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Abstract

In this dissertation, we present improvements to data structures, and
the algorithms upon them, for points-to analysis. Our focus is mainly on
flow-sensitive analysis but our techniques can either be applied to other
analyses or used in analyses which combine flow-sensitivity with other
sensitivities. For staged flow-sensitive analysis (SFS), we introduce a
pre-analysis (meld versioning) where we determine when it is possible
to reuse the points-to sets of individual address-taken variables at differ-
ent program points, then perform the main analysis using this informa-
tion. Meld versioning is also amenable to parallelisation with minimal
effort. For points-to sets, we introduce an improved bit-vector stripping
both leading and trailing zero-words, then use that to aid in improving
the object-to-identifier mapping required to use bit-vectors as points-to
sets. We frame this as an integer programming problem, yielding an
optimal solution but with impractical performance, and so we develop
a more approximate (yet extremely fast) method based on hierarchical
clustering. We also describe hash consing and memoisation, along with
some optimisations which would otherwise be impractical, for points-
to sets. We have implemented our techniques in open source points-to
analysis framework SVF, and upon evaluating with 12 open source pro-
grams, we find, on average, a speedup of almost 6× and a reduction in
memory usage of more than 3.97× when compared with a baseline SFS.
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Introduction 1

Increasingly, due to its cost, flexibility, and availability, software has been
replacing or complementing systems traditionally developed or performed
by others means such as electronics, mechanical tools, and humans. With
such an ever growing reliance, software quality (along dimensions such as
performance, reliability, and security) is non-negotiable. Unfortunately, as
programs grow and become more complex, it becomes increasingly difficult
for programmers to write software that performs well and is free of defects.
Program analysis promises to help mitigate both these difficulties and has
thus become more attractive.

Program analysis may be static or dynamic, that which does not run the
program under analysis and that which does. Static analysis may be further
divided into a myriad of analyses, of them, pointer analysis. Even further,
pointer analysis may be divided into alias analysis that answers queries such
as “May/must pointers 𝑝 and 𝑞 point to the same memory location at run-
time?” and points-to analysis that answers queries such as “Which memory
locations may pointer 𝑝 point to at runtime?”. In this dissertation, we focus
on whole program points-to analysis where we analyse the entire program
at hand though some techniques can also be applied to other forms such as
demand-driven analysis.

The result of points-to analysis is a points-to set containing abstract mem-
ory objects (representing a set of actual runtime memory locations) for each
pointer. Ideally, an analysis is both sound, in that no objects are missing from
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1. IntRoduction

points-to sets, and precise, in that no spurious objects appear in points-to sets,
but this is exceedingly difficult. Typically, we build off of a sound base, sub-
ject to some soundiness [Livshits et al., 2015], and gradually add precision as
we discover new ways to scale the resulting more expensive analyses.

Various sensitivities form the main dimensions of precision in points-to
analysis. For example, an analysis could be field-sensitive, meaning fields of
objects are treated separately to the objects they are derived from, context-
sensitive, meaning calling context is considered, flow-sensitive, meaning the
control-flow of the program is taken into account rather than ignored, and
more. In this dissertation, we largely focus on flow-sensitive analysis but the
same techniques can either be applied to analyses of other sensitivities or
used when mixing flow-sensitivity with other sensitivities.

Points-to analysis can support a variety of clients including memory error
detection [Livshits and Lam, 2003; Yan et al., 2018], concurrency bug detec-
tion [Chen et al., 2020; Pratikakis et al., 2006], typestate verification [Fink et al.,
2008;Wang et al., 2020], control-flow integrity [Fan et al., 2017; Farkhani et al.,
2018], symbolic execution [Trabish et al., 2018, 2020], code embedding [Sui
et al., 2020; Cheng et al., 2021], and compiler optimisation [Le et al., 2005;
Hirzel et al., 2007]. With such a wide ranging need for points-to analysis, per-
formance in both time and space is paramount. Imprecise analyses are gener-
ally performant enough but these clients sometimes benefit from the precision
afforded by less scalable, more precise analyses [Hind and Pioli, 1998; Ghiya
et al., 2001; Guyer and Lin, 2005; Lhoták and Hendren, 2006; Fink et al., 2008;
Chang et al., 2008].

Modelling aspects of program execution more precisely requires more
elaborate data structures that may be costly to store and operate on (e.g., a
flow-sensitive analysis may require a control-flow graph). This is in addition
to the increased number of points-to sets introduced and previously unneeded
bookkeeping now required. Thus, in this dissertation, we present new meth-
ods improving the data structures, and algorithms upon them, used to per-
form points-to analysis—with no loss of sound(i)ness or precision—with the
aim of reducing both the time and space needed to perform points-to analysis.

First, after some background on points-to analysis, we discuss improve-
ments to staged flow-sensitive analysis to reduce the number of points-to
sets stored and points-to set propagations by performing a pre-analysis, meld
versioning. Meld versioning versions address-taken objects allowing for mul-
tiple points-to sets of individual such objects to be effectively merged. We

2



1.1. Contributions

also introduce parallelisation into the pre-analysis at almost no implementa-
tion complexity. Then, we turn our focus to more fundamental data struc-
tures: the bare points-to sets themselves. We discuss a bit-vector represen-
tation, the core bit-vector, which strips both trailing and leading zero-words
and then optimise the object-to-identifier mapping required to use bit-vectors
as points-to sets. First, we formulate this problem as one solved by integer
programming, and then, since it is not performant enough, apply a more ap-
proximate solution that is still effective, but extremely fast, built upon hierar-
chical clustering. Before finally going over future work and concluding, we
discuss the application of hash consing and memoisation to the points-to sets
and their operations, including some optimisations which would otherwise
be too expensive without hash consing.

1.1 Contributions

What follows are the contributions this dissertation makes.
In Chapter 3 [Barbar et al., 2021]:

• The versioning of address-taken objects to group points-to sets of in-
dividual such objects found to be equivalent through a pre-analysis
(meld versioning) in versioned staged flow-sensitive analysis (VSFS), a
new flow-sensitive analysis building on staged flow-sensitive analysis
(SFS), which uses those versions.

• Optimisations to the versioning phase of VSFS, including simple to im-
plement scalable parallelisation (previously unpublished).

In Chapter 4 [Barbar and Sui, 2021a]:

• The core bit-vector, a bit-vector representation that strips both leading
and trailing zero-words.

• An integer programming formulation to produce an optimal object-to-
identifier mapping for the auxiliary analysis of a staged analysis which
in turn can be used for the main phase of such an analysis.

• A more approximate, yet far more efficient, method of achieving a good
object-to-identifier mapping utilising hierarchical clustering.

3



1. IntRoduction

In Chapter 5 [Barbar and Sui, 2021b]:

• A description of hash consing and memoisation for points-to sets and
their operations, along with some optimisations which would other-
wise be inefficient.

And overall:

• An implementation of VSFS and associated versioning optimisations,
the core bit-vector, the clustering-driven approach to producing a good
object-to-identifiermapping, and hash consing andmemoisation of points-
to sets (and associated optimisations), in open source points-to analysis
framework SVF.
Available upstream at https://github.com/SVF-Tools/SVF.

• An evaluation of all thatwhich has been implemented on 12 open source
programs from a variety of domainswith an overall finding that, against
SFS, we see an average speedup of 5.92× and an average reduction in
memory usage of more than 3.97× (Table 6.1).

4
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Background 2

2.1 Program Representation

To analyse programs, we must define what a program is. We are interested
in analysing C and C++ programs and like many previous works on points-
to analysis [Hardekopf and Lin, 2011; Sui and Xue, 2016a; Balatsouras and
Smaragdakis, 2016], we build our analyses atop the LLVM intermediate repre-
sentation (IR) [Lattner and Adve, 2004]. The LLVM IR is large and complicated,
so for the sake of defining and describing our analyses, we work on a simpler
set of domains and instructions as presented in Figures 2.1 and 2.2.

Figure 2.1 shows the domains upon which our instructions will operate
on. The set of all variables 𝒱 is separated into two subsets: 𝒜 = 𝒪∪ℱ which

ℓ ∈ ℒ instruction labels𝑖, 𝑗, 𝑘 ∈ 𝒞 constants𝑠 ∈ 𝒮 stack virtual registers𝑔 ∈ 𝒢 global variables𝑝, 𝑞, 𝑟, 𝑥, 𝑦, 𝑧 ∈ 𝒫 = 𝒮 ∪ 𝒢 top-level variableŝ𝑜 ∈ 𝒪 abstract objectŝ𝑜.𝑓𝑘 ∈ ℱ abstract field objects𝑜, 𝑎, 𝑏 ∈ 𝒜 = 𝒪 ∪ ℱ address-taken variables𝑣 ∈ 𝒱 = 𝒫 ∪ 𝒜 program variables𝑡 ∈ 𝒯 types
FiguRe 2.1: Domains our analysed programs operate on.
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Alloc 𝑝 = 𝑎𝑙𝑙𝑜𝑐 ̂𝑜
Phi 𝑝 = 𝜙(𝑞, 𝑟)
MemPhi 𝑜 = 𝜙(𝑎, 𝑏)
Cast 𝑝 = (𝑡) 𝑞
Field 𝑝 = &𝑞 →𝑓𝑘
Load 𝑝 = ∗𝑞
StoRe ∗𝑝 = 𝑞
Call 𝑝 = 𝑞(𝑟1, … , 𝑟𝑛)
FunEntRy 𝑓𝑢𝑛(𝑟1, … , 𝑟𝑛)
FunExit 𝑟𝑒𝑡𝑓𝑢𝑛 𝑝

FiguRe 2.2: Instructions we define our analyses upon.

contains all abstract memory objects and their fields (address-taken variables),
and 𝒫 = 𝒮∪𝒢 which contains all top-level variables, namely stack virtual reg-
isters and named global variables (in LLVM, such variables would be prefixed
by % and @, respectively). Top-level variables, or those in 𝒫, are explicit and
accessed directly by name, whereas address-taken variables, or those in 𝒜,
are implicit and are accessed indirectly through top-level variables at certain
instructions.

For address-taken variables, we use 𝑜 to represent all objects and ̂𝑜 to
represent non-field objects. This is to later simplify the handling of field ob-
jects. We also need constants for field objects, and these are sourced from 𝒞.
Though this dissertation does not define any type-based analyses, the Cast
instruction below requires a type which would come from 𝒯. Finally, as we
move on to our instructions, ℒ contains labels for instructions such that ev-
ery instruction is given a label. This is important when we want to perform
flow-sensitive analyses.

Following conversion of programs to partial static single assignment (SSA)
form, our programs are made up of 10 instructions (the MemPhi instruction
would not appear yet and is described in Section 2.3.2). Of these 10 instruc-
tions, 8 form function bodies:

• Alloc (𝑝 = 𝑎𝑙𝑙𝑜𝑐 ̂𝑜) which allocates an object on the stack, globally, or
on the heap,

• Phi (𝑝 = 𝜙(𝑞, 𝑟)) which assigns a value to a top-level pointer at a merge
point in the control flow (choosing one of two top-level pointers),

• Cast (𝑝 = (𝑡) 𝑞) which casts a pointer to another pointer, essentially
acting as a copy instruction,
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• Field (𝑝 = &𝑞 →𝑓𝑘) which assigns to a top-level pointer the 𝑘-th field
of an aggregate object,

• Load (𝑝 = ∗𝑞) which reads the value of a top-level pointer, assigning
it to another,

• StoRe (∗𝑝 = 𝑞) which writes the value of a top-level pointer to the
value of another top-level pointer (i.e., an abstract memory object), and

• Call (𝑝 = 𝑞(𝑟1, … , 𝑟𝑛)) which calls a function with the specified ar-
guments (for simplicity we will represent each function call as a call
through a function pointer – direct calls such as 𝑝 = fun(𝑟1, … , 𝑟𝑛)
would be represented as 𝑝 = 𝑞(𝑟1, … , 𝑟𝑛) where 𝑞 would point to a
single object, that allocated for fun, for the entire analysis),

The remaining two instructions help connect calls and returns to their tar-
gets. Each function has a single entry instruction, FunEntRy (fun(𝑟1, … , 𝑟𝑛)),
which contains the formal parameters of a function, and a single exit instruc-
tion, FunExit (𝑟𝑒𝑡fun 𝑝), which contains the return value of a function. While
most non-trivial programs will contain multiple return statements in func-
tions, in practice, we canmerge them before analysis (the mergereturn trans-
formation pass in LLVM, for example).

2.2 Inclusion-Based Points-To Analysis

Many points-to analyses are either unification-based [Steensgaard, 1996] or
inclusion-based [Andersen, 1994]. Generally, fast and imprecise vs. slow
and precise is the trade-off presented for the two. Inclusion-based analysis,
however, can perform well, and has formed the larger focus of research over
the years. We too, in this dissertation, focus exclusively on inclusion-based
points-to analysis.

Andersen [1994] was the first to describe inclusion-based points-to anal-
ysis, where the points-to sets of variables are included within the points-to
sets of other variables (rather than being merged/unified). A points-to set is
a set associated with each variable (or some extension of each variable) con-
taining abstract memory objects whose concrete or runtime equivalents are
determined by the analysis to be possible points-to targets. In other words, if
at the end of some analysis, the points-to set of variable 𝑣 contains a single
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abstract memory object 𝑜 (𝑝𝑡(𝑣) = {𝑜}), then that analysis has concluded
that 𝑣, at runtime, may point to a concrete object which 𝑜 abstracts.

We say that a points-to analysis is sound if, for each pointer, every pos-
sible runtime points-to target (in the form of abstract memory objects) ap-
pears in that pointer’s points-to set. In other words, the analysis is over-
approximate or has not missed any possibility. Use cases such as compiler
optimisation demand conservative results and so are usually more interested
in sound analyses. Unfortunately, truly sound points-to analysis is difficult,
and most analyses are actually soundy [Livshits et al., 2015]. A soundy anal-
ysis is one which is sound for the most part except when dealing with some
particularly tricky language features such as reflection and integer-to-pointer
casts. Depending on the target program and language, not only can it be ex-
pensive to handle such features soundly but analysis results may become too
over-approximate to the point of uselessness. However, there has been some
work on truly sound analyses [Smaragdakis and Kastrinis, 2018] finding that
sizeable portions of programs can have truly sound and useful results.

On the other hand, precision indicates an analysis’s ability to not include
spurious points-to targets in points-to sets, i.e., those which will never have
a runtime analogue. Precision is usually yielded by more closely modelling
the program to be analysed. Some precision dimensions include:

• Field-sensitivity, which is to consider fields of composite or aggregate
objects individually rather than treating them as the aggregate object
itself,

• Array-sensitivity, which is akin to field-sensitivity but for arrays only,
and is generally handled separately,

• Flow-sensitivity, which is to take into account the flowof control through
the analysed program, rather than treat the instructions in a bag-of-
words fashion, and

• Context-sensitivity, which is to take into account calling context when
analysing a function, rather than analysing functions once (effectively
merging calling contexts).

Generally, a more precise analysis is a more expensive one. Usually, we be-
gin with a sound(y) imprecise analysis and gradually introduce precision as
new techniques for performant precise analysis are found. There is certainly
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[ALLOC]𝑝 = 𝑎𝑙𝑙𝑜𝑐 ̂𝑜̂𝑜 ∈ 𝑝𝑡(𝑝) [𝜙] 𝑝 = 𝜙(𝑞, 𝑟)𝑝𝑡(𝑞) ∪ 𝑝𝑡(𝑟) ⊆ 𝑝𝑡(𝑝) [CAST]𝑝 = (𝑡) 𝑞𝑝𝑡(𝑞) ⊆ 𝑝𝑡(𝑝)
[LOAD]𝑝 = ∗𝑞 𝑜 ∈ 𝑝𝑡(𝑞)𝑝𝑡(𝑜) ⊆ 𝑝𝑡(𝑝) [STORE]∗𝑝 = 𝑞 𝑜 ∈ 𝑝𝑡(𝑝)𝑝𝑡(𝑞) ⊆ 𝑝𝑡(𝑜)

[FIELD]𝑝 = &𝑞 →𝑓𝑘 𝑜 ∈ 𝑝𝑡(𝑞)𝑜 ∈ 𝑝𝑡(𝑝)
[CALL]
_ = 𝑞(… , 𝑟, … ) 𝑜fun ∈ 𝑝𝑡(𝑞) fun(… , 𝑟′, … )𝑝𝑡(𝑟) ⊆ 𝑝𝑡(𝑟′)

[RET]𝑝 = 𝑞(… ) 𝑜fun ∈ 𝑝𝑡(𝑞) 𝑟𝑒𝑡fun𝑝′𝑝𝑡(𝑝′) ⊆ 𝑝𝑡(𝑝)
FiguRe 2.3: Inference rules for a basic inclusion-based points-to analysis.

a trade-off between precision and performance, and some analyses seek pre-
cise results in the parts of the program which matter for the sake of perfor-
mance [Lhoták and Chung, 2011; Oh et al., 2014]. All said, some use cases do
not demand sound results, such as bug detection, and in fact may shun sound
results for introducing too many false positives, and so can incorporate pre-
cision more liberally by foregoing the requirement of soundness.

2.2.1 Basic Definition

We define points-to analysis as a set of inference rules mainly generating
constraints between points-to sets. These constraints are continually fulfilled
until a fixed-point is reached. The rules in Figure 2.3 present a basic inclusion-
based points-to analysis.

In Figure 2.3, each function body instruction is present in the premise of
some rule. In the [ALLOC] rule, given that a memory object is allocated and
then assigned to some pointer (the Alloc instruction), the allocated abstract
memory object is inserted into the points-to set of the assigned-to pointer. For
the [CAST] rule, when a pointer 𝑞 is cast to a pointer 𝑝, we simply include the
contents of 𝑞’s points-to set into the points-to set of 𝑝 (𝑝𝑡(𝑞) ⊆ 𝑝𝑡(𝑞)). We
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ignore the type as we are uninterested in performing a type-based analysis,
thus we process the [CAST] rule as a copy. Type-based analysis is difficult
for weakly typed languages such as C and C++ but is possible [Balatsouras
and Smaragdakis, 2016; Barbar et al., 2020]. The [𝜙] rule is similar to the
[CAST] rule except it includes two points-to sets, those of the operands of
the 𝜙 function. Points-to analysis is static and has no runtime information
available, so choosing an operand is not possible.

In the [LOAD] rule which handles the instruction 𝑝 = ∗𝑞, we need to
include the “points-to set” ∗𝑞 in 𝑝’s points-to set. Of course, there is no points-
to set for ∗𝑞, rather, 𝑞 points-to some abstract memory objects, any one of
which could be an abstraction of what 𝑞 points to at run time (i.e., what ∗𝑞
is). Each one of these abstract memory objects has a points-to set. Thus, for
each 𝑜 ∈ 𝑝𝑡(𝑞), we include the points-to set of 𝑜 in 𝑝. The [STORE] rule is the
reverse of the [LOAD] rule, wherebywe include the points-to set of a top-level
pointer in zero or more points-to sets of abstract memory objects. The Field
instruction, 𝑝 = &𝑞 → 𝑓𝑘, retrieves the 𝑘-th field of some object (that which𝑞 points to). This analysis is field-insensitive, so we treat the base object from
which a field is being accessed as the field object itself. Thus, in the [FIELD]
rule, if 𝑞 points to 𝑜, we insert 𝑜 in the points-to set of 𝑝. We will consider
field-sensitivity in the next section.

The [CALL] rule handles the copying of actual arguments to formal pa-
rameters. Through the 𝑜fun ∈ 𝑝𝑡(𝑞) premise, it also performs on-the-fly call
graph construction (and handles that all function calls are through a pointer,
as previously described), connecting the Call instruction to the FunEntRy
instruction. Then, the 𝑝𝑡(𝑟) ⊆ 𝑝𝑡(𝑟′) conclusion ensures the points-to set of
the actual argument is included in the points-to set of the formal parameter.
The [RET] rule does the reverse of the [CALL] rule, connecting the FunExit
instruction to the Call instruction(s) which called fun.

2.2.2 Field-Sensitivity

Field-sensitivity is a common source of extra precision, andwe build our work
on field-sensitive analyses. In this dissertation, we are concerned with a sim-
ple model of field-sensitivity whereby access of the 𝑘-th field of an object re-
sults in the access of a completely separate object representing that field for
the accessed object (except when 𝑘 = 0, where we simply access the object
from which the field was derived from). Our approach is array-insensitive
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[FIELD]𝑝 = &𝑞 →𝑓𝑘 ̂𝑜 ∈ 𝑝𝑡(𝑞)̂𝑜.𝑓𝑘 ∈ 𝑝𝑡(𝑝) [FIELD-ADD]𝑝 = &𝑞 →𝑓𝑗 ̂𝑜.𝑓𝑖 ∈ 𝑝𝑡(𝑞)̂𝑜.𝑓𝑖+𝑗 ∈ 𝑝𝑡(𝑝)
FiguRe 2.4: Modifications and additions to the inference rules in Figure 2.3 to
allow for field-sensitivity.

and so we treat any access to index 𝑘 of an array 𝑜 as an access of 𝑜, and we
take a similar approach for accesses to a non-constant field such as the 𝑛-th
field where 𝑛 is a variable integer (you will notice we do not have instructions
to model these scenarios).

Despite its simplicity (which allows for easy description and implementa-
tion), precision is improved over a completely field-insensitive analysis. How-
ever, we are then ignoring precision-improving models that consider C and
C++ types (we almost blindly derive field objects), which is difficult due to the
weak type system [Barbar et al., 2020; Yong et al., 1999], or LLVM types [Bal-
atsouras and Smaragdakis, 2016], consider individual bytes [Wilson and Lam,
1995], somewhat overcoming the type system, or can consider variable in-
dices. All of these schemes present challenges in description and implemen-
tation due to complexity and in most cases would incur a larger runtime cost
than our chosen scheme. There also exist techniques to speed up the approach
we have chosen and others like it [Lei and Sui, 2019] though aswell carry some
complexity in description and implementation. Ultimately, field-sensitivity is
mostly incidental to this dissertation and the chosen scheme gives us a suit-
able balance of simplicity (for presentation, especially), precision, and perfor-
mance. We are confident that most or all field-sensitivity schemes can work
alongside that which we present in the coming sections.

To achieve field-sensitivity, we modify the [FIELD] rule in Figure 2.3 and
add the [FIELD-ADD] rule as shown in Figure 2.4. In the [FIELD] rule, with
all non-field objects ̂𝑜 pointed to by 𝑞, a field object extended from ̂𝑜 is in-
cluded in the points-to set of 𝑝. In practice, this can mean creating new ob-
jects during the analysis. The [FIELD-ADD] rule handles the case when a
field object is in the points-to set of 𝑞. Instead of deriving an object such aŝ𝑜.𝑓𝑖.𝑓𝑗, we operate on ̂𝑜.𝑓𝑖+𝑗, which is simpler to reason about.

Unfortunately for us, so-called positive weight cycles can cause the infi-
nite derivation of field objects (an unbounded 𝑘 in ̂𝑜.𝑓𝑘). This could prevent
the analysis from reaching a fixed-point. To solve this, we simply cap 𝑘 in
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̂𝑜.𝑓𝑘 (in our experiments, at 10 000). More sophisticated approaches to posi-
tive weight cycles have been proposed to avoid this problem and improve per-
formance [Lei and Sui, 2019], but this is outside of this dissertation’s scope.

2.3 Flow-Sensitive Inclusion-Based Points-To Analysis

As the name suggests, flow-sensitive inclusion-based points-to analysis is
points-to analysis which takes control-flow into account. The rules presented
in the previous section ignore control-flow, losing out on some precision. To
make the analysis flow-sensitive, we must associate points-to sets for vari-
ables at program points; it is no longer enough to simply associate a single
points-to set per variable. Thus, we introduce the notation 𝑝𝑡|ℓ(𝑣) and 𝑝𝑡ℓ|(𝑣)
to represent the points-to set of 𝑣 just before ℓ and just after ℓ, respectively.
Importantly however, top-level variables are defined only once in partial SSA
form, and so a single points-to set suffices, unlike for their address-taken
counterparts. This kind of sparsity, i.e., for top-level variables only, has been
referred to as semi-sparse analysis [Hardekopf and Lin, 2009] since no real
sparsity is afforded to dealing with address-taken variables. In a way, the
enforcement of a single definition for top-level variables encodes some form
of flow-sensitivity, so it may not be entirely untrue to say that the analysis
presented in the previous section does contain some flow-sensitivity since it
is also based on the partial SSA form.

2.3.1 Basic Definition

Therules in Figure 2.5 present a flow-sensitive analysis. From the flow-insensitive
analysis, the [ALLOC], [𝜙], [CAST], [FIELD], and [FIELD-ADD] rules re-
main unchanged because they operate solely on the points-to sets of top-level
pointers. The [LOAD] and [STORE] rules remain unchanged except in which
points-to set of 𝑜 accessed.

In the [LOAD] rule, the points-to set of 𝑜 accessed is the one immediately
before the Load instruction, so what 𝑜 points to just before the instruction is
analysed is what is included in the points-to set of 𝑝, more closely matching
real execution. In the [STORE] rule, we include points-to targets in the points-
to set of 𝑜 just after the StoRe instruction, analogous to what happens in real
execution where 𝑜 is assigned to and the new state of 𝑜 appears just after the
instruction.
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[ALLOC]ℓ ∶ 𝑝 = 𝑎𝑙𝑙𝑜𝑐 ̂𝑜̂𝑜 ∈ 𝑝𝑡(𝑝) [𝜙] ℓ ∶ 𝑝 = 𝜙(𝑞, 𝑟)𝑝𝑡(𝑞) ∪ 𝑝𝑡(𝑟) ⊆ 𝑝𝑡(𝑝) [CAST]ℓ ∶ 𝑝 = (𝑡) 𝑞𝑝𝑡(𝑞) ⊆ 𝑝𝑡(𝑝)
[FIELD]ℓ ∶ 𝑝 = &𝑞 →𝑓𝑘 ̂𝑜 ∈ 𝑝𝑡(𝑞)̂𝑜.𝑓𝑘 ∈ 𝑝𝑡(𝑝) [FIELD-ADD]ℓ ∶ 𝑝 = &𝑞 →𝑓𝑗 ̂𝑜.𝑓𝑖 ∈ 𝑝𝑡(𝑞)̂𝑜.𝑓𝑖+𝑗 ∈ 𝑝𝑡(𝑝)

[LOAD]ℓ ∶ 𝑝 = ∗𝑞 𝑜 ∈ 𝑝𝑡(𝑞)𝑝𝑡|ℓ(𝑜) ⊆ 𝑝𝑡(𝑝) [STORE]ℓ ∶ ∗𝑝 = 𝑞 𝑜 ∈ 𝑝𝑡(𝑝)𝑝𝑡(𝑞) ⊆ 𝑝𝑡ℓ|(𝑜)
[SU/WU]ℓ ∶ _ 𝑜 ∈ 𝒪 \ kill(ℓ)𝑝𝑡|ℓ(𝑜) ⊆ 𝑝𝑡ℓ|(𝑜) [CONTROL-FLOW]ℓ → ℓ′∀𝑜 ∈ 𝒪. 𝑝𝑡ℓ|(𝑜) ⊆ 𝑝𝑡|ℓ′(𝑜)
[CALL]ℓ ∶ _ = 𝑞(… , 𝑟, … ) 𝑜fun ∈ 𝑝𝑡(𝑞) ℓ′ ∶ fun(… , 𝑟′, … )𝑝𝑡(𝑟) ⊆ 𝑝𝑡(𝑟′) ℓ → ℓ′

[RET]ℓ ∶ 𝑝 = 𝑞(… ) 𝑜fun ∈ 𝑝𝑡(𝑞) ℓ′ ∶ 𝑟𝑒𝑡fun𝑝′𝑝𝑡(𝑝′) ⊆ 𝑝𝑡(𝑝) ℓ′ → ℓ
kill(ℓ ∶ ∗𝑝 = _) Δ= ⎧{⎨{⎩{𝑜} if 𝑝𝑡(𝑝) ≡ {𝑜} ∧ 𝑜 is singleton𝒪 if 𝑝𝑡(𝑝) ≡ ∅∅ otherwise

kill(ℓ ∶ _) Δ= ∅
FiguRe 2.5: Inference rules for a flow-sensitive field-sensitive inclusion-based
points-to analysis.

Since we have separate points-to sets for each address-taken object at dif-
ferent program points, we need to propagate between these individual points-
to sets, as in real control-flow. Firstly, the [SU/WU] rule propagates the points-
to sets of all objects across a single instruction, i.e., from before an instruc-
tion to after an instruction. For non-StoRe instructions, the kill function al-
ways returns the empty set, and can thus be ignored. For StoRe instructions
though, we have the option of a strong update [Lhoták and Chung, 2011; Sui
and Xue, 2016a] which prevents some inclusion and thus improves precision.
Given some StoRe instruction ℓ ∶ ∗𝑝 = _, when the points-to set of 𝑝 con-
tains a single object, and that object is a singleton (would represent at most
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one concrete object at runtime), then the points-to set of 𝑜 before ℓ does not
need to be propagated to after ℓ because we know with certainty that at run-
time, the value of that object (specifically, its runtime analogue) will always
be updated at the StoRe instruction (handled by the [STORE] rule). When
the points-to set of 𝑝 is larger or not a singleton, we cannot make the same
assertion as some such objects at runtime may be updated, and some may not.
We also propagate nothing when 𝑝’s points-to set is empty to ensure a strong
update can occur if the conditions are later met in the analysis. In the absence
of the ability to perform a strong update, a weak update occurs, just like with
the remainder of instructions.

The other form of object points-to set propagation is across instructions
or along control-flow as is encoded by the [CONTROL-FLOW] rule. Given a
control-flow edge from ℓ to ℓ′ (ℓ → ℓ′) in the interprocedural control-flow
graph (ICFG), for each object, we propagate that object’s points-to set imme-
diately after ℓ to the object’s points-to set immediately before ℓ′.

Finally, the [CALL] and [RET] instructions are as before, except with (po-
tentially) new control-flow added to the conclusions due to on-the-fly call
graph construction. In the case of indirect calls, edges in the control-flow
graph may be initially missing, but now the [CONTROL-FLOW] rule can then
propagate object points-to sets in and out of indirect calls.

2.3.2 Staged Flow-Sensitive Analysis

The analysis present in Figure 2.5 is too expensive. As programs grow, it
is unreasonable to maintain and propagate a points-to set at every program
point for address-taken variables. To counter this, Hardekopf and Lin [2011]
introduce staged flow-sensitive analysis (SFS) making propagation and storage
of address-taken variables far sparser.

The difficulty is that address-taken variables are not in SSA form to be able
to do what has been done for top-level variables. To construct an SSA form
for such variables (memory SSA form [Chow et al., 1996]), we require points-
to information since address-taken variables are used and defined through
(top-level) pointers. This lends to a circular dependency if we are to use the
memory SSA form in the points-to analysis. Hardekopf and Lin [2011] remind
that not all points-to analyses are equal in their performance and precision
and so it is possible to stage our expensive precise analysis (the main analysis)
with a fast imprecise analysis (the auxiliary analysis) that over-approximates
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the main analysis in order to build the memory SSA form. Ultimately, it is
faster and more memory efficient to perform the auxiliary analysis (we will
use the flow-insensitive field-sensitive analysis from Section 2.2), construct
the memory SSA form [Chow et al., 1996; Sui et al., 2018], construct subse-
quent data structures, and finally perform the main analysis (a flow-sensitive
field-sensitive points-to analysis).

The result of constructing the memory SSA is overlaid on top of the pro-
gram we are analysing rather than replacing any aspect. At any StoRe that
defines an object 𝑜 according to the auxiliary analysis, we label the instruc-
tion (immediately after) with a 𝜒 function as 𝑜 = 𝜒(𝑜). For uses of an object𝑜 (according to the auxiliary analysis) at any Load instruction ℓ, we label ℓ
with a 𝜇 function (immediately before) as 𝜇(𝑜). We also need to handle calls,
so we annotate Call instructions with 𝜇(𝑜) (immediately before) or 𝑜 = 𝜒(𝑜)
(immediately after) if any of its callees, as determined by the auxiliary anal-
ysis, may use or define 𝑜. Potentially, a Call instruction could be annotated
by both 𝜒 and 𝜇. Then, associated FunEntRy instructions are annotated with𝑜 = 𝜒(𝑜) and (in the case of 𝑜 being defined per the auxiliary analysis) Fu-
nExit instructions are annotated with 𝜇(𝑜) [Chow et al., 1996]. Finally, the
variables are converted to SSA form by renaming objects such that each is
only defined once. As in the case of top-level variables, an address-taken
variable may be defined in branches, thus we introduce MemPhi instructions
to the program to handle merge points. MemPhi instructions work exactly as
Phi instructions except that they operate on address-taken variables.

The main data structure which allows for a performant flow-sensitive
main analysis is the def-use graph (DUG), also know as the sparse value-flow
graph (SVFG) (SVF’s nomenclature), which is the term that we will use. The
SVFG is a graph comprising of program instructions as nodes (including in-
troduced MemPhi instructions) and so called value-flows as edges. There are
two kinds of value-flow edges: direct edges which represent the value-flow
of top-level variables and indirect edges which represent the value-flow of
address-taken variables. Direct edges are trivial to determine because the
programs we analyse are in partial SSA form and top-level variables can only
be defined once. A direct edge labelled with 𝑝 (i.e., an edge representing the
value-flow of 𝑝) is added from the SVFG node containing instruction ℓ to that
containing instruction ℓ′ if there exists a definition of 𝑝 at ℓ and a use of 𝑝 atℓ′. We represent this as ℓ 𝑝−→ ℓ′. Indirect edges are more difficult to determine
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Table 2.1: Variable and SVFG statistics for our benchmark programs.

Program Variables SVFG

Top-level Address-taken Nodes Direct edges Indirect edges
(condensed)

dhcpcd 23 038 2398 57 540 38 157 1 854 604 (48 715)
gawk 53 342 4007 308 955 87 472 15 702 019 (466 932)
bash 45 203 4294 260 891 83 161 17 166 478 (361 537)
mutt 70 233 5880 365 239 127 466 18 341 884 (492 475)
lynx 91 191 5829 574 167 175 455 32 991 927 (801 118)
sqlite 172 000 6570 576 368 271 205 47 895 338 (717 689)
xpdf 152 653 12 124 514 780 252 951 74 489 409 (525 743)
emacs 267 269 17 505 984 030 437 978 469 240 526 (1 206 373)
git 241 840 26 481 1 562 682 460 511 476 989 809 (2 105 184)
kakoune 221 119 29 413 770 629 384 877 119 393 118 (844 865)
squid 437 645 54 678 2 334 316 771 281 579 006 358 (2 804 418)
wireshark 557 460 59 912 1 134 303 888 573 66 188 531 (716 012)
and are why we need the auxiliary analysis and memory SSA form.

We add indirect edges the same way we added direct edges except ac-
cording to the computed memory SSA rather than the partial SSA which is
missing any SSA form for address-taken variables. Thus, at any instructionℓ which defines an object 𝑜1 derived from 𝑜 (i.e., a MemPhi instruction of
the form 𝑜1 = 𝜙(_, _) or an instruction labelled with a 𝜒 function of the
form 𝑜1 = 𝜒(_)), we add an indirect edge labelled with 𝑜 to every instruc-
tion ℓ′ which uses 𝑜1 (i.e., MemPhi instructions of the form _ = 𝜙(𝑜1, _) or
_ = 𝜙(_, 𝑜1) or instructions labelled with 𝜇(𝑜1)). We represent this as ℓ 𝑜−→ ℓ′,
notably labelling the edge with 𝑜, not variables introduced by the memory
SSA form as we define the analysis in terms of the original abstract memory
objects.

At the end of this process, we have an SVFG that contains a node for ev-
ery instruction, including the insertedMemPhi instructions, direct value-flow
edges representing the definition and use of a top-level variable according
to both our auxiliary and subsequent analysis, and indirect value-flow edges
representing potential 1 definitions and uses of address-taken variables in the
main analysis. For context, Table 2.1 contains statistics on the SVFG of our
benchmark (which are introduced in Section 2.4). Of note, the number of
indirect edges is incredibly large. As an implementation detail, SVF merges
many indirect edges into a single indirect edge labelled with a set. For exam-

ple, ℓ 𝑜1−→ ℓ′ and ℓ 𝑜2−→ ℓ′ may be condensed into ℓ {𝑜1,𝑜2}−−−−→ ℓ′. This reduces

1Recall we built the memory SSA from the results of the imprecise auxiliary analysis.
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[ALLOC]ℓ ∶ 𝑝 = 𝑎𝑙𝑙𝑜𝑐 ̂𝑜̂𝑜 ∈ 𝑝𝑡(𝑝) [𝜙] ℓ ∶ 𝑝 = 𝜙(𝑞, 𝑟)𝑝𝑡(𝑞) ∪ 𝑝𝑡(𝑟) ⊆ 𝑝𝑡(𝑝) [CAST]ℓ ∶ 𝑝 = (𝑡) 𝑞𝑝𝑡(𝑞) ⊆ 𝑝𝑡(𝑝)
[FIELD]ℓ ∶ 𝑝 = &𝑞 →𝑓𝑘 ̂𝑜 ∈ 𝑝𝑡(𝑞)̂𝑜.𝑓𝑘 ∈ 𝑝𝑡(𝑝) [FIELD-ADD]ℓ ∶ 𝑝 = &𝑞 →𝑓𝑗 ̂𝑜.𝑓𝑖 ∈ 𝑝𝑡(𝑞)̂𝑜.𝑓𝑖+𝑗 ∈ 𝑝𝑡(𝑝)

[LOAD]ℓ ∶ 𝑝 = ∗𝑞 𝑜 ∈ 𝑝𝑡(𝑞)𝑝𝑡|ℓ(𝑜) ⊆ 𝑝𝑡(𝑝) [STORE]ℓ ∶ ∗𝑝 = 𝑞 𝑜 ∈ 𝑝𝑡(𝑝)𝑝𝑡(𝑞) ⊆ 𝑝𝑡ℓ|(𝑜)
[SU/WU]ℓ ∶ _ 𝑜 ∈ 𝒪 \ kill(ℓ)𝑝𝑡|ℓ(𝑜) ⊆ 𝑝𝑡ℓ|(𝑜) [VALUE-FLOW]ℓ 𝑜−→ ℓ′∀𝑜 ∈ 𝒪. 𝑝𝑡ℓ|(𝑜) ⊆ 𝑝𝑡|ℓ′(𝑜)

[CALL]𝜇(𝑎𝑖) ℓ ∶ _ = 𝑞(… , 𝑟, … ) 𝑜fun ∈ 𝑝𝑡(𝑞) ℓ′ ∶ fun(… , 𝑟′, … ) 𝑎1 = 𝜒(𝑎0)𝑝𝑡(𝑟) ⊆ 𝑝𝑡(𝑟′) ℓ 𝑟−→ ℓ′ ℓ 𝑎−→ ℓ′
[RET]ℓ ∶ 𝑝 = 𝑞(… ) 𝑎𝑖+1 = 𝜒(𝑎𝑖) 𝑜fun ∈ 𝑝𝑡(𝑞) 𝜇(𝑎𝑗) ℓ′ ∶ 𝑟𝑒𝑡fun𝑝′𝑝𝑡(𝑝′) ⊆ 𝑝𝑡(𝑝) ℓ′ 𝑝′−→ ℓ ℓ′ 𝑎−→ ℓ

kill(ℓ ∶ ∗𝑝 = _) Δ= ⎧{⎨{⎩{𝑜} if 𝑝𝑡(𝑝) ≡ {𝑜} ∧ 𝑜 is singleton𝒪 if 𝑝𝑡(𝑝) ≡ ∅∅ otherwise

kill(ℓ ∶ _) Δ= ∅
FiguRe 2.6: Inference rules for the main phase of SFS.

the number of edges significantly, as shown in the final column of Table 2.1,
while retaining full semantics. Still, this number is not insignificant, and stor-
ing a set obviously costs more than storing a single variable. Another way of
condensing edges is presented by Hardekopf and Lin [2011] through access
equivalence (though this is not implemented by SVF).

We can now define a sparser flow-sensitive analysis atop this data struc-
ture. The new rules for the flow-sensitive analysis in Figure 2.6 are the same
as those defined earlier in Figure 2.5 except for 3 rules. The [CONTROL-FLOW]
rule is replaced by the [VALUE-FLOW] rule which only differs in that we per-
form points-to set propagation along value-flow edges in the SVFG rather
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than control-flow edges in the ICFG. This is a major contributor to sparsity.
With respect to terminology, we say that a points-to set 𝑝𝑡|ℓ(𝑜) resides in the
in set of ℓ and that a points-to set 𝑝𝑡ℓ|(𝑜) reside in the out set of ℓ. There is
no rule with the MemPhi instruction explicitly in the premise as the MemPhi
instruction’s purpose is achieved by the [VALUE-FLOW] rule.

The [CALL] and [RET] rules are modified to add SVFG edges instead of
ICFG edges. In the rules, direct SVFG edges do not appear in any premise so
could be omitted but we include them for completeness. They are also useful
in implementation. In grey, we have 𝜇 and 𝜒 annotations thatmay have been
added earlier. When they do exist, we add indirect value-flow edges in and
out of functions, from and to the appropriate callsite.

2.4 Benchmarks

Throughout this dissertation, we evaluate our various techniques by imple-
menting them in open source points-to analysis framework SVF [Sui and Xue,
2016b] which analyses LLVM bitcode. SVF constructs its data structures such
as the pointer assignment graph (PAG) and control-flow graph from the pro-
gram’s LLVM representation or analysis of it. It should be noted though that
C++ programs encode more complicated semantics than C programs and thus
produce more complicated bitcode. To better handle this, SVF attempts to re-
build the class hierarchy and treats virtual table pointers in a special manner
to constrain the number of call targets which would otherwise have been de-
termined for virtual calls. Still, C++ is more complicated than C in ways more
than virtual calls, and work is underway for further improvements (e.g., a sim-
plified Standard Template Library (STL) to produce less complicated bitcode
for analysis’s sake [Simplified-STL, 2022]).

To evaluate against, we use 12 open source programs built with the O3
optimisation level through crux-bitcode [crux-bitcode, 2021] which uses
Whole ProgramLLVM inGo (GLLVM) [WLLVM, 2021] and LLVM/Clang 12.0.0.
These programs were chosen to cover a variety of domains and since they are
programs that would benefit from points-to analysis. Certainly all of these
programs would benefit from aggressive optimisation as they either regularly
operate on large amounts of data, run constantly in the background, or face
the user in such a way that any stutter would be noticeable. All of them also
form important attack vectors (a concrete example would be bash through

18



2.4. Benchmarks

Table 2.2: Information about our benchmark programs.

Program Version Size
(in MB) Instructions Lines of

code Description

dhcpcd 9.3.4 1.20 55 546 62 387 Dynamic Host Configuration Protocol client
gawk 5.1.0 2.53 124 307 52 328 GNU AWK; text filtering language interpreter
bash 5.0.18 2.73 127 554 74 446 Bourne Again Shell; Unix shell interpreter
mutt 2.0.3 3.33 153 353 80 214 Text-based email client
lynx 2.8.9 5.36 178 002 134 322 Text-based web browser
sqlite 3.34.0 8.79 444 146 183 147 SQL database engine
xpdf 4.03 8.99 339 979 119 298 PDF viewer
emacs 27.2 11.89 568 065 236 465 Extensible text editor
git 2.29.2 12.55 499 529 205 102 Distributed version control system
kakoune 2020.08.04 17.73 478 033 30 496 Modal text editor
squid 4.13 22.42 772 825 274 456 Web proxy cache
wireshark 3.4.0 35.43 1 232 779 344 720 Network packet analyser

Shellshock [CVE, 2014]) or regularly deal with untrusted data so would ben-
efit from accurate bug detection.

In Table 2.2, we describe our benchmarks. The size refers to the size of
each of the bitcode files (without debug information), the number of instruc-
tions is obtained using LLVM opt’s instcount option, and the lines of code
are counted by counting the number of lines of codes in the C and C++ header
and source files which appear in the debug information of the bitcode files,
excluding system headers (this is obtained through crux-bitcode). For the
compiled and analysed parts of the programs, xpdf, kakoune, and squid are
primarily written in C++whilst the remaining benchmarks are primarily writ-
ten in C.

One peculiarity is the low number of lines of code for kakoune but high
number of instructions and large size. kakoune is written in C++ and template
expansion would not factor into lines of code. It also makes use of classes in
the C++ template library whose implementation would be included in the
compiled result (not dynamically linked) but be excluded by crux-bitcode
when counting lines of code since they are considered system headers.

All of our experiments are conducted on a 64-bit Debian 11 machine with
an AMD Ryzen 5800X processor. SVF is compiled with Clang 11 using the
O3 optimisation level and the march=native option. Statistics are gathered
by running analyses 3 times, which we have found to sufficiently handle vari-
ance, and taking an arithmetic mean for results (such as time taken and mem-
ory used). Anymemory statistics refer to themaximum resident set size of the
entirety of SVF’s execution and is measured with GNU’s time. Time statistics
are measured within SVF and are wall clock times obtained through POSIX’s
clock_gettime function with the first argument set to CLOCK_MONOTONIC.
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Memory is capped at 120 GB and time is capped at 12 hours for each individ-
ual analysis execution. No analysis ever reached the time limit but some ran
out of memory (OOM).

Benchmarks, code, scripts, and instructions on reproducing our experi-
ments are available at https://mbarbar.net/papers/ds-pta-artifact.
zip.
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Object Versioning 3

Though SFS significantly reduces the number of object points-to set propaga-
tions required, there does remain redundancy. There are still many instances
where the points-to set of a single object remains unchanged across large
parts of the SVFG. Thus, this chapter focuses on the points-to sets of individ-
ual objects at multiple program points and reducing storage and propagation
within that.

The points-to set of an object 𝑜 at an instruction can be reused at another
instruction if it is unchanged. This would save time propagating points-to
sets and space storing them. In essence, we need to determine where the
points-to sets of an object 𝑜 will be the same in the main analysis. The result
is that we can version objects, and we say that two program points may refer
to the same version of 𝑜 if the points-to set of 𝑜 at those two program points
are guaranteed to be the same. Then, instead of accessing points-to sets of
objects stored per program point, we would access points-to sets of versions
of objects, with the aim that we would have far fewer versions per object than
the number of program points it is relevant at. Concretely, we aim to access
the various points-to sets of an object 𝑜 as some 𝑝𝑡𝜅(𝑜), where 𝜅 ∈ 𝒦 is a
so-called version, instead of accessing them as some 𝑝𝑡|ℓ(𝑜) or 𝑝𝑡ℓ|(𝑜).

To achieve this, we use meld labelling, a prelabelling extension for di-
rected graphs. Meld labelling extends a prelabelling (a straightforward node
labelling applied to the graph which we will use to perform the main meld
labelling procedure) such that the label of each node which has not been prela-
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belled is a “melding” of the labels of its incoming neighbour nodes. We per-
form meld labelling on a per-object basis, so each node will have multiple
labels. With a careful prelabelling, we can soundly determine when an object
will have the same points-to set at two program points, allowing us to skip
work during the main phase of the analysis. This occurs when two program
points read or write the same label (i.e., the same version). The intuition is
that this pre-analysis (object versioning) would save enough work from the
main flow-sensitive analysis that it would be cheaper overall in both time and
space. The pre-analysis also pulls some computation out of points-to analysis
into, what is in essence, solving a transitive closure, allowing for optimisa-
tions independent of points-to analysis. We also find that this problem is
extremely amenable to parallelisation.

In summary, this chapter describes meld labelling on the SVFG in order to
version objects and how to do so inexpensively, presents rules and algorithms
describing how to perform flow-sensitive analysis using versions, versioned
staged flow-sensitive analysis (VSFS), and evaluates the effectiveness of this
approach along the axes of time andmemory. Most of the work in this chapter
has been published at CGO [Barbar et al., 2021].

3.1 Motivating Example

Figure 3.1 presents a motivating example to illustrate the key idea of our ap-
proach. It shows an SVFG fragment derived from a real program’s SVFG
(true in GNU Coreutils1, though we choose the points-to sets and edge labels
for simplicity) in Figure 3.1a, with some extraneous edges and nodes removed,
and the required points-to sets and propagation constraints for flow-sensitive
analysis in Figure 3.1b (SFS and our approach). Direct edges are omitted (for
readability; they are irrelevant to our purposes) so all edges are indirect edges
and they are labelled with only a single object 𝑜. The double-lined nodes
are StoRe nodes which may define objects (i.e., place other objects in their
points-to sets) and the remaining nodes are Load nodes which may use ob-
jects (in this case, 𝑜). The various ℓ represent instruction labels for ease of
reference. For exemplary purposes, we assume 𝑝𝑡(𝑝) = {𝑜}, 𝑝𝑡(𝑞) = {𝑎},
and 𝑝𝑡(𝑟) = {𝑏} and that all points-to sets of 𝑜 are empty according to the

1GNU’s true pulls in, and calls, functions common across the GNU Coreutils suite. So while
simple, it requires the facilities of an interprocedural points-to analysis unlike more straightfor-
ward implementations of true.

22



3.1. Motivating Example

…ℓ1 ∶ ∗𝑝 = 𝑞𝜅1 = 𝒴ℓ1(𝑜)
𝜅1 = 𝒞ℓ2(𝑜)ℓ2 ∶ ∗𝑝 = 𝑟𝜅2 = 𝒴ℓ2(𝑜)

𝜅1 = 𝒞ℓ3(𝑜)ℓ3 ∶ 𝑥 = ∗_𝜅1 = 𝒴ℓ3(𝑜)
𝜅1 ⋄ 𝜅2 = 𝒞ℓ4(𝑜)ℓ4 ∶ 𝑦 = ∗_𝜅1 ⋄ 𝜅2 = 𝒴ℓ4(𝑜)

𝜅1 ⋄ 𝜅2 = 𝒞ℓ5(𝑜)ℓ5 ∶ 𝑧 = ∗_𝜅1 ⋄ 𝜅2 = 𝒴ℓ5(𝑜)
𝑜𝑜

𝑜 𝑜
𝑜 𝑜

(a) SVFG fragment from GNU Coreutil’s true. We assume 𝑝𝑡(𝑝) = {𝑜}, 𝑝𝑡(𝑞) = {𝑎},
and 𝑝𝑡(𝑟)={𝑏} during flow-sensitive solving.

SFS Our approach

Object
points-to
sets

𝑝𝑡ℓ1|(𝑜) = {𝑎} 𝑝𝑡𝜅1(𝑜) = {𝑎}𝑝𝑡|ℓ2(𝑜) = {𝑎}𝑝𝑡|ℓ3(𝑜) = {𝑎}𝑝𝑡ℓ2|(𝑜) = {𝑎, 𝑏} 𝑝𝑡𝜅2(𝑜) = {𝑎, 𝑏}𝑝𝑡|ℓ4(𝑜) = {𝑎, 𝑏} 𝑝𝑡𝜅1⋄𝜅2(𝑜) = {𝑎, 𝑏}𝑝𝑡|ℓ5(𝑜) = {𝑎, 𝑏}
Generated
constraints

𝑝𝑡ℓ1|(𝑜) ⊆ 𝑝𝑡|ℓ2(𝑜)𝑝𝑡ℓ1|(𝑜) ⊆ 𝑝𝑡|ℓ3(𝑜)𝑝𝑡ℓ1|(𝑜) ⊆ 𝑝𝑡|ℓ4(𝑜) 𝑝𝑡𝜅1(𝑜) ⊆ 𝑝𝑡𝜅1⋄𝜅2(𝑜)𝑝𝑡𝜅2(𝑜) ⊆ 𝑝𝑡𝜅1⋄𝜅2(𝑜)𝑝𝑡ℓ2|(𝑜) ⊆ 𝑝𝑡|ℓ4(𝑜)𝑝𝑡ℓ1|(𝑜) ⊆ 𝑝𝑡|ℓ5(𝑜)𝑝𝑡ℓ2|(𝑜) ⊆ 𝑝𝑡|ℓ5(𝑜)
(b) Points-to sets stored and propagation constraints required.

FiguRe 3.1: An example motivating the effectiveness of object versioning.

current state of the flow-sensitive analysis, so the two StoRe nodes may de-
fine 𝑜, which 𝑝 points to. According to Figure 3.1b, 𝑜’s resulting points-to set
is {𝑎} immediately after ℓ1, and immediately before ℓ2 and ℓ3 and it is {𝑎, 𝑏}
immediate after ℓ2 and immediately before ℓ4 and ℓ5. The 𝒞 and 𝒴 functions
and the usage of versions (𝜅) are introduced by our approach and described
later in this section.
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Applying SFS In the example, SFS needs to maintain a points-to set for 𝑜
in the in set of every node and in the out of the two StoRe nodes. This
necessitates redundant storage and propagation since some of these points-to
sets may be equivalent. Column 2 of Figure 3.1b shows the maintained points-
to sets and required constraints during flow-sensitive resolution for SFS. For
example, the points-to set of 𝑜 in the in sets of ℓ2 and ℓ3 are equivalent to the
points-to set of 𝑜 in the out set of ℓ1 (𝑝𝑡|ℓ2(𝑜) = 𝑝𝑡|ℓ3(𝑜) = 𝑝𝑡ℓ1|(𝑜)) since 𝑜’s
points-to set in their in sets are formed by propagation of that in ℓ1’s out set
only. Similarly, the points-to set of 𝑜 in the in sets of ℓ4 and ℓ5 are equivalent
(𝑝𝑡|ℓ4(𝑜) = 𝑝𝑡|ℓ5(𝑜)) since they are both made up of the union of the points-to
sets of 𝑜 in the out sets of ℓ1 and ℓ2. It stands to reason that we can detect
much of this equivalence in a pre-analysis on the SVFG allowing points-to
sets to be reused instead of repeatedly storing equivalent points-to sets and
repeatedly propagating equivalent, or otherwise, points-to sets to form other
sets of equivalent points-to sets.

Our Approach Instead of retrieving the points-to set of an object 𝑜 from
an in or out set stored at each node, we break 𝑜 into different versions so
that the points-to set of version 𝜅 of 𝑜 (𝑝𝑡𝜅(𝑜)) is global and shared by mul-
tiple SVFG nodes which operate on the points-to set of 𝑜. We say that an
instruction ℓ consumes version 𝒞ℓ(𝑜) of 𝑜 and yields version 𝒴ℓ(𝑜) of 𝑜. The
version of an object which an instruction consumes can be used to access the
object’s points-to set before the instruction and the version which it yields
can be used to access the object’s points-to set after the instruction. Thus,
for example, a StoRe instruction ℓ storing to 𝑜 would operate on 𝑝𝑡𝒴ℓ(𝑜)(𝑜)
and a Load instruction ℓ reading from 𝑜 would access 𝑝𝑡𝒞ℓ(𝑜)(𝑜). The flow-
sensitive analysis propagates points-to sets from 𝑝𝑡𝒴ℓ(𝑜)(𝑜) to 𝑝𝑡𝒞ℓ′ (𝑜)(𝑜) if
an edge ℓ 𝑜−→ ℓ′ exists rather than propagating from 𝑝𝑡ℓ|(𝑜) to 𝑝𝑡|ℓ′(𝑜). Ver-
sions are simply labels or identifiers which only matter in how they relate
to each other, not in their concrete values. In a simple pre-analysis, for each
object, nodes are assigned a consumed version and a yielded version which
can be used to access points-to sets of objects instead of accessing them from
in and out sets (which we completely forego). Importantly, nodes accessing
the same version of an object can share a points-to set for that object. The
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pre-analysis maintains the properties that𝒞ℓ(𝑜) = 𝒞ℓ′(𝑜) ⇒ 𝑝𝑡|ℓ(𝑜) = 𝑝𝑡|ℓ′(𝑜), (3.1)𝒞ℓ(𝑜) = 𝒴ℓ′(𝑜) ⇒ 𝑝𝑡|ℓ(𝑜) = 𝑝𝑡ℓ′|(𝑜), and (3.2)𝒴ℓ(𝑜) = 𝒴ℓ′(𝑜) ⇒ 𝑝𝑡ℓ|(𝑜) = 𝑝𝑡ℓ′|(𝑜), (3.3)

which ensures that our versioning, when used to perform the main phase,
produces precisely the same results as SFS.

Applying our Approach The consumed and yielded versions of the nodes
in our example can be seen in Figure 3.1a. The points-to sets of 𝑜 in the in sets
of ℓ2 and ℓ3 are generated through the propagation of the points-to set of 𝑜 in
the out set of ℓ1 and are thus equivalent, so 𝒞ℓ2(𝑜) = 𝒞ℓ3(𝑜) = 𝒴ℓ1(𝑜) = 𝜅1.
Similarly, the points-to sets of 𝑜 in the in sets of ℓ4 and ℓ5 are generated
through the union of the points-to sets of 𝑜 in the out sets of ℓ1 and ℓ2 (𝜅1⋄𝜅2
is another version separate to 𝜅1 and 𝜅2 and the ⋄ operator is described in Sec-
tion 3.2). All this can be determined before any flow-sensitive analysis. Since
multiple nodes may share versions, we can store fewer points-to sets. We also
generate fewer propagation constraints since each of our new constraints rep-
resent more than one of those generated to perform SFS, and some are elimi-
nated. Improvements to the number of points-to sets required and the number
of propagation constraints generated are shown in Figure 3.1b where they are
listed in Column 3 for our approach. Instead of storing 6 points-to sets, we
store 3, and we reduce the number of propagation constraints generated from
6 to 2. Hence, our approach saves both space, through storing fewer points-to
sets, and time, through performing fewer points-to set propagations2.

3.2 Meld Labelling

Meld labelling is a prelabelling extension on directed graphs where each non-
prelabelled node is labelled with a melding of the labels found at the source
ends of its incoming edges. Given that the label domain is 𝒦, to achieve
meld labelling, we define the meld operator ⋄ ∶ 𝒦2 ↦ 𝒦. The meld operator
can be any operation that is commutative, associative, idempotent, and has an

2We note that points-to graph equivalence [Hardekopf and Lin, 2009] improves the situation
too, and the example was chosen for simplicity. Points-to graph equivalence is discussed further
in Section 3.7
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identity element in relation to𝒦. In otherwords, given that 𝜅1, 𝜅2, 𝜅3, 𝜀 ∈ 𝒦
and 𝜀 is the identity,𝜅1 ⋄ 𝜅2 = 𝜅2 ⋄ 𝜅1 (Commutativity)𝜅1 ⋄ (𝜅2 ⋄ 𝜅3) = (𝜅1 ⋄ 𝜅2) ⋄ 𝜅3 (Associativity)𝜅1 ⋄ 𝜅1 = 𝜅1 (Idempotence)𝜅1 ⋄ 𝜀 = 𝜅1 (Identity)

The set union operator, ∪, and the bitwise-or operator found in many pro-
gramming languages, are examples of suitable meld operators when 𝒦 is the
set of sets or bit-vectors.

The graph is initially prelabelled with labels in 𝒦, except 𝜀, per some
condition chosen according to the meld labelling’s purpose. Nodes that are
not part of that prelabelled subset, Pre, are labelled with the identity 𝜀. The
meld labelling process is simple: meld the label of each node not in Pre with
its incoming neighbours’ labels repeatedly until all nodes which would be
labelled are labelled, i.e., that a fixed-point is reached. This is exemplified by
the [MELD] rule in Figure 3.2 where 𝑛 and 𝑛′ are nodes, and 𝜅𝑛 and 𝜅𝑛′ are
the labels of 𝑛 and 𝑛′.

[MELD]𝑛′ −→ 𝑛 𝑛 ∉ Pre𝜅𝑛 = 𝜅𝑛′ ⋄ 𝜅𝑛
FiguRe 3.2: Meld labelling process. 𝜅𝑛 is the label of node 𝑛.

Prelabelled nodes and nodes reachable by any prelabelled node will be
labelled with some non-𝜀 label by the end of the meld labelling process. All
other nodes will finish labelled with 𝜀. The final result is that nodes have been
split into equivalence classes according to themelding of prelabels which tran-
sitively reach them. Those that finish with 𝜀 are in their own class: nodes
unreachable by any prelabelled node. In essence, this problem is a subset of
a transitive closure.

Figure 3.3 shows an example of a prelabelled graph and its state after meld
labelling. In this instance, the label domain, 𝒦, is made up of patterns, specif-
ically 𝒦 = { , , , , , , , } where is the identity. Nodes
are prelabelled with , , and , and the remaining nodes are labelled
with the identity . The meld operator ⋄ melds or combines the patterns.
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11111111111111111 22222222222222222
3333333333333333344444444444444444

55555555555555555
66666666666666666

77777777777777777 88888888888888888
(a) Prelabelled graph.

11111111111111111 22222222222222222
3333333333333333344444444444444444

55555555555555555
66666666666666666

77777777777777777 88888888888888888
(b) Result of meld labelling.

FiguRe 3.3: An example of meld labelling. Patterns are labels and the meld
operator ⋄ combines them. The blank pattern is the identity.

With the following subset of cases for the meld operator (though other sub-
sets would be sufficient too), knowledge that ⋄ is commutative, associative,
and idempotent, and that is the identity, all cases can be derived:⋄ = ⋄ = ⋄ = ⋄ = .
For example, we can determine that ⋄ = because ⋄ = ( ⋄) ⋄ = ⋄ ( ⋄ ) = ⋄ ( ⋄ ) = ( ⋄ ) ⋄ = ⋄ = .

Importantly, in Figure 3.3, despite nodes 5 and 8 (and similarly nodes 4
and 7) having different incoming neighbours, they finish with the same label
because the melding of their incoming neighbours’ labels is the same. Thus,
equivalence of labels at nodes is not a result of sharing incoming neighbours
but by sharing the set of labels (from prelabelling) which reach them.

Complexity In the worst case, meld labelling takes 𝒪(|𝐸||Pre|) time, where𝐸 is the set of edges, if we count the number of times a meld needs to occur
(i.e., excluding the complexity of the meld operation). This is because each la-
bel already on the graph may need to be propagated along each edge whether
as a part of a melding or on its own. This only differs slightly from a stan-
dard transitive closure worst case of 𝒪(|𝐸||𝑁|) where 𝑁 is the set of nodes
in the graph. In space, it would always take 𝒪(|𝑁|) space where 𝑁 is the set
of nodes since a label would need to be stored at each node. The choice of
label is important, as a label taking 𝒪(|𝑃 𝑟𝑒|) space (as opposed to 𝒪(1)) in
the worst case may become too expensive and unwieldy when we apply this
on a per object basis as we do in the next section.
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3.3 Versioning Objects

SFS propagates points-to sets across instructions such that at each instruction
there is a points-to set (or two) for every object it may use or define. However,
two instructions which rely on the exact same modifications to an object’s
points-to set can share the points-to set they use. In such a case (if we can
determine this in a pre-analysis, at least), we say that those two instructions
(i.e., SVFG nodes) consume the same version of an object. Complementary to
consuming a version of an object, we say that the version an instruction yields
is the version of an object it may define. An instruction which may not define
a particular object would yield the version of that object which it consumes.

A version of an object represents a state of that object’s points-to set such
that any change in an object’s points-to set requires a new version. Since
we perform versioning as a pre-analysis, any potential change in an object’s
points-to set warrants a version. The points-to set of an object 𝑜 at a program
point may change in two ways: (1) through a StoRe instruction ∗𝑝 = 𝑞 when𝑝 points to 𝑜, and (2) through the merging of points-to sets of 𝑜 at different
program points before an instruction (recall the [VALUE-FLOW] rule), that is,
when 𝑜’s points-to set in an in set is the union of that in multiple out sets.

All instructions consume a single version per object and yield a single
version per object. Determining the versions of an object and which versions
of it each instruction may consume and yield requires points-to information,
and since flow-sensitive points-to information is obviously unavailable before
the flow-sensitive analysis is performed, we use the points-to information
produced by the auxiliary analysis. This may give us more versions than
necessary whereby two versions may be collapsible into a single version if
versioning was done using more precise points-to information, but the over-
approximation is sound and is still performant as we shall see in Section 3.6.

Where 𝒦 is the set of all versions, we give each instruction ℓ a 𝒞 (for
consume) function, defined as,

Definition 3.3.1 𝒞 ∶ 𝒜 ↦ 𝒦 where 𝒞ℓ(𝑜) is the version of 𝑜 which ℓ consumes,

and a 𝒴 (for yield) function, defined as,

Definition 3.3.2 𝒴 ∶ 𝒜 ↦ 𝒦 where 𝒴ℓ(𝑜) is the version of 𝑜 which ℓ yields.
These versions are just labels with nomeaning except to differentiate between
them. If we were to use natural numbers as versions, for example, no impor-

28



3.3. Versioning Objects

tance is given to magnitude; there is no difference between versions say 𝜅1
and𝜅2 andwe are only concernedwithwhether they are equal or not. Overall,
versioning objects allows two or more instructions to access the same points-
to set of 𝑜 if those instructions rely on the same modifications to 𝑜 through
stores and value-flow merges.

Meld labelling encodes reliances between nodes according to the prela-
belling which it extends such that if nodes share the same label, they rely on
the same prelabelled nodes. With a prelabelling of nodes which may modify
objects’ points-to sets, we can use meld labelling to version objects. Since the
set union operator which is used by inclusion-based points-to analysis fulfils
the requirements of the meld operator, meld labelling can be seen as a sim-
ulation of the real points-to analysis’s propagation using labels/versions to
represent points-to sets and relying on imprecise points-to information from
the auxiliary analysis rather than flow-sensitive information. In the context
of meld labelling for versioned staged flow-sensitive analysis (VSFS), our new
analysis, the terms label and version are synonymous, that is, we will use the
result of an appropriately tweaked meld labelling to version objects.

3.3.1 Preversioning

At any given node, multiple objects may be used or defined. Thus, we are not
aiming for a single version (label) at each node, but would need a version per
object (of interest). In fact, we want two versions per object at each node: one
to consume and one to yield, because some nodes may not propagate (yield)
the same version they use (consume). Since the only points-to information
available to us is from the imprecise auxiliary analysis results, we are aiming
for a versioning that signifies the worst case of the flow-sensitive analysis (un-
realistically being nomore precise than the auxiliary analysis). In this section,
wewill focus on prelabelling, or preversioning, the SVFG, andmodify the meld
labelling process in the next section to account for this kind of prelabelling.

In the course of execution, assuming a StoRe instruction operates on
object 𝑜, it may propagate forward a different points-to set of 𝑜 than the
one propagated to it because it may modify 𝑜’s points-to set (i.e., define 𝑜).
Whether a StoRe instruction ∗𝑝 = 𝑞 modifies an object’s points-to set relies
on whether 1) 𝑝 points to 𝑜, and 2) whether the points-to set of 𝑞 contains el-
ements not found in the points-to set of 𝑜. We have an imprecise form of the
first piece of information through the sound auxiliary analysis. From the aux-
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iliary analysis, we can soundly infer whether 𝑝 might point to 𝑜 in the final
flow-sensitive analysis but it may not be possible to determine that the StoRe
instruction may modify the points-to sets of 𝑜 or not by only considering the
results of the auxiliary analysis. Thus, when 𝑝 points to 𝑜 in the auxiliary
analysis, we soundly assume StoRe instructions would always modify the
points-to set of 𝑜 during the main analysis, and thus yield a different version
of 𝑜 to that which they consume (regardless of whether this actually occurs).
Having spurious versions is sound, and as it stands, SFS can be thought of as
having a unique consumed and yielded version for each object in the in and
out sets, respectively, at each node. Since the version of an object which a
StoRe instruction yields is a new version, and not reliant on any other ver-
sion, preversioning should occur at StoRe nodes. Specifically, for each object𝑜 which may be defined at each StoRe instruction ℓ, we need to provide ℓ’s
yielded version as a preversion (i.e., set 𝒴ℓ(𝑜)).
Example 3.3.1 The state of the SVFG in the motivating example (Figure 3.1)
after preversioning is shown in Figure 3.4. The StoRe nodes are given preversions
(𝜅1 and 𝜅2) to yield for 𝑜 and all other consumed and yielded versions are set to
the identity. 𝜀 = 𝒞ℓ1(𝑜)ℓ1 ∶ ∗𝑝 = 𝑞𝜅1 = 𝒴ℓ1(𝑜)

𝜀 = 𝒞ℓ2(𝑜)ℓ2 ∶ ∗𝑝 = 𝑟𝜅2 = 𝒴ℓ2(𝑜)

𝜀 = 𝒞ℓ3(𝑜)ℓ3 ∶ 𝑥 = ∗_𝜀 = 𝒴ℓ3(𝑜)
𝜀 = 𝒞ℓ4(𝑜)ℓ4 ∶ 𝑦 = ∗_𝜀 = 𝒴ℓ4(𝑜)

𝜀 = 𝒞ℓ5(𝑜)ℓ5 ∶ 𝑧 = ∗_𝜀 = 𝒴ℓ5(𝑜)
𝑜𝑜

𝑜 𝑜
𝑜 𝑜

FiguRe 3.4: The SVFG from the motivating example after the preversioning
phase. Versions introduced in this phase are boxed .

If we use the results from the imprecise auxiliary analysis to perform call
graph resolution [Hardekopf and Lin, 2011], this is sufficient. However, we
would prefer performing on-the-fly call graph resolution using results from
the flow-sensitive points-to analysis itself (the main phase) as we would ex-
pect a smaller call graph. Thus, the SVFG may be missing edges which may
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be added during the main phase and this can affect versioning. Specifically,
some reliances between versions (e.g. that 𝒞ℓ(𝑜) is a melding of itself and
some 𝒴ℓ′(𝑜)) are not determined until we perform the flow-sensitive analy-
sis. To remedy this, any such node, which we refer to as a 𝛿-node, consumes
a unique version for each object it may propagate forward. These unique
versions are assigned during preversioning. As determined by the auxiliary
analysis, these nodes are any FunEntRy instruction that may be the target
of an indirect call and any Call instruction which makes an indirect call (i.e.,
the return target of an indirect call). Obviously, direct calls are static. This is
a sound over-approximation since in actuality we either need to introduce a
new version, which we have done, or reuse a version, which improves perfor-
mance but does not appear to be possible with the available information.

For convenience, we define a 𝛿 function to encode this as,

Definition 3.3.3 𝛿 ∶ ℒ ↦ 𝔹 such that𝛿(ℓ) = true ⇔ ∃ℓ′ ∈ ℒ. ∃𝑜 ∈ 𝒪. ℓ′ 𝑜−→!! ℓ ∧ 𝑃(ℓ′ 𝑜−→ ℓ)
where 𝑃(ℓ′ 𝑜−→ ℓ) indicates the possibility of indirect value-flow edge ℓ′ 𝑜−→ ℓ
being created during the main analysis due to on-the-fly call graph resolution.

Preversioning is fast to the point where time taken is inconsequential as it
only performs a linear scan on the SVFG and sets 𝒞 or 𝒴 to new versions for a
relatively small number of nodes. The inference rules in Figure 3.5 show this
performed on an SVFGwith all 𝒞 and 𝒴 having been already set as the identity𝜀 (for all objects 𝑜, where a node is not given a fresh version to consume/yield,
we want it to consume/yield 𝜀). The [STORE] rule ensures that StoRe instruc-
tions yield a new version for each object they may define, as determined by
the auxiliary analysis, and the [OTF-CG] rule ensures that 𝛿-nodes similarly
consume a new version for each object which they may eventually yield in
case that is necessary.

[STORE]ℓ ∶ ∗𝑝 = 𝑞 𝑜 ∈ 𝑝𝑡𝑎(𝑝) 𝜀 = 𝒴ℓ(𝑜)𝒴ℓ(𝑜) = nv(𝑜) [OTF-CG]𝛿(ℓ) ℓ 𝑜−→ ℓ′ 𝜀 = 𝒞ℓ(𝑜)𝒞ℓ(𝑜) = nv(𝑜)
FiguRe 3.5: Preversioning inference rules. 𝑛𝑣(𝑜) returns a new version for 𝑜
and 𝑝𝑡𝑎(𝑝) is the points-to set of 𝑝 according to the auxiliary analysis.
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3.3.2 Meld Versioning

At this point, we have an SVFGwith the versions consumed and yielded set at
a small portion of nodes (preversions). In meld versioning of the preversioned
SVFG, we need to consider that edges are labelled with address-taken objects.
We only propagate versions for objects along edges labelled with that object
because if there does not exist an edge ℓ 𝑜−→ ℓ′ then ℓ′ is not directly affected
by the value of 𝑜 at ℓ (indirect edges could be added during on-the-fly call
graph resolution, but we handled this soundly during preversioning).

Example 3.3.2 In Figure 3.6, 𝜅1 = 𝒴ℓ1(𝑎) is only propagated along the edge toℓ2 labelled with 𝑎. This occurs similarly for 𝜅2 = 𝒴ℓ1(𝑏) with ℓ3 and 𝑏.
…

ℓ1 ∶ _𝜅1 = 𝒴ℓ1(𝑎)𝜅2 = 𝒴ℓ1(𝑏)
𝜅1 = 𝒞ℓ2(𝑎)𝜀 = 𝒞ℓ2(𝑏)ℓ2 ∶ _

…

𝜀 = 𝒞ℓ3(𝑎)𝜅2 = 𝒞ℓ3(𝑏)ℓ3 ∶ _
…

𝑎 𝑏
FiguRe 3.6: An example SVFG involving two objects, 𝑎 and 𝑏.

That each node may have two versions per object (a consumed and a
yielded version) also needs to be considered. We thus perform the meld ver-
sioning propagation by introducing propagation internal to, and external to,
nodes. Internal propagation occurs when a node yields what it consumes,
which are all non-StoRe nodes since no other type of node can ever propagate
a different points-to set for an object 𝑜 than the one propagated to it. At such
a node ℓ, 𝒴ℓ(𝑜) = 𝒞ℓ(𝑜) for all 𝑜 ∈ 𝒜. An implementation would not need
to store 𝒴ℓ(𝑜) and 𝒞ℓ(𝑜) separately, but we do so here for simplicity. When
an edge ℓ 𝑜−→ ℓ′ exists, we perform external propagation. In such a case, we
meld 𝒴ℓ(𝑜) into 𝒞ℓ′(𝑜) (i.e, ℓ′ consumes what ℓ yields, and potentially other
versions too) except when 𝛿(ℓ′) because 𝒞ℓ′(𝑜) would be a preversion. We
explicitly avoid changing what was set in the preversioning phase as unique
versions were specifically chosen for those positions, and we want to main-
tain that. More formally, the inference rules in Figure 3.7 will, for each node,
determine the consumed and yielded version of objects used at that node.

The [EXTERNAL] rule propagates a yielded version from the incoming
neighbours of a non-𝛿-node andmelds that with the consumed version of that
node. This rule is similar to the [MELD] rule in the original definition of meld
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[EXTERNAL]ℓ 𝑜−→ ℓ′ ¬𝛿(ℓ′)𝒞ℓ′(𝑜) = 𝒞ℓ′(𝑜) ⋄ 𝒴ℓ(𝑜) [INTERNAL]¬ℓ ∶ ∗_ = _𝒴ℓ(𝑜) = 𝒞ℓ(𝑜)
FiguRe 3.7: Inference rules for meld versioning.

labelling in Section 3.2. It excludes 𝛿-nodes because they have had their rele-
vant consumed versions set in the preversioning phase. The [INTERNAL] rule
ensures that any nodewhich yields what it consumes—non-StoRe nodes—has
its yielded version set to its consumed version.

Example 3.3.3 In Figure 3.8, we revisit our motivating example (Figure 3.1)
again after preversioning in Example 3.3.1. 𝑜’s version is propagated externally
from ℓ1 to ℓ2, ℓ3, ℓ4, and ℓ5 and from ℓ2 to ℓ4 and ℓ5. When more than one ver-
sion is propagated to another node, more interesting melding occurs, as is seen
in the consumed version of 𝑜 at nodes ℓ4 and ℓ5 (𝜅1 ⋄ 𝜅2). Internal propaga-
tion occurs at ℓ3, ℓ4, and ℓ5 since they yield what they consume. For example,𝒴ℓ3(𝑜) = 𝒞ℓ3(𝑜). Thus, from the process and result, it becomes clear why some
consumed or yielded versions are equivalent.

…ℓ1 ∶ ∗𝑝 = 𝑞𝜅1 = 𝒴ℓ1(𝑜)
𝜅1 = 𝒞ℓ2(𝑜)ℓ2 ∶ ∗𝑝 = 𝑟𝜅2 = 𝒴ℓ2(𝑜)

𝜅1 = 𝒞ℓ3(𝑜)ℓ3 ∶ 𝑥 = ∗_𝜅1 = 𝒴ℓ3(𝑜)
𝜅1 ⋄ 𝜅2 = 𝒞ℓ4(𝑜)ℓ4 ∶ 𝑦 = ∗_𝜅1 ⋄ 𝜅2 = 𝒴ℓ4(𝑜)

𝜅1 ⋄ 𝜅2 = 𝒞ℓ5(𝑜)ℓ5 ∶ 𝑧 = ∗_𝜅1 ⋄ 𝜅2 = 𝒴ℓ5(𝑜)
𝑜𝑜 𝑜 𝑜

𝑜 𝑜
FiguRe 3.8: The SVFG from the motivating example after being versioned.
Consumed/yielded versions changed during meld versioning are boxed .

3.4 Flow-Sensitive Points-To Analysis with Versioned
Objects

At this point, every instruction which may access the points-to set of an
address-taken object is given two versions for that object: the version of that
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object it consumes and the version of that object it yields. We use these ver-
sions to choose which points-to set to access for each object of interest instead
of accessing objects’ points-to sets from in/out sets. With many program
points sharing versions, we can save on redundant points-to sets. The infer-
ence rules in Figure 3.9 modify SFS as described in Figure 2.5 to use versions
instead of in/out sets. We use the notation 𝑝𝑡𝜅(𝑜) to refer to the points-to
set of 𝑜 version 𝜅 and we refer to our new formulation of a flow-sensitive
points-to analysis as versioned staged flow-sensitive analysis (VSFS).

The [LOAD] and [STORE] rules work exactly as their original counter-
parts except they, instead of accessing the points-to set of 𝑜 from an in or
out set, use the consumed or yielded versions of 𝑜’s points-to sets at the
instruction, respectively. For Load instruction 𝑝 = ∗𝑞, the [LOAD] rule in-
cludes 𝑞’s pointees’ points-to sets (consumed versions) in 𝑝’s points-to set,
and for StoRe instruction ∗𝑝 = 𝑞, the [STORE] rule includes 𝑞’s points-to
set in 𝑝’s pointees’ points-to sets (yielded versions). The [SU/WU] rule prop-
agates from the points-to sets of the consumed versions of objects at ℓ to the
points-to sets of yielded versions of objects at the same instruction instead of
propagating from the in set to the out set of ℓ. It performs strong updates
by interacting with the kill function in the same way as SFS but uses versions
to choose object points-to sets. Finally the [VALUE-FLOW] rule propagates
points-to sets between nodes. Now, given ℓ 𝑜−→ ℓ′, instead of propagating
from the out set of ℓ (or the in set as a simple optimisation, depending on
what type of instruction ℓ is) to the in set of ℓ′, for 𝑜, it includes the points-to
set of the yielded version of 𝑜 at ℓ in the points-to set of the consumed version
of 𝑜 at ℓ′. Since many nodes may consume and yield the same versions, many
of the constraints generated are equivalent meaning propagation occurs far
less often.

The remainder of the analysis works in the exact same way as SFS. The
[ALLOC] rule inserts a newly allocated object in the left-hand side pointer’s
points-to set. The [𝜙] and [CAST] rules add the right-hand side pointer’s
or pointers’ points-to set(s) to the left-hand side pointer’s points-to set. The
[FIELD*] rules give the analysis field-sensitivity by inserting a field object
(offset into another object) in the left-hand side pointer’s points-to set. The
[CALL] and [RET] rules copy the value of actual arguments to formal argu-
ments and return values to pointers, respectively. Again, using a pointer 𝑞
as the called function allows for on-the-fly call graph resolution. As shown
in grey, if the instructions are annotated with 𝜒/𝜇, they produce new edges
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[ALLOC]ℓ ∶ 𝑝 = 𝑎𝑙𝑙𝑜𝑐 ̂𝑜̂𝑜 ∈ 𝑝𝑡(𝑝) [𝜙] ℓ ∶ 𝑝 = 𝜙(𝑞, 𝑟)𝑝𝑡(𝑞) ∪ 𝑝𝑡(𝑟) ⊆ 𝑝𝑡(𝑝) [CAST]ℓ ∶ 𝑝 = (𝑡) 𝑞𝑝𝑡(𝑞) ⊆ 𝑝𝑡(𝑝)
[LOAD]ℓ ∶ 𝑝 = ∗𝑞 𝑜 ∈ 𝑝𝑡(𝑞) 𝜅𝑐 = 𝒞ℓ(𝑜)𝑝𝑡𝜅𝑐(𝑜) ⊆ 𝑝𝑡(𝑝)
[STORE]ℓ ∶ ∗𝑝 = 𝑞 𝑜 ∈ 𝑝𝑡(𝑝) 𝜅𝑦 = 𝒴ℓ(𝑜)𝑝𝑡(𝑞) ⊆ 𝑝𝑡𝜅𝑦(𝑜)

[SU/WU]ℓ ∶ ∗𝑝 = _ 𝑜 ∈ 𝒜 \ kill(ℓ) 𝜅𝑐 = 𝒞ℓ(𝑜) 𝜅𝑦 = 𝒴ℓ(𝑜)𝑝𝑡𝜅𝑐(𝑜) ⊆ 𝑝𝑡𝜅𝑦(𝑜)
[VALUE-FLOW]ℓ 𝑜−→ ℓ′ 𝜅𝑠 = 𝒴ℓ(𝑜) 𝜅𝑑 = 𝒞ℓ′(𝑜)𝑝𝑡𝜅𝑠(𝑜) ⊆ 𝑝𝑡𝜅𝑑(𝑜)

[FIELD]ℓ ∶ 𝑝 = &𝑞 →𝑓𝑘 ̂𝑜 ∈ 𝑝𝑡(𝑞)̂𝑜.𝑓𝑘 ∈ 𝑝𝑡(𝑝) [FIELD-ADD]ℓ ∶ 𝑝 = &𝑞 →𝑓𝑗 ̂𝑜.𝑓𝑖 ∈ 𝑝𝑡(𝑞)̂𝑜.𝑓𝑖+𝑗 ∈ 𝑝𝑡(𝑝)
[CALL]𝜇(𝑎𝑖) ℓ ∶ _ = 𝑞(… , 𝑟, … ) 𝑜fun ∈ 𝑝𝑡(𝑞) ℓ′ ∶ fun(… , 𝑟′, … ) 𝑎1 = 𝜒(𝑎0)𝑝𝑡(𝑟) ⊆ 𝑝𝑡(𝑟′) ℓ 𝑟−→ ℓ′ ℓ 𝑎−→ ℓ′

[RET]ℓ ∶ 𝑝 = 𝑞(… ) 𝑎𝑖+1 = 𝜒(𝑎𝑖) 𝑜fun ∈ 𝑝𝑡(𝑞) 𝜇(𝑎𝑗) ℓ′ ∶ 𝑟𝑒𝑡fun𝑝′𝑝𝑡(𝑝′) ⊆ 𝑝𝑡(𝑝) ℓ′ 𝑝′−→ ℓ ℓ′ 𝑎−→ ℓ
kill(ℓ ∶ ∗𝑝 = _) Δ= ⎧{⎨{⎩{𝑜} if 𝑝𝑡(𝑝) ≡ {𝑜} ∧ 𝑜 is singleton𝒪 if 𝑝𝑡(𝑝) ≡ ∅∅ otherwise

kill(ℓ ∶ _) Δ= ∅
FiguRe 3.9: Inference rules for the new main phase flow-sensitive analysis in
VSFS.
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if they did not already exist. Recall that 𝛿-nodes had their consumed version
for relevant objects already set. This is what allows this call graph resolution
to work seamlessly as we do not need to modify any versions when handling
the [CALL] or [RET] rules for the analysis to move forward.

3.5 Efficient Versioning

To naively implement versioning as in the rules in Figure 3.7 would be ex-
pensive, especially in space. While it is possible to use integers as versions,
the meld versioning phase requires versions to be represented as sets (or sim-
ilar; e.g., bit-vectors) to be performed quickly and naturally. Associating two
bit-vectors per relevant object per node, each containing up to |Pre| elements,
does not scale very well, particularly with respect to memory. Thus, we de-
scribe a few methods which help keep memory footprint low whilst also im-
proving versioning time, ensuring VSFS is competitive.

3.5.1 Per-Object Versioning

Indirect edges in the SVFG are labelled with objects. One option for an imple-
mentation is to perform versioning for all objects at once, i.e., processing all
the outgoing edges of an SVFG node regardless of the object they are labelled
with. Performing this on a per-object basis however opens up new optimi-
sations. With respect to the flow of points-to information of address-taken
objects along the SVFG (recall the [VALUE-FLOW] and [SU/WU] rules), the
SVFG can be thought of as multiple graphs, each of which is made up of the
same nodes but with edges only labelled with a particular object. Then, it is
easy to think about performing versioning on a per-object basis by consider-
ing these subgraphs, each of which we will refer to as an 𝑜-SVFG where all
edges not labelled with 𝑜 are removed.

An 𝑜-SVFG is not necessarily acyclic, but performing versioning on an
acyclic graph is far more efficient than doing so on a cyclic graph as we can
exploit the topological order of the graph for propagation (recall that version-
ing is similar to solving the transitive closure or determining reachability).
By splitting up an 𝑜-SVFG into strongly connected components (with some
caveats), we obtain an acyclic graph of these qualified strongly connected
components. We want to split each 𝑜-SVFG such that every node in a given
such strongly connected component has equivalent consumed versions of 𝑜
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and equivalent yielded versions of 𝑜. For this, we modify Tarjan’s strongly
connected component algorithm [Tarjan, 1972]. We chose the original formu-
lation for our implementation but later iterations of the algorithm can also be
used [Nuutila and Soisalon-Soininen, 1994; Pearce, 2016].

In considering the neighbours of 𝑣, 𝑤, in the STRONGCONNECT pro-
cedure in the original algorithm [Tarjan, 1972, §4], we ignore any 𝑤 which
is a 𝛿-node or StoRe node. We “cut of” 𝛿-nodes because they consume a
preversion and thus cannot share their consumed version with any incoming
neighbours. We cut off StoRe nodes because they yield a preversion and thus
we cannot guarantee that all of our qualified strongly connected components
involving such a node will all yield a single version (consider that all other
nodes yield what they consume and thus might yield a melding involving the
version yielded in a StoRe and a version yielded outside our qualified strongly
connected component).

We can perform the meld versioning on our qualified strongly connected
components rather than individual nodes, and all nodes within these com-
ponents will consume the same version and yield the same version. With a
function scc ∶ ℒ ↦ ℒ which returns some canonical node within the quali-
fied strongly connected component the argument belongs to, we can modify
our meld versioning rules as in Figure 3.10. Then, many constraints would
be equivalent and we do not store versions for every node (at this stage),
rather, just for some canonical node for each of our qualified strongly con-
nected components. The [ASSIGN] rule ensures that all nodes in a qualified
strongly connected component are given equivalent versions to the canoni-
cal node of their component. In an implementation, the [ASSIGN] rule can
be implemented as a concluding linear pass converting expensive set- or bit-
vector-based versions into more inexpensive forms such as integers

[EXTERNAL]ℓ 𝑜−→ ℓ′ ¬𝛿(ℓ′)𝒞scc(ℓ′)(𝑜) = 𝒞scc(ℓ′)(𝑜) ⋄ 𝒴scc(ℓ)(𝑜) [INTERNAL]¬ℓ ∶ ∗_ = _𝒴scc(ℓ)(𝑜) = 𝒞scc(ℓ)(𝑜)
[ASSIGN] ℓ ∶ _𝒞ℓ(𝑜) = 𝒞scc(ℓ)(𝑜) 𝒴ℓ(𝑜) = 𝒴scc(ℓ)(𝑜)

FiguRe 3.10: Versioning inference rules using our (qualified) strongly con-
nected components.
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Furthermore, the inference rules in Figure 3.10 can be implemented very
efficiently because Tarjan’s strongly connected component algorithmproduces
a (reverse) topological sorting of the graph. With the 𝑜-SVFG topologically
sorted, we can implement the [EXTERNAL] and [INTERNAL] rules in linear
time, and the [ASSIGN] rule can be implemented in another final linear pass,
as mentioned.

3.5.2 𝑜-SVFG Isomorphism

If two 𝑜-SVFGs are isomorphic, ignoring the 𝑜 labels, then the versions as-
signed at each node corresponding to their object will be equivalent (in shape,
not necessarily in value). Thus, if we perform versioning on say the 𝑜1-SVFG,
then later find that the 𝑜2-SVFG is isomorphic to the 𝑜1-SVFG (modulo edge
labels), we can simply set 𝒞ℓ(𝑜2) = 𝒞ℓ(𝑜1) and 𝒴ℓ(𝑜2) = 𝒴ℓ(𝑜1) for allℓ ∈ ℒ. Versions of different objects 𝑜1 and 𝑜2 are used independently and
never mixed, so new names are not required. Graph isomorphism in this case
is trivial to check because both graphs are made up of the same nodes.

3.5.3 Foregoing Indirect Value-Flow Edges

We say that a version 𝜅′ of object 𝑜 relies on version 𝜅 (also that of object 𝑜) ifℓ 𝑜−→ ℓ′ ∧ 𝜅 = 𝒴ℓ(𝑜) ∧ 𝜅′ = 𝒞ℓ′(𝑜). This essentially produces a second conclu-
sion to the premises in the [VALUE-FLOW] rule in Figure 3.9. Since versioning
is a pre-analysis producing static versions, this can be determined before the
main flow-sensitive analysis is performed and will allow us to forego parts of
the SVFG and the storage of many versions, reducing memory pressure.

We introduce a relation 𝜅 𝑜−→ 𝜅′ to indicate the reliance of version 𝜅′ on
version 𝜅 for object 𝑜. To determine all such reliance relations, we can simply
apply the rule in Figure 3.11. With these reliances encoded before the main
analysis, determining reliances before the main analysis allows us to forego
(i.e., delete or free) all indirect value-flow edges in the SVFG, but we need to
modify some rules to account for this.

[VERSION-RELIANCE]ℓ 𝑜−→ ℓ′ 𝜅 = 𝒴ℓ(𝑜) 𝜅′ = 𝒞ℓ′(𝑜)𝜅 𝑜−→ 𝜅′
FiguRe 3.11: Inference rule to determine version reliance.
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The modifications to the rules are presented in Figure 3.12. The [CALL]
and [RET] rules now introduce a new version reliance as opposed to a new in-
direct value-flow. Importantly, the versions themselves are static as we chose
the preversioning of 𝛿-nodes to account for this, but reliances are not. The
[VERSION-FLOW] rule replaces the [VALUE-FLOW] rule, doing the same thing
as before, except using version reliances instead of indirect value-flows as a
premise. It can almost be seen as a substitution of the old [VALUE-FLOW] rule
since the [VERSION-RELIANCE] rule which produced the new premise as its
conclusion (𝜅 𝑜−→ 𝜅′) uses the old premise (ℓ 𝑜−→ ℓ′ … ) as its premise.

[CALL] 𝜇(𝑎𝑖) ℓ ∶ _ = 𝑞(… , 𝑟, … ) 𝑜fun ∈ 𝑝𝑡(𝑞)ℓ′ ∶ fun(… , 𝑟′, … ) 𝑎1 = 𝜒(𝑎0) 𝜅 = 𝒴ℓ(𝑎) 𝜅′ = 𝒞ℓ′(𝑎)𝑝𝑡(𝑟) ⊆ 𝑝𝑡(𝑟′) 𝜅 𝑎−→ 𝜅′
[RET]ℓ ∶ 𝑝 = 𝑞(… ) 𝑎𝑖+1 = 𝜒(𝑎𝑖) 𝑜fun ∈ 𝑝𝑡(𝑞)𝜇(𝑎𝑗) ℓ′ ∶ 𝑟𝑒𝑡fun𝑝′ 𝜅′ = 𝒴ℓ′(𝑎) 𝜅 = 𝒞ℓ(𝑎)𝑝𝑡(𝑝′) ⊆ 𝑝𝑡(𝑝) 𝜅′ 𝑎−→ 𝜅

[VERSION-FLOW]𝜅 𝑜−→ 𝜅′𝑝𝑡𝜅(𝑜) ⊆ 𝑝𝑡𝜅′(𝑜)
FiguRe 3.12: Inference rule modifications from the main analysis rules in Fig-
ure 3.9 to account for the introduction of version reliances and the removal
of indirect value-flow edges in the SVFG.

3.5.4 Storing Fewer Versions

Versions of objects at instructions are accessed in four rules: the [LOAD]
and [STORE] rules, and the new [CALL] and [RET] rules. Previously, the
[VALUE-FLOW] rule accessed versions at many instructions, but with our ver-
sion reliances and the [VERSION-FLOW] rule, we no longer need to. Thus, it
makes sense to only store versions at nodes in which they are now required,
saving space.

We store versions at four instructions or nodes and forego the rest after
determining version reliances: Load nodes, StoRe nodes, 𝛿-nodes, and 𝛿𝑠𝑟𝑐-
nodes. 𝛿-nodes are the destinations of indirect calls and returns, and we now
define 𝛿𝑠𝑟𝑐-nodes to be thosewhich could be, but are not (yet, perhaps), source
nodes to new edges added to the SVFG in the original conception of our rules
(that lead to 𝛿-nodes). To encode this, we define a 𝛿𝑠𝑟𝑐 function as,
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Definition 3.5.1 𝛿𝑠𝑟𝑐 ∶ ℒ ↦ 𝔹 such that𝛿𝑠𝑟𝑐(ℓ) = true ⇔ ∃ℓ′ ∈ ℒ. ∃𝑜 ∈ 𝒪. 𝛿(ℓ′) ∧ ℓ 𝑜−→!! ℓ′ ∧ 𝑃(ℓ 𝑜−→ ℓ′)
where again 𝑃(ℓ 𝑜−→ ℓ′) indicates the possibility of an edge ℓ 𝑜−→ ℓ′ being cre-
ated during our original conception of the flow-sensitive analysis (Figure 3.9)
due to on-the-fly call graph resolution. We must save versions for 𝛿- and𝛿𝑠𝑟𝑐-nodes for the new [CALL] and [RET] (Figure 3.12) rules as they access
versions stored at both such nodes.

3.5.5 Parallelisation

When the SVFG is split into 𝑜-SVFGs, versioning becomes an embarrassingly
parallel problem. Work can be divided amongst multiple threads such that
each one takes on a single 𝑜-SVFG. Each thread would pick an 𝑜-SVFG, per-
form (qualified) strongly connected component detection, would check for
isomorphism (copying relevant versions and version reliances and moving
on to the next 𝑜-SVFG if successful), perform meld versioning, determine
and save version reliances, and finally permanently save some versions as
described previously. Finally, after all 𝑜-SVFGs have been processed, all in-
direct value-flow edges can be deleted from the SVFG, freeing some memory
for the main analysis to consume. The data structures used to perform ver-
sioning can be designed in such a way to ensure minimal locking which we
discuss in Section 3.6.3.

3.6 Evaluation

This section describes our experiments comparing the performance and mem-
ory usage of our approach (VSFS) against SFS. The SVF framework [Sui and
Xue, 2016b] contains an implementation of SFS as described in Section V of
the original paper [Hardekopf and Lin, 2011] (i.e., without the authors’ extra
optimisations), and we implement our new versioned analysis alongside it
for comparison. The points-to sets of both analyses are bit-vectors (with trail-
ing zeroes stripped) which is in contrast to the original SFS implementation
which used BDDs [Hardekopf and Lin, 2011].

The auxiliary analysis used is a flow-insensitive inclusion-based analysis
boosted by wave propagation [Pereira and Berlin, 2009]. We use the core
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Table 3.1: Time taken (s) and memory usage (GB) of SFS and VSFS.

Program SFS VSFS Speedup Memory
reductionTime Memory Time Memory

dhcpcd 21.21 1.06 8.75 0.73 2.43× 1.46×
bash 123.72 5.60 27.12 2.01 4.56× 2.78×
gawk 533.41 10.31 134.63 4.20 3.96× 2.45×
mutt 268.19 12.34 55.43 3.58 4.84× 3.44×
lynx 1692.75 24.50 370.10 6.62 4.57× 3.70×
sqlite 779.47 20.10 235.26 10.75 3.31× 1.87×
xpdf 3429.98 83.20 573.71 15.96 5.98× 5.21×
emacs OOM OOM 4518.31 96.44 – ≥1.24×
git OOM OOM 4710.71 57.98 – ≥2.07×
kakoune OOM OOM 1786.74 37.12 – ≥3.23×
squid OOM OOM OOM OOM – –
wireshark OOM OOM 2409.09 50.01 – ≥2.40×
Geo. mean 4.09× ≥2.51×
bit-vector data structure (described in Section 4.1.2) and the bitwise-or oper-
ator defined upon it during the versioning phase for the labels/versions and
the meld operator, respectively. After versioning (for each 𝑜-SVFG) we con-
vert these core bit-vector versions into integers to save on space and on time
(when performing comparisons). At nodes which yield what they consume,
we only store versions once. We do not create separate 𝑜-SVFGs, rather we
take advantage of how SVF condenses indirect value-flow edges and use the
SVFG directly (Section 2.3.2). When processing an individual 𝑜-SVFG, we ig-
nore (condensed) indirect value-flow edges whose label set does not include𝑜. During this process, the actual SVFG is never modified, causing no issue
when we parallelise versioning. We check for 𝑜-SVFG isomorphism for the𝑜1-SVFG and the 𝑜2-SVFG by checking if the labels 𝑜1 and 𝑜2 appear on the
same set of (condensed) indirect value-flow edges in the SVFG. Our version-
ing implementation implements all the optimisations described in Section 3.5
except that we evaluate and discuss multithreading separately in Section 3.6.3.

Overall, we see that since VSFS sees significant improvement in both time
and memory, and VSFS targets the excessive propagation and storage of in
and out sets, a considerable amount of SFS overhead is spent on the propa-
gation and storage of points-to sets. We also find that the versioning phase
benefits significantly from multithreading.
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Table 3.2: Time (s) breakdown for VSFS.

Program Auxiliary
analysis

Memory SSA
construction

SVFG
construction Versioning Main

analysis Total

dhcpcd 2.41 0.37 0.11 0.76 4.91 8.75
gawk 16.08 3.85 0.95 21.14 90.38 134.63
bash 5.42 2.33 0.91 12.51 5.34 27.12
mutt 8.67 3.56 1.23 18.91 21.77 55.43
lynx 81.85 12.60 2.24 41.73 229.17 370.10
sqlite 78.02 14.87 2.03 45.98 90.59 235.26
xpdf 42.14 10.33 1.51 99.87 410.56 573.71
emacs 597.67 170.44 5.84 697.55 2989.19 4518.31
git 203.51 291.23 12.25 825.52 3355.20 4710.71
kakoune 93.24 48.82 3.45 273.36 1350.00 1786.74
squid OOM OOM OOM OOM OOM OOM
wireshark 102.14 17.25 3.70 247.06 2024.09 2409.09
3.6.1 Time

Statistics for time, from the start of the analysis onward (including the auxil-
iary analysis for example), are presented in Table 3.1 (in seconds). We note
versioning here was performed singlethreaded. We see that on average we
have a 4.09× speedup, a significant improvement over SFS. xpdf sees the
greatest improvement with a 5.98× speedup. Unfortunately, we are miss-
ing many speedup values since 4 benchmarks could not be analysed with SFS
within the memory limit of 120 GB and squid could not be analysed with nei-
ther SFS nor VSFS within the memory limit. If memory was available, we
expect these benchmarks to see significant speedup, perhaps greater than av-
erage.

For context, Table 3.2 shows how much time each element of VSFS took
(the total may differ slightly from the sum of the parts shown as we have omit-
ted some less significant elements). We see that the main analysis almost al-
ways makes up the greatest proportion of the analysis. The versioning phase
once takes up more time than the main analysis (bash) but this will be recti-
fied (if it can even be regarded as a problem considering the overall speedup)
with multithreading in Section 3.6.3.

3.6.2 Memory Usage

Statistics for memory (in GB) are also presented in Table 3.1. On average, we
have a ≥2.51× reduction in memory usage. Of our benchmarks, 5 could not
be analysed by SFS within the 120 GB memory limit (of which only squid
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Table 3.3: Versioning (and total) time (s) for VSFS when versioning is per-
formed with 1, 2, and 4 threads.

Program 1 thread 2 threads 4 threads

Versioning
(total) time

Versioning
(total) time

Versioning
(total) speedup

Versioning
(total) time

Versioning
(total) speedup

dhcpcd 0.76 (8.75) 0.42 (8.26) 1.81× (1.06×) 0.27 (8.29) 2.83× (1.05×)
bash 12.51 (27.12) 6.83 (21.40) 1.83× (1.27×) 3.95 (18.49) 3.17× (1.47×)
gawk 21.14 (134.63) 11.18 (122.81) 1.89× (1.10×) 6.44 (119.93) 3.28× (1.12×)
mutt 18.91 (55.43) 10.42 (47.09) 1.81× (1.18×) 6.03 (42.89) 3.14× (1.29×)
lynx 41.73 (370.10) 22.71 (342.04) 1.84× (1.08×) 13.23 (335.55) 3.16× (1.10×)
sqlite 45.98 (235.26) 24.51 (216.08) 1.88× (1.09×) 14.40 (207.03) 3.19× (1.14×)
xpdf 99.87 (573.71) 56.54 (525.82) 1.77× (1.09×) 32.50 (500.93) 3.07× (1.15×)
emacs 697.55 (4518.31) 388.50 (4252.52) 1.80× (1.06×) 225.89 (4070.25) 3.09× (1.11×)
git 825.52 (4710.71) 459.80 (4329.47) 1.80× (1.09×) 272.39 (4136.60) 3.03× (1.14×)
kakoune 273.36 (1786.74) 158.30 (1697.27) 1.73× (1.05×) 103.38 (1611.43) 2.64× (1.11×)
squid OOM OOM – OOM –
wireshark 247.06 (2409.09) 138.40 (2288.33) 1.79× (1.05×) 99.37 (2246.54) 2.49× (1.07×)
Geo. mean 1.81× (1.10×) 3.00× (1.15×)

could not be analysed by VSFS within the memory limit either). Thus, we
cannot obtain a more accurate average memory reduction and must suffice
with using the ≥ sign. The reduction ranges from 1.24× to 5.21× at most,
but again, this may not paint an accurate picture. For example, analysing
emacs (≥1.24× memory reduction) with VSFS takes 96.44 GB so we expect
SFS to use far more than 120 GB based on the pattern presented by the other
benchmarks. Overall, this is a pleasing result indicating that the reduction in
points-to sets does make a difference in memory usage.

3.6.3 Multithreading

Table 3.3 presents the versioning time in seconds (as well as the new total
time in parentheses) when using 1, 2, and 4 threads. Memory is omitted for
brevity as we only observed standard variance. Most impressive is the almost
2× (1.81×) average speedup in versioning when moving from 1 thread to
2 threads, almost reaching the theoretical best speedup. When moving to
4 threads, we do not see quite as impressive as a result, with a 3× average
improvement but a good improvement nonetheless. The total time for the
analysis also improves slightly as we see a 1.15× speedup on average using 4
threads for versioning rather than 1.

In our implementation, we have 3 mutexes, 1) to lock the worklist contain-
ing our objects to select an 𝑜-SVFG to work on, 2) to lock the data structure
used to check for 𝑜-SVFG isomorphism (map lookup), and 3) to lock the data
structure used to store versions at SVFG nodes which need them. Our 2nd and
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(moreso) 3rd usage of mutexes could be improved a little which may bring a
slight improvement in speedup. This is likely the cause for the less impressive
speedup when using 4 threads (i.e., not as close to 4× as we would like it to
be).

Overall, implementingmultithreading for versioning is extremely straight-
forward after a singlethreaded implementation is available. Importantly, this
introduces multithreading to an aspect of the points-to analysis very simply
unlike the complexity currently required to implement multithreading in the
main phase [Zhao et al., 2018], and in either case, it appears that these ap-
proaches could work together. In the remainder of this dissertation, we will
always be using VSFS (with 4-thread versioning) to evaluate our techniques.

3.7 Related Work

In Section 3.4 of their work, Lhoták and Chung [2011] sparsely allocate in-
struction labels on the ICFG such that propagation is skipped where they can
determine that address-taken objects’ points-to sets will not change during
the analysis (non-StoRe instructions and non-merge points of control-flow).
Our work differs in that they perform their analysis on the ICFG and their
sparse allocation is not on an object-to-object basis but upon all objects for
each label allocation. Their approach also always allocates separate labels
for separate merge points whereas our approach can sometimes determine
when different merge points produce and equivalent points-to set (recall the𝜅1 ⋄ 𝜅2 version in the motivating example in Section 3.1). Their label alloca-
tion is faster than our versioning, but our versioning is more effective (yet still
performant), and this is crucial for larger programs since points-to constraint
solving can grow much faster than either label allocation or versioning.

Most similar to our work (particularly in the mode of operation of meld
versioning) is points-to graph equivalence introduced by Hardekopf and Lin
[2009] in their work on semi-sparse analysis. However, their approach is less
precise in that they conservatively determine equivalences of entire in and
out sets. Thus, this approach cannot realise some of the same opportunities
to collapse objects’ points-to sets as our approach. For example, if only the
points-to set of 𝑜 differs from amongst multiple objects in the in sets of ℓ andℓ′, our approach will ensure ℓ and ℓ′ consume the same version for all non-𝑜
objects, whereas for points-to graph equivalence, the in sets are considered
different and thus no sharing can occur. Further, their pre-analysis is per-
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formed on the sparse evaluation graph, whereas we perform our pre-analysis
on the SVFG. We have not compared to this optimisation since we do not
know of a modern implementation of it.

Our versioning is an instance of offline variable substitution [Rountev
and Chandra, 2000] in that we collapse multiple equivalent variables (in our
case, variable/location pairs) before the main phase points-to analysis. Vari-
able substitution and similar techniques have been applied successfully be-
fore [Hardekopf and Lin, 2007b, 2009; Lhoták and Chung, 2011; Smaragdakis
et al., 2013] and our technique bears an algorithmic similarity to some previ-
ous work [Hardekopf and Lin, 2007b, 2009].

3.8 Conclusion

In this chapter we have presented an object versioned flow-sensitive points-to
analysis or versioned staged flow-sensitive analysis (VSFS), an improvement
over staged flow-sensitive analysis (SFS) with benefits in time and space. We
use a prelabelling extension, meld labelling, to version objects such that SVFG
nodes can in many instances share the same points-to sets for an object re-
ducing storage and propagation costs. We also define a set of optimisations
to make the versioning phase more efficient, including the introduction of
parallelisation at no detriment to implementation simplicity. On average, in
analysing our benchmarks, compared to SFS, our approach presents a speedup
of over 4× and a reduction in memory usage of ≥2.51×.
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As we have seen so far, points-to analysis makes heavy use of sets and set
operations (largely the union operation); the analysis revolves around points-
to sets. It is thus incumbent to represent these sets well.

Bit-vectors are extremely compact sets of integers which have seen wide
adoption as points-to sets in points-to analysis tools, appearing in the likes
of Soot [Lhoták and Hendren, 2003], WALA [WALA, 2021], SVF [Sui and
Xue, 2016b], and more [Hardekopf and Lin, 2007b]. In the literature, they
have been shown to be more efficient than hash-based sets and sorted ar-
rays [Lhoták and Hendren, 2003] and at times more efficient than binary de-
cision diagram (BDD) representations [Hardekopf and Lin, 2007b]. With re-
gards to BDDs specifically, BDD-based points-to analysis often requires diffi-
cult variable reordering to be efficient, and benefitsmay not outweigh those of
using explicit representations such as B-trees [Bravenboer and Smaragdakis,
2009]. Bit-vectors are extremely easy to implement and use in points-to anal-
ysis and without any algorithmic change, only require a bijective mapping of
abstract memory objects to integral identifiers. Then points-to sets would be
made up of the identifiers which map to the pointed-to objects.

A bit-vectors is simply a contiguous array of words (the native size which
the instruction set architecture (ISA) operates on). Each bit in a word repre-
sents an integral identifier and a set bit means that identifier is in the data
structure. Concretely, the first bit of the first word represents 0, the second
bit of the first word represents 1, and so on. For example, given a word size of
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4 bits (⟨××××⟩ where each × represents a bit of the word), as a bit-vector,
the set {0, 3, 8, 9} can be represented with an array of three words:[ ⟨1001⟩, ⟨0000⟩, ⟨1100⟩ ].{ 0 3 89 }
In this instance, the bits representing 0, 3, 8, and 9, are set to 1, and the remain-
ing bits are 0. This efficiency in representing identifiers using bits, rather than
entire words differentiates bit-vectors from explicitly represented sets. Bit-
vectors are more efficient than their explicit counterparts in space in cases
where redundant (zero-)words are few. Here, we use 3 words, rather than 4
as would be required in an explicitly represented data structure such as an
array or hash-based set, to represent the 4 identifiers. On such bit-vectors,
operations are very efficient and can take advantage of spatial locality and
vectorisation. For example, the union operator becomes a linear bitwise-or
between every pair of words in the same position in two bit-vectors.

Unfortunately, in points-to analysis, zero-words can often occur. Even, in
our example above, the second (zero-)word is completely redundant. Worse
still, consider the amount of redundant zero-words required for a very plausi-
ble points-to set such as {2, 5000} which would make such a representation
less practical. Sparse bit-vectors can solve this problem by omitting non-zero
words and linking words through a linked list. Each non-zero word is paired
with an offset representing the integral identifier which the first bit of that
word refers to. Our example above would then become{ 0 ⟨1001⟩ } → { 8 ⟨1100⟩ } → nil,
thus avoiding maintaining the zero-word. Despite removing redundant zero-
words, sparse bit-vectors introduce other problems such as the loss of spatial
locality and vectorisation opportunity, and the need for extra metadata in the
way of links and offsets. We observe that the downsides of using either type of
bit-vector for points-to analysis can be substantially minimised if the objects
in the same points-to sets (or “co-pointees”) have numerically close identifiers
in the object-to-identifier mapping. That is, we want to make full use of each
word, i.e., reduce the number of zero-bits, to improve both types of bit-vectors
(though we will focus exclusively on contiguous bit-vectors in this chapter,
our approach can be, and has been, successfully applied to both [Barbar and
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Sui, 2021a]). For example, the objects being mapped to 0, 3, 8, and 9, would
be ideally mapped as 0, 1, 2, 3, requiring only a single word in a sparse or
contiguous bit-vector.

Developing such an ideal mapping is worthwhile since it can produce
more compact points-to sets which would improve both sparse and contigu-
ous bit-vectors and subsequently improve the performance of a points-to anal-
yses built upon them. However, points-to relations are unpredictable making
it extremely challenging to predict an ideal object-to-identifier mapping that
accommodates every pointer’s points-to set.

We require some indication of the points-to relations which will be dis-
covered by the analysis. The auxiliary analysis in a staged analysis (like SFS
and VSFS) provides us with a sound over-approximation of this for a more ex-
pensive analysis (whose optimisation is more important). We can thus cluster
pointees such that co-pointees—per the auxiliary analysis—are given numer-
ically close identifiers. We find that, despite the auxiliary analysis being an
over-approximation of the main analysis, a mapping that works well for the
auxiliary analysis also works well for the main analysis. The result is that
bit-vectors are smaller, using far fewer words, making representation more
compact and operations faster, improving the main analysis in space and time.

In this chapter, we first go over some background on representing points-
to sets as bit-vectors, followed by the introduction of the core bit-vector, an im-
proved version of the contiguous bit-vector. We then formulate our approach
as an integer programming problem where we aim to produce a better object-
to-identifier mapping, optimising for compact points-to sets by generating
constraints from the auxiliary analysis’s results. However, integer program-
ming is expensive, so we then explore doing so with agglomerative clustering,
a more approximate approach. Popular in data mining [Maimon and Rokach,
2005], agglomerative clustering helps us produce a good mapping with neg-
ligible overhead. We then end the chapter by evaluating our approach upon
VSFS and discussing related work. Most of the work in this chapter has been
published at OOPSLA [Barbar and Sui, 2021a].

4.1 Representing Points-To Sets as Bit-Vectors

In this section, we describe the internal workings of contiguous and sparse
bit-vectors, and their performance issues, in time and space, when points-to
sets contain objects whose mapped-to identifiers are not numerically close.
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4.1.1 Contiguous and Sparse Bit-Vectors

Contiguous bit-vectors are implemented as arrays of words. In the best-case
where words are used to the fullest, a bit-vector can represent a set a of 𝑖
integers within the range 0 to 𝑛 in ⌈ 𝑖𝒲 ⌉ words, where 𝒲 is the word size,
in bits, of the ISA. In the worst case, that same set would be represented in⌈ 𝑛𝒲 ⌉ words. Bitwise operations upon the entire bit-vector, such as or and not,
could be implemented by performing the operation on individual words (and
the corresponding word of the other bit-vector operand in the case of binary
operations). Fortunately, many of these bitwise operations map directly to
set operations, such as bitwise-or being an analogue to the union operation
on a set of integers. Such operations are amenable to vectorisation and can
take advantage of the spatial-locality afforded by the contiguous nature of
the words. Concretely, the bitwise-or operation (|), analogous to the most
important operation in points-to analysis, of two bit-vectors of size 𝑛 made
up of words 𝑤1, ..., 𝑤𝑛 and 𝑤′1, ..., 𝑤′𝑛, respectively, would be given by

[ 𝑤1, 𝑤2, … , 𝑤𝑛 ]
| [ 𝑤′1, 𝑤′2, … , 𝑤′𝑛 ][ 𝑤1 | 𝑤′1, 𝑤2 | 𝑤′2, … , 𝑤𝑛 | 𝑤′𝑛 ].

For bitwise-or, if one operand is longer than the other such that the longer one
contains 𝑚 more words, the shorter one can be regarded as being padded at
the end with 𝑚 zero-words since in the resulting bit-vector the last 𝑚 words
would be verbatim the last 𝑚 words of the longer bit-vector. It should be
noted that some implementations require bit-vectors to be statically sized (e.g.,
C++’s std::bitset [ISO/IEC, 2017]) while others (e.g., that implemented by
LLVM [LLVM BitVector, 2021]) strip trailing zero-words by maintaining the
length of the bit-vector as extra metadata. When we use the term bit-vector
or standard bit-vector, we refer to the latter and only implicitly represent the
length (we will regard any array [… ] as having an implicit length field).

To use bit-vectors as points-to sets, we need to assign abstract memory
objects, our pointees, to integral identifiers. For example, consider we have10 000 memory objects (𝑜0 to 𝑜9999), a quantity not foreign when analysing
typical programs, and that the points-to sets of some pointers 𝑝 and 𝑞, at some
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point during an analysis, are𝑝𝑡(𝑝) = {𝑜1, 𝑜4500, 𝑜9999}, and𝑝𝑡(𝑞) = {𝑜1, 𝑜4, 𝑜8}.
And let us consider a naive mapping of each object to its subscript such that𝑜𝑛 ↦ 𝑛. As bit-vectors, our two points-to sets would be represented as𝑝𝑡(𝑝) = [ ⟨01100⟩, … , ⟨14500000⟩, … , ⟨00019999⟩ ], and𝑝𝑡(𝑞) = [ ⟨01100⟩, ⟨14000⟩, ⟨18000⟩ ],
where the word size 𝒲 equals 4 and we subscript set bits with the identifier
they correspond to for readability. We see that 𝑝𝑡(𝑝) is impractically large,
requiring 2500 words (10 000 bits) for a set of just 3 pointees. This is precisely
the worst case number of words required of ⌈ 𝑛𝒲 ⌉ = ⌈ 100004 ⌉ where the best
case would be ⌈ 34 ⌉. 𝑝𝑡(𝑞) is more reasonable despite still being imperfect, re-
quiring 3 words (12 bits) for 3 pointees, though they would fit into 1 word
(⌈ 34 ⌉ = 1). Furthermore, if we were to include 𝑝𝑡(𝑝) in 𝑝𝑡(𝑞) (𝑝𝑡(𝑝) ⊆ 𝑝𝑡(𝑞)),𝑝𝑡(𝑞) would grow to the size of 𝑝𝑡(𝑝), making us then represent both 𝑝𝑡(𝑝)
and 𝑝𝑡(𝑞) with 10 000 bits each for sets with 3 and 5 pointees (whose corre-
sponding set bits are spread amongst just 3 and 5 words respectively). This is
impractical and makes bit-vectors a risky choice given a poor mapping.

Sparse bit-vectors aim to overcome the abundance of zero-words by only
storing words which have at least one set bit. Since there are now “holes”
in the data structure, we can no longer use contiguous memory and need to
mark each word with an offset indicating the integral value which the first
bit in that word represents (the word part can be a fixed-size array of words
to incorporate some of the benefits afforded by standard bit-vectors). The
offset/word pairs are often linked together in a linked list to aid arbitrary
insertion which is necessary for efficient in-place bitwise-or operations.

Now we can represent 𝑝𝑡(𝑝) and 𝑝𝑡(𝑞) using sparse bit-vectors as𝑝𝑡(𝑝) = { 0 ⟨01100⟩ } → { 4500 ⟨14500000⟩ }→ { 9996 ⟨00019999⟩ } → nil, and𝑝𝑡(𝑞) = { 0 ⟨01100⟩ } → { 4 ⟨14000⟩ } → { 8 ⟨18000⟩ } → nil,
thus requiring 3 words per bit-vector (and some extra metadata) and freeing
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us of all zero-words. Representation of 𝑝𝑡(𝑝) has improved drastically, but
that of 𝑝𝑡(𝑞) has become worse when we account for the extra metadata in
the way of offsets and links. However, if we were to fulfil our 𝑝𝑡(𝑝) ⊆ 𝑝𝑡(𝑞)
constraint, then the resulting 𝑝𝑡(𝑞)’s representation has improved as it would
only require 5 words (and some metadata) to represent, not 2500 words. Of
the disadvantages of representing reasonably sized bit-vectors as sparse bit-
vectors is the loss of vectorisation, spatial locality, the extra logic required to
perform operations, and the extra metadata required. The bitwise-or opera-
tion, presented in Algorithm 1, is more complicated and is now riddled with
conditionals (e.g., lines 3 and 6), indirect references (e.g., lines 5 and 8), and
heap allocations for nodes (e.g., line 4). Thus, in practice, sparse bit-vectors
can be less efficient than their contiguous counterpart in addition to the po-
tential for extra memory use due to metadata.

The disadvantages of using both contiguous and sparse bit-vectors are
amplified by a poor object-to-identifier mapping. Due to the unpredictability
of points-to relations, an object-to-identifier mapping better than ensuring
that the 𝑛 memory objects of a program are given identifiers 0 to 𝑛 is difficult.
If we assume that the objects present in 𝑝𝑡(𝑝) and 𝑝𝑡(𝑞) are not present in
any other points-to set it would be ideal to remap these objects to identifiers
which are close to each other. For example, consider the mapping𝑜1 ↦ 0 𝑜4500 ↦ 1 𝑜9999 ↦ 2 𝑜4 ↦ 3 𝑜8 ↦ 4,
and the subsequent representation as bit-vectors rather than sparse bit-vectors:𝑝𝑡(𝑝) = [ ⟨1011120⟩ ], and𝑝𝑡(𝑞) = [ ⟨100013⟩, ⟨14000⟩ ].
Now, we have represented 𝑝𝑡(𝑝) with a single word, as a bit-vector, and 𝑝𝑡(𝑞)
with 2 words, also as a bit-vector. After fulfilling the 𝑝𝑡(𝑝) ⊆ 𝑝𝑡(𝑞) constraint,
the result would remain compactwith 𝑝𝑡(𝑞) becoming [ ⟨10111213⟩, ⟨14000⟩ ],
and in fact would be a best-case representation, yielding much better perfor-
mance.

However, in reality, these objects may occur in multiple points-to sets and
have requirements of closeness to many other objects such that achieving an
ideal mapping is far more complicated. In fact, a perfect mapping could be
impossible. To address this, we explore techniques such as integer program-
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ming and hierarchical clustering to find a superior mapping by leveraging the
over-approximate points-to data produced by the auxiliary analysis. But first,
we briefly describe an improved contiguous bit-vector that can better take
advantage of a better object-to-identifier mapping.

Algorithm 1: Bitwise-or of two sparse bit-vectors.
Input : 𝑠1, 𝑠2 – sparse bit-vectors (linked lists of{offset, word, next} structures).
Output : 𝑢 – bitwise-or of 𝑠1 and 𝑠2.

1 𝑐1 ← 𝑠1; 𝑐2 ← 𝑠2;
2 while 𝑐1 ≠ 𝑛𝑖𝑙 ∧ 𝑐2 ≠ 𝑛𝑖𝑙 do
3 if 𝑐1.offset = 𝑐2.offset then
4 𝑢.append(new { 𝑐1.offset ⟨𝑐1.word | 𝑐2.word⟩ });
5 𝑐1 ← 𝑐1.next; 𝑐2 ← 𝑐2.next;
6 else if 𝑐1.offset < 𝑐2.offset then
7 𝑢.append(new { 𝑐1.offset ⟨𝑐1.word⟩ });
8 𝑐1 ← 𝑐1.next;
9 else
10 𝑢.append(new { 𝑐2.offset ⟨𝑐2.word⟩ });
11 𝑐2 ← 𝑐2.next;
12 end
13 end

// 𝑐1 or 𝑐2 may not yet be 𝑛𝑖𝑙; append remainder.
14 while 𝑐1 ≠ 𝑛𝑖𝑙 do
15 𝑢.append(new { 𝑐1.offset ⟨𝑐1.word⟩ });
16 𝑐1 ← 𝑐1.next;
17 end
18 while 𝑐2 ≠ 𝑛𝑖𝑙 do
19 𝑢.append(new { 𝑐2.offset ⟨𝑐2.word⟩ });
20 𝑐2 ← 𝑐2.next;
21 end

4.1.2 Core Bit-Vector

Let us take a look at the core bit-vector, our improved version of the standard
bit-vector. It has a compact representation like a contiguous bit-vector (little
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metadata) while reducing many zero-words by also stripping leading zero-
words, unlike standard bit-vectors which only strip trailing zero-words.

Consider a points-to set with 5 objects whose identifiers map to 9995,9996, 9997, 9998, and 9999 and that the native word size 𝒲 is 4. These iden-
tifiers would ideally fit within twowords. As a sparse bit-vector, this points-to
set is { 9992 ⟨00019995⟩ } → { 9996 ⟨19996199971999819999⟩ } → 𝑛𝑖𝑙,
using just two words and associated metadata. However, as a bit-vector, this
points-to set would look like[ ⟨0000⟩, … , ⟨0000⟩, ⟨00019995⟩, ⟨19996199971999819999⟩ ],
which contains 2500 words with only two meaningful words. The problem is
that bit-vectors contain an explicit representation (of zero) for the integers 0
to the first non-zero bit, no matter how far that may be.

To remedy this we use core bit-vectorswhich use an offset similar to sparse
bit-vectors to state the bit of the first word and strips leading and trailing
zero words to maintain only the “core”. Note, however, that unlike a sparse
bit-vector, zero words may occur between the first and last (non-zero by def-
inition) words. For example, the points-to set above would be represented
as { 9992 [ ⟨00019995⟩, ⟨19996199971999819999⟩ ] }
saving us 2498 words. If we were to insert identifier 9984, it would become{ 9984 [ ⟨19984000⟩, ⟨0000⟩, ⟨00019995⟩, ⟨19996199971999819999⟩ ] }
which uses only one word more than an equivalent sparse bit-vector but has
the benefit of storing words contiguously and with less metadata—the offset
and the (implicit) length—therefore potentially saving both space and time.
Algorithm 2 details the bitwise-or operation of two core bit-vectors. In con-
trast to Algorithm 1, operations are all performed on contiguous arrays, rather
than across indirect links, and loops do not contain conditionals, making the
process more amenable to vectorisation. When the offset is set to 0, the data
structure acts as a standard contiguous bit-vector.

54



4.1. Representing Points-To Sets as Bit-Vectors

Algorithm 2: Bitwise-or of two core bit-vectors.
Input : 𝑐1, 𝑐2 – core bit-vectors ({offset, [words]}).
Output : 𝑢 – bitwise-or of 𝑐1 and 𝑐2.
// Determine which input starts “earlier” and which “later”.

1 if 𝑐1.offset < 𝑐2.offset then
2 𝑒 ← 𝑐1; 𝑙 ← 𝑐2;
3 else
4 𝑒 ← 𝑐2; 𝑙 ← 𝑐1;
5 end
6 𝑢.offset ← 𝑒.offset;
7 𝑒𝑖 ← 0; // Index into earlier input.
8 while 𝑒𝑖 < ⌊ 𝑙.offset𝒲 ⌋ − ⌊ 𝑒.offset𝒲 ⌋ do
9 if 𝑒𝑖 < 𝑒.words.length then

// Append words in 𝑒 which are not in 𝑙.
10 𝑢.append(𝑒.words[𝑒𝑖]);
11 else

// Nothing left in 𝑒; add zero-words till start of 𝑙.
12 𝑢.append(0);
13 end
14 𝑒𝑖 ← 𝑒𝑖 + 1;
15 end
16 𝑙𝑖 ← 0; // Index into later input.

// Append bitwise-or of words common to both inputs.
17 while 𝑒𝑖 < 𝑒.words.length ∧ 𝑙𝑖 < 𝑙.words.length do
18 𝑢.append(𝑒.words[𝑒𝑖] | 𝑙.words[𝑙𝑖]);
19 𝑒𝑖 ← 𝑒𝑖 + 1; 𝑙𝑖 ← 𝑙𝑖 + 1;
20 end

// 𝑒𝑖 or 𝑙𝑖 may not have reached end; append remainder.
21 while 𝑒𝑖 < 𝑒.words.length do
22 𝑢.append(𝑒.words[𝑒𝑖]);
23 𝑒𝑖 ← 𝑒𝑖 + 1;
24 end
25 while 𝑙𝑖 < 𝑙.words.length do
26 𝑢.append(𝑙.words[𝑙𝑖]);
27 𝑙𝑖 ← 𝑙𝑖 + 1;
28 end
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Table 4.1: Time taken (s) and memory usage (GB) for VSFS using standard
bit-vectors and core bit-vectors.

Program Bit-vector Core bit-vector Speedup Memory
reductionTime Memory Time Memory

dhcpcd 8.29 0.74 8.08 0.69 1.03× 1.07×
gawk 119.93 4.24 128.45 4.09 0.93× 1.04×
bash 18.49 2.03 18.31 1.92 1.01× 1.05×
mutt 42.89 3.60 40.26 3.49 1.07× 1.03×
lynx 335.55 6.64 324.07 5.64 1.04× 1.18×
sqlite 207.03 10.83 202.64 10.38 1.02× 1.04×
xpdf 500.93 15.99 509.47 15.40 0.98× 1.04×
emacs 4070.25 97.30 4043.31 93.86 1.01× 1.04×
git 4136.60 58.54 4085.54 50.78 1.01× 1.15×
kakoune 1611.43 37.19 1592.13 35.07 1.01× 1.06×
squid OOM OOM OOM OOM – –
wireshark 2246.54 49.98 2179.94 37.41 1.03× 1.34×
Geo. mean 1.01× 1.09×
4.1.2.1 Effectiveness

We have implemented our core bit-vector with a std::vector from the C++
STL. For ease of implementation, our standard bit-vector (whichwe have been
using throughout this dissertation) is a core bit-vector with the offset set to 0.
The slither of overhead that introduces should be indiscernible. Finally, since
our processor is a 64-bit processor, our native word size is 64 bits.

Table 4.1 shows the time andmemory required to analyse our benchmarks
with VSFS using a standard bit-vector and our core bit-vectors1. We see there
is no practical difference in time (two regressions do appear, which from our
experience, fall roughly within the margin of error). As for memory, where
the margin of error is much smaller, we do see a small improvement overall.
On average, using core bit-vectors reduces memory usage by 1.09×, and is
quite significant for some benchmarks such as git andwiresharkwhere about
8 and 12 gigabytes are saved, respectively. Moving onward, we will use core
bit-vectors for all experiments.

1In previous work [Barbar and Sui, 2021a], we have also compared standard and core bit-
vectors against sparse bit-vectors and found that the former usually perform better than the
latter, with the exceptions being in the presence of a “unlucky” naive, especially, or an unideal
object-to-identifier mapping.
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4.2 Compacting Points-To Sets

Assigning memory objects to identifiers based on points-to relations can be
framed as an optimisation problem, making integer programming (IP) well
suited. Unfortunately, the resulting integer programs are computationally
expensive to solve, but the formulation helps clarify the problem and its opti-
mal solution. We first formulate compacting points-to sets as an optimisation
problem solved by IP in Section 4.2.1. Then, we present a more approximate
and much more efficient approach in Section 4.2.2. There we provide a brief
introduction to hierarchical clustering and then detail how we can apply this
technique to objects in points-to sets, concluding with two simple optimisa-
tions to improve efficiency and the resulting mapping.

4.2.1 Integer Programming Formulation

It is hard to determine a good identifier mapping before any points-to anal-
ysis is performed as it is unknown which objects are pointed to by the same
pointers and should thus be assigned close identifiers. Inspired by staged
analysis [Hardekopf and Lin, 2011], we use an auxiliary analysis as a good in-
dication of which objects may occur in the same points-to sets, given that the
auxiliary analysis’s points-to sets are supersets of the main analysis’s. There-
fore, creating a mapping for the auxiliary analysis should create a good map-
ping for the main analysis, or at least, better than a blind or random mapping.

We let the constant 𝒲 be the word size of the ISA (in bits), and for each
points-to set 𝑃 = {𝑜𝑥1, 𝑜𝑥2 , … , 𝑜𝑥𝑛} produced by the auxiliary analysis, we
have the following known integer variables:

1. 𝑛 is the number of objects in 𝑃 , and

2. 𝑤 = ⌈ 𝑛𝒲 ⌉ is the minimum number of words required for a bit-vector
representation of 𝑃 in the, potentially impossible, best case scenario.

And the following unknown integer variables:

1. 𝑚𝑥𝑖 , where 1 ≤ 𝑖 ≤ 𝑛, is the identifier object 𝑜𝑥𝑖 will be assigned to in
our new mapping, and

2. 𝑓 is some offset multiplier for where the identifiers, 𝑚𝑥𝑖 , start.
Our goal is to produce mappings from 𝑜𝑥𝑖 to 𝑚𝑥𝑖 such that the least pos-

sible number of words can represent all points-to sets (as close as possible
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to each 𝑤) as core bit-vectors. In the best case scenario, each pair of objects
in each points-to set are assigned identifiers within 𝑤 of each other, that is,∣𝑚𝑥𝑖 −𝑚𝑥𝑗 ∣𝒲 < 𝑤 for 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑛, with the minimum 𝑚𝑥𝑖 as-
signed to a multiple of 𝒲, i.e., 𝑓 ⋅ 𝒲. That is, the minimum 𝑚𝑥𝑖 is aligned
on a word boundary. Aligning to 𝒲 is important to avoid co-pointees being
mapped to identifiers within 𝑤 of each other, but needlessly crossing word
boundaries. For example, given 𝒲 = 4 and 𝑝𝑡 = {𝑜1, 𝑜2}, it would be un-
optimal to assign 𝑜1 to 7 and 𝑜2 to 8 despite that |𝑚1−𝑚2|𝒲 = |7−8|4 < 1 since
we would require 2 words in a bit-vector instead of 1 (which can be achieved
with various assignments such as that of 𝑜1 to 2 and 𝑜2 to 3). This produces
the best possible allocation because it ensures points-to sets, as bit-vectors,
are as small as they can possibly be (of size 𝑤), if the problem allows.

We need to determine the best possible values for 𝑚 and 𝑓 to achieve this.
As an integer program, we can encode these requirements as the following
constraints for each points-to set 𝑃 = {𝑜𝑥1, 𝑜𝑥2 , … , 𝑜𝑥𝑛}:𝑚𝑥𝑖 ≥ 𝑓𝑃 ⋅ 𝒲𝑚𝑥𝑖 < 𝑓𝑃 ⋅ 𝒲 + 𝑤𝑃 ⋅ 𝒲𝑓𝑃 ≥ 0, (C1)

which ensures that all objects in a points-to set are mapped to identifiers
between some starting offset and within the minimum number of words re-
quired to represent that points-to set. We also require that objects are uniquely
mapped to identifiers, so for all pair of identifiers 𝑚𝑖, 𝑚𝑗, where 𝑖 ≠ 𝑗,∣𝑚𝑖 − 𝑚𝑗∣ > 0, (C2)

which can be expressed as the constraints𝑚𝑖 − 𝑚𝑗 < 𝐿 ⋅ 𝑏𝑖𝑗,𝑚𝑖 − 𝑚𝑗 > −𝐿 + 𝐿 ⋅ 𝑏𝑖𝑗𝑏𝑖𝑗 ≥ 0𝑏𝑖𝑗 ≤ 1, (C3)

where 𝐿 is a constant set to be larger than any possible identifier, and 𝑏𝑖𝑗 are
Boolean variables (as forced by the constraints upon them). This construct
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asserts that 𝑚𝑖 − 𝑚𝑗 must never be zero, i.e., that they are not equal. When𝑏𝑖𝑗 is 0, the first two constraints ensure the difference is in the open range(−𝐿, 0), and when set to 1, they ensure the difference is in the open range(0, 𝐿).
Unfortunately, such an integer program may be impossible to solve due

to the pigeonhole principle. Consider that an object 𝑜 (which we will map
to 𝑚) occurs in 𝒲 points-to sets, none of which contain common elements
aside from 𝑜, each of which with 𝑤 = 1 and 𝑛 > 1. It would not be possible
for the 𝑚 corresponding to 𝑜 to be assigned within 𝒲 of all of the identifiers
assigned to 𝑜’s co-pointees and be in the same word. Rather, it can only be
in the same word as 𝒲 − 1 of its co-pointees. The 𝒲-th co-pointee must be,
at best, in a word before or after that which 𝑚 falls into. To remedy this, we
provide a “tolerance” for each points-to set to extend the range of identifiers
the objects of a points-to set can fall in. Thus we introduce another unknown
for each points-to set:

3. 𝑡 is a tolerance multiplier for where the identifiers assigned to objects
of a points-to set can end.

Thus, for each pointee 𝑜𝑥𝑖 in points-to set 𝑃 = {𝑜𝑥1, 𝑜𝑥2 , … , 𝑜𝑥𝑛}, we
reframe the constraints in C1 as (changes underlined):𝑚𝑥𝑖 ≥ 𝑓𝑃 ⋅ 𝒲𝑚𝑥𝑖 < 𝑓𝑃 ⋅ 𝒲 + 𝑤𝑃 ⋅ 𝒲 + 𝑡𝑃 ⋅ 𝒲𝑓𝑃 ≥ 0𝑡 ≥ 0. (C4)

Again, the first constraint ensures that 𝑚𝑥𝑖 begins aligned at some offset into
the identifier space (𝑓𝑃 ⋅ 𝒲). The second ensures that it does not extend 𝑤
words away from the offset (𝑓𝑃 ⋅𝒲+𝑤𝑃 ⋅𝒲) as before, but now we allow for
some tolerance (𝑡𝑃 ⋅𝒲). As before wemust also ensure that the identifiers are
unique (Constraints C2/C3). This set of constraints becomes trivial to solve
with absurdly large tolerances and circumvents our goal of small points-to
sets. Thus, our objective is to minimise the tolerances as they introduce extra
words over the (potentially impossible) ideal. That is, we minimise 𝑡𝑃1 + ⋯ +𝑡𝑃𝑁 , where 𝑁 is the number of points-to sets we take into consideration, to
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give us the least required number of words in a core bit-vector2.

Proof 4.2.1 For each points-to set 𝑃 , representing 𝑃 as a core bit-vector uses
at best 𝑤𝑃 words. The constraints encode an identifier mapping which makes
each points-to set 𝑃 fit into 𝑤𝑃 words, except that a tolerance for the number of
words is allowed. Optimising for minimum tolerance multipliers (i.e. the sum of𝑡𝑃 for all points-to sets 𝑃 , where each tolerance 𝑡𝑃 would then be used in 𝑡𝑃 ⋅𝑊 )
ensures that each points-to set is represented with as few words as possible, thus
producing an ideal mapping.

Finally, as mentioned previously, this is too computationally expensive to
solve. There are a few ways to make the integer programs produced cheaper
to solve, of them is the regioning we introduce to improve clustering in Sec-
tion 4.2.4 which allows groups of objects to be considered separately, but re-
gardless, IP as a solution to this problem simply does not scale with current
techniques for large programs. In fact, we were only able to find a solution
with this IP formulation for trivial programs where our approximate solu-
tion was able to produce an optimal solution anyway. The remainder of this
section is dedicated to solutions which are more approximate but far more
scalable.

4.2.2 Hierarchical Clustering

Our aim is to assign pointees which appear in points-to sets together to iden-
tifiers which are numerically close together. We find clustering to be a more
practical way to achieve this goal. Clustering is the process of grouping close
or similar items together given a set of items with some measure of similarity
or distance between them such as the Jaccard Index for sets [Jaccard, 1912] or
the Euclidean distance for coordinates.

There is no notion of a “perfect clustering”, rather success is determined
depending on the problem for which clustering is employed to solve. Hierar-
chical clustering can be agglomerative (bottom-up) or divisive (top-down) [Mai-
mon and Rokach, 2005]. An agglomerative approach starts with clusters of
a single item and successively merges clusters until there remains only one
cluster, and a divisive approach starts with a single cluster, divides it, and
then successively divides clusters until only single-item clusters remain. We

2We remind again that this minimal representation is for the points-to sets produced by the
auxiliary analysis which may differ from those produced by the main stage.
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FiguRe 4.1: Agglomerative clustering process (b) of coordinate data (a) and
the resulting dendrogram (c).

focus on the former due to the availability of an extremely performant C++
implementation [Müllner, 2013]. Both approaches are hierarchical in that the
resulting clusters are made up of smaller clusters. The resulting hierarchy is
represented by a dendrogram, a tree where child nodes are the clusters which
form parent nodes, also clusters [Maimon and Rokach, 2005]. Leaf nodes are
the individual objects themselves.

To show how agglomerative clustering works, we walk through a simple
example in Figure 4.1. Consider some items located at coordinates: 𝑣 at (2, 0),𝑤 at (1, 2), 𝑥 at (3, 0), 𝑦 at (0, 3), and 𝑧 at (2, 2), as in Figure 4.1a, and that we
want to cluster these items according to their closeness using the Euclidean
distance as a measure for that. The process is shown on the same plane in
Figure 4.1b. For our example, we set the linkage criterion as the single linkage
criterion [Murtagh, 1983] such that the distance between two clusters is the
minimum distance between any two items in each of those clusters.

To begin, each item is considered to be part of its own cluster, and we

61



4. Compacting Points-To Sets

search for the closest two clusters (according to the linkage criterion) and
merge them. The pairs 𝑣 and 𝑥, and 𝑤 and 𝑧 both have the shortest Euclidean
distance between them (1.0), so we randomly pick a pair, say 𝑣 and 𝑥, and
merge them as cluster 1©. Then we merge the other pair, 𝑤 and 𝑧, as cluster
2© since they are now the two closest clusters. The next two closest clusters
are now the cluster containing 𝑤 and 𝑧 (cluster 2©) and the single-item cluster
containing 𝑦, since 𝑤 and 𝑦 have a distance of √(0 − 1)2 + (3 − 2)2 = 1.41
between them. They are merged as cluster 3©. Nowwe have only two clusters
remaining, so we merge them as 4© since they are obviously the closest two
clusters, and thus agglomerative clustering is complete. The dendrogram in
Figure 4.1c shows the resulting clusters for our example. The entire dendro-
gram represents one cluster, but if we cut it, we can form multiple clusters.
For example, if we cut the dendrogram one level down (i.e., one step back-
wards from the end of the clustering process), we have two clusters, one with𝑣 and 𝑥, and one with 𝑤, 𝑦, and 𝑧. From this, we can infer that according to
our definition of “close” (the linkage criterion and closeness measure), 𝑣 and𝑥 are close and 𝑤, 𝑦, and 𝑧 are close, relatively.

Linkage Criteria In our example, determining the distance between two
single-item clusters is straightforward—calculate the Euclidean distance—but
determining the distance between two clusters where at least one contains
more than one object was more complicated and we required a linkage cri-
terion. Being that clustering is an approximate process, multiple linkage cri-
teria exist to optimise for different data types. In this work, we focus on
three, single-linkage, complete-linkage, and average-linkage, partly because
of the existence of an extremely performant implementation of them [Müll-
ner, 2013] and partly because of how common they are. Clustering with any
of these linkage criteria can be implemented in 𝒪(𝑛2) time in the worst-case
given 𝑛 items to cluster [Maimon and Rokach, 2005; Müllner, 2013]. For our
data, clustering is very fast and so we perform clustering with each of these
criteria and choose the one which produces the most promising mapping on-
the-fly.

Single-Linkage The distance between two clusters under the single-linkage
criterion is the smallest distance between any member of one cluster to any
member of the other [Murtagh, 1983]. That is, assuming we have a distance
function (for our problem, we use the distance defined in Definition 4.2.1) for
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two objects, 𝑑 ∶ 𝒜 × 𝒜 ↦ ℝ, the distance between clusters 𝐶1 and 𝐶2, is
min{𝑑(𝑜1, 𝑜2) ∣ 𝑜1 ∈ 𝐶1, 𝑜2 ∈ 𝐶2}.

Complete-Linkage The distance between two clusters under the complete-
linkage criterion is the largest distance between any member of one cluster to
anymember of the other [Murtagh, 1983]. This is similar to the single-linkage
criteria, except that it, very harshly, blocks clusters whose members are not
all close. Formally, with the same 𝑑 and clusters 𝐶1 and 𝐶2 as before, this is
given by

max{𝑑(𝑜1, 𝑜2) ∣ 𝑜1 ∈ 𝐶1, 𝑜2 ∈ 𝐶2}.
Average-Linkage Unlike single- and complete-linkage, the distance calcu-
lated with average-linkage considers all members of both clusters. The dis-
tance given is the average distance from any member of one cluster to any
member of the other cluster [Murtagh, 1983]. For clusters 𝐶1 and 𝐶2 and our
distance function 𝑑, this is given by1|𝐶1| |𝐶2| ∑𝑜1∈𝐶1 ∑𝑜2∈𝐶2 𝑑(𝑜1, 𝑜2).
4.2.3 Clustering Objects

With hierarchical clustering, we can cluster objects in such a way that co-
pointees of smaller points-to sets are clustered together early, and hence are
regarded as “closer” and thus more suitable for close identifiers. A simple
linear scan of points-to sets, and assigning identifiers during the scan, is not
sufficient because relationships between pointees are not transitive.

For example, consider the two points-to sets {𝑜𝑎, 𝑜𝑏, 𝑜𝑐, 𝑜𝑑, 𝑜𝑒} and {𝑜𝑎, 𝑜𝑓}.
If we were to perform a linear scan assigning identifiers sequentially starting
from the first points-to set, we would produce the mapping𝑜𝑎 ↦ 0 𝑜𝑏 ↦ 1 𝑜𝑐 ↦ 2 𝑜𝑑 ↦ 3 𝑜𝑒 ↦ 4 𝑜𝑓 ↦ 5,
which forces the first points-to set into two words (which is ideal), but un-
fortunately, also forces the second points-to set into two words (which is not
ideal; it can be represented in one word). Clustering can better understand
relationships between pointees allowing us to produce a better mapping.
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To cluster objects, we require amore suitablemeasure of distance between
two objects as we define below.

Definition 4.2.1 (Object distance). The distance between two objects is the min-
imum number of words required to represent any points-to set in which both
objects appear in, as a bit-vector. If they never appear in the same points-to set,
their distance is ∞.

This definition encodes how far apart, word-wise, two objects would be in
the theoretical best case scenario (which may be impossible; recall our discus-
sion on the pigeonhole principle and tolerances in Section 4.2.1). We want the
clustering process to approximate this theoretical limit as closely as possible.

Revisiting our example, the object distance between 𝑜𝑎 and 𝑜𝑓 , 𝑑(𝑜𝑎, 𝑜𝑓),
is 1 since 𝑜𝑎 and 𝑜𝑓 appear in two points-to sets, one of which can be repre-
sented in 2 words and the other in 1 word, and min(1, 2) = 1. 𝑑(𝑜𝑏, 𝑜𝑓) =𝑑(𝑜𝑐, 𝑜𝑓) = 𝑑(𝑜𝑒, 𝑜𝑓) = ∞ since these objects never appear in the same
points-to set. The remaining object pairs have a distance of 2 because they
appear together only in the first points-to set which requires two words to
represent in the ideal case.

With this definition, we can build a distance matrix by calculating the dis-
tance for each pair of objects. This can be done by filling the distance matrix
with ∞, scanning all points-to sets, and updating the distance between each
pair of objects in a points-to set if that points-to set requires fewer words
to represent as a bit-vector than is recorded in the distance matrix. For each
points-to set, this is a quadratic process in the number of objects in that points-
to set. In practice, we only need to consider unique points-to sets since dupli-
cate points-to sets obviously require the same number of words to represent.
Our experience is that many points-to sets are duplicates.

With a distance matrix, clustering can be performed to obtain a dendro-
gram. We are not interested in cutting the dendrogram, rather, we are inter-
ested in the relative prioritisation of object pairs that the clustering algorithm
found, that is, which objects are closer to each other compared to other ob-
jects. For example, in the previous scenario, the clustering algorithm would
quickly determine that 𝑜𝑎 and 𝑜𝑓 must be close together, before determining
the closeness between 𝑜𝑎, 𝑜𝑏, 𝑜𝑐, 𝑜𝑑, and 𝑜𝑒. With a counter starting from
0, we can assign objects to identifiers by visiting objects depth-first in the
dendrogram. The depth-first search ensures that the clusters within a cluster
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FiguRe 4.2: Memory used to represent various (condensed) distance matrices.

are visited before visiting adjacent, less related clusters. That is, within each
cluster with more than one object (including the large cluster of all objects),
the identifiers for the objects in that cluster are sequential. This is extremely
fast being linear in the size of the dendrogram which has 2𝑛−1 nodes, where𝑛 is the number of objects.

4.2.4 More Efficient Region-Based Clustering

A distance matrix implemented as a literal matrix, rather than as a hash ta-
ble for example, is more efficient. Since the distance matrix is symmetrical
(the distance of 𝑜 to 𝑜′ is the same as the distance from 𝑜′ to 𝑜), a condensed
distance matrix which is a linear array forming the upper triangle of the ma-
trix [Müllner, 2013] is sufficient. The number of elements in such a matrix
would be 𝑛(𝑛−1)2 where 𝑛 is the number of objects we are clustering. In other
words, the number of elements, and hence memory usage, grows quadrati-
cally and quickly becomes problematic. In fastcluster [Müllner, 2013], the
hierarchical clustering implementation we use, this data structure is made up
of doubles which are 64 bits or 8 bytes.

To show why this is a problem, Figure 4.2 shows the memory required to
represent the distance matrix for various amounts of objects up to 200 000.
Importantly, the distance matrix is required only for clustering and can be
freed immediately afterwards. So, if the main phase analysis uses more mem-
ory than the distance matrix, saving memory is pointless. Otherwise, the
distance matrix drives up the maximum resident set size, which may be im-
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practical.
To remedy this, we group objects into independent regions, and perform

clustering on a per region basis without sacrificing precision. The distance
matrix is actually sparse, in that many objects do not share a meaningful
relationship, rather they can be allocated distant identifiers without any ef-
fect because they never appear in a points-to set together. For example, in
the points-to sets {𝑜𝑎, 𝑜𝑏} and {𝑜𝑐, 𝑜𝑑}, the objects 𝑜𝑎 and 𝑜𝑐 do not share
any meaningful relation, and no matter how distant their mapped identifiers
are, bit-vector representations will not be adversely affected. To region ob-
jects, from the points-to sets of the auxiliary analysis, we create an undirected
graphwhere there exists a path between objects 𝑜 and 𝑜′ if they occur together
in a points-to set, and determine the connected components of the graph3. Ob-
jects in the same connected component share a relationship, either directly, or
transitively, and the difference in the identifiers allocated can be meaningful
and so they should be clustered together.

Since objects in distinct regions do not share a relationship, we can build
individual distance matrices for objects within the same region and cluster
those objects separately from the objects in other regions. Rather than start-
ing our identifier counter from 0, we simply continue the counter from where
it left off when assigning identifiers for the objects in the previous clustered
region. With this, we can save memory with smaller distance matrices, and
time by sequentially clustering regions since clustering grows non-linearly.
Furthermore, we can concurrently cluster separate regions, but in our experi-
ence, clustering is fast enough for our problem that this is not worth the imple-
mentation complexity. If concurrent clustering is foregone, we can maintain
a single distance matrix at a time, further saving memory. For example, if 𝑛
objects are split into two equal sized regions, we would require two distance
matrices of

𝑛2 ( 𝑛2 −1)2 distances, and, if not clustered concurrently, at separate
times, so only one such distance matrix is required before being freed.

Another benefit of regioning is that certain regions can be assigned iden-
tifiers blindly, that is, without any clustering. In regions with fewer than 𝒲
objects, all identifier allocations are equivalent since any number of objects𝒲 − 𝑛, where 𝑛 < 𝒲, all require a single word to represent (modulo some

3We are careful to say “exists a path” rather than “exists an edge” as it makes the graph
smaller without losing meaning for our purpose. Practically, for each points-to set, an edge can
be added from the “first” object in a points-to set to every other object in that points-to set, thus
we add add a linear, not quadratic, number of edges per points-to set.
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Table 4.2: Region statistics for our benchmark programs.

Program Objects Regions4 Non-trivial
regions

Objects in non-
trivial regions
(proportion)

Objects in
largest region

dhcpcd 2398 3096 1 586 (24.44%) 586
gawk 4007 3084 1 1172 (29.25%) 1172
bash 4294 3247 2 655 (15.25%) 564
mutt 5880 4239 1 2443 (41.55%) 2443
lynx 5829 5283 3 2004 (34.38%) 1754
sqlite 6570 4723 8 2590 (39.42%) 2002
xpdf 12 124 12 904 1 3599 (29.68%) 3599
emacs 17 505 29 407 1 7366 (42.08%) 7366
git 26 481 33 271 2 15 206 (57.42%) 15 076
kakoune 29 413 17 084 22 15 934 (54.17%) 12 603
squid 54 678 34 532 14 23 943 (43.79%) 22 371
wireshark 59 912 72 595 10 6478 (10.81%) 5502
concerns around the crossing of word boundaries as will be discussed in Sec-
tion 4.2.5). Clustering these objects in such small regions brings no benefit so
they can be assigned any identifiers within 𝒲 of each other immediately. We
call these regions trivial regions.

For our benchmark programs, Table 4.2 shows the number of objects, the
number of regions, the number of non-trivial regions (those with more than𝒲 = 64 objects), the number of objects in non-trivial regions, and the size
of the largest region. Without regioning, it would be as though we had a
single region with all the objects. We see that trivial regions dominate which
greatly reduces the clustering workload. For 5 benchmarks, there exists only
1 non-trivial region and only 3 benchmarks have more than 10 (at most 22, for
kakoune). Only 2 benchmarks have more than 50% of objects in non-trivial
regions, with most hovering 30% and 40%.

4.2.5 Word-Aligned Identifier Mapping

We can produce better object-to-identifier mappings by considering the re-
gions defined above and ensuring that objects from different regions are never
assigned to identifiers within the same word. Consider two regions of objects,𝑅1 which contains 𝑜𝑎, 𝑜𝑏, and 𝑜𝑐, and 𝑅2 which contains 𝑜𝑑, 𝑜𝑒, and 𝑜𝑓 , and

4We note that a bug in our implementation produces slightly different results from run to
run for this value. We observe no effect on final results and believe it may be a bug in how this
value is calculated. We list the largest value.
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that we assign identifiers as𝑅1 ∶ 𝑜𝑎 ↦ 0 𝑜𝑏 ↦ 1 𝑜𝑐 ↦ 2, and𝑅2 ∶ 𝑜𝑑 ↦ 3 𝑜𝑒 ↦ 4 𝑜𝑓 ↦ 5.
As a core-bit vector (though this problem applies equally to sparse bit-vectors),
all points to sets with objects from𝑅1 (non-empty subsets of {𝑜𝑎, 𝑜𝑏, 𝑜𝑐}) take
the form { 0 [ ⟨×××0⟩ ] },
where each × can be 1 or 0. This is perfect in that we have achieved the
theoretical limit of always representing the points-to sets in 𝑅1 with a single
word (modulo metadata such as offsets or links). On the other hand, under
this object-to-identifier mapping, points-to sets with objects from 𝑅2 (non-
empty subsets of {𝑜𝑑, 𝑜𝑒, 𝑜𝑓}) can take one of 3 forms:{ 0 [ ⟨0001⟩ ] }, {𝑜𝑑}{ 4 [ ⟨××00⟩ ] }, or {𝑜𝑒}, {𝑜𝑓}, {𝑜𝑒, 𝑜𝑓}{ 0 [ ⟨0001⟩, ⟨××00⟩ ] }. {𝑜𝑑, 𝑜𝑒}, {𝑜𝑑, 𝑜𝑓}, {𝑜𝑑, 𝑜𝑒, 𝑜𝑓}
That is, to represent the non-empty subsets of {𝑜𝑑, 𝑜𝑒, 𝑜𝑓}, we would require
either 1 or 2 words rather than the theoretical 1 word which is in fact possible.
The problem is that regions are sharing words for their objects with other re-
gions despite there never being a points-to set with objects from both regions
(by definition). Though 𝑅1 and 𝑅2 are trivial regions, this problem applies to
non-trivial regions too.

We can avoid this by aligning identifiers to words when we begin allocat-
ing identifiers to each region. Aligning to words for each region would mean
that the identifiers for the objects in a region begin at an identifier divisible
by 𝒲. Returning to our example above, performing word-aligned identifier
assignment would result in a mapping akin to𝑅1 ∶ 𝑜𝑎 ↦ 0 𝑜𝑏 ↦ 1 𝑜𝑐 ↦ 2, and𝑅2 ∶ 𝑜𝑑 ↦ 4 𝑜𝑒 ↦ 5 𝑜𝑓 ↦ 6.
We have given the same mapping to the objects in 𝑅1 since it was word-
aligned, starting at 0, amultiple of𝒲 = 4, but have now started the identifiers
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in 𝑅2 from 4, another multiple of 𝒲 = 4. Now we can represent all points-to
sets with objects from 𝑅1 as { 0 [ ⟨×××0⟩ ] },
as before, and all points-to sets with objects from 𝑅2 as{ 4 [ ⟨×××0⟩ ] },
thus we represent all such points-to sets with the fewest possible number of
words (just 1).

Word-aligning identifier assignment leaves gaps. For example, in themap-
ping defined in the previous paragraph, no object maps to identifier 3. This
is inconsequential since points-to sets only contain objects from the region
they are a part of. Concretely, in our example, there is no points-to set con-
taining objects from 𝑅1 (assigned from 0 to 2) that would contain 4 objects in
total and thus benefit from that fourth object being assigned the identifier 3.
Furthermore, with core bit-vectors (and sparse bit-vectors), any excess lead-
ing zero-words caused by word alignment would be inconsequential. Though
the clustering is performed on the results of the auxiliary analysis, this holds
true for the main phase analysis too since each points-to set produced in the
main phase is a subset of a points-to set produced by the auxiliary analysis.
In other words, the main phase cannot produce larger regions.

4.3 Evaluation

In our implementation, we use the very capable fastcluster [Müllner, 2013]
to perform clustering. In theory the remapping process would be to perform
clustering, produce an object-to-identifiermapping, and then change the iden-
tifiers used for objects everywhere such that the old mapping becomes non-
existent to the analysis. This would be a fast linear scan over the data struc-
tures used by SVF, however drastic architectural changes to SVF would be
required. Our solution is for objects to have an “internal” identifier in the
points-to set and an “external” identifier. External identifiers correspond to
the original naivemapping and internal identifiers correspond to themapping
produced from clustering. Objects are then stored in points-to sets as the in-
ternal identifier, and returned (e.g., during iteration) as the external identifier.
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Table 4.3: Number of words required (using core bit-vectors) in the theoret-
ical best case, with the original mapping, with the mappings produced by
clustering using the single, average, and complete linkage criteria, and the
improvement versus the original mapping. The bolded value represents the
mapping predicted to be best after the auxiliary analysis, and this is what is
compared in the final column.

Program Theoretical5 Original Single Average Complete Reduction
vs. original

dhcpcd 409 323 2 905 131 706 571 707 786 806 254 4.11×
gawk 13 406 086 78 698 059 16 373 637 26 756 858 26 756 208 4.81×
bash 1 239 857 13 781 189 1 481 237 2 202 234 1 721 602 9.30×
mutt 3 612 935 38 669 518 6 145 554 18 273 265 15 246 309 6.29×
lynx 10 361 701 72 268 279 17 724 839 24 154 545 21 431 753 4.08×
sqlite 14 701 928 79 270 630 24 452 981 34 243 349 29 327 077 3.24×
xpdf 77 304 422 414 082 955 157 577 371 154 518 757 160 730 837 2.68×
emacs 1 146 131 222 3 423 630 147 1 657 629 802 1 939 863 478 1 781 467 932 2.07×
git 383 512 116 2 029 028 891 943 768 707 1 635 748 917 1 382 608 474 2.15×
kakoune 202 991 907 1 566 374 078 495 318 140 1 103 217 759 819 368 200 3.16×
squid 725 679 945 13 068 308 477 1 671 494 361 4 278 939 653 6 775 020 227 7.82×
wireshark 42 555 392 1 779 021 608 161 322 197 163 924 857 148 053 785 12.02×
Geo. mean 4.41×
In short, only the points-to sets know about the new mapping. This intro-
duces some slight overhead that in an ideal situation would not be incurred.
Otherwise, algorithms remain unchanged.

The process of creating and evaluating a mapping is fast. Thus, we pro-
duce 3 mappings, each from clustering with a different linkage criterion. We
then choose the most promising result (fewest words to represent the points-
to sets of the auxiliary analysis) for the mapping used in the main analysis.

4.3.1 Linkage Criteria and Required Words

Table 4.3 shows the number of words required to represent the points-to sets
produced by the main analysis in the theoretical (potentially impossible) best
case, under the original naive mapping, and under a mapping produced from
clustering with single, average, and complete linkage criteria. In bold is the
mapping that evaluated as best when applied to the auxiliary analysis’s points-
to sets and then chosen to perform the main analysis with. The final column
shows the reduction in words required by the chosen mapping against the
original mapping.

5There is an implementation bug occasionally causing slight indeterminism in the average
size of the points-to sets of address-taken variables. This is not affecting the final result (top-level
variable points-to sets) but causes variation in the number of words required to theoretically
represent all points-to sets. Values are rounded arithmetic means of results from 3 runs.
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Table 4.4: Time taken (s) and memory usage (GB) for VSFS (using core bit-
vectors) without and with a mapping produced by clustering.

Program
Unclustered Clustered

Speedup Memory
reductionTime Memory Clustering

Time
Total
Time Memory

dhcpcd 8.08 0.69 0.06 7.70 0.67 1.05× 1.03×
gawk 128.45 4.09 0.23 118.56 3.34 1.08× 1.23×
bash 18.31 1.92 0.09 18.14 1.83 1.01× 1.05×
mutt 40.26 3.49 0.38 40.14 2.87 1.00× 1.21×
lynx 324.07 5.64 0.49 321.98 5.19 1.01× 1.09×
sqlite 202.64 10.38 1.36 203.35 10.07 1.00× 1.03×
xpdf 509.47 15.40 4.75 483.46 10.71 1.05× 1.44×
emacs 4043.31 93.86 43.72 3880.10 72.06 1.04× 1.30×
git 4085.54 50.78 95.20 3938.11 41.78 1.04× 1.22×
kakoune 1592.13 35.07 23.90 1448.03 24.98 1.10× 1.40×
squid OOM OOM 53.86 5145.80 89.21 – ≥1.35×
wireshark 2179.94 37.41 4.01 1500.88 21.84 1.45× 1.71×
Geo. mean 1.07× ≥1.24×

Overall, we see an average reduction in required words of 4.41×, in the
range of 2.07× to 12.02×. In all cases, the mapping chosen for the main anal-
ysis turned out to be the best one. For all but 2 benchmarks (xpdf and wire-
shark), this was the mapping produced using the single linkage criterion. A
likely reason could be that points-to sets for those benchmarks where the sin-
gle linkage criterion worked best may have clusters of objects that are rarely
co-pointee with objects outside their cluster (i.e., if two points-to sets share
an object, they likely share most other objects too). Where the complete link-
age criterion worked best the opposite would be true. The average linkage
criterion would better resolve cases where the situation is mixed. Overall, for
most benchmarks, the number of words required with our mapping is around
twice as much as the theoretical limit or less. Unfortunately, we cannot know
what the true minimum is as it is simply too expensive to apply our IP method.

In the following sections, we discuss time and memory improvements for
VSFS, but we note that clients benefit too. For example, an alias analysis may
perform many points-to set intersections over now more compact points-to
sets, and general iteration over points-to sets would traverse fewer words.

4.3.2 Time

Table 4.4 shows the time (in seconds) VSFS takes without and with the map-
ping produced by clustering. Generally, we do not see much improvement
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except for in wireshark and slight improvement in kakoune. Notably, wire-
shark saw the greatest reduction in words required, presumably of some key
points-to sets too (i.e., those which appear in many union operations). Previ-
ous work [Barbar and Sui, 2021a] had seen greater improvement (more akin to
that seen in wireshark here) but this was performed on SFS (and counted the
time of the main analysis only) which performs far more unions than VSFS.
This indicates that this approach becomes increasingly important, time-wise,
when analyses grow in the number of operations required.

Column 4 shows the time taken to perform clustering, from creating the
distance matrix to creating 3 mappings and evaluating them. Generally, this
takes an insignificant portion of total time, except in the case of some larger
benchmarks. We find however that the bulk of this time is spent constructing
the distance matrix, not in clustering or evaluation of a mapping. For git for
example, constructing the distance matrix takes between 85 and 93 seconds.
We suspect this can be significantly improved, helping time and making the
process truly insignificant to the analysis.

4.3.3 Memory

Memory usage reduction ismore successful than time improvement. Table 4.4
also shows memory usage (in GB) of VSFS without and with the mapping
produced by clustering. On average we see a reduction of over 1.24×. For
some benchmarks, namely dhcpcd, bash, and sqlite, we see no real differ-
ence, but others such as wireshark, kakoune, squid, and xpdf considerably
improve when considering the number of gigabytes required. squid can now
be analysed by VSFS, with room to spare, handling the last of our benchmarks
exhausting allocated memory.

4.4 Related Work

Toussi and Khademzadeh [2013] have suggested assigning objects of the same
type (or with a subtyping relation) to consecutive identifiers, producing a
more sophisticated mapping for Java-based analyses. They also discuss a bit-
vector (the ranged bit-vector) which is similar to the core bit-vector we pro-
pose but which uses a static over-approximated offset and length in such a
way that a pointer of type 𝑇 only needs to consider type 𝑇 objects (or subtype
of 𝑇 objects) in its points-to set. While type filtering for strongly-typed lan-
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guages such as Java can improve both performance and precision [Lhoták and
Hendren, 2003], this is not the case for weakly-typed languages such as C and
C++. In points-to analysis for C and C++ where objects do not have a set type,
typing objects may require heap cloning, and pointers may point to objects of
any type [Balatsouras and Smaragdakis, 2016; Barbar et al., 2020]. This incurs
(sometimes very significant) overhead and type filtering may involve assump-
tions that are not suitable for all practitioners [Barbar et al., 2020]. Here, we
were able explore object clustering to more generally create a better mapping
in staged analyses where the auxiliary analysis soundly over-approximates
the analysis it is staging.

4.5 Conclusion

In this chapter, we discussed using bit-vectors as points-to sets and reducing
their footprint. We first introduced the core bit-vector to strip both leading
and trailing zeroes, allowing us to savememory on redundant zero-words. We
then looked at producing better object-to-identifier mappings, first through
integer programming (a more theoretical exercise), and then more practically
through the hierarchical clustering of objects. On average, our approach was
able to reduce the number of words required to represent the points-to sets
produced by VSFS, implemented as core bit-vectors, by 4.41×.
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When analysing real-world programs, many pointers may yield exactly the
same points-to sets during constraint resolution. This sometimes becomes
more prevalent as analyses become more precise. For example, unlike flow-
insensitive analysis which computes a single points-to set for each pointer,
flow-sensitive analysis computes andmaintains points-to sets at different pro-
gram points, but unfortunately introduces many duplicate points-to sets de-
spite the reduction wrought by VSFS.

To see this in practice, Table 5.1 provides the proportions of duplicate
points-to sets under flow-insensitive analysis and VSFS. Columns 2 and 5
show the number of points-to sets maintained in the analyses which do not
end the analysis as the empty points-to set. Columns 3 and 6 list the number
of those points-to sets which refer to the 5 most common points-to sets, again
excluding those ending the analysis as the empty set. Columns 4 and 7 list the
proportions those top 5most common points-to sets make up of the aforemen-
tioned total. We see that, on average, the 5 most common points-to sets are
referred to by around 57% and 93% of pointers for flow-insensitive analysis
and VSFS, respectively. Clearly, repeatedly representing the same points-to
sets is redundant, memory-wise. We also see that more precise analyses could
bring extra redundancy in order to achieve that extra precision.

Furthermore, since many resulting points-to sets are the same, it stands
to reason that many may have reached that result through the same union
operations, which are also redundant. Thus, many union operations are in
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Table 5.1: Statistics on prevalence of duplicate points-to sets in our bench-
mark programs.

Program Flow-insensitive VSFS

Points-to sets Top 5
points-to sets Proportion Points-to sets Top 5

points-to sets Proportion

dhcpcd 21 422 12 512 58.41% 112 400 103 480 92.06%
gawk 48 539 28 963 59.67% 1 542 123 1 506 481 97.69%
bash 37 365 27 287 73.03% 278 165 256 092 92.06%
mutt 66 034 44 902 68.00% 580 419 544 190 93.76%
lynx 86 873 59 195 68.14% 1 169 126 1 075 077 91.96%
sqlite 146 215 115 799 79.20% 1 325 494 1 263 059 95.29%
xpdf 106 398 53 009 49.82% 3 235 805 3 159 250 97.63%
emacs 249 832 159 156 63.71% 18 020 717 17 673 305 98.07%
git 242 125 125 353 51.77% 10 390 640 9 056 823 87.16%
kakoune 201 445 68 250 33.88% 8 510 969 8 176 369 96.07%
squid 377 684 195 567 51.78% 34 943 134 29 896 669 85.56%
wireshark 334 031 151 587 45.38% 3 036 916 2 743 574 90.34%
Geo. mean 57.18% 93.05%

fact duplicates of operations which have been previously performed. This has
implications on performance as conducting points-to set unions produced by
the set constraints forms a bulk of analysis time.

Both the number of duplicate points-to sets tracked and the number of
unions performed can be reduced but most previous solutions have been
analysis-specific requiring algorithmic changes which may not be applicable
to other points-to analyses. For example, either, or both, can be achieved
by merging equivalent pointers offline [Rountev and Chandra, 2000; Hard-
ekopf and Lin, 2007b, 2011, 2009; Barbar et al., 2021] or online [Pearce et al.,
2003; Hardekopf and Lin, 2007a; Lei and Sui, 2019], selectively applying preci-
sion [Lhoták and Chung, 2011; Smaragdakis et al., 2011], or carefully choosing
how to solve constraints [Pearce et al., 2007; Pereira and Berlin, 2009]. Despite
these efforts, duplication still exists and pushing the boundaries through al-
gorithmic changes to the points-to analysis may lead to increasingly dimin-
ishing returns on performance.

In this chapter, we aim to explore solutions solely at the data structure
level (algorithm-agnostic), ignoring anything that is analysis-specific—thus
is easily applicable to a range of points-to analyses—to reduce the influence
of these duplicate operations and points-to sets on time and space. We lever-
age the idea of hash consing [Goubault, 1994; Filliâtre and Conchon, 2006;
Braibant et al., 2014; Hash Consing, 2020], which aims to quickly identify
structurally equivalent values, from the functional programming community,
to help solve the problem of duplicate points-to sets and unions operations.
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Hash consing is the process of maintaining single immutable representations
of data structures which can then be shared elsewhere referentially [Sonder-
gaard and Sestoft, 1990; Referential Transparency, 2017]. In our context, this
means that each unique points-to set is maintained only once such that points-
to sets becomes persistent.

Originally, hash consingwas used tomemoise object construction to avoid
creating the same object twice, transforming construction into a hash table
lookup of the elements of the object. If we view our union operation as a
constructor, taking two points-to sets to create a new one, we can transform
many union operations into hash table lookups (of a pair of references), which
would be much cheaper than standard set unions as points-to sets become
larger. Thus hash consing is a means for efficient memoisation allowing us to
perform faster set unions. During points-to set resolution, we build up hash
tables of previously performed operations, and use those results if the same
operation occurs again.

Moreover, with points-to sets being represented as references we can per-
form fast comparisons between such sets in constant, instead of linear, time.
Thus, we also explore the possibility of practically skipping some set oper-
ations completely by exploiting mathematical set properties. For example,
since each points-to set is represented as a reference to a sole representation
of its value, the operands of a union such as 𝑋 ∪ 𝑌 can be compared cheaply
for equality. If 𝑋 and 𝑌 are equal, the result is simply 𝑋 (/𝑌 ), since the union
operation is idempotent, allowing us to skip work. We refer to this and similar
optimisations as property operations.

Our approach is efficient yet simple to implement, independent to the
points-to analysis used, maintains precision, and works alongside the many
algorithmic advances listed earlier. Moreover, our approach does not man-
date a specific representation of points-to sets as long as each pointer would
otherwise be assigned discrete points-to sets. A largemotivation for this chap-
ter is to see how effective a simple technique (hash consing) can be for points-
to analyses based on bit-vectors. Most of the work in this chapter has been
published at SAS [Barbar and Sui, 2021b].

5.1 Motivating Example

In this section, we show the duplication of points-to sets and operations that
occurs in flow-insensitive analysis. Let us consider the small program frag-
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ment in Figure 5.1a. Figure 5.1b shows the constraints produced to analyse
this program fragment flow-insensitively according to the rules in Figure 2.3.
Since the analysis is flow-insensitive, we solve for a points-to set per vari-
able. We use {𝑜}𝑝 to denote the value of 𝑝𝑡(𝑝) when it, for example, con-
tains the points-to target 𝑜. In analysing the program fragment, we assume𝑝𝑡(𝑝) = {𝑜1}, 𝑝𝑡(𝑞) = {𝑜2}, 𝑝𝑡(𝑟) = {𝑜3, 𝑜4}, and the remaining points-to
sets are empty.

1 ∶ ∗𝑝 = 𝑟;2 ∶ ∗𝑞 = 𝑟;3 ∶ 𝑥 = ∗𝑝;4 ∶ 𝑦 = ∗𝑞;
(a) Program fragment.

1 ∶ ∀𝑜 ∈ 𝑝𝑡(𝑝). 𝑝𝑡(𝑟) ⊆ 𝑝𝑡(𝑜)2 ∶ ∀𝑜 ∈ 𝑝𝑡(𝑞). 𝑝𝑡(𝑟) ⊆ 𝑝𝑡(𝑜)3 ∶ ∀𝑜 ∈ 𝑝𝑡(𝑝). 𝑝𝑡(𝑜) ⊆ 𝑝𝑡(𝑥)4 ∶ ∀𝑜 ∈ 𝑝𝑡(𝑞). 𝑝𝑡(𝑜) ⊆ 𝑝𝑡(𝑦)
(b) Constraints.1 ∶ {𝑜3, 𝑜4}𝑟 ⊆ { }𝑜1 1 ∶ {𝑜3, 𝑜4}𝑟 ⊆ {𝑜3, 𝑜4}𝑜12 ∶ {𝑜3, 𝑜4}𝑟 ⊆ { }𝑜2 2 ∶ {𝑜3, 𝑜4}𝑟 ⊆ {𝑜3, 𝑜4}𝑜23 ∶ {𝑜3, 𝑜4}𝑜1 ⊆ { }𝑥 3 ∶ {𝑜3, 𝑜4}𝑜1 ⊆ {𝑜3, 𝑜4}𝑥4 ∶ {𝑜3, 𝑜4}𝑜2 ⊆ { }𝑦 4 ∶ {𝑜3, 𝑜4}𝑜2 ⊆ {𝑜3, 𝑜4}𝑦

(c) Operations.𝑝𝑡(𝑝) = {𝑜1} 𝑝𝑡(𝑞) = {𝑜2} 𝑝𝑡(𝑟) = {𝑜3, 𝑜4} 𝑝𝑡(𝑥) = {𝑜3, 𝑜4}𝑝𝑡(𝑦) = {𝑜3, 𝑜4} 𝑝𝑡(𝑜1) = {𝑜3, 𝑜4} 𝑝𝑡(𝑜2) = {𝑜3, 𝑜4}𝑝𝑡(𝑜3) = { } 𝑝𝑡(𝑜4) = { }
(d) Result.

FiguRe 5.1: Example program fragment in (a), constraints generated for flow-
insensitive analysis in (b), operations performed to fulfil the constraints in
(c), and final results in (d). Initially, we assume 𝑝𝑡(𝑝) = {𝑜1}, 𝑝𝑡(𝑞) = {𝑜2},𝑝𝑡(𝑟) = {𝑜3, 𝑜4}, and remaining points-to sets are empty. Duplicate points-
to sets and operations are highlighted in grey .

In Figure 5.1c, operations are numbered with the constraints they corre-
spond to and duplicate operations are highlighted in grey. Ultimately, each
constraint actually results in the same two union operations being performed
so 6 of the 8 operations are duplicates. In real-world programs, such points-
to sets may be large, containing hundreds or thousands of objects, meaning
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repeatedly performing these unions can be expensive. The final resulting
points-to sets of the analysis are shown in Figure 5.1d, with duplicates also
highlighted in grey. We see that 5 of the 9 points-to sets have occurred be-
fore, pointing to much duplication. This can be problematic as points-to sets
grow, with statically sized representations, or as analyses introduce more
variables. The problems presented here can become more apparent when
analysing more complicated programs or using a more precise analysis.

5.2 Approach

This section introduces hash consed points-to sets and their application to
points-to analysis. We then describe optimisations that can use hash consing
to efficiently exploit set properties for further performance improvement.

5.2.1 Hash Consed Points-To Sets

Hash consing is used to create immutable data structures that can be shared
(referentially) to avoid duplication. A common example of hash consing is
string interning [Gosling et al., 2014, §3.10.5] whereby a compiler or runtime
stores strings in a global pool and assigns pointers to strings in that global
pool rather than private copies. In our context, we want points-to sets to be
stored once in a global pool, so that we deal with references to points-to sets
rather than concrete points-to sets during the analysis.

To do this, whenever a points-to set is created, we perform an interning
routine whereby we check if that points-to set exists in our global pool, and

• If it exists, return a reference to the equivalent set in the global pool.

• Otherwise, add the points-to set to the global pool and return a refer-
ence to the newly added points-to set.

This process can be achieved by a single hash table mapping each points-to
set to a single canonical reference. Now, instead of using 𝑝𝑡(𝑝) during the
analysis, we use 𝑝𝑡𝑟(𝑝) which is a reference to the points-to set of 𝑝 in the
global pool. Dereferencing a points-to set reference as 𝑑𝑟(𝑝𝑡𝑟(𝑝)) would be
equivalent to 𝑝𝑡(𝑝) and can be used to, for example, iterate over the points-to
set. Given that 𝑝𝑡𝑟(𝑝) = 𝑝𝑡𝑟(𝑞), 𝑑𝑟(𝑝𝑡𝑟(𝑝)) and 𝑑𝑟(𝑝𝑡𝑟(𝑞)) would also be
equivalent and actually be accessing the same singly stored points-to set in
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the global pool. This can save significant amounts of memory when duplicate
points-to sets are common.

On its own, this process does not save time, and may cost more time to
perform the interning routine, especially as we performmany unions creating
points-to sets which need to be interned. Since each unique points-to set
exists once in the program, we can efficiently memoise operations, including
the union operation. This can be achieved by a hash table, which we call
an operations table, mapping two points-to set references to the points-to
set reference which refers to the result of the actual operation. The union
between two points-to set references 𝑝𝑡𝑟(𝑝) ∪ 𝑝𝑡𝑟(𝑞) can be performed by
looking up the union operations table with the ⟨𝑝𝑡𝑟(𝑝), 𝑝𝑡𝑟(𝑞)⟩ pair as the
key (i.e., operation), and

• If the key exists in the operations table, returning the associated value,
i.e., the reference to the result of the operation.

• Otherwise, performing a concrete union between the sets 𝑑𝑟(𝑝𝑡𝑟(𝑝))
and 𝑑𝑟(𝑝𝑡𝑟(𝑞)), interning the result, associating the operation with the
result in the operations table, and returning it.

With many union operations being duplicates, those would be performed as
constant time hash table lookups, rather than linear time set unions (in a core
bit-vector representation, for example) which can be expensive depending on
the sizes of points-to sets. The intersection and difference operations can also
be memoised the same way, if necessary.

Without hash consing, memoising operations would not be efficient as we
would need to hash entire points-to sets, i.e., we would map ⟨𝑝𝑡(𝑝), 𝑝𝑡(𝑞)⟩ to
another concrete points-to set rather than mapping a reference pair to a ref-
erence. Collisions would also be expensive to resolve as determining equality
would then be linear in the size of the colliding points-to set pairs. With ref-
erences, equality can be determined in constant time.

Figure 5.2 shows how our analysis would look for the example in Fig-
ures 5.1. Of the 8 union operations, 6 are performed as cheap lookups in the
operations table in Figure 5.2b because the first time we perform a concrete
operation, we cache it in the operations table, and perform a fast lookup on
subsequent attempts to perform that operation. As in Figure 5.2c, we asso-
ciate with every variable a reference to a points-to sets in the global pool
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{𝑜1} ↦ 𝑟1{𝑜2} ↦ 𝑟2{𝑜3, 𝑜4} ↦ 𝑟3{ } ↦ 𝑟4
(a) Global pool mapping points-to sets
to references.

⟨𝑟3, 𝑟4⟩ ↦ 𝑟3⟨𝑟3, 𝑟3⟩ ↦ 𝑟3
(b) Union operations table.𝑝𝑡𝑟(𝑝) = 𝑟1 𝑝𝑡𝑟(𝑞) = 𝑟2 𝑝𝑡𝑟(𝑟) = 𝑟3 𝑝𝑡𝑟(𝑥) = 𝑟3 𝑝𝑡𝑟(𝑦) = 𝑟3𝑝𝑡𝑟(𝑜1) = 𝑟3 𝑝𝑡𝑟(𝑜2) = 𝑟3 𝑝𝑡𝑟(𝑜3) = 𝑟4 𝑝𝑡𝑟(𝑜4) = 𝑟4

(c) Result.

FiguRe 5.2: Global pool of points-to sets in (a), the union operations table in
(b), and the result in (c) using references instead of concrete points-to sets for
the analysis in Figure 5.1.

(Figure 5.2a) rather than concrete points-to sets. In all, we must only store 4
concrete points-to sets.

5.2.2 Exploiting Set Properties

In this section, we describe some optimisationswhich exploit the properties of
sets to further improve efficiency of union operations on hash consed points-
to sets. We note that even though our rules only perform unions, practical
implementations may perform intersection and difference operations. Fur-
thermore, clients may perform some of these operations too. For example,
an alias analysis built on a points-to analysis will perform intersection tests.
These operations can be memoised in the same way as unions above, and we
exploit their properties in this section too.

Commutative operations For commutative operations such as unions and
intersections, performing an operation twice with the operands flipped is du-
plication. This would not be detected in the operations tables. For example,
assuming 𝑝𝑡𝑟(𝑝) = 𝑋 and 𝑝𝑡𝑟(𝑞) = 𝑌 , if we perform 𝑋 ∪𝑌 = 𝑍 for the first
time, we would store a mapping from the pair ⟨𝑋, 𝑌 ⟩ to the result 𝑍 in the
union operations table. If the analysis was to later perform 𝑌 ∪ 𝑋, it would
not find the operation memoised, despite the result also being 𝑍 , as ⟨𝑌 , 𝑋⟩
would not be cached in the union operations table.

To resolve this, operations should always be ordered deterministically.
This is easy to achieve with hash consing because points-to sets are references
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and can be compared in constant time. Now, to perform 𝑋 ∪ 𝑌 or 𝑌 ∪ 𝑋,
we would perform the operation in the same order depending on whether 𝑋
is “less than” 𝑌 , and so only a single instance would be stored in the union
operations table.

Property Operations In some cases, the result of an operation can be de-
termined instantly with only trivial comparisons and no concrete operation
or hash table lookup. We refer to these cases as property operations, and we
describe these cases for unions, intersections, and differences below. We set𝐸 to refer to the empty points-to set, and for commutative operations (i.e.,
unions and intersections), we assume the operands have already been ordered
and that the reference 𝐸 is the least reference (so it is always the first operand
in the commutative operations it appears in).

Unions Given the ordered union operation between references 𝑋 and𝑌 , 𝑋 ∪ 𝑌 , and that the result would be 𝑅,𝑋 = 𝐸 ⇒ 𝑅 = 𝑌 , and𝑋 = 𝑌 ⇒ 𝑅 = 𝑋.
All operations in Figure 5.2b are actually property operations and caching is
unnecessary.

Intersections Given the ordered intersection operation between refer-
ences 𝑋 and 𝑌 , 𝑋 ∩ 𝑌 , and that the result would be 𝑅,𝑋 = 𝐸 ⇒ 𝑅 = 𝐸, and𝑋 = 𝑌 ⇒ 𝑅 = 𝑋.

Difference Given the difference operation between references 𝑋 and 𝑌 ,𝑋 \ 𝑌 , and that the result would be 𝑅,𝑋 = 𝐸 ⇒ 𝑅 = 𝐸,𝑌 = 𝐸 ⇒ 𝑅 = 𝑋, and𝑋 = 𝑌 ⇒ 𝑅 = 𝐸.
82



5.2. Approach

PreemptiveMemoisation After performing an actual operation and caching
that operation in the operation table, we can preemptively cache other opera-
tions too by exploiting standard set properties. This would avoid performing
an actual operation later if the analysis needed that result. An implemen-
tation can choose which operations are worth preemptively memoising and
which are not.

Unions Assume the ordered operation 𝑋 ∪ 𝑌 = 𝑅 is not a property
operation. If 𝑋 ≠ 𝑅, we can instantly determine and cache𝑋 ∪ 𝑅 = 𝑅, and𝑋 ∩ 𝑅 = 𝑋,
and similarly if 𝑌 ≠ 𝑅, 𝑌 ∪ 𝑅 = 𝑅, and𝑌 ∩ 𝑅 = 𝑌 .
We guard with the conditions 𝑋 ≠ 𝑅 and 𝑌 ≠ 𝑅 because in these cases, the
preemptively cached unions would be property unions.

Intersections Assume the ordered operation 𝑋 ∩ 𝑌 = 𝑅 is not a prop-
erty operation. If 𝑅 ≠ 𝐸 and 𝑋 ≠ 𝑅, we can instantly determine and cache𝑋 ∩ 𝑅 = 𝑅, and𝑋 ∪ 𝑅 = 𝑋,
and similarly if 𝑅 ≠ 𝐸 and 𝑌 ≠ 𝑅,𝑌 ∩ 𝑅 = 𝑅, and𝑌 ∪ 𝑅 = 𝑌 .
Here, we are also not interested in preemptively memoising when 𝑅 = 𝐸
because we would be then caching property operations.
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Difference Assume the difference operation 𝑋 \ 𝑌 = 𝑅 is not a prop-
erty operation. If 𝑅 ≠ 𝐸 and 𝑋 ≠ 𝑅 we can instantly determine and cache𝑋 ∪ 𝑅 = 𝑋, and𝑋 ∩ 𝑅 = 𝑅,
and similarly if 𝑅 ≠ 𝐸, 𝑌 \ 𝑅 = 𝑌 ,𝑅 \ 𝑌 = 𝑅, and𝑅 ∩ 𝑌 = 𝐸.
5.3 Evaluation

In our implementation, we have not modified any algorithms, rather we have
only modified how points-to sets are represented. Concretely, when an analy-
sis attempts to perform a union or access a points-to set, for example, our new
code is called. For our hash consed points-to sets, we map concrete points-
to sets (core bit-vectors) to unique integer identifiers (which act as our refer-
ences), and a secondmap, implemented as an array for performance, mapping
those identifiers back to the concrete points-to set. This allows us to use 32-bit
identifiers, rather than 64-bit addresses as would be required if our references
were pointers.

Our operations tables are implemented as maps (std::unordered_map
from the C++ STL) mapping two such identifiers to another with a hash func-
tion that simply concatenates the two 32-bit identifier operands. In the future,
we would like to try a more performant map implementation. Map insertions
and lookups are common, for interning and for unions, so we expect that the
std::unordered_map might be leaving some performance on the table, in
both time and memory, as it is known to not perform particularly well due to
certain mandates of the C++ standard.

We also note that our implementation does not include garbage collection.
Thus, points-to sets which are no longer in use accumulate in the global pool,
as well as their operations in the operations tables. This has an effect on
memory though we still see improvement in memory usage as shown in the
next section.
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Table 5.2: Time taken (s) and memory usage (GB) for flow-insensitive points-
to analysis without and with hash consed points-to sets.

Program Mutable Hash consed Speedup Memory
reductionTime Memory Time Memory

dhcpcd 2.41 0.46 2.03 0.40 1.18× 1.15×
gawk 15.08 1.33 10.24 1.19 1.47× 1.12×
bash 5.29 0.98 3.00 0.82 1.76× 1.19×
mutt 8.31 1.53 6.77 1.29 1.23× 1.19×
lynx 80.18 2.62 79.10 1.59 1.01× 1.65×
sqlite 78.78 6.57 61.24 5.39 1.29× 1.22×
xpdf 40.18 4.28 32.90 3.67 1.22× 1.17×
emacs 578.17 33.26 477.21 27.33 1.21× 1.22×
git 195.44 15.88 147.35 13.04 1.33× 1.22×
kakoune 86.85 9.22 74.57 6.89 1.16× 1.34×
squid 362.45 26.23 311.45 14.86 1.16× 1.77×
wireshark 90.74 14.53 76.87 9.31 1.18× 1.56×
Geo. mean 1.26× 1.30×
5.3.1 Flow-Insensitive Analysis

Table 5.2 shows the time and memory of a flow-insensitive analysis with and
without hash consing. As the auxiliary analysis for VSFS discussed through-
out this dissertation, the analysis is boosted bywave propagation [Pereira and
Berlin, 2009].

In time, we see an average improvement of 1.26×, with a range from 1.01×
(no improvement) to 1.76×. Practically speaking, this analysis already per-
forms quite well so any improvement is certainly welcome. Similarly, we see
an average reduction in memory usage of 1.3×, with reduction ranging from
1.12× to 1.77×. Now, no benchmark requires more than 32 GB to analyse (1,
previously), 1 benchmark requires more than 16 GB to analyse (2, previously),
and 3 benchmarks require more than 8 GB to analyse (5, previously). Again,
for memory, this analysis already performed quite well.

Table 5.3 lists the union operations performed by the flow-insensitive
analysis and categorises them as concrete (unique) unions, property unions,
lookups, and preemptive unions. We see that concrete unions only form about
3% of all unions on average and this proportion does not exceed 10% for any
benchmark. This perhaps points to the notion that there is still much room for
improvement (we note though that SVF does not implement all optimisations
present in the literature such as location and pointer equivalence [Hardekopf
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Table 5.3: The number of concrete, property, lookup, and preemptive unions
for flow-insensitive analysis (and the proportion of the total in parentheses).

Program Concrete Property Lookup Preemptive Total

dhcpcd 5458 (4.39%) 39 981 (32.16%) 69 261 (55.71%) 9632 (7.75%) 124 332
gawk 7475 (2.72%) 138 396 (50.31%) 116 345 (42.29%) 12 886 (4.68%) 275 101
bash 1416 (0.95%) 125 292 (84.53%) 18 896 (12.75%) 2625 (1.77%) 148 228
mutt 7857 (3.13%) 119 688 (47.72%) 109 273 (43.57%) 13 998 (5.58%) 250 815
lynx 25 143 (1.94%) 150 775 (11.64%) 1 077 459 (83.18%) 42 035 (3.24%) 1 295 411
sqlite 8025 (0.81%) 382 278 (38.48%) 588 181 (59.21%) 14 893 (1.50%) 993 377
xpdf 29 714 (4.40%) 196 387 (29.08%) 393 863 (58.32%) 55 425 (8.21%) 675 388
emacs 98 571 (4.84%) 636 598 (31.28%) 1 106 930 (54.39%) 193 041 (9.49%) 2 035 139
git 131 447 (9.12%) 480 171 (33.32%) 610 182 (42.35%) 219 109 (15.21%) 1 440 908
kakoune 56 828 (5.91%) 323 407 (33.61%) 478 367 (49.72%) 103 606 (10.77%) 962 207
squid 108 246 (4.25%) 647 240 (25.44%) 1 623 164 (63.79%) 165 913 (6.52%) 2 544 563
wireshark 49 522 (2.54%) 561 098 (28.81%) 1 245 721 (63.96%) 91 359 (4.69%) 1 947 700
Geo. mean (3.07%) (33.75%) (48.64%) (5.45%)

and Lin, 2007b]). On average, property unions make up about 34% of unions
and unions which resolve to a lookup make up almost 50% of unions.

5.3.2 VSFS

Table 5.4 shows the time taken and memory used by VSFS with and without
hash consing. For time, we see a similar effect to that of flow-insensitive
analysis, with an average speedup of about 1.19×, ranging from 1.07× to
1.31×. In terms of practical impact on a human operator, we do see some
respectable improvement. For example, on the slower end, analysing emacs
takes about 12 minutes fewer, down from about 65 to 53 minutes and on the
faster end, analysing gawk goes from about 120 to 90 seconds.

Memory tells a similar but slightly more effective story with an average
reduction of 1.28× ranging from 1.11× to 1.47×. Only the first 4 benchmarks
in the table and sqlite see a reduction in memory usage of less than 1.3×. We
see very practical improvement with, for example, emacs requiring 20 fewer
gigabytes, squid requiring around 30 fewer gigabytes, and wireshark requir-
ing about 5 and a half fewer gigabytes, having required 21.84 GB previously.
All benchmarks can now be analysed with VSFS within 64 GB, squarely in the
realm of consumer hardware.

We also note that this improvement has come despite the application
of our techniques which reduce the number of points-to sets and unions
(VSFS) and compact points-to set representations (core bit-vectors, compact-
ing through clustering). In a sense, this is an optimisation which can squeeze
a few extra seconds or gigabytes out of an implementation, catching some
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Table 5.4: Time taken (s) and memory usage (GB) for VSFS without and with
hash consed points-to sets.

Program Mutable Hash consed Speedup Memory
reductionTime Memory Time Memory

dhcpcd 7.70 0.67 6.70 0.59 1.15× 1.13×
gawk 118.56 3.34 90.52 2.90 1.31× 1.15×
bash 18.14 1.83 15.17 1.65 1.20× 1.11×
mutt 40.14 2.87 34.42 2.53 1.17× 1.13×
lynx 321.98 5.19 302.31 3.92 1.07× 1.32×
sqlite 203.35 10.07 174.51 8.39 1.17× 1.20×
xpdf 483.46 10.71 399.95 8.17 1.21× 1.31×
emacs 3880.10 72.06 3155.43 49.90 1.23× 1.44×
git 3938.11 41.78 3339.26 30.46 1.18× 1.37×
kakoune 1448.03 24.98 1123.69 17.61 1.29× 1.42×
squid 5145.80 89.21 4611.79 60.80 1.12× 1.47×
wireshark 1500.88 21.84 1276.60 16.12 1.18× 1.35×
Geo. mean 1.19× 1.28×
Table 5.5: The number of concrete, property, lookup, and preemptive unions
for VSFS (and the proportion of the total in parentheses).
Program Concrete Property Lookup Preemptive Total

dhcpcd 11 968 (0.07%) 14 979 551 (81.90%) 3 283 393 (17.95%) 15 416 (0.08%) 18 290 327
gawk 129 480 (0.05%) 204 024 076 (80.11%) 50 358 240 (19.77%) 167 781 (0.07%) 254 679 576
bash 3547 (0.02%) 11 349 430 (78.61%) 3 080 211 (21.33%) 4996 (0.03%) 14 438 183
mutt 22 727 (0.03%) 61 751 625 (87.61%) 8 678 406 (12.31%) 30 010 (0.04%) 70 482 767
lynx 63 684 (0.01%) 622 937 164 (86.30%) 98 748 841 (13.68%) 79 537 (0.01%) 721 829 226
sqlite 36 124 (0.02%) 186 364 451 (81.77%) 41 463 179 (18.19%) 46 920 (0.02%) 227 910 673
xpdf 100 035 (0.01%) 886 088 543 (79.97%) 221 722 933 (20.01%) 123 359 (0.01%) 1 108 034 870
emacs 484 230 (0.01%) 6 626 504 811 (85.49%) 1 123 816 883 (14.50%) 657 167 (0.01%) 7 751 463 091
git 515 285 (0.01%) 5 968 894 934 (84.15%) 1 123 045 537 (15.83%) 630 943 (0.01%) 7 093 086 697
kakoune 449 844 (0.02%) 2 253 521 396 (76.21%) 702 597 617 (23.76%) 568 914 (0.02%) 2 957 137 770
squid 502 938 (0.01%) 4 117 489 437 (77.96%) 1 163 177 210 (22.02%) 600 902 (0.01%) 5 281 770 486
wireshark 7 154 852 (0.17%) 2 743 586 645 (65.82%) 1 409 445 126 (33.81%) 8 316 285 (0.20%) 4 168 502 907
Geo. mean (0.02%) (80.29%) (18.75%) (0.03%)

redundancy other techniques have missed. When concrete unions are more
expensive to operate on (more objects through heap cloning, for example)
or points-to sets are more numerous, we expect this technique to be more
necessary, at least until the sources of these costs are found and (in a more
algorithmic way) quashed.

Table 5.5, similar to the previous section, breaks down the number of
union operations performed by VSFS. Aside from the fact that VSFS performs
far more unions, results differ significantly from those of the flow-insensitive
analysis. We see that no benchmark, except wireshark (0.17%), requires more
than 0.1% of unions to be concrete unions (0.02% on average) and that property
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operations make up a larger proportion compared to flow-insensitive analysis
at about 80% on average. Unions which resolve to a lookup make up about
19% of all unions on average.

5.3.3 Effect of Preemptive Memoisation

In previous work [Barbar and Sui, 2021b] we have found that preemptive
memoisation does not have a discernible effect on time. This is because pre-
emptive memoisation reduces the number of concrete unions after the appli-
cation of our techniques in this chapter (i.e., after other techniques have made
the most expensive operations cheaper, e.g., transforming 𝑛 particularly ex-
pensive unions into one concrete union followed by 𝑛 − 1 lookups). As it
stands, concrete unions take up a small portion all unions even without pre-
emptive memoisation. As input programs grow and concrete unions start to
have a noticeable effect on time (e.g., when points-to sets become unreason-
ably large or when more points-to sets and operations are unique), the role
preemptive memoisation plays can becomemore significant. As expected, we
saw a slight increase in memory usage due to storing more operations in the
operations table where each entry takes 12 bytes, modulo any table overhead.

5.4 Related Work

In unpublished work, Heintze [1999] described splitting points-to sets into
two parts: a unique part (called an overflow list) and a shared part. The shared
part can be described as hash consing and thus implements a finer-grained
hash consing since it does this on subsets rather than entire sets. However,
no memoisation is performed, and doing so would be less effective due to the
overflow list where, for example, two sets may be equivalent but not share
any parts (i.e. the unique parts are different and the shared parts are differ-
ent). The data structure is also much more difficult to implement whereas
what we have presented can be retrofitted onto most set-like data structures
exposing necessary operations (largely the set union operation). An imple-
mentation of Heintze’s set is available in Soot [Lhoták and Hendren, 2003] as
the SharedHybridSet.

Using (reduced ordered) BDDs to represent points-to sets naturally per-
forms sharing of data. BDDs in the context of points-to analysis are acyclic
graphs representing a set of points-to relations, and nodes can be merged
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or removed according to certain conditions which are analogous to shared
points-to set subsets. However, BDD performance (in time and space) relies
heavily on a “variable ordering” and finding an ideal variable ordering is im-
practical (in the sameway our IP approach in Chapter 4 is impractical), though
approximations exist. BDDs in the literature have been found to be an overall
better [Hardekopf and Lin, 2009; Berndl et al., 2003] and worse [Bravenboer
and Smaragdakis, 2009; Hardekopf and Lin, 2007b] choice than more explicit
set data structures (such as bit-vectors). This is likely due to varying tweaking
of parameters like variable ordering, quality of the analysis at hand (various
optimisations may affect how well different data structures perform at differ-
entmagnitudes), and due to implementation details close to themachine. Gen-
erally, BDDS are more complex than basic sets (like bit-vectors) in regards to
implementation, and we experienced minimal implementation burden adding
the approach presented in this chapter to SVF’s existing facilities.

Hash consing has also more generally been explored for static analysis
to represent, for example, memory maps and program states [Manevich et al.,
2002; Cuoq et al., 2012], invocation graphs [Choi andChoe, 2011], subtrees [Ball
and Rajamani, 2001], and constants [Hubert et al., 2011] with success. Static
analyses are ripe for hash consing and memoisation because they are by na-
ture approximations designed to capture a class of runtime data and so contain
many duplicate data structures, operations, or both.

5.5 Conclusion

In this chapter, we discussed hash consed points-to sets to produce a per-
sistent data structure which can be used to reduce duplication in points-to
sets, saving space, and in operations, saving time. During points-to analy-
sis resolution, unique points-to sets are represented once and are referred to
through cheaper references. Through memoisation and cheap operand com-
parisons on the references, the effect of duplicate operations is reduced. For
flow-insensitive and -sensitive analyses, we saw an average speedup of 1.26×
and 1.19× and an average reduction in memory usage of 1.3× and 1.28×, re-
spectively.
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6.1 Applying the Techniques in this Dissertation Together

In Table 6.1, we have compared the time taken and memory required for SFS
with standard bit-vectors as points-to sets (from Table 3.1) against VSFS with
all the optimisations presented during this dissertation (from Table 5.4), that
is, VSFS with efficient versioning on 4 threads, core bit-vectors, an object-to-
identifier mapping produced through clustering, and hash consed points-to
sets. Overall, we see an average speedup of 5.92×, ranging from 3.17× to
8.58×. We are missing many speedup values due to memory being exhausted
analysing 5 benchmarks with SFS. For memory usage reduction, we see an
average of ≥3.97×, ranging from 1.79× to 10.18×. Similar to what was dis-
cussed about the true memory usage reduction in Section 3.6.2, we cannot
know exactly how much larger than 3.97× the true average is (or if it is ex-
actly 3.97×). Especially, consider benchmarks emacs and squid which use
the most memory under our approach. With our approach, they use around
50 and 60 GB of memory (still within the bounds of consumer hardware), re-
spectively, so we would expect their memory usage for SFS to be far more
than 120 GB. In either case, we are pleased with the overall result.

There always exists a certain conflict and harmony in combining improve-
ments to a single analysis. All of our techniques can work together; none com-
pletely subsume any other, especially as analyses and input programs grow
with time. However, they do overlap, and thus, in a way, conflict. For ex-
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Table 6.1: Time taken (s) and memory usage (GB) for SFS (with standard bit-
vectors) and all of our techniques combined: VSFS, efficient versioning (4
threads), core bit-vectors, an object-to-identifier mapping produced through
clustering, and hash consed points-to sets.

Program SFS Our approach Speedup Memory
reductionTime Memory Time Memory

dhcpcd 21.21 1.06 6.70 0.59 3.17× 1.79×
gawk 533.41 10.31 90.52 2.90 5.89× 3.56×
bash 123.72 5.60 15.17 1.65 8.15× 3.39×
mutt 268.19 12.34 34.42 2.53 7.79× 4.88×
lynx 1692.75 24.50 302.31 3.92 5.60× 6.25×
sqlite 779.47 20.10 174.51 8.39 4.47× 2.39×
xpdf 3429.98 83.20 399.95 8.17 8.58× 10.18×
emacs OOM OOM 3155.43 49.90 – ≥2.41×
git OOM OOM 3339.26 30.46 – ≥3.94×
kakoune OOM OOM 1123.69 17.61 – ≥6.82×
squid OOM OOM 4611.79 60.80 – ≥1.97×
wireshark OOM OOM 1276.60 16.12 – ≥7.44×
Geo. mean 5.92× ≥3.97×
ample, a good object-to-identifier mapping becomes far less significant in the
presence of hash consing (especially) or even VSFS because the number of
concrete unions and the number of actual points-to sets stored is significantly
reduced. This can be seen by the superior results obtained in our previous
work [Barbar and Sui, 2021a] where we evaluated using improved object-to-
identifier mappings on SFS (rather than VSFS). Another example is the impact
of hash consing. In previous work [Barbar and Sui, 2021b], we evaluated hash
consing using LLVM’s sparse bit-vector data structure for points-to sets (of-
ten more expensive than a bit-vector or core bit-vector assuming a mapping
not too unfavourable) and SFS (for the flow-sensitive analysis) and we saw far
more drastic improvement than we saw when we used core bit-vectors with
a clustered mapping and VSFS as in this dissertation.

That said, where one technique falls short, another can make up for it,
bringing our techniques together in harmony. As an example, since the pre-
analysis in VSFS is based on auxiliary information, there remain many redun-
dant points-to sets and propagations. Although hash consing cannot elim-
inate this redundancy, it can reduce it by storing points-to sets once to be
referred to many times and by caching unions, almost eliminating some by
short-circuiting with a property union. Ultimately however, for practition-
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ers, the important part is that we see an overall improvement, regardless of
how much or how little each technique has contributed. Thus, practitioners
interested in applying these techniques (rather than implementing them) do
not need to make a choice between them—they all contribute, no matter how
little or much—and the described conflict is of scientific interest moreso than
pragmatic interest.

6.2 Summary

In all, we have discussed a variety of techniques to improve the data structures
behind points-to analysis and subsequently the analysis itself. We introduced
versioned staged flow-sensitive analysis (VSFS), an improvement over staged
flow-sensitive analysis (SFS), utilising meld versioning to effectively merge
points-to sets and reduce the number of required unions. We had done away
with the SVFG for the analysis, sufficing with version reliances. We also de-
scribed how meld versioning can be parallelised, bring simple parallelisation
to a non-trivial aspect of the analysis.

More generally, we looked at points-to sets and how they could be im-
proved. First, we described the core bit-vector to better represent points-to
sets since it strips both leading and trailing zero-words. We then worked on
improving the required object-to-identifier mapping for more compact points-
to sets. To do this, we exploited the fact that the auxiliary analysis in SFS/VSFS
is a sound over-approximation of the main phase. We started with an integer
programming solutionwhichwould be optimal (for the auxiliary analysis) but
too expensive for real world programs. We then looked at using hierarchical
clustering, which though more approximate, was able to be used to produce
a good mapping. Finally, we ended with the application of hash consing and
memoisation to points-to sets, which additionally allowed us to perform prop-
erty operations.

We implemented our techniques in LLVM-based open source points-to
analysis framework SVF. Overall, in comparing our techniques to SVF’s im-
plementation of SFS on 12 open source programs, we saw an average 5.92×
speedup and an average reduction in memory usage of ≥3.97×. Originally,
we were unable to analyse 5 of our benchmarks within our memory limit of
120 GB, but could do so with good performance after the application of our
techniques.
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6.3 Future Work

We believe there is still much which can be improved for points-to analysis
data structures. It also appears that flow-sensitive analysis could eventually
become efficient enough to act as a baseline of sorts (the space which flow-
insensitive analysis currently occupies).

Though encoding less redundancy than SFS, VSFS still contains much. It
would be worth exploring refining versions on-the-fly during the main phase,
where flow-sensitive points-to information is available. It is also possible that
further refinements can be made offline.

We believe that there is room for non-random or non-naive object-to-
identifiermappings that do not rely on an auxiliary analysis nor on types. This
could improve the auxiliary analysis itself before more information is made
available for a mapping from it. It would be interesting to train a machine
learning model on a corpus of programs to find patterns in them indicating
which objects would likely appear as co-pointees.

Our hash consing implementation does not include garbage collection,
allowing unused points-to sets and operations to accumulate in the global
pool and the operations tables. Tailoring garbage collection specifically for
points-to analysis appears to be beneficial.
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