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Abstract

In this dissertation, we present improvements to data structures, and
the algorithms upon them, for points-to analysis. Our focus is mainly on
flow-sensitive analysis but our techniques can either be applied to other
analyses or used in analyses which combine flow-sensitivity with other
sensitivities. For staged flow-sensitive analysis (SFS), we introduce a
pre-analysis (meld versioning) where we determine when it is possible
to reuse the points-to sets of individual address-taken variables at differ-
ent program points, then perform the main analysis using this informa-
tion. Meld versioning is also amenable to parallelisation with minimal
effort. For points-to sets, we introduce an improved bit-vector stripping
both leading and trailing zero-words, then use that to aid in improving
the object-to-identifier mapping required to use bit-vectors as points-to
sets. We frame this as an integer programming problem, yielding an
optimal solution but with impractical performance, and so we develop
a more approximate (yet extremely fast) method based on hierarchical
clustering. We also describe hash consing and memoisation, along with
some optimisations which would otherwise be impractical, for points-
to sets. We have implemented our techniques in open source points-to
analysis framework SVF, and upon evaluating with 12 open source pro-
grams, we find, on average, a speedup of almost 6x and a reduction in

memory usage of more than 3.97x when compared with a baseline SFS.
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