdinov, 2007). Furthermore, Salakhutdinov

and Mnih (2008) proposed the Bayesian probabilistic matrix factorization

(BPMF) model based on PMF and proved the BPMF model can be effi-

ciently trained through the Markov chain Monte Carlo approach. Zheng

and Xiong (2018) introduced users’ social labels into the PMF model to

enhance the rationality and accuracy of recommendation algorithms by

extracting potential semantic information. A MF model based on neural

network architectures was proposed by Xue et al. (2017), which designs

a novel loss function based on binary cross-entropy and provides a new

perspective for improving MF algorithms.

In addition to MF models, factorization machines (FM) is also a typical

machine learning method based on latent features (Rendle, 2010, 2012).

It contains the ideas of both logistic regression and MF, and can be used

in solving a variety of problems, e.g., regression, binary classification and

ranking tasks (He and Chua, 2017; Juan et al., 2016). FM models are usu-
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ally applied in combining additional features with recommender systmes

and cross-domain recommendation tasks (Chen et al., 2020a; Hu et al.,

2018; Loni et al., 2014; Li et al., 2019a). Loni et al. (2014) proposed a

FM-based cross-domain recommendation algorithm that implements the

information interactions between different domains by building unified

latent features of a target domain and auxiliary domains. A fast FM model

based on context information was proposed by Rendle et al. (2011), which

uses context information for rating prediction tasks. Guo et al. (2016c)

proposed a pair-wise learning model to put FM in solving personalized

ranking issues. (Pan et al., 2015a) introduced a recommendation algo-

rithm for heterogeneous data, which first compresses each field features

and then migrates features from different fields through FM to achieve

heterogeneous data interactions for realizing knowledge transformation.

DeepFM is an outstanding recommendation method that has been widely

used in industry (Guo et al., 2017c). It combined deep learning with FM

and used neural networks to finish non-linear representation for features.

(Knoll, 2016) extended FM to a higher order, which makes interactions

between three features and keeps linear-complexity to realize the goal of

improving recommendation effect and ensuring computational complexity

at the same time.

Because of the ability of knowledge representation, deep learning has

been applied in recommender systems in recent years (Zhang et al., 2019;

Da’u and Salim, 2020; Khan et al., 2021). He et al. (2017) introduced a neu-
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ral architecture that is first to model the interactions between both user

and item features with neural networks. Ahmadian et al. (2022) utilized

deep neural networks to model the representation of trust relationships

and tag information to extract latent features from trust information and

user-tag matrices. Bobadilla et al. (2021) extracted demographic informa-

tion from user and item factors through a deep learning-based feature

selection method. Da’u et al. (2021) applied neural attention techniques

to learn adaptive user and item representations and fine-grained user-

item interactions, which enhances the accuracy of item recommendation

tasks. Tahmasebi et al. (2021) proposed a hybrid social recommendation

method that utilizes a deep autoencoder network to employ collabora-

tive and content-based filtering, as well as user social information in the

recommendation process. Liang et al. (2022) introduced a dynamic het-

erogeneous graph convolutional network for item recommendation tasks,

which consists of two components named graph learner and heterogeneous

graph convolution. Specifically, the graph learner considers different kinds

of interactions between users and items, and the heterogeneous graph

convolution aggregates both graph representations and item content in-

formation. Deep learning technologies are also introduced in some special

recommendation tasks, such as point-of-interest recommendation (Islam

et al., 2022; Liu and Wu, 2021), citation recommendation (Ali et al., 2020;

Gupta et al., 2021) and news recommendation (Ji et al., 2021).
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2.4 Diffusion-based Recommendation

Complex networks are often used to describe a system formed by the

connections between different objects, and the behaviors of users who

collect items can be abstracted to connections or relationships in complex

networks (Lü and Zhou, 2011). A bipartite network is a special structure in

complex networks that distinguishes nodes into two non-intersect vertex

sets (Koskinen and Edling, 2012). In recommender systems, users and

items can be regarded as the nodes in bipartite networks, and each edge

connecting user nodes and item nodes represents the behavior of a user

who purchases or selects such items.

Inspired by physical dynamics (Grigull and Sandner, 1984; Sarman

and Evans, 1992), many researchers designed diffusion dynamics in bipar-

tite networks to make recommendations. The work proposed by Zhou et al.

(2007) is the pioneer of diffusion-based recommendation methods called

mass diffusion which is also a physical phenomenon’s name. In this work,

a diffusion-based method that simulates mass diffusion in physics in a

bipartite network to make recommendations for users through evaluating

user preferences for non-selected items. In order to enhance the diversity

of recommendations, Zhang et al. (2007) inspired by the heat conduction

phenomenon in physics to design a diffusion process simulating the heat

conduction in a bipartite network. This method brings a good diversity for

recommendations which means it can be used in the condition of providing
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long-tail results for users.

Depending on mass diffusion and heat conduction models, many im-

provements have been suggested by researchers both in physics and

computer science (Qiu et al., 2014; Wang et al., 2016c; Chen et al., 2017a;

Li et al., 2017b; Shuang et al., 2019). Jia et al. (2008) considered resource

initialization in bipartite networks has a certain impact on recommenda-

tion results and changed the way of initialization according to the degrees

of item nodes. Zhou et al. (2009) assumed that the correlation resulting

from a specific attribute may be repeatedly counted in cumulative rec-

ommendations from different objects in the mass diffusion process and

designed an improved algorithm to eliminate redundant correlations by

considering higher order correlations. Based on the heat conduction model,

Liu et al. (2011) introduced a hyperparameter to improve the accuracy and

contained the diversity of recommendations. Zeng et al. (2014) proposed

a similarity-preferential diffusion process that uses hyperparameters to

compress or expand the resources of user nodes in bipartite networks to

control the impacts between similar users. Traditional mass diffusion-

based models only consider unidirectional processes, which lead to be a

biased causal similarity estimation. To solve this issue, Zhu et al. (2015)

proposed a consistence-based mass diffusion algorithm via a bidirectional

diffusion process against biased causality and the algorithm achieved

good performance on several real-world datasets.
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2.5 Social Recommendation

Social-based recommendation models often integrate the preferences of

neighbors into the prediction of unknown ratings, so that social informa-

tion is utilized in recommender systems (Mao et al., 2017; Yu et al., 2021;

Miao et al., 2022). Latent factors of neighbors may affect the prediction

of user ratings or relations. In the work by Ma et al. (2009), users’ so-

cial trust was combined with the PMF model, and the interests of users

and their trusted friends were fused to make a decision on uncollected

ratings. Instead of integrating social information for rating prediction,

recommendation with social regularization exerts social constraints on

MF frameworks (Ma et al., 2011). Users may take the average preference

of neighbors, or they may have similar interests with each neighbor. Both

trust networks and social networks are considered. Social relations are not

homogeneous among different users, and weak dependency connections

exist widely on social networks. Weak dependency connections represent

the relations among users in a group that have similar tastes. In the

work by (Tang et al., 2016b), after community detection, social dimen-

sions that express user tastes were exploited, and a user may be involved

in different dimensions. Based on social dimensions, a recommendation

framework was proposed, which incorporates the heterogeneity of social

relations and weak dependency connections. Social dimensions improve

the recommendation effectiveness.
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From an analysis of real-world datasets, rating data and social data

in social networks are usually complementary. Guo et al. (2016a) incor-

porated both the explicit and implicit influence of user trust, and both

trusted and trusting users were considered in the prediction of ratings

for an active user. User preferences do not always remain unchanged,

instead, it drifts over time. Zhang et al. (2016b) inferred the latent social

network from cascade data, and identified the dynamic changes of users

over time using the latest updated social network. A model of implicit

dynamic social recommendation was proposed to address the common ex-

isting preference drifting issues. Mining social information in time helps

to improve recommendations. Tang et al. (2015) leveraged social science

theories to develop a methodology for the study of online trust evolution.

The dynamics of user preferences was exploited to reveal trust evolution.

User relations are not always positive, and social networks also contain

negative links. The work by Tang et al. (2016a) exploited signed social

networks for recommendation, and leveraged positive and negative links

in signed social networks. The preferences of users are likely to be closer

to those of their friends than those of their foes. The results proved that

negative links in signed social networks were as important as positive

links for recommendation.

These aforementioned studies utilized social information directly, and

user relations were incorporated with latent interest vectors in recom-

mender systems. Hu et al. (2012) measured user influence from network
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topology. The work distinguished different social relations among users,

and latent user preferences were learned from those who have the most

influence in social networks. The Shannon entropy principle was used to

optimize an influence factor, and the topological distances of users were

calculated for the building of influence. Zhang et al. (2016a) developed the

global influential model and the local influential model to find influential

users. They carried out Monte-Carlo simulations to obtain an approximate

result while handling large-scale user networks. Global and local influence

was used as regularization terms in the MF framework. Experiment re-

sults proved that these methods which explore user influence from social

relations have an advantage in terms of accuracy and stability.

2.6 Group Recommendation

Group recommender systems are designed to generate recommendations

for a set of individuals with diverse interests (Wang et al., 2022), which

have been implemented in several domains, e.g., tourism (Anagnostopou-

los et al., 2017) and TV programs (Yu et al., 2006). The main idea of group

recommendation is to aggregate group members’ choices and the current

group recommendation approaches fall into two categories, i.e., profile

aggregation and result aggregation.

Profile aggregation builds a virtual user to represent the group profile

by combining each individual profile, or regards the preference of the
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whole group as a special user. Ortega et al. (2016) applied MF techniques

to combine group user profiles in latent feature spaces. Wang et al. (2016b)

proposed a group recommendation model based on member contributions

which are evaluated by the degrees of user importance via the separable

non-negative MF technique. Kagita et al. (2015) defined a virtual user’s

profile using precedence relations in a group and regarded it as the group’s

profile. Leng and Yu (2022) used neural networks to represent the impacts

of global and local social networks for group members and modeled group-

item and user-item interactions to enhance recommendation performance.

Compared to profile aggregation, result aggregation often has more

flexibility and has attracted more attention. Research on result aggrega-

tion mainly focuses on designing better aggregation functions to integrate

group members’ preferences. Some studies have indicated the average

aggregation function (AVG) gets the best results among navie aggregation

functions (Dwivedi and Bharadwaj, 2015; Amer-Yahia et al., 2009). There-

fore, applying AVG to combine the results of individual recommendation

methods can be regarded as baselines in result aggregation. Castro et al.

(2017a) proposed an aggregation strategy that applies opinion dynamics

to simulate the information interaction process between group members

and, through this opinion exchange, any conflicting preferences between

group members are resolved. Abolghasemi et al. (2022) generated implicit

feedback and pairwise ratings to make personalized item scores for each

group member, and then reached a consensus by a group decision-making
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model. The clustering group is a typical kind of user groups, Boratto

et al. (2016) adopted clustering methods to detect user groups and tested

plentiful aggregation functions to find out which function will bring the

best performance of accuracy in this scenario. Quijano-Sanchez et al.

(2017) proposed a personalized social individual explanation approach

that infers social relations from demographic information of group mem-

bers. Guo et al. (2016b) introduced a computational model to integrate

the influence of personality, expertise factor and preference similarities,

and demonstrated considering social influence can improve the quality

of group recommendation. Some other models to diminish the negative

effects of natural noise in group recommender systems have also been

studied (Castro et al., 2017b, 2018).
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MIXED SIMILARITY DIFFUSION FOR

RECOMMENDATION ON BIPARTITE NETWORKS

3.1 Introduction

With the revolutionary development of the Internet, the quantity of in-

formation is growing very quickly and has become out of the capability

of human beings (Ma et al., 2015). Information overload appears to be a

serious problem in traditional data analytic studies (Zhang et al., 2017;

Pan et al., 2017; Wang et al., 2017c), and exploring useful content from

rapidly increasing information tends to be a raising trend in modern

society (Zhang et al., 2016c; Wang et al., 2017c; Pan et al., 2016a). Rec-

ommender systems have been recognized as an effective tool to handle

this problem, and play a crucial role in data processing tasks (Lu et al.,
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2015). Recently, personalized recommendation among numerous potential

choices attracts more and more attention (Lü et al., 2012), and have been

applied to many actual domains, such as recommending movies (Gogna

and Majumdar, 2015; Wang et al., 2016b), content (Verma et al., 2016),

citations (Liu et al., 2015), locations (Wang et al., 2017a,d), mobile appli-

cations (Yin et al., 2017) and services for e-business (Wu et al., 2015b; Lu

et al., 2013) and e-goverment (Wu et al., 2015a; Lu et al., 2010).

Collaborative filtering is a typical and the most popular information fil-

tering technology in recommender systems (Xu et al., 2016). Its main idea

is to evaluate user preference through exploiting user feedback data in a

collective way. Two kinds of feedback data can be processed, i.e., explicit

feedback and implicit feedback. The former, e.g., 5-star ratings, means

the level of how a user likes an item, while the latter one, e.g., clicks or

purchases, indicates whether a user likes an item or not (Liu et al., 2017).

In addition, elements in explicit feedback matrix can be any numeric

values while the implicit feedback matrix is a single-valued matrix. In

collaborative filtering, diffusion-based recommendation algorithms can

act on unary data and make recommendations based on network struc-

tures, which are inspired by diffusion phenomenon in physical dynamics

and have good interpretability (Xiong and Li, 2017; Wang et al., 2017b).

These algorithms use a user-item bipartite network to represent input

data, e.g., rating matrix, and links on the bipartite network indicate the

collection behaviors between users and items. Some physical processes

36



CHAPTER 3. MIXED SIMILARITY DIFFUSION FOR RECOMMENDATION ON
BIPARTITE NETWORKS

can be then employed on the bipartite network to make recommendations,

such as random walk, mass diffusion (Zhou et al., 2007) and heat conduc-

tion (Zhang et al., 2007). Unfortunately, since traditional diffusion-based

recommendation methods use binary value to simulate user’s collection

behaviors, e.g., a user collects or rejects an item, those algorithms only

take advantage of implicit feedback but neglect explicit feedback, which is

also a crucial feature for precisely evaluating user preference (Pan and

Ming, 2017; Wang et al., 2016a).

In this chapter, we propose a two-step resource-allocation process to

overcome the above research gap. On social networks, individuals can

review or give their ratings on objects, e.g. items, movies, games and etc.

These behaviors bring lots of user feedback data that can be discovered

to model user preference. In this chapter, a Mixed Similarity Diffusion

model (MSD) is designed by involving both explicit feedback data and

implicit feedback data. And, we consider the degrees of users and items at

the same time in diffusion processes to improve the performance of the

model. The main contributions of this chapter are summarized as follows.

1) A mixed similarity diffusion model, named MSD, is proposed to

improve the performance of recommendation on bipartite networks, which

introduces both the cosine similarity with explicit feedback data and

the resource-allocation index with implicit feedback data into diffusion

processes.

2) The impacts of node degree on bipartite networks are discovered and
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MSD considers the degree balance of different kinds of nodes on networks

to make diffusion processes more reasonable.

3) Extensive experiments have been conducted to evaluate the effec-

tiveness of MSD. We compare the proposed method with several state-

of-the-art diffusion-based recommendation methods in three real-world

datasets and the results show that MSD achieves an accuracy-diversity

balance that enhances the accuracy and the diversity of recommendations

at the same time.

3.2 The Proposed Method

A recommender system can be represented by a user-item bipartite net-

work which consists of a user set U and an item set I. The user set is de-

fined as U = {u1,u2, . . . ,um} and the item set is defined as I = {i1, i2, . . . , in},

where m and n are the numbers of users and items in the recommender

system. A link set E = {e1, e2, . . . , ez} is used to denote relations between

users and items and z is the amount of links. In this chapter, to make

it easy to understand, we use Greek and Latin letters to express item-

related and user-related indices, respectively. An m×n adjacent matrix A

can be utilized to describe the user-item bipartite network, where every

element a iα is defined in Eq. (3.1).

(3.1) a iα =


1, user i collects item α,

0, else.
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Degree is an important concept in complex networks, which is the number

of edges linked to a vertex (Zhou et al., 2007). Accordingly, we define the

degrees of item α and user i as kα and k i that represent the number

of users who collect item α and the number of items collected by user

i, respectively. The primary purpose of a ranking-based recommender

system is to evaluate user preference and provide a recommendation list

for a target user. That is to say, a set of items uncollected by the target

user with the highest recommendation score would be included in the

recommendation list. The length of the recommendation list is defined as

L in this chapter.

3.2.1 Mass Diffusion Model

Mass diffusion model (MD) is a successful and popular recommendation al-

gorithm (Zhou et al., 2007), which takes advantage of a resource-allocation

process to make recommendations on a bipartite network. In MD, a target

user who will receive a recommendation list of items needs to be chosen at

first. Then, items linked to the target user on the bipartite network obtain

initial resource. Note that assuming the initial resource on each item is

one unit for convenient computation in this chapter.

MD can be described as a two-step resource-allocation process. In step

1, the initial resource on item nodes flows to neighboring user nodes based

on each item’s degree, so the resource on each user node can be calculated
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Figure 3.1: An illustration of mass diffusion model (MD). Users and items
are represented by circles and squares, respectively. The black circle
means the target user, and the circles and squares with grey color indicate
the resource is currently distributed on these nodes. Plot (a) is the initial
configuration, each item linked to the target user obtains one unit of
resource. Plot (b) shows that the resource flows from items to users accord-
ing to each item’s degree and the resource on each user can be calculated
by Eq. (3.2). Plot (c) shows the resource flows back to items based on each
user’s degree and the final resource on each item is calculated by Eq. (3.3).

as

(3.2) f
′
i j =

n∑
α=1

a iαa jα

kα

fα

where user i is the target user and user j is the user who will get resource

in step 1; fα and f
′
i j are the initial resource on item α and the resource on

user j after step 1, respectively; a iα and a jα are elements in the adjacent

matrix A, and kα is the degree of item α. The distribution strategy in step

2 is based on each user’s degree. Therefore, the final resource f
′
iβ on item

40



CHAPTER 3. MIXED SIMILARITY DIFFUSION FOR RECOMMENDATION ON
BIPARTITE NETWORKS

β is defined as

(3.3) f
′
iβ =

m∑
j=1

a jβ

k j
f
′
i j

where k j is the degree of user j. After a two-step resource-allocation

process, the initial resource is redistributed on items, and then a recom-

mendation list of uncollected items can be arranged for the target user

according to the final resource on each item. The uncollected items with

most final resource will be placed at the top of the list. An illustration of

the resource-allocation process of the mass diffusion model is shown in

Figure 3.1.

Although MD is proved to be effective in recommendation tasks, there

are still some weaknesses. Firstly, MD makes recommendations with

implicit feedback which only includes binary value, such as 1 for a positive

example and 0 for a negative example. Explicit feedback is neglected by

MD. However, explicit feedback is also very important on social networks.

For example, ratings are multivariant in real-world datasets, e.g., a user

can give a rating to an item from 1 to 5, which can be regarded as explicit

feedback. Furthermore, MD only considers the degree of each user when

the resource flows back to items in step 2. In some previous studies (Zhang

et al., 2007; Liu et al., 2011), the degree of each item plays a vital role in

the resource redistribution process, which can improve the diversity of

recommendations.

In next sections, we will improve mass diffusion model through a mixed

similarity diffusion strategy that integrates both implicit feedback and
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explicit feedback. Additionally, we will consider the degree of users and

items at the same time when the resource flows on the bipartite network.

3.2.2 Similarity Measurement Methods

The similarity measurement between users is a crucial part in evaluating

user preference. In recommender systems, we always assume a user will

accept suggestions or choices from other most similar users. Therefore,

how to measure the similarity between users obtains a lot of attention

recently. In the proposed method, we take advantage of two common

similarity measurement methods, i.e., cosine similarity and resource-

allocation (RA) index (Chen et al., 2017b), to integrate implicit feedback

and explicit feedback into the diffusion process.

The cosine similarity is a widely used approach in evaluating user

preference based on explicit feedback, e.g., ratings. Between user i and j,

the cosine similarity is defined as

(3.4) Cos(i, j)=
∑n

′
α=1 R iαR jα√∑n′

α=1 R2
iα

√∑n′
α=1 R2

jα

where R iα and R jα are rating scores on item α rated by user i and j; n
′
is

the number of co-rated items by both users. The value of cosine similarity

is located in [0,1], because the rating scores are greater than 0. The cosine

similarity measures the angle between two user vectors of ratings, where

a greater value of the cosine similarity indicates the closer relationship

between two users (Ahn, 2008).
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The RA index is a typical similarity measurement on bipartite net-

works. The usual configuration of initial resource on each node is binary,

i.e., 0 and 1, which resembles implicit examinations such as clicks, browses

and collections in real systems. Thus, evaluating the similarity between

two nodes via the RA index is to calculate the similarity with implicit

feedback in recommender systems. The similarity between two nodes i

and j can be defined as

(3.5) RA(i, j)=
n∑

α=1

a iαa jα

kα

where a iα and a jα are the elements in adjacent matrix A; kα is the degree

of node α.

If we assume the nodes i and j represent two users and the node α

represents an item, it becomes a part of step 1 in MD model. The resource-

allocation process then can be regarded as a one-step random walk on

the user-item bipartite network starting from their common neighbors.

So step 1 in MD model is equivalent to a similarity measurement process

between two users when the initial resource on items is one unit.

3.2.3 Mixed Similarity Diffusion for Recommendation

A mixed similarity diffusion model is proposed by integrating both explicit

feedback and implicit feedback. In MD, the resource is distributed based

on each node’s degree, which leads to non-personalized recommendations.

While step 1 in MD only considers implicit feedback, MSD involves explicit
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feedback together. Similarly, a two-step resource-allocation process for

MSD model is given below.

Step 1: We assume each item collected by the target user i is assigned

with one unit of initial resource. So, the amount of resource will be dis-

tributed to user j is defined as

(3.6) f
′
i j =

n∑
α=1

a iαa jαCos(i, j)∑m
k=1 akαCos(i,k)

fα

where Cos(i, j) and Cos(i,k) are the cosine similarity calculated by ex-

plicit feedback, e.g., ratings;
∑m

k=1 akαCos(i,k) means the sum of similarity

between the target user i and all users who have collected the item α,

which is a normalization. In this step, we integrate the cosine similarity

and RA index to propose a resource-allocation strategy based on mixed

similarity and two kinds of feedback are both used for calculating the

mixed similarity between users in the resource-allocation process.

Step 2: The resource allocated on users will flow back to items, in order

to finish the resource redistribution process. We intend to consider both

user’s degree and item’s degree to enhance the diversity of recommenda-

tions. A parameter λ is introduced into our model to control the impact of

user’s degree and item’s degree in this step. Assuming item β will receive

the resource from users, the final resource on item β can be defined as

(3.7) f
′
iβ =

m∑
j=1

a jβ

kλ
β
k1−λ

j

f
′
i j

where we substitute Eq. (3.6) into Eq. (3.7) to generate the final model of

our proposed method and project the resource-allocation process onto an
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item-item network, as

(3.8) f
′
iβ =

m∑
j=1

a jβ

kλ
β
k1−λ

j

n∑
α=1

a iαa jαCos(i, j)∑m
k=1 akαCos(i,k)

fα

Finally, all items are sorted by their final resource and then a top-

L recommendation list of uncollected items is generated for the target

user i. The pseudo-code of mixed similarity diffusion method is shown in

Algorithm 3.1.

Algorithm 3.1 The algorithm of the MSD method.
Require: An adjacent matrix Am×n, a cosine similarity matrix Cosm×m

and a parameter λ

Ensure: A recommendation list for the target user i, which is generated
by descending order of the final resource on uncollected items in V

1: Initialization of a final resource vector V1×n for the target user i
2: for β= 1,2, . . . ,n do
3: Set f

′
iβ = 0

4: for j = 1,2, . . . ,m do
5: Set f

′
i j = 0

6: for α= 1,2, . . . ,n do
7: Calculate f

′
i j = f

′
i j +

aiαa jαCos(i, j)∑m
k=1 akαCos(i,k) fα

8: end for
9: Calculate f

′
iβ = f

′
iβ+

a jβ

kλ
β

k1−λ
j

f
′
i j

10: end for
11: Set V (β)= f

′
iβ

12: end for

3.3 Data and Metrics

This section describes the details of three benchmark datasets at first,

and then a series of evaluation metrics are presented.
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Table 3.1: Statistics of datasets.

Dataset #User #Item #Rating Sparsity

ML100K 943 1682 100,000 6.30×10−2

ML1M 6040 3706 1,000,209 4.47×10−2

MLlatest 671 4801 94,537 2.93×10−2

3.3.1 Data Description

We use three different versions of MovieLens datasets in our experiments

including ML100K, ML1M and MLlatest to evaluate our proposed method

in different circumstances. MovieLens datasets are public and real-world

datasets crawled from movie review websites, which are widely used

for evaluating the performance of algorithms in recommender systems.

The ML100K consists of 943 users, 1682 items and 100,000 observed

ratings, while the ML1M has 1,000,209 ratings of 6040 users and 3706

items. In addition, we extract 94,537 ratings of 4801 items which are at

least collected by three users from the MovieLens latest dataset (MLlatest)

published on September, 2016. The range of ratings in MovieLens datasets

is [1,5]. Statistics of these three datasets are illustrated in Table 3.1.

Following some previous studies (Zhou et al., 2007; Wang et al., 2016c),

we convert ratings to binary links to build a bipartite network where we

assign 1 as ‘relevant’ for the ratings above 3 and 0 as ‘non-relevant’ for

the remaining ratings. Note that the cosine similarity between users is

calculated by the original ratings of all datasets, because it evaluates

user’s preference by explicit feedback.
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A five-fold cross-validation is utilized in our experiments. We randomly

divide each dataset into five folds and four are regarded as the training

set, with the remaining fold treated as the testing set. Five iterations are

arranged to make sure that all folds are tested.

3.3.2 Evaluation Metrics

To present a comprehensive evaluation of the recommendation perfor-

mance, we take advantage of some widely used evaluation metrics to

measure the accuracy and diversity of our proposed method. The following

metrics are used to measure the accuracy of recommendations.

Precision (Pre@L) is an important evaluation metric for ranking

prediction in recommender systems, which measures the fraction of top-L

recommended items that are consumed by the target user. Mathematically,

the average value of Pre@L for all users is defined as

(3.9) Pre@L = 1
m

( m∑
i=1

D i(L)
L

)
where D i(L) is the number of recommended items consumed by user i in

test set when the length of the recommendation list is L.

Recall (Rec@L) is another crucial metric in recommender systems,

which calculates the proportion of correct recommended items and the

number of total items in the test set for the target user. The average value

of Rec@L for all users is defined as

(3.10) Rec@L = 1
m

( m∑
i=1

D i(L)
Ti(L)

)
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where Ti(L) is the number of items collected in the test set.

Rank-Biased Precision (RBP@L) (Moffat and Zobel, 2008) assumes

each user has a fixed probability p to scan next recommended item from

the first place in a recommendation list, defined as

(3.11) RBP@L = 1
m

( m∑
i=1

(1− p)
L∑

α=1
c iαpα−1

)
where c iα = 1 means that the αth item in the recommendation list L is

collected by user i in test set and c iα = 0 is the opposite. RBP@L is a sig-

nificant ranking-based measurement that is very needful, because users

always accept the recommended items at the top of a recommendation

list and RBP@L is very close to an individual’s actual habits of collecting

items. Here, we assume the probability p is 0.5.

Mean Reciprocal Rank (MRR) directly utilizes the reciprocal of the

item’s position in a recommendation list to measure the performance of

recommendation algorithms, defined as

(3.12) MRR = 1
m

( m∑
i=1

∑
α∈S(i)

1
ranki

α

)
where S(i) is the items collected by user i in test set and ranki

α is the

position of item i in the recommendation list for user i. Be similar to

RBP@L, MRR is also a ranking-based measurement that supposes the

item consumed by the target user in test set placed at the top of the

recommendation list obtains a grater score in the evaluation than the

item at the bottom. Therefore, a larger value of MRR means a better

performance.
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The diversity also plays an important role in recommender systems,

which indicates the ability of pushing out unpopular items for users. A

metric used to measure the diversity of recommendations is represented

as follows.

Hamming Distance (Ham@L) is a common method to evaluate the

diversity of recommendations. The definition of Ham@L for all users is

(3.13) Ham@L = 1
m(m−1)

∑
i ̸= j

(
1− Q i j(L)

L

)
where Q i j(L) is the number of overlapped items in the recommendation

lists for user i and user j. The larger value of Ham@L means the higher

diversity.

3.4 Experiments

This section introduces the baselines that will be used for comparing with

our method, the impact of parameter λ , and the results of the comparative

experiments.

3.4.1 Baselines

We intend to compare the performance of our proposed method with some

classic baselines to verify the superiority.

PopRank is a basic recommendation algorithm with implicit feedback,

which provides a recommendation list based on items’ popularity. The most
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popular item will be arranged at the top. In our experiments, we regard

the degree of each item as its popularity. The item with larger degree

means it has already collected by more users, i.e., grater popularity.

UserCF is a classic collaborative filtering method based on the cosine

similarity between users. This method assumes the target user will accept

the opinions from the most similar users.

MD (Zhou et al., 2007) is a pioneer of diffusion-based recommendation

algorithms, which uses a resource-allocation process to make recommen-

dations on bipartite networks.

HC (Zhang et al., 2007) employs the heat conduction process of phys-

ical dynamics on recommendation tasks. This model is good at pushing

out small-degree items, so the results have a high diversity in general.

CosRA (Chen et al., 2017b) is a vertex similarity index on bipartite

networks. The recommendation algorithm based on CosRA index is named

CosRA-based method that can be regarded as a special situation of hybrid

diffusion (Zhou et al., 2010b).

SPMD (Zeng et al., 2014) is an improvement on mass diffusion model.

It introduces similarity-preferential diffusion into the recommendation

process, which can enhance or suppress the weight of users who are most

similar to the target user.

BHC (Liu et al., 2011) is an improvement on heat conduction model.

Because heat conduction model sacrifices the accuracy of recommenda-

tions to push out small-degree items, BHC proposes a biased resource
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distribution strategy to enhance the precision of recommendations.

3.4.2 The Impact of Parameter λ

In the mixed similarity diffusion model, the parameter λ controls the

impact of user’s degree and item’s degree in the second step of the resource-

allocation process. To determine the optimal value of λ in our method,

we adjust the parameter on all three datasets. The precision and recall

can comprehensively reflect the accuracy, so we use these two metrics to

determine the optimal value of λ for MSD when the recommendation list

is L = 10.

Figure 3.2 reports the results of Pre@10 and Rec@10 for our proposed

method when the parameter λ changes from 0 to 1 at a calculative step

of 0.05. Figure 3.2(a), (b) and (c) represent the variation of Pre@10 and

Figure 3.2: The Pre@10 and Rec@10 of MSD when changing the parameter
λ between 0 and 1 at a calculative step of 0.05 in ML100K, ML1M and
MLlatest datasets are represented. (a) The optimal value is λ= 0.55 in
ML100K. (b) The optimal value is λ= 0.6 in ML1M. (c) The optimal value
is λ= 0.5 in MLlatest.
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Rec@10 in ML100K, ML1M and MLlatest datasets, respectively. It can

be seen from Figure 3.2, the optimal value of the parameter λ is 0.55,

0.6 and 0.5 for ML100K, ML1M and MLlatest, respectively. Even though

the sparsity of these three datasets is totally different, the observation

that the optimal λ locates around 0.55 might support the inference that

our proposed model has certain practical value. Generally, if λ = 0, our

model becomes a simple one that only combines MD model with the cosine

similarity with explicit feedback. According to the experiment results,

with the increasing value of parameter λ, the degree of items provides

more impact on the final recommendations and improve the accuracy.

3.4.3 Recommendation Performance Evaluation

Here, we use three real-world rating datasets to evaluate our proposed

method that is compared with seven baselines. The whole experiment

results are presented in Table 3.2 and the optimal parameters of every

algorithm in different datasets are also included in this table for result

reproducibility.

In ML100K, MSD obtains the best results in all metrics of accuracy,

i.e., Precision, Recall and Rank-Biased Precision, when the length of the

recommendation list is 5 and 10. Compared to SPMD, Pre@5, Rec@5,

RBP@5 and MRR can be improved 4.8%, 6.5%, 6.6% and 5.2% by MSD,

respectively. The results of MSD and BHC are same on Ham@5, however,

MSD gets a better result on Ham@10. In ML1M, all the best results on
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Table 3.2: Recommendation performance of MSD and seven baselines in the ML100K, ML1M and MLlatest
datasets.

ML100K Pre@5 Pre@10 Rec@5 Rec@10 RBP@5 RBP@10 MRR Ham@5 Ham@10

PopRank 0.1639 0.1560 0.0567 0.1106 0.2014 0.2061 0.7664 0.5126 0.4601
UserCF 0.2698 0.2261 0.1086 0.1743 0.3101 0.3161 1.0607 0.7319 0.6769
MD 0.2781 0.2387 0.1167 0.1932 0.3210 0.3275 1.1114 0.7534 0.7150
HC 0.0025 0.0036 0.0013 0.0032 0.0015 0.0016 0.1702 0.8852 0.8686
CosRA 0.3139 0.2644 0.1267 0.2059 0.3563 0.3634 1.2229 0.8378 0.8082
SPMD (θ = 2.25) 0.3222 0.2693 0.1316 0.2077 0.3601 0.3670 1.2317 0.8608 0.8434
BHC (λ= 0.75) 0.3194 0.2704 0.1223 0.2058 0.3565 0.3636 1.2380 0.9109 0.8774
MSD (λ= 0.55) 0.3376 0.2863 0.1401 0.2247 0.3840 0.3912 1.2956 0.9109 0.8849

ML1M Pre@5 Pre@10 Rec@5 Rec@10 RBP@5 RBP@10 MRR Ham@5 Ham@10

PopRank 0.1939 0.1681 0.0444 0.0736 0.2091 0.2135 0.8160 0.5128 0.4729
UserCF 0.2448 0.2032 0.0612 0.0970 0.2740 0.2792 0.9927 0.6326 0.5670
MD 0.2656 0.2164 0.0690 0.1070 0.2988 0.3042 1.0688 0.6926 0.6103
HC 0.0007 0.0026 0.0003 0.0020 0.0004 0.0005 0.2248 0.8812 0.8470
CosRA 0.3063 0.2507 0.0856 0.1330 0.3524 0.3586 1.2262 0.7965 0.7197
SPMD (θ = 3.05) 0.3175 0.2626 0.0847 0.1331 0.3560 0.3626 1.2547 0.8670 0.8166
BHC (λ= 0.85) 0.3334 0.2885 0.0849 0.1458 0.3486 0.3566 1.3089 0.9315 0.9011
MSD (λ= 0.6) 0.3674 0.3066 0.1040 0.1614 0.4072 0.4152 1.4234 0.9440 0.9126

MLlastest Pre@5 Pre@10 Rec@5 Rec@10 RBP@5 RBP@10 MRR Ham@5 Ham@10

PopRank 0.1939 0.1681 0.0444 0.0736 0.2091 0.2135 0.8160 0.5128 0.4729
UserCF 0.2448 0.2032 0.0612 0.0970 0.2740 0.2792 0.9927 0.6326 0.5670
MD 0.2656 0.2164 0.0690 0.1070 0.2988 0.3042 1.0688 0.6926 0.6103
HC 0.0007 0.0026 0.0003 0.0020 0.0004 0.0005 0.2248 0.8812 0.8470
CosRA 0.3063 0.2507 0.0856 0.1330 0.3524 0.3586 1.2262 0.7965 0.7197
SPMD (θ = 3.05) 0.3175 0.2626 0.0847 0.1331 0.3560 0.3626 1.2547 0.8670 0.8166
BHC (λ= 0.85) 0.3334 0.2885 0.0849 0.1458 0.3486 0.3566 1.3089 0.9315 0.9011
MSD (λ= 0.6) 0.3674 0.3066 0.1040 0.1614 0.4072 0.4152 1.4234 0.9440 0.9126
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Figure 3.3: The Precision-Recall curves in the ML100K, ML1M and ML-
latest datasets are represented in diagrams (a), (b) and (c), respectively,
where the length of recommendations is from 5 to 50 at a calculative step
of 5. Because of the poor performance of PopRank and HC in these two
metrics, we do not show their results in this figure.

the accuracy and the diversity are achieved by MSD that enhances Pre@5,

Rec@5, RBP@5 and MRR by 10.2%, 22.5%, 16.8% and 8.7% than BHC.

MSD also brings an 1.3% improvement on Ham@5 than BHC which gets

the best on diversity in seven baselines. Furthermore, MSD achieves the

best results on most of metrics in MLlatest dataset.

Figure 3.3 depicts the Precision-Recall curves on three datasets with

the length of the recommendation list from 5 to 50 at a calculative step of 5.

In Figure 3.3(a) and (c), MSD always has the best results. In Figure 3.3(b),

MSD gets the best performance when the recommendation list is short.

As the length increases, BHC gradually obtains better performance than

MSD. However, a user always pay more attention to the items at the top of

a recommendation list, so top-10 recommendations are the most important

in evaluating recommender systems, which means the algorithm with the

best performance in the short recommendation list is more meaningful
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Figure 3.4: The Rank-Biased Precision (p = 0.5) of MSD and five baselines
in the ML100K, ML1M and MLlatest datasets are represented in dia-
grams (a), (b) and (c), respectively, where the length of recommendations
is from 1 to 20. Because of the poor performance of PopRank and HC in
this metric, we do not show their results in this figure.

Figure 3.5: The Hamming Distance of MSD and six baselines in the
ML100K, ML1M and MLlatest datasets are represented in diagrams (a),
(b) and (c), respectively, where the length of recommendations is from 5 to
55 at a calculative step of 5. Because of the poor performance of PopRank
in this metric, we do not show its results in this figure.

for practical applications. The results of Rank-Biased Precision are shown

in Figure 3.4, MSD always keeps the best results in three benchmark

datasets.

The accuracy-diversity dilemma is ubiquitous in recommender systems

(Zhou et al., 2010b). A popular item should be accepted by most users, so
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recommending a list of popular items to a user in accordance with his/her

preference may enhance the accuracy but reduce the diversity. Figure 3.5

indicates the results of Hamming Distance. HC focuses on pushing out

small-degree items which lead to a high diversity with the increasing

of the recommendation list. However, considering the poor performance

of HC on the accuracy, it is hard to apply HC in real-world systems.

When the recommendation list is short, MSD surpasses HC and proposes

recommendations with higher diversity. Therefore, our proposed method

improves the accuracy and the diversity at the same time, which means

it relieves this dilemma to some extent and makes an accuracy-diversity

balance in recommender systems.

3.5 Summary

This chapter proposes a mixed similarity diffusion model to improve the

performance of recommendation, which integrates the similarity from both

explicit feedback and implicit feedback. We calculate the cosine similarity

with explicit feedback data and the resource-allocation index with implicit

feedback data, and combine these two kinds of similarity into diffusion

processes. Experiments on three real-world datasets demonstrate our

method performs better than most baselines. Specifically, MSD brings

some significant improvements compared to BHC, SPMD and CosRA

which are the state-of-the-art diffusion-based recommendation algorithms.
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MSD also proposes recommendations with higher diversity than HC when

the recommendation list is short. Therefore, MSD achieves an accuracy-

diversity balance, which enhances the accuracy and the diversity at the

same time.
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DIFFUSION-BASED RECOMMENDATION WITH

TRUST RELATIONS ON TRIPARTITE NETWORKS

4.1 Introduction

A number of advanced recommendation algorithms have been proposed

by researchers both in physics (Zhou et al., 2010b; Zhang et al., 2007) and

computer science (Sarwar et al., 2001). Particularly, physical dynamics,

which is employed in complex networks by diffusion-based methods and

can make personalized recommendations, have attracted great attention

from many researchers (Zhu et al., 2014; Yu et al., 2016). Mass diffusion

(MD) (Zhou et al., 2007) and heat conduction (HC) (Zhang et al., 2007)

can be regarded as the pioneers of diffusion-based recommendation ap-

proaches. They distribute the resource of each node through a two-step

58



CHAPTER 4. DIFFUSION-BASED RECOMMENDATION WITH TRUST
RELATIONS ON TRIPARTITE NETWORKS

resource-allocation process on bipartite networks in different ways. Subse-

quently, several closely related methods were proposed, such as changing

resource-allocation process between nodes to enhance accuracy (Liu et al.,

2011) and altering the initial resource distribution of nodes on networks

to improve recommendation performance (Jia et al., 2008).

With the development of social networks, it is necessary to consider

both users’ own behaviors and trust relations between users when model-

ing user preference (Dong et al., 2022). Because users can be affected by

others and may change their opinions and behaviors when communicating

with trusted users on social networks, such as friends. However, due to

the limitations of bipartite networks, there is a lack of diffusion-based rec-

ommendation methods integrated with trust relations on social networks.

Some previous research results demonstrate that social information can

bring significant improvements to recommendations and a vital additional

feature for ratings in recommender systems.

In this chapter, a Diffusion-Based Recommendation method with Trust

relations (DBRT) on tripartite networks is proposed to integrate users’ so-

cial trust into a recommendation process. The tripartite network has been

verified as an effective way to combine extra features into the diffusion-

based recommendation approach and has already been applied in collabo-

rative tagging systems (Shang et al., 2010; Zhang et al., 2010). However,

they only apply the original MD algorithm on two different bipartite net-

works firstly, and then combine the final resource on tripartite networks.

59



CHAPTER 4. DIFFUSION-BASED RECOMMENDATION WITH TRUST
RELATIONS ON TRIPARTITE NETWORKS

Compared to existing algorithms on tripartite networks, DBRT provides a

consistent and synergetic two-step resource-allocation process that com-

bines the resource from a user-object network and a user trust network in

the first step and lets the resource flow back to objects in the second step.

Moreover, users’ social trust relations, such as implicit and explicit trust,

are introduced into the diffusion-based recommendation approach in our

method. Extensive experiments on three real-world datasets indicate that

DBRT obtains remarkable improvements over most of the benchmark

approaches. The main contributions of this chapter are summarized as

follows.

1) A novel diffusion-based recommendation method, named DBRT, is

proposed to extend resource-allocation processes from bipartite networks

to tripartite networks. DBRT simulates a trust diffusion process through a

user-user trust network to introduce explicit trust relations into resource-

allocation processes.

2) Implicit trust on social networks are explored during resource-

allocation processes. DBRT uses cosine index between nodes to implement

the similarity calculation of users and assumes users may trust another

users who has high similarities. Then, a special resource-allocation process

has been designed, which combines both explicit and implicit trust to

model user preference exacter.

3) Extensive experiments have been conducted to evaluate the effec-

tiveness of DBRT. In the experiments, we compare the proposed method
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with several state-of-the-art recommendation methods and analyze the

impacts of parameters in DBRT. Results show that considering trust rela-

tions can improve the accuracy and diversity of recommendation results.

4.2 The Proposed Method

In a recommender system, user-object relations can be described on a

bipartite network G(U ,O,E). The user set is defined as U = {u1,u2, . . . ,um}

and the object set is defined as O = {o1, o2, . . . , on}, where m and n are the

numbers of users and objects. The link set between users and objects is

defined as E = {e1, e2, . . . , ez} and z is the amount of links. We can use an

m×n adjacent matrix A to describe the bipartite network G(U ,O,E). To

make it easy to understand, we use Greek and Latin letters to express

object-related and user-related indices respectively. Accordingly, the el-

ement in the adjacent matrix is represented as a iα = 1 if there is a link

between node oα and node ui, which means object α is collected by user i,

and a iα = 0 otherwise. The degree of the object α and user i are defined

as kα and k i, which represents the number of users who collect object α

and the number of objects collected by user i, respectively. The primary

purpose of a recommender system is to provide a recommendation list

for a target user. That is to say, a set of objects uncollected by the target

user with the highest recommendation scores should be included in the

recommendation list. The length of the recommendation list is defined as
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L in this chapter.

Before introducing our method, we classify social trust relations in

recommender systems into two categories, which are explicit trust and

implicit trust. The explicit trust means that trust statements are directly

specified by users. For instance, users can add other users to their trust

lists or establish friendships with other users on social websites, such

as Ciao, Epinions and Facebook, so explicit trust relations can be found

between friends. By contrast, the implicit trust is the relationship that

cannot be directly observed in social trust networks (Guo et al., 2016a). It

is often inferred by other information, such as user similarities in ratings.

If two users have a high similarity, we can assume they have implicit

trust. In this section, we propose a novel diffusion-based recommendation

method integrated with both categories of social trust relations. Additional

details about the proposed method are discussed in the following sections.

4.2.1 Implicit Trust between Users

Considering a situation that two users have a lot of related behaviors,

such as purchasing the same things or giving similar ratings to movies.

However, their trust relation cannot be observed in their trust or friend

lists. According to their similar user behaviors, we assume that implicit

trust exists between these two users, which means they may share and

adopt each other’s choices and preference. We use the similarity between

users to calculate the implicit trust in the proposed method. The cosine
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index is a widely used similarity evaluation approach on bipartite net-

works, and it has already proved effectual for measuring the similarity

between objects (Chen et al., 2017b). As a matter of fact, the cosine index

calculates an inner product space of two object vectors. For two objects α

and β, the cosine index is defined as

(4.1) coso
αβ =

1√
kαkβ

m∑
i=1

a iαa iβ

where kα and kβ are the degree of objects α and β, a iα and a iβ are the

elements in the adjacent matrix which indicate the links between user

i and these two objects α and β. Using Eq. (4.1) the similarity can be

measured by the cosine index if the two objects are collected by the same

user at least once, otherwise the similarity will be 0.

We suggest using the analogous method to calculate the similarity

between users. User rating behaviors can also be expressed as user vectors,

e.g., if a user collects an object, the corresponding element in the user

vector is 1; otherwise it is 0. An inner product space of two user vectors

measures the similarity between these two users, which is defined as

(4.2) cosu
i j =

1√
k ik j

n∑
α=1

a iαa jα

where k i is the degree of user i and k j is the degree of user j, respectively.

We suppose that an implicit trust relation between two users exists if

there is a similarity between them. The values of similarity indicate the

level of implicit trust. For example, if two users collect many common

objects, they will have a large inner product that is equivalent to a large
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value of similarity between these users, which demonstrates a high level

of implicit trust between them. Although the explicit trust of these two

users is not observed on trust networks, they could share each other’s

preference and opinions as well. The implicit trust is a significant feature

in recommender systems, and introducing it into the diffusion-based

recommendation method can make resource-allocation processes be more

reasonable and effective.

4.2.2 Resource-allocation on Explicit Trust Networks

Explicit trust means that the trust relations between users are observed.

In social networks, explicit trust can be divided into two categories: sym-

metric trust and asymmetric trust. Specifically, asymmetric trust is a

more common situation and symmetric trust can be represented by two

asymmetric trust links. Trust relations on Twitter are a typical example of

asymmetric trust that a user could be a follower for other users on Twitter,

but the other users may not be followers of the user as well, which means

the trust relations are asymmetric.

We propose a resource-allocation process on trust networks where

explicit trust relations are observed. The main idea is a user can obtain

resource from followers on asymmetric trust networks. The explicit trust

network can be defined as a monopartite graph represented on an m×
m adjacent matrix B, where the element b i j = 1 if the explicit trust is

observed on the trust network, otherwise b i j = 0. We only make a one-
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step resource-allocation process so that users obtain resource from their

trusting users, e.g., followers. This is different to the original MD method

(Zhou et al., 2007) because we cannot ensure that the trusted user is also

a trusting user simultaneously in asymmetric trust networks, so we do not

let the resource flow back. The resource-allocation process on the explicit

trust network is defined as

(4.3) f t
j =

m∑
l=1

b jl

kt
l

f t(l)

where f t
j means the resource obtained by user j on the explicit trust net-

work, b jl is the element in the adjacent matrix and kt
l is the degree of user

l on the explicit trust network. Note that f t(l) is the initial resource of

user l on the explicit trust network and it is one unit of resource for conve-

nient calculation (Shang et al., 2010). The explicit trust is regarded as an

auxiliary feature that helps the implicit trust improve the performance of

the diffusion-based recommendation approach.

4.2.3 Recommendation with Integrated Social Trust

Relations

This section will propose a diffusion-based recommendation method to

integrate the implicit trust and explicit trust. One previous study (Chen

et al., 2017b) indicates CosRA-based method applies CosRA index between

objects to make better recommendations, which is a two-step resource

distribution process on a user-object bipartite network. In each step, the
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CosRA-based method distributes resource based on the degree of both each

object and its neighbouring users at the same time, shown in Eq. (4.4),

(4.4) f
′(i) = SCosRA f (i)

where SCosRA = 1p
kαkβ

∑m
j=1

a jαa jβ
k j

is CosRA index to measure the similarity

between objects α and β. f (i) is a n-dimensional vector indicating the

initial resource of all objects given the target user i and f
′(i) is the vector

recording all the final resource of each object. However, the CosRA-based

method only considers the similarity between objects without the implicit

trust between users in its recommendation process. To solve this weakness,

we distribute resource based on not only each object’s degree but also the

implicit trust between the target user and the neighbouring users of

each object. Our method is described as a two-step resource distribution

process.

Step 1: We assume the objects collected by the target user i are as-

signed with one unit of resource which will be distributed to all the

neighbouring users. The resource of user j obtained from objects can be

written as

(4.5) f
′
i j =

n∑
α=1

a iαa jα√
kα

√
k ik j

f (α)

where kα is the degree of object α, k i is the degree of the target user i

and k j is the degree of user j who obtains resource from the neighbouring

objects. f (α) is the initial resource of object α, which is one unit of resource.
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It can be seen from Eq. (4.5), the cosine index between is used to evaluate

the implicit trust between users. Furthermore, the explicit trust also needs

to be utilized in our method to improve the recommendation performance.

As mentioned in Section 4.2.2, we consider to employ a one-step resource-

allocation process to represent the effect of explicit trust. So, the user j not

only gets resource from the user-object network but also obtains resource

from the explicit trust network simultaneously. We adopt a simply way

to linearly combine the resource from the explicit trust network with the

resource from objects, defined as

f
′
i j =λ∗ f t

i j + (1−λ)∗
n∑

α=1

a iαa jα√
kα

√
k ik j

f (α)

=λ∗
m∑

l=1

b ilb jl

kt
l

f t(l)+ (1−λ)∗
n∑

α=1

a iαa jα√
kα

√
k ik j

f (α)(4.6)

where f t
i j =

∑m
l=1

bil b jl

kt
l

f t(l) is extended from f t
j in Eq. (4.3), because the

target user i is considered in the recommendation process. The parameter

λ ∈ [0,1] is a tunable parameter to control the proportion of resource from

objects and followers.

Step 2: The resource of users should flow back to objects. Assuming

object β will obtain the resource from users, the final resource of object β

can be calculated as

(4.7) f
′
iβ =

m∑
j=1

a jβ√
kβ

√
k ik j

f
′
i j

where kβ is the degree of object β and f
′
i j is the resource of user j after the

step 1. We substitute Eq. (4.6) into Eq. (4.7) to generate the final model of
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Figure 4.1: An illustration of the diffusion-based recommendation method with trust relations
(DBRT). Users and objects are represented by circles and squares, respectively. In each plot,
the links between circles and squares on the left side are user-object relations, and the links
between circles on the right side are explicit trust relations. The black circle means the target
user. The circles and squares with grey color indicate the resource is distributed on these
nodes. Plot (a) is the initial configuration, objects and followers linked with the target user
obtain one unit of resource. Plot (b) indicates the step 1, in which the resource of objects and
followers linked with the target user flows to users on tripartite networks, the resource of
each user can be calculated by Eq. (4.6). Plot (c) is the step 2, in which the users distribute
resource to all the objects linked with them, the final resource of each object can be calculated
by Eq. (4.7). λ= 0.5 is used as an example.
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the proposed method, as presented in Eq. (4.8). An example of our method

is shown in Figure 4.1.

(4.8) f
′
iβ =

m∑
j=1

a jβ√
kβ

√
k ik j

(
λ∗

m∑
l=1

b ilb jl

kt
l

f t(l)+ (1−λ)∗
n∑

α=1

a iαa jα√
kα

√
k ik j

f (α)
)

Finally, all objects are sorted by their final resource and then a top-L

recommendation list of uncollected objects is generated for the target user

i. The pseudo-code of DBRT is shown in Algorithm 4.1.

Algorithm 4.1 The algorithm of the DBRT method.
Require: An adjacent matrix Am×n, an explicit trust matrix Bm×m and a

parameter λ

Ensure: An objects’ resouce vector V1×n of target user ui

1: Initialization of a resource vector V1×n for the target user ui

2: for β= 1,2, . . . ,n do
3: Set f

′
iβ = 0

4: for j = 1,2, . . . ,m do
5: Set f

′
i j = 0

6: for α= 1,2, . . . ,n do
7: Calculate f

′
i j = f

′
i j +

aiαa jα√
kα

p
kik j

f (α)

8: end for
9: for l = 1,2, . . . ,m do

10: Calculate f
′
i j = f

′
i j +

bil b jl

kt
l

f t(l)
11: end for
12: Calculate f

′
iβ = f

′
iβ+

a jβ√
kβ

p
kik j

f
′
i j

13: end for
14: Set V (β)= f

′
iβ

15: end for

A simpler model is shown in Eq. (4.9), when λ= 0.

f
′
iβ =

m∑
j=1

a jβ√
kβ

√
k ik j

n∑
α=1

a iαa jα√
kα

√
k ik j

f (α)
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=
m∑

j=1

a jβ√
k ik j

n∑
α=1

a iαa jα√
kαkβ

f (α)(4.9)

Under this circumstance, our model only takes advantage of the implicit

trust to improves the recommendation performance.

Note that the resource from the explicit trust network is regarded as

additional resource for the resource from the user-object network. Each

user obtains the additional resource in step 1 and then transfers it to

linked objects in step 2. A user with large degree on the explicit trust

network is an influential user who can transfer more additional resource

to objects. Therefore, the objects collected by the influential user get more

final resource and these objects are more likely to be arranged at the top

of a recommendation list. As a result, the recommendation performance

will be improved, because the influential user’s choices have a higher

probability to be accepted by others.

4.3 Datasets and Metrics

In this section, details of the three benchmark datasets are described, and

then the evaluation methods used in this chapter are shown.

4.3.1 Data Description

The three benchmark datasets used in our experiments are Ciao, Epinions

and Flixster. These three datasets all contain social information that can

be used as trust relations in recommender systems (Guo et al., 2016a).
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Ciao, Epinions and Flixster are public, real-world datasets, and widely

used in the evaluation of previous trust-combined recommender systems.

When building bipartite networks, we convert ratings to binary links by

assigning 1 as ‘relevant’ for the ratings above 3 and 0 as ‘non-relevant’

for the remaining ratings. The Ciao dataset consists of 2960 users, 4394

objects and 77,861 observed rating links, while the Epinions dataset has

70,438 rating links from 5000 users and 3000 objects. In addition, the

Flixster dataset contains 6072 users, 5366 objects and 115,840 rating

links. There are also 56,998, 139,982 and 167,552 trust links in the Ciao,

Epinions and Flixster. Statistics of the datasets are illustrated in Table 4.1.

Table 4.1: Statistics of the Ciao, Epinions and Flixster datasets.

Dataset #User #Object #Rating link Sparsity #Trust link

Ciao 2960 4394 77,861 5.99×10−3 56,998
Epinions 5000 3000 70,438 4.70×10−3 139,982
Flixster 6072 5366 115,840 3.56×10−3 167,552

A five-fold cross-validation is used for evaluations in our experiments.

Specifically, we randomly divide each dataset into five folds. Four are

regarded as the training set, with the remaining fold treated as the testing

set. Five iterations are arranged to make sure that all folds are tested.

4.3.2 Metrics

To present a comprehensive evaluation of recommendation performance,

some widely investigated evaluation metrics are employed to measure the
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accuracy and diversity of our proposed method.

Precision (Chen et al., 2017b) is an important metric in recommender

systems that measures the proportion of the number of recommended

objects appearing in the test set to the length of a recommendation list.

Mathematically, the average value of precision for all users is defined as

(4.10) P(L)= 1
m

( m∑
i=1

D i(L)
L

)
where D i(L) is the number of objects appearing in both the recommenda-

tion list L and in the test set aimed at user i.

Recall (Zhou et al., 2010b) is also a crucial metric in recommender

systems, it measures the proportion of correct recommended objects and

the number of total objects in the test set, as

(4.11) R(L)= 1
m

( m∑
i=1

D i(L)
Ti(L)

)
where T(i) is the number of objects collected by user i in the test set.

F1 (Wang et al., 2016b) is used to provide a comprehensive assessment

of our method. It is a two-dimensional vector, which considers both preci-

sion and recall simultaneously and provides a balanced evaluation. The

F1 metric is defined as

(4.12) F1(L)= 2P(L)×R(L)
P(L)+R(L)

where P(L) and R(L) are precision and recall when the length of the

recommendation list is L.
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Rank-biased precision (RBP) (Moffat and Zobel, 2008) assumes

each user scans recommended objects from the first place in a recommen-

dation list and browses the next object with a fixed probability p, defined

as

(4.13) RBP(L)= 1
m

( m∑
i=1

(1− p)
L∑

α=1
c iαpα−1

)
where c iα = 1 means user i has already collected αth object in the recom-

mendation list and c iα = 0 is the opposite. Users always accept the recom-

mended objects at the top of a recommendation list so that evaluating the

performance of recommendation algorithms based on a recommendation

sequence is very necessary. RBP is very close to an individuals’ actual

habits of collecting objects, which is a more reasonable way to evaluate

the accuracy of recommendation methods.

Average reciprocal hit rank (ARHR) (Kabbur et al., 2013) is differ-

ent from RBP, as it directly uses the reciprocal of the object’s position in

a recommendation list without a hypothetical collection probability. The

rank of the objects in a recommendation list impacts the possibility that

they can be collected by users in the top-n recommender systems. ARHR

is defined as

(4.14) ARHR = 1
m

( m∑
i=1

∑
α∈hits

1
pos iα

)
where hits means the recommendations are correctly verified in the test

sets, accordingly, posiα is the position of object α in the recommendation
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list for user i. Note that the object at the bottom of the list should get a

low score in this metric, so a higher ARHR denotes better accuracy.

Hamming distance (Zhou et al., 2008) is a common way to measure

the diversity of recommendation algorithms, which can be defined as

(4.15) Hi j(L)= 1− Ci j(L)
L

where Ci j(L) means the common objects in the recommendation lists for

user i and user j. If two users have the same recommendation list, Hi j(L)

will be 0 and two completely different recommendation lists lead to Hi j = 1.

Finally, the average of Hi j over all the user pairs is denoted by the mean

distance in Eq. (4.16).

(4.16) H(L)= 1
m(m−1)

∑
i ̸= j

Hi j(L)

Novelty (Lü et al., 2012) is a metric to evaluate the algorithm’s ability

to generate unpopular results. In general, the average popularity of objects

in recommendation lists is used to represent the novelty, which is defined

as

(4.17) N(L)= 1
mL

( m∑
i=1

∑
oα∈oL

i

kα

)

where kα is the degree of object α in the recommendation list oL
i of user i.

To some extent, small-degree objects are regarded as unpopular objects.

Hence, a small novelty value means the algorithm is good at pushing

unpopular objects out.
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4.4 Experimental Results

An introduction of benchmark methods is proposed in Section 4.4.1. The

impact of the parameter in our method is then analyzed in Section 4.4.2.

Comparisons on the performance of accuracy, diversity and novelty be-

tween DBRT and eight benchmark approaches are shown in Section 4.4.3.

4.4.1 Benchmark Methods

Global ranking method (GRM) (Ricci et al., 2011): All the objects in the

dataset are sorted in the descending order based on their degree firstly.

Then, the objects with the largest degree that are not collected by the

target user are recommended. The number of proposed objects depends

on the length of recommendation list L.

User-based collaborative filtering (UCF) (Liu et al., 2009): For a

target user, collaborative filtering mainly focuses on recommending objects

from users who have the similar taste with the target user. Generally, the

target user prefers to accept the shared opinions of the most similar users.

UCF takes advantage of the cosine similarity to evaluate the preference

and taste of each user and then quantify which object the target user will

collect.

Mass diffusion (MD) (Zhou et al., 2007): MD is an alternative name

of network-based inference (NBI), and is a classical resource-allocation

process on user-object bipartite networks. In MD, users and objects dis-
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tribute their resources based on their own degree.

Similarity-preferential mass diffusion (SPMD) (Zeng et al., 2014):

SPMD improves mass diffusion by introducing a parameter that is used

to enhance or suppress the weight of users who are most similar to the

target user.

Heat conduction (HC) (Zhang et al., 2007): HC is another resource-

allocation process on bipartite networks. Actually, HC is a physical phe-

nomenon applied in recommender systems in which each node allocates

its resource in accordance with the degree of its adjacent nodes. Some pre-

vious studies has demonstrated that HC has an outstanding performance

in pushing small-degree objects out.

Biased heat conduction (BHC) (Liu et al., 2011): BHC is an im-

provement of the HC method. It considers the degree effects in the last

step of the local heat conduction process, which can greatly enhance the

accuracy of the standard HC algorithm.

CosRA-based method (CosRA) (Chen et al., 2017b): Both cosine

index and resource-allocation index are integrated into the CosRA-based

method, which avoids a strong bias on the degree of objects.

Diffusion-based similarity (DBS) (Shang et al., 2010): DBS com-

bines a user-object network and a user-tag network into tripartite net-

works, which brings tag information of users to the recommendation

process. In DBS, the original NBI process is applied independently in the

user-object network and the user-tag network firstly, and then the final
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resource of users on these two networks are combined linearly.

4.4.2 The Impact of Parameter λ

Our method uses the parameter λ to integrate the resource from objects

and the explicit trust network linearly. To determine the optimal value

of λ in our method, we adjust the parameter in experiments on different

datasets. The F1 metric provides a comprehensive evaluation of precision

and recall, which indicates the accuracy of a recommendation algorithm.

Hence, using the F1 metric is a fair way to determine the optimal λ for

DBRT.

Figure 4.2: The F1 results of DBRT changing the parameter of λ between 0
and 1 at calculation step 0.05 in three datasets when the recommendation
list is 10. (a) The optimal value is λ = 0.15 in the Ciao dataset. (b) The
optimal value is λ= 0.2 in the Epinions dataset. (c) The optimal value is
λ= 0.2 in the Flixster dataset.

Figure 4.2 reports the results of the F1 metric for our method when the

parameter λ is changed from 0 to 1 at calculation step of 0.05. The results

of the Ciao, Epinions and Flixster datasets are presented in Figure 4.2(a),

(b) and (c), respectively. Because users often pay more attention to the top
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objects in a recommendation list, the most effective length of a recommen-

dation list is L = 10 (Pan et al., 2016b). Therefore, the optimal value of λ

for the top-10 recommendation can be employed in DBRT. In Figure 2(b)

and (c), the optimal λ is 0.2 in the Epinions and Flixster datasets, and

λ= 0.15 is the optimal value in the Ciao dataset in Figure 4.2(a). Although

the sparsity of rating links and explicit trust links is totally different, the

parameter has an optimal value around 0.2, which means the parameter

is not sensitive to the number of users, items and trust links. If λ= 0, this

means that our method only uses the implicit trust calculated by rating

data to make recommendations on bipartite networks. As the value of

λ increases, the impact of explicit trust becomes larger. The optimal λ

in the three datasets indicates the explicit trust actually improves the

performance of DBRT. If λ is very large, it leads to a biased evaluation,

because the user-object network is the main domain in assessing user

preference, and the explicit trust network is regarded as auxiliary data

used to improve recommendations. The parameter λ is tested in three

4.4.3 Performance of Recommendations

We use three real-world online rating datasets with trust relations to

evaluate our method. In the Ciao dataset, there are fewer trust links

than rating links. By contrast, the trust links are more plentiful in the

Epinions and Flixster. These different kinds of datasets reflect various

social conditions of users that can verify our method in different situations.
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Table 4.2: Results of the seven evaluation metrics after applying our method and the eight benchmark
methods on the Ciao, Epinions and Flixster datasets. The length of the recommendation list is L = 50.

Ciao P(50) R(50) F1(50) RBP(50) ARHR H(50) N(50)

GRM 0.0157 0.1525 0.0285 0.0526 0.1530 0.0926 167
UCF 0.0220 0.2139 0.0399 0.0753 0.2154 0.5396 138
MD 0.0228 0.2161 0.0412 0.0778 0.2227 0.6827 120
SPMD 0.0228 0.2171 0.0413 0.0782 0.2231 0.6926 119
HC 0.0067 0.0556 0.0119 0.0078 0.0318 0.9467 8
BHC 0.0233 0.2200 0.0421 0.0825 0.2343 0.7792 84
CosRA 0.0243 0.2219 0.0437 0.0817 0.2358 0.8786 74
DBS 0.0229 0.2187 0.0415 0.0778 0.2233 0.6523 125
DBRT 0.0252 0.2346 0.0455 0.0874 0.2501 0.8419 82

Epinions P(50) R(50) F1(50) RBP(50) ARHR H(50) N(50)

GRM 0.0081 0.1162 0.0151 0.0226 0.0670 0.0505 152
UCF 0.0136 0.1863 0.0254 0.0358 0.1113 0.6868 112
MD 0.0144 0.1897 0.0268 0.0361 0.1141 0.8070 83
SPMD 0.0145 0.1901 0.0269 0.0365 0.1145 0.8170 80
HC 0.0051 0.0649 0.0095 0.0058 0.0251 0.9235 10
BHC 0.0149 0.1921 0.0277 0.0408 0.1256 0.8431 73
CosRA 0.0151 0.1839 0.0279 0.0388 0.1211 0.9039 51
DBS 0.0144 0.1923 0.0269 0.0366 0.1153 0.7739 100
DBRT 0.0163 0.2088 0.0302 0.0503 0.1471 0.8703 64

Flixster P(50) R(50) F1(50) RBP(50) ARHR H(50) N(50)

GRM 0.0076 0.0837 0.0139 0.0190 0.0588 0.0477 174
UCF 0.0138 0.1544 0.0253 0.0353 0.1098 0.6912 129
MD 0.0148 0.1581 0.0271 0.0353 0.1134 0.8302 95
SPMD 0.0150 0.1587 0.0274 0.0355 0.1138 0.8240 96
HC 0.0048 0.0501 0.0087 0.0058 0.0242 0.9511 8
BHC 0.0153 0.1587 0.0279 0.0408 0.1264 0.8901 75
CosRA 0.0154 0.1537 0.0280 0.0339 0.1128 0.9408 50
DBS 0.0148 0.1600 0.0271 0.0353 0.1137 0.8019 109
DBRT 0.0169 0.1800 0.0309 0.0474 0.1441 0.9001 71
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We compare our method with eight benchmark methods using the optimal

value of parameter for SPMD, BHC and DBS on all three datasets.

The typical results of all methods on the Ciao, Epinions and Flixster

datasets using a recommendation list L = 50 are presented in Table 4.2. Ac-

curacy is indicated by precision, recall, F1, RBP and ARHR and the higher

value in these five metrics, the better the performance. DBRT achieves

the highest value for all accuracy metrics across all datasets. Specifically,

compared to the DBS method, which is similar to our method and also

takes advantage of the additional user’s related feature to improve rec-

ommendations on tripartite networks. Our method enhances precision

by 10%, 13.2%, and 14.2% for Ciao, Epinions and Flixster, respectively,

when L = 50. This means our method provides a more reasonable and

effective way to integrate the additional feature into the diffusion-based

recommendation approach that increases the accuracy of recommenda-

tions. Moreover, compared to CosRA and BHC, our method also achieves

much better results on all the accuracy metrics.

Figure 4.3 reports the F1 of all nine algorithms with a recommendation

list ranging from 1 to 100. DBRT outperforms the comparison methods.

ARHR and RBP are two metrics used to assess algorithms based on an

object’s position in a recommendation list. The higher value in these

two metrics, the more likely the recommendation is to be collected by

users. RBP assumes users browse the next object from the first place

in a recommendation list with a fixed probability p = 0.5. The results
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Figure 4.3: The F1 of our method and the eight benchmark methods for
the Ciao, Epinions and Flixster are represented in the diagrams (a), (b)
and (c), respectively. The length of recommendation list is from 1 to 100.

Figure 4.4: The ARHR of our method and the eight benchmark methods
for the Ciao, Epinions and Flixster represented in the diagrams (a), (b)
and (c), respectively. The length of recommendation list is from 1 to 100.

demonstrate some significant improvements for RBP provided by our

method. Similar to RBP, ARHR is also a sequence-based metric, which

means the higher the value in this metric, the more rational and efficient

the rank of recommendations.

Figure 4.4 reports that DBRT has some remarkable advantages in

ARHR when the length of the recommendation list ranged from 1 to 100.

Note that although CosRA has a good performance in precision, its results
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are worse than BHC in RBP and ARHR, which means CosRA lacks the

ability to put the user preferred objects at the top of a recommendation

list. Conversely, our method simultaneously improves the performance of

precision, RBP and ARHR.

The diversity of recommendations is evaluated by the hamming dis-

tance, and novelty represents the ability to push out small-degree objects.

HC achieves the best performance in both diversity and novelty, which in-

dicates it focuses on recommending small-degree objects. The diversity of

DBRT is close to the CosRA method and shows overwhelming advantages

over the other benchmark methods. Particularly for the DBS method,

DBRT improves the hamming distance by 29.1%, 12.5% and 12.2% in

Ciao, Epinions and Flixster, respectively, when L = 50. This indicates

our method improves the way auxiliary features are combined into the

diffusion-based recommendation. When resource is diffused on tripartite

networks, the node that has a larger degree plays a more important role.

In our method, large-degree users can transfer more resource from the

explicit trust network to objects, which means the objects linked with the

large-degree users can obtain more final resource and will be placed at the

top of a recommendation list. Large-degree users’ choices have a greater

influence and are more likely to be accepted by other users (Liu et al.,

2011), so it is easy to understand why DBRT achieves better performance

in accuracy. Paying more attention to large-degree users and large-degree

objects will decrease the diversity and novelty, which explains why DBRT
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does not show better results over HC or CosRA in diversity and novelty.

4.5 Summary

In this chapter, users’ social trust relations are divided into two parts:

implicit trust relations and explicit trust relations, which have different

effects on improving recommendations. A novel combination approach

is proposed, called diffusion-based recommendation method with trust

relations (DBRT), that integrates trust information into the diffusion-

based recommendation on tripartite networks. Experiments on three real-

world datasets show our method performs better than most benchmark

methods. Specifically, DBRT provides many remarkable improvements

in terms of accuracy, diversity and novelty over the DBS, which also

uses tripartite networks to combine additional features to make better

recommendations. Large-degree objects and users play very important

roles in recommender systems. Large-degree objects are preferred by

many users, and users with larger degrees may have a greater influence

on user-object networks. Therefore, our method pays more attention to

large-degree users, which leads to outstanding improvements in accuracy.
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5
SOCIAL RECOMMENDATION WITH

EVOLUTIONARY OPINION DYNAMICS

5.1 Introduction

An enormous growth in the amount of data presents a significant challenge

in terms of finding useful information (Xuan et al., 2016). Recommender

systems (Lu et al., 2015) have attracted a lot of attention as a tool for

information filtering and have been used in many aspects of people’s life.

With the development of social networks, social recommendation which

is a branch of recommender systems becomes important and has widely

been applied in many social websites. Users in online social networks

often interact with others. They may observe the actions of other users,

and comment on these users. Therefore, they make connections with other
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users. The connections contain both physical links and virtual trust re-

lations (Wang et al., 2017e). Users’ social relations have been combined

with recommender systems (Eirinaki et al., 2014). Users who have connec-

tions with each other are assumed to have similar tastes. Current studies

consider that user ratings are not only determined by their own opinions,

but they are also influenced by the tastes of their friends (Wang et al.,

2016c). Therefore, opinions of neighbors are incorporated into the product

of latent vectors. In addition, social regularization is used to minimize the

difference between latent vectors of each user and neighbors (Ma et al.,

2011). The network of user relations has also been mapped into latent

factor spaces, which explicitly describes feedback on how users affect or

follow the opinions of others. Recommender systems often have a better

performance than traditional recommendation algorithms due to their

inclusion of social or trust information (Mao et al., 2017).

Indeed, when users in social networks make a decision on ratings or

reviews, opinions and behaviors about items will be directly or indirectly

affected by others (Lu et al., 2016; Ok et al., 2016; Hu et al., 2017). Current

studies often model the impact of friends by a linear combination of

others’ latent vectors (Guo et al., 2017b). The combination of vectors

may affect the ratings or social connections among users, including both

explicit and implicit influence. However, it is still unclear whether the

evolution of a user’s opinion follows the superposition of others when

it interacts with friends. The evolutionary pattern of opinions has been
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widely investigated in the research field of social physics and statistical

learning (Jiang et al., 2014a; Castro et al., 2017a; Jiang et al., 2014b).

In the Deffuant-Weisbuch (DW) opinion model (Deffuant et al., 2000),

when two users discuss a topic, their opinions change and become closer

to each other. In the model with continuous opinions and discrete actions

(Martins, 2008), users change their opinions under the Bayesian rule of

how likely their neighbors are to be correct, after they observe the external

actions (ratings or reviews) of their neighbors. This model promotes the

appearance of extreme opinions and forces opinions to cluster together. In

the work by Cao and Li (2008), users update their opinions according to

the birth-death and death-birth process during interactions. These models

often originate from real physical phenomena, and have been verified in

the interactions of real society. Further exploration is needed to determine

whether these opinion models can be applied to characterize real opinion

interactions in online social networks.

In this chapter, we propose a recommendation model that includes

opinion interactions and user influence. Evolutionary opinion dynamics

are introduced to recommender systems. We characterize the impact of

neighbors on user opinions by evolutionary game theory. We define the

strategies during an interaction of two users, i.e., changing or keeping

their opinions, and give the payoff for each strategy. Users choose a better

strategy to maximize their payoffs when they discuss an item with another

user. Opinion interactions are conducted with the matrix factorization
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(MF), and therefore, user ratings are affected by the opinions of others.

In addition, user influence which measures the status of a node in the

network, is added to the recommendation model, so that the ratings of each

user are weighted. We conduct experiments on two real-world datasets,

and the results demonstrate that our method works better than state-of-

the-art recommendation models. Furthermore, our method has much less

computational complexity than its counterparts. Our work reveals that

studies in other research fields, such as social physics and statistics, can

be incorporated in recommender systems, to improve the recommendation

performance. This work makes the following contributions.

1) A Rcommendation method with Evolutionary Opinion Dynamics

(REOD) is proposed to introduce the evolutionary game theory into rec-

ommendation tasks. The payoffs of strategies during an interaction are

associated with latent item factors and observed ratings. Users update

their opinions to reduce rating errors and the distances between their

opinions. This model considers both the dynamic process in real society

and the rating prediction of recommender systems.

2) We introduce opinion dynamics and user influence to the MF frame-

work, and improve the recommendation. During the training of MF, users

update their opinions according to the payoff matrix of the game. When

users make decisions on items, they are affected by others, so the opin-

ions of others contribute to the ratings. In addition, user influence that

originates from the trust network is added to the recommendation. The
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method which combines MF and random dynamics is general.

3) We conduct extensive experiments to evaluate the effectiveness of

our method for all users and cold-start users. We compare our method

with several state-of-the-art recommendation models, and analyze the

computational complexity of the proposed method. Results show that our

method outperforms its counterparts and encourages users to reduce the

divergence of their opinions, in accordance with real dynamics.

5.2 Regularized Matrix Factorization

MF is an effective approach for recommender systems to predict missing

ratings. This method assumes that user decisions are determined by a few

latent factors, and a rating is estimated according to how an item meets a

user’s preference toward the latent factors.

We define the set of users as {u1,u2, ...,um}, and the set of items as

{v1,v2, ...,vn}. m denotes the number of users, and n denotes the number

of items. The ratings are given by a matrix R ∈Rm×n. MF decomposes the

m×n rating matrix into two low-rank matrices U ∈ Rm×d and V ∈ Rn×d,

obviously d < min(m,n). The rating matrix is expressed by R = UV T ,

meaning that the target matrix R can be approximated by the product

of two low-rank matrices. For an accurate description, we rewrite the

approximation process as

(5.1) R =UV T + e
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where e is the error matrix. One can find suitable U and V to make the

error as small as possible. Thus, we approximate the rating matrix by

minimizing

(5.2) L= 1
2

∥∥R−UV T∥∥2

where ∥·∥ denotes the Frobenius norm. U and V are obtained from the

observed ratings, and they can be utilized to predict the missing ratings.

Considering the observed ratings, Eq. (5.2) is changed to

(5.3) min
U ,V

L=min
U ,V

1
2

m∑
i=1

n∑
j=1

I i j
(
R i j −UiV T

j
)2

where I is a binary function standing for whether user i has rated item

j. To avoid over fitting, quadratic regularization terms are added to the

sum-of-squared-errors objective function as

(5.4) min
U ,V

1
2

m∑
i=1

n∑
j=1

I i j
(
R i j −UiV T

j
)2+ λ

2
∥U∥2+ λ

2
∥V∥2

where λ is the extent of regularization, and λ > 0. Stochastic gradient

descent (SGD) is applied to optimize the objective function and find a

local minimum. In each iteration of training, all the observed ratings are

estimated by latent vectors, and the corresponding vectors are updated as
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follows

(5.5)

∂L
∂Ui

=−∑
j

(
R i j −UiV T

j
)
Vj +λUi

∂L
∂Vj

=−∑
i

(
R i j −UiV T

j
)
Ui +λVj

Ui ←Ui −γ
∂L
∂Ui

Vj ←Vj −γ
∂L
∂Vj

where γ denotes the learning rate. MF is one of the most popular methods

in model-based collaborative filtering.

5.3 The Proposed Method

In this section, we introduce our recommendation method in detail. We

define the influence of each user, and use it to weight the objective function

of MF. Opinion interactions are characterized by evolutionary game theory,

and they are incorporated into the SGD training of MF. In the following,

we first introduce the game theory model of opinion dynamics. Then,

we describe the method of MF with user influence. Last, we detail the

whole training algorithm and analyze the computational complexity of

the proposed method.

5.3.1 Game Theory Model of Opinion Evolution

User i’s latent vector Ui is treated as user i’s opinion toward latent factors,

revealing how each factor applies to the user. Opinions of users do not
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always remain unchanged. Users try to persuade others to adopt their

opinions, and therefore, opinions are dynamic. Users on online social net-

works may interact with other users, and exchange opinions. On product

review websites, when a user publishes a rating or comment on an item,

some other users may read the comment and discuss the item with the

user. After the interaction, they may change their opinions. Therefore,

opinions evolve during the dynamics.

Many opinion models were proposed to characterize the process of

opinion interactions (Li et al., 2013; Jamali and Ester, 2010). As a typical

representative of continuous opinion models, the DW model describes

pairwise interactions between users who have similar opinions. In each

update event, two agents i and f are selected at random, and they start

a conversation. Meanwhile, the assumption of bound confidence is intro-

duced to the opinion model. When the opinions of these two agents are

close enough, they will change their opinions. Therefore, if the opinions

of user i and f satisfy
∥∥Ui −U f

∥∥ < ε (ε > 0), each opinion moves in the

direction of the other as

Ui ←Ui +µ · (U f −Ui
)

(5.6)

U f ←U f +µ · (Ui −U f
)

(5.7)

where µ (0<µ≤ 0.5) is the trust parameter of users, and ε is the tolerance

threshold. In the DW model, ε and µ are constants during the evolution.

For a special case in which opinions have only one dimension, i.e., d = 1
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, if ε> 0.5, all opinions converge to a single central one, and the system

reaches consensus. If ε< 0.5, the system reaches a state of fragmentation,

in which a final number of opinion clusters occur, scaling with the number

of users. The number of clusters is in proportion to 1/ε.

The DW model characterizes user interaction behaviors, but the im-

pact of item factors and observed ratings are ignored during the evolution.

In addition, the tolerance threshold ε is fixed for each user, however, users

in real society often have different thresholds. Now, we use evolutionary

game theory to model the process of user interactions with item and rating

information. Game theory investigates the process of decision making

when two players struggle to maximize their own payoffs. Meanwhile,

game theory can also be used to explore user behaviors in opinion dynam-

ics.

We present the opinion dynamic model through the framework of

evolutionary game theory as follows. In each interaction, two users i and

f are selected at random, and are regarded as players in a game. An

item j is randomly selected, and is treated as a topic. Users generally

try to persuade others or reach agreement on the topic. The interaction

strategies available to each player are either to change their opinions or

maintain their opinions. The payoffs that the players receive depend on

the strategies they implement in the game. A strategy with a higher payoff

is preferred by players (Luo et al., 2016). In real interactions, each player

wants to convince the other one that its opinion is correct. Meanwhile, each

92



CHAPTER 5. SOCIAL RECOMMENDATION WITH EVOLUTIONARY
OPINION DYNAMICS

player tends to adopt the strategy that can decrease errors of estimated

ratings. Therefore, user opinions and ratings should be included in payoffs.

Assume that in an interaction, user i changes its opinion Ui, and then

its opinion will be updated to Ui,new following Eq. (5.6). Considering the

observed rating R i j and item j’s latent vector, the payoffs for the strategies

are defined as follows.

1) If user i changes its opinion, the payoff that user i obtains is∣∣∣R i j −UiV T
j

∣∣∣−∣∣∣R i j −Ui,newV T
j

∣∣∣. Users should adapt their opinions to reduce

the errors between the observed ratings and estimated ratings. Therefore,

if the error for the estimated rating decreases after the opinion update,

user i will obtain a positive payoff and it is willing to change its opinion.

We suppose that the payoff for the strategy, i.e., the user changing its

opinion, depends on the difference between the original error and that

after this strategy is adopted.

2) If user i retains its opinion, the payoff for i is β ·
∣∣∣UiV T

j −U f V T
j

∣∣∣
where β (β> 0) is used to control the contribution of this strategy which

represents individual stubbornness. Users generally prefer to persuade

their opponents rather than changing their own opinions, since changing

an opinion may incur a cost. The payoff correlates with the difference

between user i’s and f ’s estimated ratings on item j, and a large difference

between ratings leads to a large cost when changing opinions. If users

decide to maintain their opinions, they will receive a positive payoff.

3) If user f changes its opinion, user i receives the payoff β·
∣∣∣UiV T

j −U f V T
j

∣∣∣.
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If a user succeeds in persuading its opponent to change an opinion, it will

obtain a positive payoff.

When user i and f interact in relation to topic j, the payoffs for user i

are shown in Table 5.1. The Nash equilibrium point of the aforementioned

game is related to latent item vector Vj and rating R i j. We can infer the

Nash equilibrium point from Table 5.1 as follows.

1) When
∣∣∣R i j −UiV T

j

∣∣∣− ∣∣∣R i j −Ui,newV T
j

∣∣∣−β ·
∣∣∣UiV T

j −U f V T
j

∣∣∣ > 0, the

Nash equilibrium strategy for user i is changing its opinion.

2) When
∣∣∣R i j −UiV T

j

∣∣∣− ∣∣∣R i j −Ui,newV T
j

∣∣∣−β ·
∣∣∣UiV T

j −U f V T
j

∣∣∣ ≤ 0, the

Nash equilibrium strategy for user i is maintaining its opinion.

The analogous Nash equilibrium strategy can be found for user f . For

the aforementioned evolutionary game model, the condition for opinion

updates varies with time. The model does not have a fixed tolerance

threshold ε. Inserting Eq. (5.6) into the Nash equilibrium condition, we

have

(5.8)

∣∣∣R i j −UiV T
j

∣∣∣− ∣∣∣R i j −UiV T
j −µ · (U f −Ui

)
V T

j

∣∣∣
−β ·

∣∣∣UiV T
j −U f V T

j

∣∣∣> 0

From Eq. (5.8), if user i changes its opinion in an interaction, it holds

true that UiV T
j < R i j & U f V T

j > UiV T
j , or UiV T

j > R i j & U f V T
j < UiV T

j .

In addition, if we do not consider the impact of observed ratings, so the

condition for opinion updates in Eq. (5.8) reduces to
∣∣∣UiV T

j −U f V T
j

∣∣∣ < ε.

As in the work by Xiong et al. (2017), when the system in homogeneous

networks converges, the initial average value of
∣∣∣UiV T

j −U f V T
j

∣∣∣ over all
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Table 5.1: Payoffs for user i.

User f changes its opinion User f maintains its opinion

User i changes its opinion
∣∣∣Ri j −UiV T

j

∣∣∣− ∣∣∣Ri j −Ui,newV T
j

∣∣∣+β ·
∣∣∣UiV T

j −U f V T
j

∣∣∣ ∣∣∣Ri j −UiV T
j

∣∣∣− ∣∣∣Ri j −Ui,newV T
j

∣∣∣
User i maintains its opinion 2β ·

∣∣∣UiV T
j −U f V T

j

∣∣∣ β ·
∣∣∣UiV T

j −U f V T
j

∣∣∣
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users should be below ε. Ui and Vj are d-dimensional vectors, and each

dimension in the beginning is randomly distributed from [0,1]. The ex-

pectation of initial UiVj is d/4. It can be inferred that the expectation of

initial
∣∣∣UiV T

j −U f V T
j

∣∣∣ is d/18. A large number of latent factors d leads to

a large divergence of opinions and prevents the system from converging.

In each iteration of SGD during the training process, we implement

opinion interactions of users following the evolutionary game model. In

multi-agent opinion dynamics, a Monte-Carlo time step contains m times

of opinion interactions for a population of m users, and hence we introduce

m such interactions into an iteration of SGD. In an opinion interaction,

two users are selected at random, and they employ different strategies

according to their payoffs in relation to a randomly selected item. In an

iteration of SGD, opinion interactions are asynchronously implemented

m times. When the objective function reaches convergence, for a major-

ity of user-item pairs, the product of latent vectors UiV T
j approaches

R i j, so that in the stable state,
∣∣R i j −UiVj

T∣∣ for these user-item pairs is

small. Therefore, for most of users, the payoff of changing their opinions∣∣R i j −UiVj
T∣∣− ∣∣R i j −Ui,newVj

T∣∣ is often smaller than that of maintaining

their opinions β · ∣∣UiVj
T −U f Vj

T∣∣. In the stable state of the network, the

strategy of maintaining one’s opinion dominates in opinion interactions.
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5.3.2 Matrix Factorization with User Influence

User influence represents the role of a user in a network. This influence is

often regarded as a contribution in the process of information diffusion.

With large influence, a user may diffuse its information to a greater

number of other users, and information recommended by this user is

readily accepted by neighbors. Therefore, it has a large impact on others’

preferences. Some features of the underlying topology can be used to

measure influence, such as the degree, betweenness, k-core index, average

clustering coefficient and so on (Xiong and Li, 2017). Here, for the sake of

simplicity, we choose node degree as the indicator of user influence.

In the real world, users generally consult their friends before making

decisions on items, since they tend to trust the preferences of their friends.

From trust relations found on movie or product review websites, a trust

network can be obtained and then user influence can be calculated. We

define the number of users that trust user i as F−
i . F−

i is quite heteroge-

neous for different users, and therefore, we should renormalize it. User i’s

influence is given by

(5.9) ϕi =
log

(
F−

i /α1+α2

)
log

(
max

f
F−

f /α1+α2

)
The offset α2 in the logarithmic function increases user influence to greater

than 0, as some users do not have any trust relations. The value of α2

should be set in the interval (2,10), since too large α2 reduces the effect of
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user influence. The denominator in Eq. (5.9) renormalizes the influence

and limits the value of ϕi in the interval (0,1]. The parameter α1 is used

to control the decay of user influence. If a user has a larger influence,

its preference makes a greater contribution in the sum-of-squared-errors

objective function. The objective function of Eq. (5.4) is rectified as

(5.10) min
U ,V

1
2

m∑
i=1

ϕi

n∑
j=1

I i j
(
R i j −UiV T

j
)2+ λ

2
∥U∥2+ λ

2
∥V∥2

Then, the derivatives of the corresponding latent vectors in SGD are

calculated as follows.

∂L
∂Ui

=−∑
j
ϕi

(
R i j −UiV T

j
)
Vj +λUi(5.11)

∂L
∂Vj

=−∑
i
ϕi

(
R i j −UiV T

j
)
Ui +λVj(5.12)

5.3.3 Model Learning

Here, we present our recommendation method with opinion interac-

tions and user influence. The whole training algorithm is shown in Al-

gorithm 5.1. The method is based on the framework of MF, and opinion

dynamics are introduced to the process of SGD. Our method comprises

two steps in an iteration of SGD.

1) For each observed rating, SGD is used to update latent user vector

Ui and item vector Vj. User influence given in Eq. (5.9) from the trust

network is included.

2) Opinion interactions are implemented in each iteration of SGD.

In each interaction, two users i and f are selected at random. User i
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Algorithm 5.1 The proposed recommendation method with evolutionary
opinion dynamics.
Require: List of tuples Ω= (users, items, ratings), list of tuples SNS =

(users, trusted users), the number of latent factors d, the learning
rate γ, regularization parameter λ, user influence parameter α1, α2,
trust parameter µ, and payoff parameter β

Ensure: Latent user matrix U and latent item matrix V
1: Task 1: Generating user influence
2: for i ← 1,2, ...,m do
3: Calculate ϕi according to Eq. (5.9)
4: end for
5:

6: Task 2: Learning user matrix U and item matrix V
7: Initialize U and V randomly
8: while not convergence do
9: 1) SGD training

10: Calculate ∂L/∂U according to Eq. (5.11)
11: Calculate ∂L/∂V according to Eq. (5.12)
12: Update U ←U −γ ·∂L/∂U
13: Update V ←V −γ ·∂L/∂V
14: 2) Opinion interactions
15: for i ← 1,2, ...,m do
16: Select two users i and f at random
17: Select an item j randomly that user i has rated
18: if Eq. (5.8) holds then
19: Ui ←Ui +µ · (U f −Ui

)
20: end if
21: end for
22: end while
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randomly selects an item j that i has rated in the training data. Then,

user i interacts with f for item j according to the Nash equilibrium of

the game shown in Table 5.1. If the condition of Eq. (5.8) holds true, user

i changes its opinion following the first equation of Eq. (5.6). In each

iteration, m interactions are implemented. Here, we do not consider the

trust network, since a user on online social networks can exchange its

opinion with any other users even if it does not have any trust relation

with them. Users’ comments and ratings are accessible to all other users,

so that they can have a discussion on the item.

5.3.4 Complexity Analysis

We analyse the computational complexity for the proposed method. We

define the number of observed ratings in the training data as |R|, and the

number of iterations as N. The computational complexity of SGD in MF is

O
(
d ·N · |R|), where d is the number of latent factors. As previously men-

tioned, m is the number of users. Thus, the average number of observed

ratings for each user is |R| /m. To calculate user similarities, the computa-

tional complexity O
(
m2·|R| /m)=O

(
m·|R|) is required. The computational

complexity for SoReg is O
(
d ·N · ( |R|+2m · | f |)+m · |R|), where | f | is the

average number of trusted friends for each user. Since m is often much

larger than d ·N, the computation of user similarities in SoReg accounts

for a greater proportion than that of SGD for MF. For TrustSVD (Guo et al.,

2016a), the computational complexity is O
(
d ·N · ( |R|+ |T|) ·max

( | f | ,k))
,
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where |T| is the number of observed relations and k is the average number

of ratings received by an item.

For REOD, the computation is mainly caused by SGD training and

opinion dynamics. In the process of opinion dynamics during an iteration,

m opinion interactions are implemented, each of which only contains one

opinion update. An opinion update takes the computational complexity

O
(
d
)
. Therefore, opinion dynamics results in the computational complexity

O
(
d ·N ·m)

. Overall, the computational complexity for REOD is O
(
d ·N ·( |R|+m

))
. Since |R| is much larger than m, the complexity of our method

approximates MF which costs O
(
d ·N · |R|), and REOD involves much less

computation than state-of-the-art models.

5.4 Experiments

In this section, we address the following questions: 1) Does the proposed

method with evolutionary opinion dynamics and user influence improves

the accuracy of recommendation? 2) What is the contribution of opinion

interactions and user influence for recommendation? 3) How does the

intrinsic parameters of opinion interactions and user influence affect the

recommendation results? First, we use two real-world datasets to evaluate

our method, and compare the recommendation results of our approach

with other state-of-the-art recommendation models to answer the first

question. Then, we investigate the effects of the components in our method
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to answer the second question. Last, we vary the parameters of opinion

interactions to explore their effects to answer the third question.

5.4.1 Datasets and Metrics

Table 5.2: Statistics of datasets.

Ciao Epinions

#User 7267 7411
#Item 11,211 8728
#Rating 149,147 276,116
#Social relation 110,755 52,982

To evaluate the proposed recommendation method, we collected two

datasets, which were taken from the popular social networking websites

Ciao and Epinions. Statistics on these datasets are presented in Table 5.2.

Users of these social networking services can rate items, browse/write

reviews, discuss with others, and add trusted friends. Therefore, we can

obtain rating and social relation data from these websites.

Ciao and Epinions are well-known product review websites, where

users can rate a product using one of five discrete ratings from 1-5. Ratings

imply the sentiment of users towards a given item. If a user is not satisfied

with a product, it will give the product a rating of 1; if a user appreciates a

product, it will give the product a rating of 5. Each user maintains a ’trust’

list which includes the user’s social relations. For Ciao, we collected 7267

users, 11,211 items, and 149,147 ratings. The density of the user-item

rating matrix is 0.183%. For Epinions, we collected 7411 users, 8728 items,
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and 276,116 ratings, and the density of the user-item rating matrix is

about 0.427%.

In both datasets, F−
i follows a power-law distribution. The power ex-

ponent in the Ciao dataset is −1.076± 0.023, and that in Epinions is

−0.991±0.021. The average and maximal values of F−
i in Ciao are 15.2408

and 796, while those in Epinions are 7.1491 and 336, respectively.

For each dataset, we choose x% as the training set to learn the parame-

ters and use the remaining 1− x% as the test set. We set x at 60, 70 and

80, respectively, and obtain the results. The experiments are conducted

five times independently, and we give the average performance.

We use two metrics to evaluate the performance, i.e., Mean Absolute

Error (MAE) and Root Mean Square Error (RMSE). MAE is defined as

(5.13) MAE = 1
|Rtest|

∑
Ri j∈Rtest

∣∣∣R i j −UiV T
j

∣∣∣
where Rtest refers to the test set, and |Rtest| refers to the number of ratings

in Rtest. RMSE is defined as

(5.14) RMSE =
√

1
|Rtest|

∑
Ri j∈Rtest

(
R i j −UiV T

j

)2

It has been proved that a smaller MAE or RMSE value means a better

performance.

5.4.2 Baselines

In this section, to demonstrate the effectiveness of the proposed method,

we compare it with the following representative recommendation models.
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PMF (Mnih and Salakhutdinov, 2007): This method only utilizes the

user-item rating matrix, and performs probabilistic matrix factorization

to make recommendations.

LLORMA (Lee et al., 2016): this method relaxes the low-rank assump-

tion, and approximates the observed matrix as a weighted sum of local

low-rank matrices.

SocialMF (Jamali and Ester, 2010): This method introduces the mech-

anism of trust propagation into the model.

SoRec (Ma et al., 2008): This method is based on probabilistic matrix

factorization, and performs a co-factorization on the user-term rating

matrix and user-user social relation matrix.

RSTE (Ma et al., 2009): This method makes social recommendation by

using social trust ensemble and naturally fusing the preferences of users

and their trusted friends together.

TrustMF (Yang et al., 2017): This method performs matrix factoriza-

tion to map users into low-dimensional latent spaces in terms of their

trust relations.

SoReg (Ma et al., 2011): This method incorporates social regulariza-

tion into matrix factorization, and social regularization represents the

social constraints on recommender systems.

TrustSVD (Guo et al., 2016a): This method incorporates the explicit

and implicit influence of rated items and trusted users on the prediction

of items.
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To focus on model evaluation and a fair comparison, for all methods,

we set the same number of latent factors d = 20. For different parameters

in baseline models, we employ cross-validation to determine the optimal

values. For REOD, we set the payoff parameter β= 0.05, the trust param-

eter µ= 0.12, the learning rate γ= 0.001, and the influence offset α2 = 6 in

both datasets. The influence decay is α1 = 30 in Ciao, and it is α1 = 80 in

Epinions. Degrees of the trust network have a heavy tailed distribution,

and many users have a tiny F−
i in Eq. (5.9). Therefore, the ratings of these

users make little contribution to the objective function, so Eq. (5.10) may

cause over fitting. To alleviate this problem, we multiply ϕi by a positive

random number with normal distribution for each iteration.

5.4.3 Performance Comparisons

Tables 5.3 and Table 5.4 compare the results of the different methods for

all users. More training data lead to higher recommendation accuracy,

especially in Ciao which has sparser rating data. PMF performs worse

than all social recommendation models except in the case where TrustMF

performs the worst when 80% of data in Epinions are used for training.

The reason for this is that the dataset of Epinions has much sparser user

relations. Directly factorizing the matrix of the sparse trust network may

harm the prediction accuracy on unknown ratings for recommender sys-

tems. LLORMA has low accuracy in Ciao, but it performs well in Epinions

and even outperforms some social recommendation methods. LLORMA
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Table 5.3: Results of recommendation on MAE and RMSE in Ciao.

PMF LLORMA SocialMF SoRec RSTE TrustMF SoReg TrustSVD REOD

60%
MAE 0.9767 0.8592 0.7762 0.7908 0.7971 0.7883 0.7626 0.7515 0.7359
RMSE 1.2401 1.2339 1.0036 1.1337 1.1097 1.0858 1.0116 0.9844 0.9858

70%
MAE 0.9078 0.8055 0.7702 0.7855 0.7897 0.7838 0.7539 0.7434 0.7294
RMSE 1.1572 1.1251 0.9988 1.1179 1.0989 1.0685 1.0002 0.9768 0.9766

80%
MAE 0.8696 0.7795 0.7640 0.7809 0.7786 0.7792 0.7472 0.7376 0.7262
RMSE 1.1130 1.0654 0.9919 1.1052 1.0859 1.0560 0.9899 0.9704 0.9701

Table 5.4: Results of recommendation on MAE and RMSE in Epinions.

PMF LLORMA SocialMF SoRec RSTE TrustMF SoReg TrustSVD REOD

60%
MAE 0.8969 0.8271 0.8552 0.8574 0.8689 0.8788 0.8269 0.8096 0.7974
RMSE 1.1334 1.1277 1.1231 1.1066 1.1705 1.1616 1.0721 1.0425 1.0396

70%
MAE 0.8759 0.8119 0.8510 0.8530 0.8611 0.8747 0.8230 0.8041 0.7938
RMSE 1.1129 1.0998 1.1115 1.0947 1.1558 1.1438 1.0674 1.0379 1.0331

80%
MAE 0.8624 0.8041 0.8487 0.8493 0.8564 0.8729 0.8211 0.8004 0.7910
RMSE 1.1004 1.0862 1.1004 1.0861 1.1475 1.1313 1.0647 1.0360 1.0308
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obtains Low-rank matrices that are limited to a local region of the ob-

served matrix, so that it achieves a high performance in denser rating

data. In Epinions, SocialMF and SoRec almost perform the same, but

when more user relations are available, SocialMF has higher accuracy in

the Ciao dataset. RSTE uses social trust ensemble and requires more rela-

tion data, so that it performs worse than SoRec in Epinions. SoReg has a

smaller MAE and RMSE than SocialMF, SoRec, RSTE and TrustMF, since

SoReg uses better social regularization terms. TrustSVD incorporates

the implicit influence of user trust and item ratings, so recommendation

accuracy is improved and it performs the best of the state-of-the-art meth-

ods. Clearly, our method REOD outperforms the other models. When 60%

of the training data of Ciao are used, REOD decreases MAE as high as

3.501% in contrast to SoReg, and 2.076% in contrast to TrustSVD; in Epin-

ions, the corresponding improvement is 3.568% in contrast to SoReg, and

1.507% in contrast to TrustSVD. Although in Ciao, the RMSE of REOD

approaches that of TrustSVD, REOD can obtain a better performance

with sparse social connections. Therefore, we draw the conclusion that

REOD improves the accuracy of recommendation.

Recommender systems often suffer from cold start problems, degrad-

ing the recommendation performance. We address the accuracy of these

models for cold start users who have only rated a few items (equal to

or less than five ratings). Figure 5.1 shows the performance of SoReg,

TrustSVD and our approach for cold start users. The parameters are the
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Figure 5.1: Performance comparison of SoReg, TrustSVD and REOD for
cold-start users. (a) Ciao. (b) Epinions.

same as above. We select cold start users from the test data, and evaluate

the MAE and RMSE on these users. Here, we use 80% of the data for the

training data, and the results are similar for different proportions of train-

ing data. Figure 5.1 shows that REOD still outperforms the other methods

for cold start users, although the RMSE of TrustSVD approximates our

method. In both datasets, SoReg has a similar MAE with TrustSVD, but

has a larger RMSE than the other two methods. The results demonstrate

that incorporating evolutionary opinion dynamics can help recommender

systems cope with cold start situations.

Now, we focus on the second issue of examining the effects of user in-

fluence and opinion interactions. It has been proven above that recommen-

dation with both effects outperforms the representative recommendation

models. We investigate which aspect plays a more significant role in social

recommendation. We eliminate the effect of opinion interactions or user

influence separately by defining the following algorithmic variants.
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1) REOD\UI - Eliminating the effect of user influence. Evolutionary

opinion dynamics are considered. The objective function of Eq. (5.10)

reduces to that of traditional MF in Eq. (5.4).

2) REOD\OP - Eliminating the effect of opinion interactions. User

influence is calculated from the trust network. Opinion interactions are

removed from each iteration of SGD training.

3) REOD\UI&OP - Eliminating both the effects of opinion interactions

and user influence.

Figure 5.2: Impact of user influence and opinion interactions on recom-
mendation in the Ciao dataset. (a) MAE. (b) RMSE.

Figure 5.2 and Figure 5.3 show the accuracy of these variants in Ciao

and Epinions, respectively. In general, each component in our method con-

tributes to better recommendation, and eliminating the effect of opinion

interactions or user influence degrades the performance. In both datasets,

opinion interactions play a far more significant role in the prediction of

unknown ratings, compared with user influence. Therefore, when 60% of

the data are used for training, REOD\OP has a 7.884% relative perfor-
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Figure 5.3: Impact of user influence and opinion interactions on recom-
mendation in the Epinions dataset. (a) MAE. (b) RMSE.

mance reduction for MAE in Ciao data, and 5.608% in Epinions data. The

procedure of opinion interactions in each iteration of SGD does not need

the trust network, therefore, it will not suffer from the sparsity problem

of trust relations. User influence slightly reduces MAE and RMSE in

both datasets whether the effect of opinion interactions is included or not.

Furthermore, the improvement of the performance under the action of

user influence is more obvious in Ciao data than in Epinions data, as a

result of denser user relations in Ciao, especially when less training data

are applied.

We are concerned about the evolution of user opinions during the

SGD training of our method. We use the average squared distance of

individual opinions to reflect the divergence of opinions. The average

squared distance is defined as

(5.15) D(t)=
∑

i
∥∥Ui(t)−E

(
U(t)

)∥∥2

m

where E(·) means the expectation operation. A larger squared distance
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Figure 5.4: Average squared distance of user opinions versus iteration
number with 70% training data. (a) Ciao. (b) Epinions.

means more disordering exists in user opinions. Figure 5.4 shows the

average squared opinion distance versus the iteration number with or

without opinion interactions, when 70% of the data is used for training.

We also find that with different training data, the evolution of opinions is

analogous. For REOD, the average squared distance drops to a very low

value and gradually becomes stable in about 50 iterations. Consensus is

almost achieved, especially in the Epinions data, implying very small di-

vergence among user opinions. Due to the existence of opinion interactions,

users tend to adapt their opinions so that they are close to each other. This

phenomenon is in accordance with real situations in social networks (Li

et al., 2013), since users tend to persuade others to trust their opinions

during opinion interactions. As a result, opinion interactions clearly im-

prove the recommendation accuracy. However, for REOD\OP, the average

squared distance only marginally decreases, and user opinions are quite

divergent.
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Figure 5.5: Performance variations of REOD versus the trust parameter
µ. (a) Ciao. (b) Epinions.

Now, we address the third issue: the effects of parameters for opinion

interactions and user influence on the performance. The parameter µ

determines the rate of opinion exchanges. We change the value of µ,

and investigate the corresponding recommendation accuracy. Since users

generally update their opinions so that they are close to their neighbors’

opinions, the value of µ does not exceed 0.5. Figure 5.5 shows the impact

of µ with different training data. The variations of RMSE are similar

to those of MAE, and therefore, we do not depict RMSE here. We can

clearly observe a transition at µ= 0.05 below which the method has larger

MAE. MAE starts a precipitous decline around µ= 0.05, and reaches a

plateau in the interval [0.05,0.2]. We investigate opinion evolution with

different µ. For µ < 0.05, the final average squared opinion distance is

larger than 1.5, while that for µ> 0.05 is below 0.08. Therefore, if µ< 0.05,

user opinions have few changes during opinion interactions, and opinion

interactions do not take effect in recommendation. Then, our method
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Figure 5.6: Performance variations of REOD versus the payoff parameter
β and the influence decay parameter α1 with 70% training data. (a) the
payoff parameter β. (b) the influence decay parameter α1.

reduces to REOD\OP. If µ> 0.2, MAE increases slowly with µ. For large

µ, the variation of an estimated rating
∣∣∣µ · (U f −Ui

)
V T

j

∣∣∣ may be larger

than 2 · ∣∣R i j −UiVj
T∣∣, so that we have

∣∣R i j −Ui,newVj
T∣∣> ∣∣R i j −UiVj

T∣∣ and

errors of estimated ratings may increase. Generally, our method achieves

lower MAE in the interval [0.05,0.2] of µ in both datasets, irrespectively

of the proportion of training data. Thus, we can typically set µ = 0.12

without loss of generality. Since the impact of µ does not depend on the

datasets, the complexity of our method can be reduced.

The parameter β controls the equilibrium between the strategy of

changing an opinion or maintaining an opinion in the evolutionary game

model. Here, we only consider one case with 70% training data. In other

cases with a different amount of training data, the performance variations

are similar. Figure 5.6(a) shows the impact of β on MAE. When 0<β< 0.1,

MAE remains relatively stable in both datasets as β varies. Around β=
0.05, MAE reaches the lowest value. When β> 0.1, MAE increases rapidly,
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demonstrating that the error for the estimated rating should preferentially

be considered in the evolutionary game of opinion interactions. From

Eq. (5.8), when β approaches µ, increasing β makes users choose the

strategy of maintaining their opinions, and restrains the effect of opinion

interactions in recommendation. In addition, the impact of the payoff

parameter β is also independent of the datasets, reducing the complexity

of our method. In different datasets, we can empirically set the value of

β. Figure 5.6(b) shows the impact of the influence decay parameter α1. It

is obvious that MAE in both datasets does not have a close correlation

with α1. Although the best performance in different datasets varies with

α1, the change of MAE is small and we obtain relatively low MAE in the

interval (20,90) of α1. Most of degrees F−
i in both datasets are less than

50. When α1 > 20, the variation of user influence versus α1 is very small.

The aforementioned properties of parameters are useful from a practical

point of view because they make it easier to set parameters in using our

method.

We use other topological descriptors to measure user influence, such

as betweenness centrality, clustering coefficients and k-core index, and

incorporate the influence into recommender systems. We use 80% data

as training data, and evaluate the recommendation performance with

different forms of user influence. All parameters are determined by cross-

validation. Results of recommendation accuracy with different user influ-

ence are shown in the Table 5.5. Although topological descriptors have
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different capabilities of measuring user influence, their effects on the

recommendation performance are similar in both datasets. MAE and

RMSE of degree centrality, clustering coefficients and k-core index are

approximately the same, but the descriptor of betweenness centrality has

a lower performance. The reason is that betweenness in these networks is

more heterogeneous than other descriptors, so that users with large be-

tweenness play an excessively important role in the sum-of-squared-errors

objective function. Ratings of users that have very small betweenness have

limited contribution to the objective function, but these users may have

many ratings and cannot be ignored in recommendation. In addition, we

also measure user influence by tie strength, and incorporate user influence

and social regularization into recommender systems, but the accuracy

cannot be improved.

Table 5.5: Results of recommendation accuracy with different user influ-
ence in Ciao and Epinions.

Ciao
Degree
centrality

Betweenness
centrality

Clustering
coefficient

k-core
index

MAE 0.7262 0.7325 0.7261 0.7259
RMSE 0.9701 0.9821 0.9697 0.9698

Epinions
Degree
centrality

Betweenness
centrality

Clustering
coefficient

k-core
index

MAE 0.7262 0.7325 0.7261 0.7259
RMSE 0.9701 0.9821 0.9697 0.9698
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5.5 Summary

When users on online social networks interact with their friends, their

opinions are influenced by others. User interactions can be applied in

recommender systems to improve performance. Social recommendation

models utilize social relations, and introduce neighbors’ impact into the

MF framework. In this chapter, we investigated the impact pattern of

other users on latent preferences, and studied its effect on recommenda-

tion. We proposed an evolutionary game model to characterize opinion

interactions. We defined two interaction behaviors, i.e., maintaining one’s

opinion or changing one’s opinion, and determined the payoff for each be-

havior according to the rating on a given item. Users choose the behavior

which maximizes their payoffs. Then, we measured user influence accord-

ing to node ingoing degrees in the social network. We further used user

influence to weight the objective function of MF, and conducted dynamic

opinion interactions during each iteration of training. Experiment results

on real-world datasets demonstrated that our method performs better

than state-of-the-art recommendation models for all user and cold start

users. Meanwhile, our method has much less computational complexity

than the other models. Opinion dynamics drive user opinions to converge

and reduce the divergence, coinciding with the real situation in online

interactions. Moreover, our method does not have a significant dependence

of opinion interaction or user influence parameters.
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6
TRUGRC: TRUST-AWARE GROUP

RECOMMENDATION WITH VIRTUAL

COORDINATORS

6.1 Introduction

Recommender systems have attracted much attention for their ability

to model user preferences and generate personalized predictions based

on historical behaviors (Lu et al., 2015). As such, they have become a

useful tool for disposing the information overload problem in e-commerce

systems (Ren and Wang, 2018). Most previous studies have focused on

personal recommender systems. However, individuals are not isolated

entities and they are usually part of some sort of organizations or groups
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that revolve around shared activities or similar interests (Ji et al., 2018).

The behaviors of a group of individuals sharing similar interests can

be considered as group activities, for example, travelling, seeing movies,

and dining out with a number of friends. As group activities on websites

increase, many studies on group recommender systems (Guo et al., 2016b;

Castro et al., 2017b; Ortega et al., 2016; Wang et al., 2016b; Castro et al.,

2017a) have been conducted in recent years to provide recommendations

to a given group of users.

Unlike individual recommender systems, group recommender systems

often contain a diverse set of preferences and group recommendation is

to make a single set of recommendations for a group of users with differ-

ent preferences. Hence, the challenge in group recommendation is how

to integrate individual’s preferences into a unique recommendation list

which will be satisfied by all group users. There are two main ways for ag-

gregating personal preferences into group preferences: result aggregation

(Castro et al., 2017a; Wang et al., 2018) and profile aggregation (Wang

et al., 2016b; Kagita et al., 2015). Result aggregation applies personal

recommendation methods to generate recommendations for every user

and then makes all these recommendations into a combined recommenda-

tion list for the whole group (Baltrunas et al., 2010; Castro et al., 2015).

Studies on these types of group recommendation system mainly focus on

enhancing the rationality and effectiveness of aggregation functions to

achieve better accuracy (Seo et al., 2018). Profile aggregation strategies
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create a virtual user to represent the combined profile of group mem-

bers, then predictions are made for the virtual user by applying personal

recommendation methods. This alternative is called virtual user-based ap-

proaches (Ortega et al., 2016; Kagita et al., 2015). However, most existing

studies consider the above two strategies separately. Very few consider

ways to benefit from both. Yet, solely relying on one strategy creates

problems in complex recommendation scenarios and, generally, does not

produce satisfactory recommendations for every group member. Further,

websites and social networks contain a great deal of auxiliary information,

e.g., trust links (Ma et al., 2011), which have not yet been considered in

group recommendation. Although some social-aware group recommender

systems have been proposed (Guo et al., 2016b; Quijano-Sanchez et al.,

2013), but most of them only simply infer users’ social relationships and

influence through the Thomas-Kilmann conflict mode instrument (TKI)

(Thomas, 2008). Actual and explicit trust links between users on social

networks are still ignored.

In this chapter, we propose a Trust-aware Group Recommendation

method with virtual Coordinators (TruGRC), which integrates the benefits

of both the result and profile aggregation strategies. Moreover, we intro-

duce personal influence and trust links into group recommendation tasks.

Group recommendation processes can be considered as a negotiation in

which every member of the group hopes the group’s preferences will match

their own personal preferences as much as possible. Yet, when group mem-
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bers hold conflicting preferences, it can be difficult to aggregate individual

preferences using simple aggregation functions, such as the average and

least-misery strategies. Some aggregation functions, such as GROD (Cas-

tro et al., 2017a), ASI (Guo et al., 2016b) and MC-GR (Wang et al., 2016b),

can increase the accuracy of group recommendations, but these functions

are complicated, and their afforded improvement is limited. Hence, to

maximize the benefits for all group members, while overcoming conflicts

in preferences, it is necessary to introduce a coordinator. In our method,

we regard the virtual user as a virtual coordinator that is introduced

into the process of modeling each group user’s preferences. The virtual

coordinator provides a global view of all user preferences and harmonizes

their benefits by negotiating with them. These negotiations with the co-

ordinator involve compromise but ultimately generate recommendations

that are reasonable to each member of the group. Further, the resulting

recommendations can be easily distilled using the average aggregation.

Thus, the main contributions can be summarized as follows.

1) We propose TruGRC method that integrates both the result and

the profile aggregation strategies. Specifically, we introduce a virtual

coordinator into group recommendation, which brings a global perspective

for optimizing the evaluation process of individual user preferences and

creating a balanced set of group recommendations. With the contribution

of the virtual coordinator, applying the average aggregation method to

generate a satisfactory recommendation list is easy.
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2) We introduce trust information into group recommender systems,

such as explicit trust links on social networks. The personal influence

is inferred from user’s trust, and each group member impacts the vir-

tual coordinator based on its personal influence. We also consider the

interactions between group users to represent the negotiation process.

3) We implement extensive experiments to evaluate the proposed Tru-

GRC model. The comparisons between TruGRC and several cutting-edge

methods indicate TruGRC outperforms its counterparts in four common

evaluation metrics at various group sizes.

6.2 The Proposed Method

To formalize the group recommendation problem, the user set of group g is

defined as U and the set of items is defined as I , where u ∈U means each

individual in group g, and i ∈ I is each item in the item set. We define

|U | = m as the size of the user group and |I | = n as the number of all items.

In this group recommendation scenario, only the users in a specific group

are considered, and each group has no impact on another. The user-item

rating matrix is denoted as R ∈Rm×n, and the observed rating of user u

on item i is defined as ru,i ∈R. The aggregation function is the vital part

of integrating users’ preferences, defined as

(6.1) r̂ g,i =Φ(r̂u,i)
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where Φ(·) is the aggregation function that generates the group pref-

erences from each user’s preferences. For item i, r̂ g,i and r̂u,i are the

combined rating of group g and the predicted rating of user u, respectively.

For the group, a recommendation list is proposed in accordance with the

top-L highest scores of r̂ g,i, which is defined as follows.

(6.2) top(g,L)= arg
L

max
i∈I

r̂ g,i

The full set of notations is given in Table 6.1.

Table 6.1: Notations in this work.

Symbol Description

U user set in group g, u ∈U , |U | = m
I item set, i ∈ I , |I | = n
R ∈Rm×n user-item rating matrix
ru,i ∈R the observed rating of item i given by user u
r̂u,i the prediction of user u on item i
r̂c,i the prediction of virtual coordinator c on item i
r̃c,i the interaction representation of virtual coordinator c on item i
r̂g,i the prediction of group g on item i
d the dimension of feature space
pu ∈Rd×1 individual user latent feature vector
pc ∈Rd×1 virtual coordinator latent feature vector
qi1 ∈Rd×1 item-user latent feature vector
qi2 ∈Rd×1 item-coordinator latent feature vector
bi1 item-user bias
bi2 item-coordinator bias
su the personal social impact of user u
T ∈Rm×m user-user trust matrix
tu,l ∈ T the trust relation between user u and user l
λ, λα, λβ trade-off parameters
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Figure 6.1: The framework of the proposed TruGRC method. A virtual
coordinator is introduced to harmonize each individual user’s preferences
in the group, and each group member simultaneously impacts the virtual
coordinator’s preferences according to its personal social inference cal-
culated by trust information. Group recommendations are generated in
accordance with group preferences aggregated by each group member’s
preferences.

6.2.1 Overall Framework

This section introduces the framework of the proposed method which im-

proves group recommendation by harmonizing each user’s preferences and

considering the trust information. We can regard group recommendation

as a negotiation process (Salamó et al., 2012) where the aim is to generate

a single recommendation list that meets the requirements of most users

in the group. In our framework, this is accomplished by integrating a

virtual coordinator into a traditional group recommendation framework.

This virtual coordinator plays a significant role in the negotiation between

individuals, balancing individual preferences with group preferences. An
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overview of the framework appears in Figure 6.1. We generate each indi-

vidual user’s preferences from the ratings they have already marked over

items. In addition, we assume the virtual coordinator can observe all the

historical ratings of users in the group and its preferences are generated

from all group users’ ratings. The virtual coordinator provides an overall

perspective for modeling and modifying individual preferences. However,

each group member has a level of influence over the virtual coordinator,

which is inferred from its influence on trust networks. And this influence

can affect negotiations with the virtual coordinator. Group preferences

will be generated by simply aggregating each user’s preferences once ne-

gotiations are complete, and then a group recommendation list will be

proposed.

6.2.2 The Individual Recommendation Method

Given the matrix factorization (MF) model (Koren et al., 2009) has demon-

strated good performance for modeling user preferences and predicting

missing ratings, we have selected this model as the individual recommen-

dation method for our framework. The MF model applies latent feature

vectors to represent the preferences of users and items, then the ratings

can be fairly estimated from these latent feature vectors, defined as

(6.3) r̂u,i = b i1+pT
uqi1
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where r̂u,i is the predicted rating that user u gives item i, pu ∈ Rd×1 is

the user-specific latent feature vector, qi1 ∈Rd×1 is the item-specific latent

feature vector, d is the dimension of latent features, and b i1 is the bias

of item i. In recommendation, there is an important task which is to

ensure the predicted rating r̂u,i is as close to the observed rating ru,i as

possible (Guo et al., 2016a). To accomplish this goal, following the MF

model (Koren et al., 2009), the latent feature vectors and the bias can be

learned by minimizing the following loss function

min
pu,qi1,bi1

Lu = 1
2

m∑
u=1

n∑
i=1

δu,i
(
ru,i − r̂u,i

)2+ λ

2

( m∑
u=1

∣∣∣∣pu
∣∣∣∣2

F +
n∑

i=1

∣∣∣∣qi1
∣∣∣∣2

F +
n∑

i=1
b2

i1

)(6.4)

where δu,i represents an indicator that δu,i = 1 means ru,i is observed, and

δu,i = 0 otherwise. ||·||F is the Frobenius norm to avoid over-fitting and λ is

a trade-off parameter to regulate the impact of the regularization terms.

In term of the definition in Eq. (6.1), the results of group recommen-

dation is generated by aggregating every individual’s predictions in the

group. Previous studies (Ortega et al., 2016; Castro et al., 2017a) have

mainly focused on improving the aggregation functions. However, they

have neglected to adjust the individual’s preferences to suit the final set of

group recommendations. By contrast, we propose a new group recommen-

dation model that introduces a virtual coordinator to enhance performance

and considers the trust information associated with each individual. This

model is presented in the next sections.
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6.2.3 Modeling the Virtual Coordinator in the Group

Group recommendation can be regarded as a negotiation process, where

every group member wants to maximize its benefits. However, usually,

the results of any negotiation do not entirely meet the needs of all group

members. Hence, the coordinator plays an important role in harmonizing

each member’s opinions and requirements to ensure the benefits are

spread across the whole group. Based on this idea, the aim is to model a

virtual coordinator that alters the preference estimations for each group

member when making predictions. We assume that the virtual coordinator

is capable of observing the historical data of all group members, e.g., rating

information or purchasing records, so it can form a global perspective on

the preferences of the entire group. This approach is unlike typical virtual

user-based group recommendation methods (Kagita et al., 2015) where

the virtual user only makes recommendations based on its own profile.

Whereas, our model combines multiple sources of feedback from both

group members and the virtual coordinator to enhance the accuracy of

group recommendation.

Similar to individual recommendation methods, we also map the vir-

tual coordinator and each item into the same feature space, defined as

pc ∈Rd×1 and qi2 ∈Rd×1, respectively. Therefore, the predicted ratings of

the virtual coordinator can be defined as

(6.5) r̂c,i = b i2+pT
c qi2
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where r̂c,i denotes the predicted rating of the virtual coordinator c and b i2

is the bias. pc, qi2 and b i2 are learned through a square loss function be-

cause the virtual coordinator needs to observe all group members’ ratings.

Therefore, the loss function is defined as

min
pc,qi2,bi2

Lc = 1
2

m∑
u=1

n∑
i=1

δu,i
(
ru,i − r̂c,i

)2+ λ

2

(∣∣∣∣pc
∣∣∣∣2

F +
n∑

i=1

∣∣∣∣qi2
∣∣∣∣2

F +
n∑

i=1
b2

i2

)(6.6)

Be different from Eq. (6.4), Eq. (6.6) is used to learn the preferences of

the virtual coordinator c rather than individual’s preferences. Moreover,

the virtual coordinator’s latent feature vector pc interacts with all latent

feature vectors of items collected by group members in Eq. (6.6), whereas

in Eq. (6.4), users only interact with items rated by themselves. Eq. (6.4)

and Eq. (6.6) are combined linearly to construct a new loss function that

integrates multiple feedbacks as

min
Θ

L=Lu +Lc

= 1
2

m∑
u=1

n∑
i=1

δu,i
(
ru,i − r̂u,i

)2+ 1
2

m∑
u=1

n∑
i=1

δu,i
(
ru,i − r̂c,i

)2

+ λ

2

( m∑
u=1

∣∣∣∣pu
∣∣∣∣2

F + ∣∣∣∣pc
∣∣∣∣2

F +
n∑

i=1

∣∣∣∣qi1
∣∣∣∣2

F +
n∑

i=1

∣∣∣∣qi2
∣∣∣∣2

F +
n∑

i=1
b2

i1+
n∑

i=1
b2

i2

)
(6.7)

where Θ= {
b i1, b i2, pu, pc, qi1, qi2

}
. Two latent feature vectors have been

defined for each item, i.e., qi1 and qi2, along with two biases for each item,

i.e., b i1 and b i2. These vectors are used to make predictions for individ-

uals and the virtual coordinator in Eq. (6.3) and Eq. (6.5), respectively.

Although qi1 and qi2 serve for different objects, they indicate the latent
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features of the identical item, so they need to have the same intrinsic prop-

erties. Hence, a regularization term constrains these two latent feature

vectors as follows

(6.8)
1
2

n∑
i=1

∣∣∣∣qi1−qi2
∣∣∣∣2

F

Once the virtual coordinator has been modeled, the interactions between it

and the other group members need to be modeled. The virtual coordinator

plays a coordinating role in modeling each user’s preferences based on its

global perspective. That is, each user’s preferences are adjusted so that

subsequent predictions create a balance between each user and the entire

group. In order to model these interactions, we use r̃c,i to define another

similar representation of the virtual coordinator’s predictions as follows

(6.9) r̃c,i = b i1+pT
c qi1

where qi1 is the item-specific latent feature vector for making the indi-

vidual’s predictions in Eq. (6.3). This representation can be regarded as

the interactions between pc and qi1 in the latent feature space, which af-

fects qi1 with the virtual coordinator’s impact. In addition, a constraint is

placed on the two representations of the virtual coordinator’s predictions.

This constraint is defined as

(6.10)
1
2

n∑
i=1

(
r̂c,i − r̃c,i

)2

where the distance between these two representations should be as short

as possible because they have the same goal of modeling the virtual
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coordinator’s preferences. These two regularization terms are incorporated

into the loss function as

min
Θ

L= 1
2

m∑
u=1

n∑
i=1

δu,i
(
ru,i − r̂u,i

)2+ 1
2

m∑
u=1

n∑
i=1

δu,i
(
ru,i − r̂c,i

)2

(6.11)

+ λα

2

n∑
i=1

∣∣∣∣qi1−qi2
∣∣∣∣2

F + λα

2

n∑
i=1

(
r̂c,i − r̃c,i

)2

+ λ

2

( m∑
u=1

∣∣∣∣pu
∣∣∣∣2

F + ∣∣∣∣pc
∣∣∣∣2

F +
n∑

i=1

∣∣∣∣qi1
∣∣∣∣2

F +
n∑

i=1

∣∣∣∣qi2
∣∣∣∣2

F +
n∑

i=1
b2

i1+
n∑

i=1
b2

i2

)
where λα is a trade-off parameter to regulate the impact of above two

item-related regularization terms.

6.2.4 Trust-aware Group Recommendation with the

Virtual Coordinator

Trust is an important feature on social networks as it indicates the rela-

tionships between users. In practice, asymmetric trust is more general

than symmetric trust (Wang et al., 2017e). For example, one user following

another user on Twitter can be seen as a trust link between these two

users, but an asymmetric one, because the trust is not mutual. Several

studies on trust-aware recommendation for individuals have been con-

ducted (Ma et al., 2011; Guo et al., 2016a; Wang et al., 2017e), but, to date,

trust information has not been exploited in group recommender systems.

During the negotiation process, the coordinator needs to communicate

with group members, which means each individual is not only managed,
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they also have an impact on the coordinator. Based on the assumption that

the virtual coordinator can be affected by the group members, the impact of

each user is defined by their personal social influence. Determining a user’s

influence is similar to identifying the vital nodes in a complex network.

Neighborhood-based centralities, e.g., degree centrality, localRank, and

coreness, are widely used for identifying vital nodes because of their low

computational complexity (Lü et al., 2016). Here, we use degree centrality

to express the personal impact of every user on social networks, defined as

(6.12) dc(u)= ku

m−1

where the range of dc(u) is from 0 to 1, ku indicates the degree of user

u, and m−1 is the largest possible degree. Further, in a group, personal

influence is not absolute but rather relative. It depends on a comparison

with the influence held by other group members. Therefore, to properly

evaluate personal influence within a group, the degree centrality must be

normalized. The normalizing function is defined as

(6.13) su = dc(u)∑m
u=1 dc(u)

where su > 0 indicates user u’s personal influence, which is captured and

calculated by trust information. su = 0 is caused by dc(u)= 0, which means

user u does not have any trust links on the network. Hence, for a user

with no observable trust links, the value of personal influence is randomly

generated. In general, users with high personal influence, such as actors

or public figures, will be very active on social networks. Therefore, when

130



CHAPTER 6. TRUGRC: TRUST-AWARE GROUP RECOMMENDATION WITH
VIRTUAL COORDINATORS

dc(u) = 0, su is set as a random number r ∈ (0,0.5] because it is highly

likely that a user with no trust links will not have great influence. Thus,

su is altered as follows

(6.14) su =


dc(u)∑m

u=1 dc(u) ,dc(u)> 0

r ∈ (0,0.5],dc(u)= 0

With personal influence defined, each group member impacts the virtual

coordinator according to its influence level, as defined below

(6.15)
1
2

m∑
u=1

su
∣∣∣∣pu −pc

∣∣∣∣2
F

In addition, the interactions between two group members are modeled

based on their trust links on social networks. If user l follows user u, a

trust link tu,l between them is identified. This interaction is defined as

(6.16)
1
2

m∑
u=1

m∑
l=1

tu,l
∣∣∣∣pu −pl

∣∣∣∣2
F

Mathematically, Eq. (6.15) and Eq. (6.16) introduce two constraints into

the loss function that minimize the distance between two parameters.

Effectively, this forces the preferences of the two users to be close together.

This makes sense because each user wants the virtual coordinator to

represent its preferences better and one user will probably trust another

user with similar preferences. Therefore, Eq. (6.15) and Eq. (6.16) are

combined with Eq. (6.11) to generate the final loss function as follows

min
Θ

L= 1
2

m∑
u=1

n∑
i=1

δu,i
(
ru,i − r̂u,i

)2+ 1
2

m∑
u=1

n∑
i=1

δu,i
(
ru,i − r̂c,i

)2

(6.17)

131



CHAPTER 6. TRUGRC: TRUST-AWARE GROUP RECOMMENDATION WITH
VIRTUAL COORDINATORS

+ λα

2

n∑
i=1

∣∣∣∣qi1−qi2
∣∣∣∣2

F + λα

2

n∑
i=1

(
r̂c,i − r̃c,i

)2

+ λβ

2

m∑
u=1

su
∣∣∣∣pu −pc

∣∣∣∣2
F + λβ

2

m∑
u=1

m∑
l=1

tu,l
∣∣∣∣pu −pl

∣∣∣∣2
F

+ λ

2

( m∑
u=1

∣∣∣∣pu
∣∣∣∣2

F + ∣∣∣∣pc
∣∣∣∣2

F +
n∑

i=1

∣∣∣∣qi1
∣∣∣∣2

F +
n∑

i=1

∣∣∣∣qi2
∣∣∣∣2

F +
n∑

i=1
b2

i1+
n∑

i=1
b2

i2

)
where λβ is a trade-off parameter to regulate the impact of above two

trust-related regularization terms.

6.2.5 Learning and Prediction

To learn the parameters Θ of our proposed model in Eq. (6.17), we use

the gradient descent to reach a local minimization of the loss function.

Gradient descent is an effective way for minimization when objective

functions are differentiable and non-convex, and is also the most commonly

used algorithm in MF-based recommender systems (Koren et al., 2009;

Koren, 2010; Guo et al., 2016a, 2017a; Ma, 2013; Xiong et al., 2020). The

gradients of the parameters Θ are performed as follows.

∂L
∂b i1

=
m∑

u=1
δu,i

(
r̂u,i − ru,i

)+λα

(
r̃c,i − r̂c,i

)+λb i1

(6.18)

∂L
∂b i2

=
m∑

u=1
δu,i

(
r̂c,i − ru,i

)+λα

(
r̂c,i − r̃c,i

)+λb i2

∂L
∂pu

=
n∑

i=1
δu,i

(
r̂u,i − ru,i

)
qi1+λβsu

(
pu −pc

)+λβ

m∑
l=1

tu,l
(
pu −pl

)+λpu

∂L
∂qi1

=
m∑

u=1
δu,i

(
r̂u,i − ru,i

)
pu +λα

(
qi1−qi2

)+λα

(
r̃c,i − r̂c,i

)
pc +λqi1
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∂L
∂pc

=
n∑

i=1
δu,i

(
r̂c,i − ru,i

)
qi2+λα

(
r̂c,i − r̃c,i

)(
qi2−qi1

)+λβsu
(
pc −pu

)+λpc

∂L
∂qi2

=
m∑

u=1
δu,i

(
r̂c,i − ru,i

)
pc +λα

(
qi2−qi1

)+λα

(
r̂c,i − r̃c,i

)
pc +λqi2

The pseudocode for learning the parameters is provided in Algo-

rithm 6.1. The inputs include the user-item rating matrix R, the user-user

trust matrix T , the dimension of the feature space d, the regularization

parameters λ, λα and λβ, and the learning rate η. The parameters Θ form

the output of the algorithm.

Algorithm 6.1 Learning the parameters in TruGRC method.
Require: R, T , d, λ, λα, λβ, η
Ensure: Θ= {

b i1, b i2, pu, pc, qi1, qi2
}

1: Initialize the parameters Θ∼ N(0,0.01)
2: Calculate the personal influence su according to Eq. (6.14)
3: while L is not coveraged do
4: Calculate gradients according to Eq. (6.18)
5: b i1 ← b i1−η ∂L

∂bi1

6: b i2 ← b i2−η ∂L
∂bi2

7: pu ←pu −η ∂L
∂pu

8: qi1 ←qi1−η ∂L
∂qi1

9: pc ←pc −η ∂L
∂pc

10: qi2 ←qi2−η ∂L
∂qi2

11: end while
12: return Θ

Once the parameters Θ are optimized, each user’s predictions are

generated using Eq. (6.3) and the group’s predictions are generated using

Eq. (6.1). Note that, in this chapter, the average aggregation method has

been used as the aggregation function Φ(·). The list of recommendations
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for the whole group is then arranged using Eq. (6.2).

6.2.6 Complexity Analysis

Most of the computation complexity lies in optimizing the loss function

and calculating the corresponding gradients. The time to compute the loss

function L is O(2d |R|), where d is the dimension of feature space and

|R| is the number of observed records. The value for |R| should be much

smaller than the matrix cardinality because of the sparsity. Further, the

time to compute the gradients in Eq. (6.18) also needs to be considered.

The complexity of ∂L
∂pu

is O(d |R|+d |T |), and the other gradients have the

same complexity, i.e., O(d |R|). Because |T | is usually much smaller than

|R|, the overall computational complexity for each iteration is O(2d |R|).
It follows that the computational time of our model is linear with respect

to the number of observed records in the rating matrix and, therefore, has

the potential to be used with large-scale datasets.

6.3 Experimental Results

In this section, we introduce datasets, evaluation metrics, baselines and

parameter settings at first, and then compare our method with all the

baselines. Finally, we analyse the impact of parameters.
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6.3.1 Datasets and Metrics

We select two public available datasets collected from product review

websites: Ciao and Epinions to evaluate the proposed method. These

two datasets have been widely used in social recommendation (Xiong

et al., 2020; Tang et al., 2016b). Table 6.2 lists the statistics for these two

datasets. A five-fold cross-validation (Wang et al., 2017f) is utilized in our

experiments. Specifically, we randomly split each dataset into five folds. In

each iteration, four folds are used as the training set, with the remaining

fold treated as the testing set.

Table 6.2: Statistics of datasets.

Ciao Epinions

#User 2960 5155
#Item 4394 3432
#Rating 86,990 164,994
Rating sparsity 6.69×10−3 9.33×10−3

#Trust link 56,988 133,605

Our experiments focus on occasional groups where the members have

no explicitly shared preference relevance (Castro et al., 2017a). Occasional

groups are practical because they appear in many application scenarios,

such as recommendations for tour groups. Most previous studies have

paid attention to small groups that usually contain less than 20 members

(Castro et al., 2017b; Ortega et al., 2016; Kaššák et al., 2016). In these

situations, opinions are relatively easy to reach a consensus. However, it

is essential to assess the feasibility of mehtods in large groups. Therefore,
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we randomly form groups of different sizes from 10 to 50 with an interval

of 10 and test our proposed method on each group size.

Following previous studies (Ji et al., 2018; Ortega et al., 2016), four

common evaluation metrics are utilized in our experiments to evaluate

the proposed method and baselines, including precision (Ortega et al.,

2016), recall (Ji et al., 2018), F1 (Wang et al., 2017e), and mean reciprocal

rank (Wang et al., 2017f).

According to precision and recall, when the recommendation length is

L, then Pre@L and Rec@L are defined as

(6.19) Pre@L = 1
m

( m∑
u=1

Du (L)
L

)

(6.20) Rec@L = 1
m

( m∑
u=1

Du (L)
Cu (L)

)
where Du (L) denotes the number of recommended items collected by user

u and Cu (L) means the number of items collected in the test set.

F1 is a comprehensive metric, defined as

(6.21) F1@L = 2Pre@L×Rec@L
Pre@L+Rec@L

Mean Reciprocal Rank (MRR) is given by

(6.22) MRR = 1
m

(
m∑

u=1

∑
i∈C(u)

1
posu

i

)

where posu
i is the recommendation position of item i. A larger MRR value

means better performance.
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6.3.2 Baselines and Parameter Settings

To demonstrate the improvements made by the proposed method, we

compare its performance with several representative baselines. These

baselines span both similarity-based and matrix factorization-based group

recommendation models.

User-based CF with the averaging strategy (UCF-AVG): UCF-

AVG employs the user-based CF method (Herlocker et al., 1999) to make a

predicted score of each item for every user in the group. Then the average

aggregation function is used to generate a group recommendation score

for each item. Cosine measurement is used to estimate the similarity

between users.

User-based CF with the least-misery strategy (UCF-LM): Similar

to UCF-AVG, UCF-LM also adpots the user-based CF method to compute

estimated scores for items. However, we take the lowest predicted score

as the group recommendation score for every item across all users in the

least-misery strategy.

Matrix factorization with the averaging strategy (MF-AVG):

MF-AVG employs the popular MF model (Koren et al., 2009) to produce

individual recommendations. Then, we generate group recommendations

by the average aggregation function.

Matrix factorization with the least-misery strategy (MF-LM):

MF-LM also uses the MF model to make predictions for each group mem-

ber, but this model employs the least-misery strategy instead of the aver-
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aging strategy when aggregating the group recommendations.

After factorization approach (AF) (Ortega et al., 2016): AF com-

putes a group latent feature vector by combining all the user-specific

vectors of group members. Then, group recommendations are made for all

items through the group vector dot products with every item vector.

Before factorization approach (BF) (Ortega et al., 2016): BF mod-

els a group of users by building a virtual user that represents the item

preferences of the users in the group. The recommendations for the virtual

user are then used as the group recommendations through the MF model.

TruGRC: This is our proposed MF-based group recommendation

method as demonstrated in Figure 6.1. TruGRC method incorporates

trust information into group recommendation tasks and models a virtual

coordinator to make a balance of the preferences between each user and

the entire group.

Table 6.3: The parameter settings of MF-based methods.

Method Parameter Ciao Epinions Description

MF-AVG η 0.01 0.01 Learning rate
MF-LM λ 0.01 0.01 Avoiding over-fitting

AF
η 0.01 0.01 Learning rate
λ 0.01 0.001 Avoiding over-fitting

BF
η 0.001 0.001 Learning rate
λ 0.01 0.01 Avoiding over-fitting

TruGRC

η 0.001 0.001 Learning rate
λ 0.01 0.01 Avoiding over-fitting
λα 1 1 Controlling item-related regularization
λβ 0.01 0.001 Controlling trust-related regularization
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To propose an equitable comparison, the latent features are set to the

same dimension d = 10 for all MF-based methods. In addition, we adopt

the cross validation to determine the optimal parameter values of each

MF-based method in Ciao and Epinions datasets reported in Table 6.3

where MF-AVG and MF-LM share the same parameter settings, because

they are both based on the same MF model (Koren et al., 2009).

6.3.3 Performance Evaluation

Table 6.4 and Table 6.5 report the comparisons of Pre@5, Pre@10, Rec@5,

Rec@10, F1@5, F1@10 and MRR for the proposed TruGRC and all base-

line methods with the group sizes of 10 and 20 that are the most common

sizes in daily lives and widely chosen by previous studies (Wang et al.,

2016b; Castro et al., 2017b).

According to the results, TruGRC demonstrates the best performance

according to most metrics. Specifically, in Ciao, compared to BF, AF, MF-

AVG and MF-LM, the proposed TruGRC shows an improvement of 10%,

16%, 22% and 38% on Pre@10 and 13%, 15%, 22% and 26% on Rec@10

with a group size of 10. In addition, TruGRC also enhances F1@10 with

11% and 22% over BF and MF-AVG which are the most competitive meth-

ods in baselines. MRR is a comprehensive metric that tests the accuracy

of the whole recommendation list. TruGRC improves upon BF and MF-

AVG in this metric by 5% and 10%, respectively. Similar improvements

are observed with the group size of 20 in Ciao. In Epinions, MF-AVG
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Table 6.4: The comparisons between TruGRC and all baselines in Ciao
with the group sizes of 10 and 20.

Group size = 10 Pre@5 Pre@10 Rec@5 Rec@10 F1@5 F1@10 MRR

UCF-AVG 0.0078 0.0080 0.0064 0.0133 0.0070 0.0100 0.0439
UCF-LM 0.0073 0.0076 0.0062 0.0126 0.0067 0.0095 0.0407
MF-AVG 0.0135 0.0099 0.0115 0.0163 0.0124 0.0123 0.0565
MF-LM 0.0105 0.0088 0.0084 0.0158 0.0094 0.0113 0.0500
AF 0.0135 0.0104 0.0113 0.0173 0.0123 0.0130 0.0573
BF 0.0157 0.0110 0.0125 0.0176 0.0139 0.0135 0.0593
TruGRC 0.0160 0.0121 0.0137 0.0199 0.0147 0.0150 0.0620

Group size = 20 Pre@5 Pre@10 Rec@5 Rec@10 F1@5 F1@10 MRR

UCF-AVG 0.0057 0.0055 0.0050 0.0094 0.0054 0.0069 0.0323
UCF-LM 0.0047 0.0050 0.0042 0.0089 0.0044 0.0089 0.0296
MF-AVG 0.0229 0.0182 0.0213 0.0340 0.0221 0.0237 0.0841
MF-LM 0.0180 0.0139 0.0165 0.0250 0.0172 0.0179 0.0742
AF 0.0224 0.0169 0.0205 0.0305 0.0214 0.0218 0.0814
BF 0.0244 0.0184 0.0213 0.0329 0.0228 0.0236 0.0881
TruGRC 0.0255 0.0194 0.0233 0.0356 0.0244 0.0251 0.0940

has the best performance with the group size of 10 on Pre@5 and F1@5

because consistency is easy to achieve with the average aggregation in

a small group size and a short recommendation list. Beyond these two

metrics, TruGRC obtains the best overall results in comparison to the

other baselines. With the group size of 20, BF surpasses MF-AVG in most

metrics, which means that BF is more suitable for larger groups. Even

so, TruGRC shows further improvements over BF at 5%, 8% and 6% on

Pre@10, Rec@10 and F1@10. Fewer improvements are found with Epin-

ions than Ciao because the Epinions dataset has more users, which leads

to a higher probability of preference conflicts in occasional groups.

We also evaluate TruGRC with other group sizes, ranging from 10 to
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Table 6.5: The comparisons between TruGRC and all baselines in Epinions
when the group sizes are 10 and 20.

Group size = 10 Pre@5 Pre@10 Rec@5 Rec@10 F1@5 F1@10 MRR

UCF-AVG 0.0075 0.0076 0.0062 0.0123 0.0068 0.0093 0.0378
UCF-LM 0.0078 0.0076 0.0062 0.0120 0.0069 0.0093 0.0381
MF-AVG 0.0092 0.0070 0.0081 0.0124 0.0087 0.0090 0.0433
MF-LM 0.0073 0.0061 0.0067 0.0100 0.0070 0.0076 0.0393
AF 0.0084 0.0072 0.0074 0.0125 0.0078 0.0092 0.0426
BF 0.0084 0.0069 0.0076 0.0114 0.0080 0.0086 0.0408
TruGRC 0.0091 0.0076 0.0081 0.0133 0.0086 0.0097 0.0440

Group size = 20 Pre@5 Pre@10 Rec@5 Rec@10 F1@5 F1@10 MRR

UCF-AVG 0.0045 0.0060 0.0036 0.0104 0.0040 0.0076 0.0330
UCF-LM 0.0052 0.0064 0.0042 0.0104 0.0046 0.0079 0.0331
MF-AVG 0.0123 0.0103 0.0099 0.0180 0.0110 0.0131 0.0564
MF-LM 0.0105 0.0089 0.0090 0.0149 0.0097 0.0112 0.0499
AF 0.0110 0.0097 0.0090 0.0163 0.0099 0.0122 0.0541
BF 0.0128 0.0102 0.0107 0.0169 0.0117 0.0127 0.0576
TruGRC 0.0128 0.0107 0.0108 0.0182 0.0117 0.0135 0.0584

50. Figure 6.2 reports the results for all four metrics with all methods in

Ciao. It is interesting to note that for UCF-AVG and UCF-LM, the per-

formance declines as the group size increases, which means these kinds

of methods are not suitable for scenarios with large groups. By contrast,

the MF-based methods indicate much better performance in large group

scenarios. The difference in accuracy for each MF-based method is not

obvious, when the group size is small. However, these differences become

more distinct as the group size grows. Although TruGRC yields to BF on

Pre@5 and F1@5 with the group size of 30, it produces the best perfor-

mance for most other metrics at different group sizes. In terms of MRR,

TruGRC consistently demonstrates the best results. Specifically, it shows
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Figure 6.2: The comparisons on Pre@5, Rec@5, F1@5 and MRR with
different group sizes in Ciao.

an improvement of 8% and 14% over BF and MF-AVG with the group

size of 40 and an improvement of 8% and 17% with the group size of 50.

Similar results are apparent in Figure 6.3. Compared to BF and MF-AVG,

TruGRC enhances MRR by 6% and 9% with the group size of 40 and 50,

respectively. These results support TruGRC’s ability to address conflicts

and generate consensus recommendations with large groups.
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Figure 6.3: The comparisons on Pre@5, Rec@5, F1@5 and MRR with
different group sizes in Epinions.

To assess recommendation length, we fix the group size at 20 and vary

recommendation length from 5 to 50 in steps of 5 and test each method.

Figure 6.4 and Figure 6.5 report the comparisons on precision, recall,

and F1 in both Ciao and Epinions. From these two figures, we observe

that the accuracy of BF declines with the recommendation length grows,

which means BF prioritizes the top items in the recommendation list.
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Figure 6.4: The comparisons on Pre@5, Rec@5 and F1@5 with different
recommendation length in Ciao.

Figure 6.5: The comparisons on Pre@5, Rec@5 and F1@5 with different
recommendation length in Epinions.

This means BF has a poor ability to generate long recommendation lists.

In comparison, AF’s performance overtakes the other baselines as the

recommendation list becomes longer. Overall, the differences between

each method’s performance are reduced as the recommendation length

increases. However, TruGRC still shows the better performance than AF,

with a respective improvement in terms of Pre@50, Rec@50 and F1@50

by 7%, 6% and 7% in Ciao, and 2%, 3% and 2% in Epinions. Based on these

combined experimental results, TruGRC demonstrates superior accuracy
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with both different group sizes and different recommendation list lengths.

6.3.4 The Impact of Parameters

TruGRC contains three parameters, i.e., λ, λα and λβ. To determine these

values for each dataset, we verify them in terms of MRR, and tune

each parameter in the range
{
10−3, 10−2, 10−1, 100, 101} while fixing the

other two parameters. The results are reported in Figs. 6.6 and 6.7. The

parameter λ avoids over-fitting, which should be very small in general,

e.g. 0.001 or 0.01 (Guo et al., 2016a; Pan and Ming, 2017). The two figures

show that TruGRC produces the best performance when λ= 0.01 in Ciao

and λ= 0.001 in Epinions, which is reasonable.

Figure 6.6: The impact of parameters λ, λα and λβ on MRR in Ciao.

The parameter λα controls the importance of the item-related and vir-

tual coordinator-related regularization terms. The results clearly indicate

that a proper value, i.e., λα = 1, can improve the recommendation perfor-

mance in these two datasets and also demonstrate that the regularization

terms in Eq. (6.8) and Eq. (6.10) are very helpful to our model. The pa-
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Figure 6.7: The impact of parameters λ, λα and λβ on MRR in Epinions.

rameter λβ regulates the trust-related regularization terms. The optimal

values are 0.01 and 0.1 for Ciao and Epinions, respectively. When tuning

this parameter, the performance changes significantly in Epinions com-

pared to Ciao because the Epinions dataset contains more observed trust

links, which means personal influence can be calculated more accurately

in this dataset.

6.4 System Architecture and Potential

Applications

Aiming to illustrate how to make group recommendations, we design

an architecture of the proposed trust-aware group recommender system

shown in Figure 6.8. There are three components in our designed system,

including a system interface, a data server and a group recommender

engine.

In the system interface, users in each group can interact with the
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Figure 6.8: The architecture of our designed trust-aware group recom-
mender system. This system includes three components, i.e., a system
interface, a data server and a group recommender engine.

system through web-based interfaces, e.g., websites. Each user’s behav-

iors on websites indicate user’s personalized preferences, such as rating

items and building friendship with other users. A data collector extracts

user preference data and historical browsing information from web-based

interfaces, and then a data cleanser is arranged to find out useful data

and transform it into structural data, e.g., XML.

The data server is responsible for storing user preference data and

divides data into three categories that include rating data, social data and

group data. Note that, the data server may obtain user preference data
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from the system interface more than once in order to achieve comprehen-

sive user preferences.

User preference data is regarded as input for the group recommender

engine from the data server. A data filter is deployed to eliminate negative

feedback in rating data, because we only consider positive feedback in the

proposed TruGRC method. Rating data is transformed to rating vectors

by an data converter, and then transfers into the recommender server.

The proposed TruGRC method is applied in a recommender server which

models overall group preferences and makes group recommendations with

integrated rating, social and group data. Finally, group recommendation

results are reported to web-based interfaces where users can view them.

The trust-aware group recommender system can be used to generate

recommendations in several group activity scenarios.

1) Tourism recommendation is a typical application scenario of group

recommender systems. All members in a touring party only can select a

series of unique destinations.

2) Restaurant recommendation. A group of users only can choose

one restaurant for dining, which accords with group recommendation

situations.

3) Movie recommendation. If some friends want to see a movie together,

these friends are regarded as a specific group and a group recommender

system can be used to make recommendations for them.
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6.5 Summary

Group recommendation is a significant issue in many domains based on

group activities. This chapter proposes a trust-aware group recommen-

dation method, called TruGRC, that integrates benefits from both the

result and the profile aggregations to increase the satisfaction rate of

group recommendation. A virtual coordinator provides a global view of the

overall preferences for a group of users. This coordinator interacts with

each group member to relieve conflicting personal preferences within the

group. The explicit trust relations within social networks are leveraged to

calculate the personal influence of group members, which is then used to

model the impact between each group member and the virtual coordinator.

With this information, the virtual coordinator can easily generate group

preferences using the average aggregation method. The results from ex-

periments on two benchmark datasets indicate TruGRC outperforms the

baselines in terms of most metrics with a range of different group sizes.
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7
CONCLUSION AND FUTURE STUDY

7.1 Conclusion

Internet technology has completely changed people’s daily lives. Internet

information platforms, such as e-commerce websites and social networks

have risen rapidly, launching people into the information era. However,

with the growth in data, problems with information overload have be-

come increasingly serious. As an effective tool for solving information

overload, recommender systems have received extensive attention from

both academia and industry. Over the past two decades, research into rec-

ommender systems has seen significant progress, and many e-commerce

websites have installed recommender systems.

However, among the challenges facing recommender systems today,
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user behaviors on the Internet have become more diverse, such that it

is now much harder to accurately capture user preferences. Addition-

ally, some challenges, such as data sparsity and the accuracy-diversity

dilemma, are still hindering the develop of recommender systems. This

thesis is motivated by the challenges and practical new trends of recom-

mender systems. To this end, this thesis presents several novel recom-

mendation methods based on diffusion dynamics and machine learning

for both individual and group recommendation. The main contributions of

this study are summarized as follows.

1) To meet RO1, this study proposes a mixed similarity diffusion model

called MSD based on a bipartite network that forces a balance between

accuracy and diversity in the recommendations generated.

A two-step resource-allocation process integrates both cosine similar-

ity with explicit feedback and a resource-allocation index with implicit

feedback into the diffusion process. Further, the approach reveals the

impact of node degrees in a bipartite network, which has a significant

influence on the accuracy and diversity of the recommendation results. A

parameter-based method is developed to control the impact of the diffusion

process and strike a balance between accuracy and diversity. Extensive

experiments with real-world datasets show that MSD simultaneously

enhances both accuracy and diversity.

2) To meet RO2, a diffusion-based recommendation method called

DBRT is developed. The method works with trust relations on a tripartite
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network to introduce social information into the diffusion process.

The resource-allocation process is extended from a bipartite network to

a tripartite network and the trust diffusion process is simulated through

a user-user trust network to introduce explicit trust relations into the

resource-allocation process. In addition, implicit trust between users is

calculated according to a cosine index on the assumption that users are

likely to trust other users if they are highly similar. Experiments show

that considering both explicit and implicit trust in the diffusion process

can improve the performance of recommendations with social networks.

3) To meet RO3, a model-based recommendation method called REOD

is designed. REOD applies opinion dynamics to improve matrix factoriza-

tion for social recommendation tasks.

Both the dynamic processes of real society and the rating predictions

of recommender systems are considered in the framework. The impact of

neighbors on user opinions is characterized by evolutionary game theory

and the payoffs of strategies during an interaction are associated with

latent item factors and observed ratings. Users update their opinions

according to the payoff matrix of the game during matrix factorization

training. When users make decisions on items, they are affected by others,

so the opinions of others contribute to the ratings. Experiments reveal that

incorporating opinion dynamics into the social physics of recommender

systems can improve performance.

4) To meet RO4, a trust-aware group recommendation model called
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TruGRC is devised. TruGRC introduces the concept of virtual coordinators

to relieve the issue of preference conflicts in group recommender systems.

The framework’s design takes advantages the benefits of both result

and profile aggregation strategies. Additionally, it considers the process

of group recommendation as a negotiation in which every member of

the group hopes the group’s preferences will match their own personal

preferences as much as possible. Thus, the virtual coordinator provides

a global view of all user preferences and harmonizes their benefits by

negotiating with them. Extensive experiments show that the balanced

recommendation results created by the TruGRC can meet most user

requirements at a range of group sizes.

7.2 Future Study

Although this thesis contains several contributions to the advancement of

recommender systems, there are still many improvements that need to be

made in special recommendation scenarios. Hence, the following research

directions would serve as worthwhile future work.

1) Recommendation with deep learning. Deep learning, one of the most

popular recent directions in computer science, has had a disruptive impact

on machine learning. Deep learning has some advantages when it comes

to feature representation in that it can extract knowledge from features

at a higher level and with greater dimensionality. Previously, applying
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deep learning to recommender systems has been limited by a lack of data.

However, as e-commerce sites and social networks advance, increases

in the amount of data available are providing opportunities to apply

deep learning to recommender systems. By leveraging the outstanding

feature representation capabilities of deep learning, it may be possible to

drastically improve recommender systems.

2) Recommendation with transfer learning. Transfer learning is a

way to improve learning tasks by transferring knowledge from a related

domain(s) to a target domain. As mentioned, data sparsity is a long-

term problem in recommender systems. However, transfer learning could

provide an effective solution for alleviating this problem. In addition, e-

commerce applications, such as Douban, include multiple domains, where

users can interact in many fields at the same time, including movies,

books and music. Through transfer learning, behavioral user data could

be gathered from multiple domains, and knowledge could be extracted to

complete recommendation tasks in the target domain.

3) Recommendation with the features of time series. User preferences

inevitably change over time. Hence, time series features could be intro-

duced into recommender systems to model patterns of user preference

drift. Moreover, in some scenarios, such as streaming media and web

sessions, time series features are a crucial part of the streaming or session

data. As a result, it would be meaningful to consider the features of time

series in recommender systems.
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