University of Technology Sydney
School of Computer Science
Faculty of Engineering and Information Technology

Dissertation submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

under principal supervisor Dr. Yulei Sui and co-supervisor Dr. Shiping Chen

Data Structures for Points-To
Analysis

Mohamad Barbar

October 2022

Certificate of Original Authorship

I, Mohamad Barbar, declare that this thesis, is submitted in ful-
filment of the requirements for the award of Doctor of Philos-
ophy, in the School of Computer Science, Faculty of Engineer-
ing and Information Technology at the University of Technology
Sydney.

This thesis is wholly my own work unless otherwise refer-
enced or acknowledged. In addition, I certify that all information
sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at

any other academic institution.
This research is supported by the Australian Government Re-
search Training Program.

Production Note:
Signature: Signature removed prior to publication.

Date: 06/10/2022

iv

Preface

With the end of my candidature, more than 4 years later, it is time
to collect my work in one place. I hope it is of use to some.

Firstly, major thanks is due to my family who were patient with me
during my candidature. 4 years is not a short period of time.

I also thank my principal supervisor, Dr. Yulei Sui, for the many
long hours of discussion on both the big picture and the smallest of de-
tails. Certainly, working with Yulei got me started with static analysis,
and it is an area I would like to continue hacking on. The opportunity
to work on SVF has also been great as my first prolonged exposure to
a large codebase where performance really matters. I also thank my
co-supervisor, Dr. Shiping Chen, and CSIRO’s Data61 as a whole, for
supporting my research with the Data61 scholarship.

My thanks also goes to my peers at UTS who kept me company, par-
ticularly before moving to work-from-home at the start of the pandemic;
Omar, Mingshan, Ayman, Joakim (who also inspired some of the work in
Chapter 4), Ibraheem, Yahya, and Akram. I also thank the Program Anal-
ysis Group, especially Yanxin and Yuxiang with whom I started around
the same time, though it was unfortunate meetings had to move online.
I must also say that all my interactions with administration at UTS has
been pleasant, and express my thanks in that direction. At CSIRO, I also
thank Ejaz for organising seminars allowing for some nice exchange of
ideas. Unfortunately, that too was cut short by the pandemic.

Finally, most of all, I give thanks to the All-Wise, the All-Knowing
and hope for His forgiveness for my many shortcoming during this can-

didature.

MoOHAMAD BARBAR
Sydney, Australia
October 2022

vi

Abstract

In this dissertation, we present improvements to data structures, and
the algorithms upon them, for points-to analysis. Our focus is mainly on
flow-sensitive analysis but our techniques can either be applied to other
analyses or used in analyses which combine flow-sensitivity with other
sensitivities. For staged flow-sensitive analysis (SFS), we introduce a
pre-analysis (meld versioning) where we determine when it is possible
to reuse the points-to sets of individual address-taken variables at differ-
ent program points, then perform the main analysis using this informa-
tion. Meld versioning is also amenable to parallelisation with minimal
effort. For points-to sets, we introduce an improved bit-vector stripping
both leading and trailing zero-words, then use that to aid in improving
the object-to-identifier mapping required to use bit-vectors as points-to
sets. We frame this as an integer programming problem, yielding an
optimal solution but with impractical performance, and so we develop
a more approximate (yet extremely fast) method based on hierarchical
clustering. We also describe hash consing and memoisation, along with
some optimisations which would otherwise be impractical, for points-
to sets. We have implemented our techniques in open source points-to
analysis framework SVF, and upon evaluating with 12 open source pro-
grams, we find, on average, a speedup of almost 6x and a reduction in

memory usage of more than 3.97x when compared with a baseline SFS.

viii

Publications

Mohamad Barbar, Yulei Sui, and Shiping Chen. 2020. Flow-Sensitive

Type-Based Heap Cloning. In 34th European Conference on Object-
Oriented Programming (ECOOP ’18, Vol. 166). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Germany, 24:1-24:26. https://doi.org/10.
4230/LIPIcs.ECO0P.2020.24

Mohamad Barbar, Yulei Sui, and Shiping Chen. 2021. Object Versioning
for Flow-Sensitive Pointer Analysis. In 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO *21). IEEE Com-
puter Society, USA, 222-235. https://doi.org/10.1109/CG051591.
2021.9370334

Mohamad Barbar and Yulei Sui. 2021. Hash Consed Points-To Sets. In
International Static Analysis Symposium (SAS ’21). Springer, Germany,
25-48. https://doi.org/10.1007/978-3-030-88806-0_2

Mohamad Barbar and Yulei Sui. 2021. Compacting Points-to Sets through
Object Clustering. Proceedings of the ACM on Programming Languages

5, OOPSLA, Article 159 (Oct. 2021), 27 pages. https://doi.org/10.
1145/3485547

https://doi.org/10.4230/LIPIcs.ECOOP.2020.24
https://doi.org/10.4230/LIPIcs.ECOOP.2020.24
https://doi.org/10.1109/CGO51591.2021.9370334
https://doi.org/10.1109/CGO51591.2021.9370334
https://doi.org/10.1007/978-3-030-88806-0_2
https://doi.org/10.1145/3485547
https://doi.org/10.1145/3485547

Colophon

This dissertation was created using XeLaTeX. The Maggi Memoir
Thesis template, originally by Federico Maggi and later modified by Vel
from LaTeXTemplates.com, is used as a base after some slight modifi-
cations. The body is set 10pt with Linux Libertine O primarily. Linux
Biolinum O, Latin Modern Math, and Latin Modern Mono make occa-
sional appearances. Graphs, in the graph theoretical sense, are drawn
with TikZ/PGF, tables use the booktabs package, and the single line
graph in this dissertation is drawn with Matplotlib (DejaVu Sans on the
axes).

LaTeXTemplates.com

Contents

List of Figures xvi
List of Tables xviii

List of Acronyms xxi

1 Introduction 1

1.1 Contributions 3

2 Background 5

2.1 Program Representation 5

2.2 Inclusion-Based Points-To Analysis 7

221 BasicDefinition L. 9

2.2.2 Field-Sensitivity 10

2.3 Flow-Sensitive Inclusion-Based Points-To Analysis. 12

2.3.1 BasicDefinition L. 12

2.3.2 Staged Flow-Sensitive Analysis 14

24 Benchmarks 18

3 Object Versioning 21

3.1 Motivating Example L oL, 22

3.2 MeldLabelling 25

3.3 Versioning Objects 28

3.3.1 Preversioning 29

3.3.2 Meld Versioning L 32

3.4 Flow-Sensitive Points-To Analysis with Versioned Objects . . 33

3.5 Efficient Versioning L oL 36

3.5.1 Per-Object Versioning 36

xii

CONTENTS

5

3.6

3.7
3.8

4.1

4.2

4.3

44

3.5.2 o0-SVFGIsomorphism
3.5.3 Foregoing Indirect Value-Flow Edges
3.54 Storing Fewer Versions
3.5.5 Parallelisation
Evaluation
361 Time o
3.6.2 MemoryUsage
3.6.3 Multithreading
RelatedWork
Conclusion

Compacting Points-To Sets
Representing Points-To Sets as Bit-Vectors
41.1 Contiguous and Sparse Bit-Vectors
412 CoreBit-Vector L.
Compacting Points-ToSets
4.2.1 Integer Programming Formulation
4.2.2 Hierarchical Clustering
423 Clustering Objects
424 More Efficient Region-Based Clustering
4.2.5 Word-Aligned Identifier Mapping
Evaluation
43.1 Linkage Criteria and Required Words
432 Time oo oo
433 Memory oo e
Related Work
Conclusion L e

4.5

Hash Consed Points-To Sets

5.1
5.2

5.3

Motivating Example oL L.

Approach .

5.2.1 Hash Consed Points-ToSets
5.2.2 Exploiting Set Properties

Evaluation

5.3.1 Flow-Insensitive Analysis
53.2 VSES

5.3.3 Effect of Preemptive Memoisation.

xiii

38
38
39
40
40
42
42
43
44
45

47
49
50
53
57
57
60
63
65
67
69
70
71
72
72
73

xiv CONTENTS

54 RelatedWork.

55 Conclusion

6 Conclusion
6.1 Applying the Techniques in this Dissertation Together
6.2 SUMMAIY v v v vt e e e e e
63 FutureWork

Bibliography

91
91
93
94

95

List of Figures

2.1

2.2

2.3

24

2.5

2.6

3.1
3.2
33

34

3.5

3.6
3.7
3.8

3.9

Domains our analysed programs operateon.
Instructions we define our analysesupon.
Inference rules for a basic inclusion-based points-to analysis. . . .
Modifications and additions to the inference rules in Figure 2.3 to

allow for field-sensitivity.

Inference rules for a flow-sensitive field-sensitive inclusion-based

points-to analysis. L L Lo

Inference rules for the main phase of staged flow-sensitive analysis
(SES). . o

An example motivating the effectiveness of object versioning.
Meld labelling process. k,, is the label of noden.
An example of meld labelling. Patterns are labels and the meld
operator ¢ combines them. The blank pattern is the identity.

The sparse value-flow graph (SVFG) from the motivating example
after the preversioning phase. Versions introduced in this phase
are|boxed |
Preversioning inference rules. nv(o) returns a new version for
o and pt®(p) is the points-to set of p according to the auxiliary
analysis.
An example SVFG involving two objects,aand b.
Inference rules for meld versioning.
The SVFG from the motivating example after being versioned.

Consumed/yielded versions changed during meld versioning are

Inference rules for the new main phase flow-sensitive analysis in
VSES.

xvi

11

LIST OF FIGURES

3.10

3.11
3.12

4.1

4.2

5.1

5.2

Versioning inference rules using our (qualified) strongly connected
components. L o
Inference rule to determine version reliance.
Inference rule modifications from the main analysis rules in Fig-
ure 3.9 to account for the introduction of version reliances and

the removal of indirect value-flow edges in the SVFG.

Agglomerative clustering process (b) of coordinate data (a) and
the resulting dendrogram (c).

Memory used to represent various (condensed) distance matrices.

Example program fragment in (a), constraints generated for flow-
insensitive analysis in (b), operations performed to fulfil the con-
straints in (c), and final results in (d). Initially, we assume pt(p) =
{01}, pt(q) = {0y}, pt(r) = {o03,04}, and remaining points-to
sets are empty. Duplicate points-to sets and operations are high-
lightedin grey
Global pool of points-to sets in (a), the union operations table
in (b), and the result in (c) using references instead of concrete

points-to sets for the analysis in Figure 5.1.

xvii

37
38

39

81

List of Tables

2.1
2.2

3.1
3.2
33

4.1

4.2
4.3

4.4

5.1

5.2

5.3

Variable and SVFG statistics for our benchmark programs.

Information about our benchmark programs.

Time taken (s) and memory usage (GB) of SFS and VSFS.
Time (s) breakdown for VSFS.

Versioning (and total) time (s) for VSFS when versioning is per-
formed with 1,2, and 4 threads.

Time taken (s) and memory usage (GB) for VSFS using standard
bit-vectors and core bit-vectors. L.
Region statistics for our benchmark programs.
Number of words required (using core bit-vectors) in the theo-
retical best case, with the original mapping, with the mappings
produced by clustering using the single, average, and complete
linkage criteria, and the improvement versus the original map-
ping. The bolded value represents the mapping predicted to be
best after the auxiliary analysis, and this is what is compared in
thefinalcolumn. Lo L.
Time taken (s) and memory usage (GB) for VSFS (using core bit-

vectors) without and with a mapping produced by clustering. . . .

Statistics on prevalence of duplicate points-to sets in our bench-
mark programs. L
Time taken (s) and memory usage (GB) for flow-insensitive points-
to analysis without and with hash consed points-to sets.
The number of concrete, property, lookup, and preemptive unions
for flow-insensitive analysis (and the proportion of the total in

parentheses).

71

LIST OF TABLES xix

5.4 Time taken (s) and memory usage (GB) for VSFS without and with
hash consed points-tosets. 87
5.5 The number of concrete, property, lookup, and preemptive unions

for VSFS (and the proportion of the total in parentheses). 87

6.1 Time taken (s) and memory usage (GB) for SFS (with standard bit-
vectors) and all of our techniques combined: VSFS, efficient ver-
sioning (4 threads), core bit-vectors, an object-to-identifier map-

ping produced through clustering, and hash consed points-to sets. 92

List of Acronyms

BDD binary decision diagram L. 47
DUG def-usegraph. 15
GLLVM Whole Program LLVMinGo 18
ICFG interprocedural control-flow graph 14
IP integer programming oL 57
IR intermediate representation 5
ISA instruction set architecture 47
OOM outof memory 20
PAG pointer assignment graph oL L. 18
SFS staged flow-sensitive analysis, xvi
SSA static single assignmento 6
STL Standard Template Library 18
SVFG sparse value-flow graph xvi
VSFS versioned staged flow-sensitive analysis 3

xxi

	Title Page
	Certificate of Original Authorship
	Preface
	Abstract
	Publications
	Colophon
	Contents
	List of Figures
	List of Tables
	List of Acronyms

