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a b s t r a c t

Influence maximization is recognized as a crucial optimization problem, which aims to identify a
limited set of influencers to maximize the coverage of influence dissemination in social networks.
However, real-world social networks are usually dynamic and large-scale, which leads to difficulty in
capturing real-time user and diffusion features to effectively and accurately select the key influencers.
In this paper, we propose an adaptive agent-based evolutionary approach to address this challenging
issue with agent-based modeling and genetic algorithm. This novel approach identifies the users’
influence capability in a distributed manner and optimizes the influencer set selection in a dynamic
environment. An adaptive solution optimizer is proposed as one of the key components, driving the
evolutionary process and adapting the candidate solutions dynamically. The proposed approach is also
applicable to large-scale networks due to its distributed framework. Evaluation of our approach is per-
formed by using both synthetic networks and real-world datasets. Experimental results demonstrate
that the proposed approach outperforms state-of-the-art seeding algorithms in terms of maximizing
influence.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, influence diffusion modeling and maximiza-
ion in complex networks such as online social networks have
ttracted a great deal of attention from both researchers and prac-
itioners. It has applications in many areas, including decision-
aking, marketing, and social influence analysis [1–6]. On the
ther hand, influence maximization is also considered as a con-
roversial technology, which has been applied to spreading ru-
ors or fake news [7,8], manipulate public opinion [9,10] and
ven suppress minorities. Motivated by this background, many
esearch works have been dedicated to modeling the user char-
cteristics and simulating the influence process to maximize pos-
tive social influence and minimize the negative impact [11,12].

Influence maximization is crucial for optimizing the infor-
ation diffusion to achieve the maximum influence in a social
etwork [13], for instance, extending the targeted market and
inning political campaigns [14]. It is usually achieved by identi-

ying a small number of users who are capable of spreading their
nfluence quickly and widely, thus maximizing the impact across
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entire the social network [1,3]. However, influence maximization
has been proven as an NP-hard and represented as a combinato-
rial optimization problem [1]. Moreover, the process of influencer
mining, known as seed selection, is very challenging in dynamic
and large-scale networks to obtain a set of influencers, known as
a seed set. For example, in different structures of social networks,
such as a random network [15] or a scale-free network [15,16],
the influence growth will be based on various network models,
such as a configuration model [17] and a Barabási–Albert (BA)
preferential attachment model [16], to increase the network scale
dynamically. This is because users join and quit, the relation-
ships form and vanish, and the strength of these relationships
varies over time, leading to the topology of the network evolving
continuously in real-world social networks [18,19].

Based on the traditional influence diffusion models, such as
the Independent Cascade (IC) model and the Linear Threshold (LT)
model [1], most existing influence maximization algorithms can-
not achieve high-efficient and continuous optimization of seed
selection within dynamic and large-scale social networks. For
example, several classical greedy-based algorithms, such as the
greedy algorithm [1], the CELF algorithm [20], the CELF++ al-
gorithm [21], demonstrate a low time efficiency, especially for
large-scale networks [22,23], and are inapplicable for dynamic

social networks.
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Meanwhile, some heuristic algorithms, such as Random heuris-
tic [1], Degree heuristic [24], Pagerank heuristic [25,26], dis-
crete particle swarm optimization (DPSO) [27,28], ant colony
optimization (ACO) [29], and differential evolution (DE) [30],
cannot guarantee a fast and exact seed choosing process simul-
taneously and to be suitable in both dynamic and large-scale
social networks [22,23]. Furthermore, most community-based al-
gorithms, such as the Community-Based Influence Maximization
(CIM) algorithm [31] and the Detecting Influential Nodes (DIN)
algorithm [32], are impotent to handle temporal information
of community’s features or present a high time complexity in
large-scale social networks [33]. Therefore, Agent-Based model-
ing (ABM) and Genetic Algorithm (GA) are leveraged to deal with
the influence maximization problem since ABM is acknowledged
as one of the appropriate tools for simulating individual behaviors
and Evolutionary Computation (EC) techniques have been widely
adopted to address the optimization problems [34].

ABM, also called individual-based modeling, has shown its
superior in modeling complex systems [35–37]. The ABM is a
specific individual-based computational model, where individuals
are modeled the interactive autonomous agents [38]. Different
from traditional centralized models, ABM is acknowledged as an
appropriate approach to explore the macro world by defining
the micro level of a social system [35,36]. ABM has been applied
to modeling and simulating social influence diffusion, where the
diffusion process is presented as an evolutionary process driven
by individuals’ behaviors [38–40].

GA, as one of the typical evolutionary computation approaches,
has been utilized in place of traditional heuristic methods due to
three major benefits [22,23,34,41–43]. First, GA provides flexible
search and optimization strategies for adapting to a series of
complex network conditions [34]. Second, evolutionary meta-
heuristics in GA facilitates an efficient searching process in a
well-defined problem space, which incorporates a massive num-
ber of encoded candidate solutions, referred to as seed sets in the
influence maximization problem [34]. Third, continuously evolv-
ing multiple seed sets in GA not only guarantees the diversity
of algorithm solutions but also naturally optimizes the quality
of algorithm solutions [23,41]. However, the existing GAs for
influence maximization does not have the competency to capture
the dynamic topological information.

To improve and extend GA’s ability for handling dynamic
large-scale social networks, we propose a novel model, called the
Adaptive Agent-Based Evolutionary Model (ABEM), by integrating
GA and ABM to tackle the influence maximization problem. In the
proposed model, we leverage the ABM to model each individual
as a proactive agent which can explore its influence capacity
in real-time. According to the automatic influence evaluation
and nomination mechanism of each agent, the ABM provides
a preliminary optimization process by generating an influencer
pool. The setting of the influencer pool is beneficial for nar-
rowing down the search space of GA and collecting up-to-date
information from dynamic networks. Furthermore, we build an
adaptive solution optimizer to transfer the dynamic informa-
tion of the influence pool from ABM to GA. The optimizer is
capable of retrieving the updated influencer candidates from
ABM and re-calibrating the potential candidates with the evo-
lution of GA. Finally, we develop a variant of GA to initiate
influencer mining based on potential candidate solutions. The
outcomes exhibit a sequence of continuously real-time influ-
ence maximization solutions in dynamic and large-scale social
networks.

Accordingly, the advantages of our proposed model can be
demonstrated in three aspects. First, ABEM presents a strong
optimization ability since a two-level optimal process initiated

by using ABM and GA can guarantee the quality of the seed set

2

to maximize influence. Second, ABEM significantly improves the
ime efficiency of mining influencers by distributing the computa-
ional cost of the automatic influence evaluation and nomination
o each agent. It also narrows down the search space of GA and
onstantly re-calibrates potential solutions based on the changing
nvironment. Third, ABEM can simultaneously reflect the prop-
rties of large scale and dynamics in real social networks. This
s mainly due to the nature of ABM and the adaptive optimizer
omponent in a distributed framework. Finally, we evaluate the
erformance of ABEM by conducting four experiments, includ-
ng convergence analysis, continuous influence maximization in
ynamic networks, classical influence maximization comparison
nd parameter analysis. The experimental results demonstrate
hat ABEM not only outperforms the state-of-the-art algorithms
n the performance of influence maximization but also can be
pplied to a dynamic and large-scale environment.
To summarize, our main contributions of this research work

re listed as follows.

• We first utilized a distributed approach by improving GA to
address the influence maximization problem in online social
networks.

• We proposed a novel framework by combining GA and
ABM to optimize the seed selection from two levels, i.e. the
individual level and the global level.

• We developed a novel approach, which can handle large-
scale social networks by distributing the major computa-
tional cost to the individuals but retaining the optimization
process in a central component.

• We developed a novel mechanism for mining influencers
with adaptation capabilities, which can handle the fast-
changing environment of online social networks.

The rest of this paper is organized as follows. In Section 2, we
eview the related work. The formal definitions and problem for-
ulation are given in Section 3. In Section 4, we demonstrate the
verall process and provide a detailed description of the proposed
BEM approach. Experiments and the analysis of experimental
esults are presented in Section 5. The paper is concluded in
ection 6.

. Related work

.1. Classical influence maximization

Influence Maximization Problem (IMP) was initially formu-
ated as a discrete combinatorial optimization problem by Kempe
t al. [1,44–46]. They proposed a basic greedy algorithm that
ffered an approximate guarantee for optimizing the seed set
election based on the IC and LT models [1]. However, the greedy
lgorithm inefficiently handles large-scale and dynamic social
etworks due to a long time-consuming computation. Subse-
uently, the CELF algorithm proposed by Leskovec et al. [20] and
he CELF++ algorithm developed by Goyal et al. [21] aims to im-
rove the scalability and time efficiency by separately using the
ub-modularity and marginal diminishing effect of propagation.
evertheless, they cannot be applied to a dynamic and large-scale
nvironment by high-efficient computation.
Meanwhile, many heuristic algorithms were developed to re-

uce the greedy-based algorithms’ time complexity in IMP. Ran-
om heuristic selects the seeds randomly without an approxi-
ate guarantee [1]. The Degree Discount Heuristic (DDH) takes
dvantage of a deterministic degree strategy for seed set selec-
ion [24]. Maximum Degree Heuristic (MDH) and High Page Rank
euristic (HPRH) respectively utilize the value of nodes’ degree
nd page rank to select the top users into a seed set [44]. Gong
t al. [27] proposed a discrete particle swarm optimization (DPSO)



W. Li, Y. Hu, C. Jiang et al. Applied Soft Computing 136 (2023) 110062

t
s
a
b
h
d
o
t
s
a

e
C
s
s
r
B
o
u
N
o

P
s
O
o
M
m
c
w
b
m
c
s
l

2

t
u
c
r
f
a
i
d

a
m
s
t
s
t
d
c
w
t
a
A
G
(
M
f
p
o
w

o optimize the local search strategy and speed up the seed
et selection. Similarly, the ant colony optimization (ACO) was
pplied in influence maximization by Singh et al. [29]. They re-
uilt the principle of pheromones deposited by ants and relevant
euristic information to optimize the local influence. Li et al. [30]
eveloped a differential evolution algorithm based method to
btain the influencers. Although these heuristic algorithms save
ime and are highly scalable, they decrease the quality of selected
eed sets, hardly achieving influence maximization in dynamic
nd large-scale social networks.
Furthermore, some community-based algorithms have been

stablished to balance scalability and time efficiency in IMP. The
IM algorithm establishes a community structure of candidate
eed sets to select the final seed set for influence maximizing
preading [31]. However, the performance of such an algorithm
elies on a few parameters without any approximation guarantee.
y contrast, the DIN, a parameterless approach, combines the
verlapping community structure and the network semantics on
sers’ interest to identify the seed users from the candidates [32].
evertheless, the high time complexity of the DIN becomes an
bstacle when dealing with large-scale networks.
For the above classical influence maximization algorithms,

eng et al. [45] presented a survey paper from understanding the
ocial influence to analyzing influence maximization algorithms.
ne of the research challenges mentioned the dynamic evolution
f social networks, which corresponds to the above reviews.
eanwhile, Banerjee et al. [44] discussed the above influence
aximization algorithms’ types in a survey paper. The classifi-
ation is mainly based on major research challenges concerned
ith IMP, such as the practicality of realistic networks and the
alance between accuracy and computational time. Therefore,
ost classic influence maximization algorithms are not specifi-
ally targeting dynamic social networks, and they present several
hortcomings in the balance of effectiveness and efficiency in
arge-scale networks.

.2. Dynamic influence maximization

Dynamic influence maximization methods aim to address real-
ime IMP by capturing constantly evolving network topology and
ncertain users’ features in dynamic social networks, which are
loser to the real-world propagation environment. Bian et al. [47]
eviewed the algorithms to identify the top K influence nodes,
inding the research trend shifting from computation efficiency
nd scalability to dynamic networks in current years. Many stud-
es have been conducted to investigate influence maximization in
ynamic social networks.
Zhuang et al. [19] propose the Maximum Gap Probing (MaxG)

lgorithm to approximate the influence maximization by mini-
izing the possible gap of the probing nodes between the ob-
erved network and the actual network. However, even though
he real-time performance of the MaxG algorithm appears out-
tanding, its stable performance is limited by the value of the
olerance probability. Similarly, Han et al. [48] develop a practical
ynamic probing framework by utilizing a proposed divide-and-
onquer strategy to deal with the natural changes in social net-
orks. Nevertheless, this method only probes several communi-
ies to increase the time efficiency [48], which lacks the individual
nd global view of the network topology. Tong et al. develop an
daptive Greedy (A-Greedy) algorithm and an adaptive Heuristic
reedy (H-Greedy) based on the Dynamic Independent Cascade
DIC) model to optimize the influence maximization solution [49].
oreover, Wang et al. propose the Influential Checkpoints (IC)

ramework and its upgraded version Sparse Influential Check-
oints (SIC) frameworks to handle the continuous dynamic IMP
ver high-speed social streams [50]. Although these two frame-
orks have the superiority of optimization efficiency, the final
3

influence maximization results do not outperform other base-
lines. Furthermore, Murata and Koga developed Dynamic Degree
Discount, Dynamic CI, and Dynamic RISA by extending previous
static methods to dynamic social networks [51]. However, the
performances of these dynamic approaches are not better than
the greedy algorithm [51]. Li et al. propose a dynamic algorithm
based on cohesive entropy to identify the most influential nodes
by considering the overlapping community and optional dynamic
influence propagation [52]. However, the experiments did not
demonstrate the performance of its real-time influence maxi-
mization. Meanwhile, this proposed dynamic algorithm does not
demonstrate advent advantages when applied to a large-scale
social network.

Additionally, Both Li et al. [46] and Hafiene et al. [53] compre-
hensively reviewed the influence maximization algorithms and
the dynamic IM solutions. The former emphasized the design ob-
jective and application of methods in the different social network
contexts, discussing the concept, boundary and solutions of the
dynamic IMP. The latter subdivided the dynamic networks into
snapshot networks and dynamic networks and summarized the
limitations of space and time when dynamically searching the
optimal influencers.

Therefore, most existing dynamic influence maximization al-
gorithms present a limitation in balancing the effectiveness and
efficiency to a different extent.

2.3. GA-based influence maximization

GA, inspired by the ‘‘survival of the fittest’’ theory, has been
applied to IMP in recent years. In GA, an individual encoded as
a limited size of chromosomes represents a potential seed set,
while a gene of the chromosome refers to a seed user. Mean-
while, GA can continuously optimize the potential seed sets by
using the operators including selection, crossover and mutating,
until it gets close to the optimum solution. Tsai et al. combine
GA with the greedy algorithm to improve the effectiveness of
the IMP solution [54]. Bucur and Iacca leverage a simple ge-
netic algorithm attaining multiple diverse solutions that show
equally high network influence without any assumptions about
the network structure [41]. Kromer and Nowakova extend GA by
considering the guiding concept to narrow down search space
and enhance the evolution efficiency for addressing a fixed-length
subset selection in IMP [55]. Zhang et al. adopt multi-populations
in GA to ensure the diversity of algorithm solutions and opti-
mize the seed sets through the competition and evolution [23].
Agarwal and Mehta utilize GA with dynamic probabilities that
are associated with nodes’ out degree in real-time, aiming to find
the optimal seed set and reach the maximum influence cover-
age [56]. Cui et al. propose the Degree-Descending Search Evo-
lution (DDSE) by integrating a degree-descending search strategy
with an evolutionary algorithm to overcome the time efficiency
issue of greedy-based algorithms [57]. Konotopska and Iacca de-
velop graph-aware evolutionary algorithms to optimize influence
maximization outcomes and reduce running time through ap-
proximate fitness functions and graph-aware mechanisms [14].
Wang et al. study the IMP in multi-layer networks and propose
a multi-factorial evolutionary algorithm with problem-directed
operators, where the informative knowledge from both genetic
and fitness domains is combined [58]. Even though the above
GA-based approaches in IMP demonstrate several advantages
such as the optimization process, time efficiency, and the di-
versity of solutions, most of them cannot handle the dynamics
of social networks, especially a mass of individual dynamic in-
formation. With an exception, Lotf et al. propose a dynamic
generalized genetic algorithm to address the influence maximiza-
tion problem in a dynamic social network [59]. Whereas, the
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roposed method is centralized, requiring the entire dynamic
etwork as the algorithm input. This inevitably leads to the
ssue of high computational space. In contrast, our approach is
ecentralized, having the computations of influence capability
stimation distributed to the individual users.
Besides, ABM has been widely acknowledged as an appropri-

te tool for modeling complex systems by defining the problems
t a microscopic level. Li et al. leverage ABM to assist in capturing
oth individual’s behaviors and influence status at a microscopic
evel for modeling influence diffusion [40] and then propose an
nhanced Evolution-Based Backward (2E2B) algorithm [38] for
ining influencers during networked evolutionary. Even though

his algorithm can capture dynamic network information, the
elected seed set is only optimized by measuring the individual
gent’s influence maximization, lacking the seed set optimization
rom the global level.

Accordingly, compared with Greedy-based, heuristic-based,
ommunity-based algorithms and dynamic influence maximiza-
ion approaches, GA presents a comprehensive advantage in
ptimal accuracy and time cost. Meanwhile, combining GA and
BM turns out to be a promising approach for IMP in dynamic
ocial networks. This hybrid model takes the advantage of the
ptimization process, time efficiency and diverse solutions of GA,
hich enables the networked dynamic features’ acquisition from
BM for addressing IMP in dynamic and large-scale social net-
orks. In the next section, we will elaborate on ABEM and explain
o achieve influence maximization in dynamic and large-scale
etworks.

. Formal definitions and problem formulation

In this section, we give formal definitions relevant to the ABEM
pproach and formulate the influence maximization problem in
dynamic environment.

.1. Formal definitions

We start with the fundamental concepts, including graph,
ser, neighbors and edges. A graph G = (V , E) is defined as

a collection of users V = {v1, v2, . . . , vn}, n ∈ N with the
orresponding connections E = {eij|i, j ∈ N, i ̸= j}. User vi has
set of neighbors Γvi . The degree of vi refers to the cardinality
f the neighbors, i.e., |Γvi |. If there is a connection between vi

and vj, we have eij ∈ E, vi ∈ Γvj and vj ∈ Γvi . Edge eij is
represented as a tuple, i.e., eij = (vi, vj), implying a potential
influential relationship between vi and vj.

Definition 1. A dynamic social network GD = {G(t)|t ∈ N} is
defined as a sequence of graphs, capturing the graph snapshots
over time. Thus, G(t) = (V (t), E(t)), where t denotes the time step
and G(t) refers to the network state at t . V (t) and E(t) describe
the users and edges of the network at t , respectively. The users
and edges of network G(t) at t are fixed, but they evolve over
time.

Definition 2. A user agent vi ∈ V (t) refers to an active,
autonomous and interactive user in social network G(t). In the
dynamic environment, vi may or may not exist in V (t + 1), and
Γvi (t) also changes at the next time step t + 1.

User agent vi is capable of accessing its local context, i.e., all
the information about neighbors and the edges. In particular,
Γvi (t) describes the adjacent neighbors of vi at t . Node degree di(t)
of vi denotes the size of vi’s neighborhood Γvi (t) at t . Mathemat-
ically, di(t) is represented by using the size of vi’s neighborhood,
i.e.,
di(t) = |Γvi (t)|, (1)

4

Meanwhile, within a limited local view, user agent vi conducts
influence capability estimation with the assistance of neighbor-
hood, where the influence capability describes the number of
users influenced by vi. Specifically, given a limited number of
influence diffusion level l, agent vi diffuses an influence with a
maximum hop of l based on the classic IC model [1,24,60]. Agent
vl, requiring l hops to reach vi, can provide status feedback to
vl−1, and so on and so forth. The count of the influenced users
is regarded as the degree of influence capability in this single
attempt. Multiple trials are initiated, and the average value is
used as the influence capability estimated by vi, which is denoted
as σ (vi).

Definition 3. Influencer pool C(t) is defined as a collection of
influencer candidates at t . These candidates’ influence capabilities
are over a pre-defined threshold θs and greater than θq percentage
of their neighbors, i.e.,

C(t) = {vi|vi ∈ V (t) ∧ σ (vi) > θs ∧
|σ (vi)′|
|Γvi |

> θq}, (2)

where

|σ (vi)′| = |{vj|vj ∈ Γvi ∧ σ (vi) > σ (vj)}| (3)

Users from the influencer pool are potentially selected as
embers of the seed set (refer to Definition 4). C(t) is constructed

hrough proactive proposals initiated by user agents V (t).
The influencer pool is shared by all the user agents. The size

f the influencer pool varies according to the changing network
opological structure, e.g., |C(t)| can be different from |C(t + 1)|.
n element vc ∈ C(t) describes an influencer candidate. Specif-
cally, user agent vc proactively estimates the influence capa-
ilities against Γvc at t and determines whether to propose as
ne of the potential influencers in C(t). The detailed behavior
s described in Algorithm 1. In the current context, user agent
c intends to nominate itself as a seed candidate only when
ts influence capability exceeds a particular threshold θs and is
reater than θq percentage of their neighbors at t .

efinition 4. A seed set S(t) = {v1, v2, . . . , vk}, S(t) ⊆ V (t)
efers to a finite set of identified influencers from the social
etwork G(t) at t , where k = |S(t)| represents the number
f influencers needs to be selected. The influencers selection
lgorithm is named as seeding algorithm.

In GA, a seed set corresponds to a ‘‘chromosome’’ or an ‘‘in-
ividual’’. Mapping to the problem space, each chromosome or
ndividual implies a potential solution to the problem. Within a
eed set, each element is called a ‘‘gene’’.

efinition 5. A population generally refers to a collection of
andidate solutions for a pre-defined problem space in GA. In the
urrent setting, a population Ri(t) corresponds to a collection of
eed sets for G(t), which are recognized as the potential solutions
o the influence maximization problem. Specifically, population
i(t) = {S1(t), S2(t), . . . , Sj(t)} represents the i−th generation of

the overall evolution process, and Sj(t) represents a candidate
solution of the seed set. R0 means the initial generation. Ri(t)
evolves to the next generation Ri+1(t) through the GA operators.

3.2. Problem description

Given a dynamic social network G(t) = (V (t), E(t)) and an
integer k at t , the objective is to efficiently select k users from
V (t) as the seed set S(t), expecting they can spread influence and
maximize the impact σ (S(t)) across G(t). σ (S(t)) represents the

influence coverage, describing the expected number of influenced
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sers at the end of the diffusion process if S(t) is selected as a
eed set. Note that our target is to maximize σ (S(t)) at every time
step, as the dynamic social network keeps evolving over time. The
objective is described in Eq. (4).

max
∑
t

σ (S(t)) (4)

After n time steps, given G(t + n) = (V (t + n), E(t + n)), the
originally identified seed set S(t) needs to be adapted efficiently
as S(t + n) to fit the new problem space without re-calculation.
Overall, the solution requires to be adapted automatically with
the rapid evolution of the online social network.

4. Agent-based evolutionary model for mining influencers

In this section, we first explain the overall process of mining
influencers from social networks by leveraging ABEM. Next, we
drill down to the details from both macro-perspective, i.e., user
agent’s behaviors modeling, and micro-perspective, i.e., adaptive
solution optimization, where the algorithms will be elaborated as
well.

4.1. Overall process of ABEM

ABEM facilities the advantages of both agent-based modeling
and evolutionary computation, where both agent’s local compu-
tational power and a centralized optimizer are adopted. Fig. 1
illustrates the main idea of ABEM.

The key process starts from local user agents from Graph G(0),
which proactively evaluate its influence capabilities by comparing
against the neighbors and decide whether to propose themselves
as influencers via merging into the influencer pool C(0). At the
time step t , if the local environment of user agent vi changes,
e.g., establishing new links with others, vi will re-assess the influ-
ence capabilities and update the influencer pool C(t) at t . In this
5

way, the influencer pool, shared by all the agents, always can be
kept up-to-date. More importantly, the influencer pool narrows
down the search scope of a large-scale network, leaving only a
small amount of data for a centralized component to process.

The adaptive solution optimizer plays a pivotal role in ABEM,
which is capable of retrieving influencer candidates from the
influencer pool in real-time. Meanwhile, it optimizes the solu-
tions generated by GA by re-calibrating the ‘‘genes’’. With the
evolution of GA, the adaptive solution optimizer contributes to
the modification of the population, leading each generation to
rapidly evolve toward reaching optimal solutions. The optimal
solution is a seed set that has the maximum influence coverage.
The influence coverage σ (Sj(t)) refers to the influence capability
of the seed set Sj(t). σ (Sj(t)) can be presented as:

σ (Sj(t)) = σ ({vi|vi ∈ Sj(t)}) (5)

In a nutshell, each user agent undertakes a self-evaluation
f the corresponding influence capability, assisting in identifying
he potential influencers. This can effectively handle the dynam-
cs of large-scale social networks. Meanwhile, the evolutionary
lgorithm drives the seed selection process by continuously op-
imizing the solutions. Next, we elaborate on the modeling of
ser agents’ behaviors and adaptive solution optimization in de-
ail. The notations used in the following algorithms are listed in
able 1.

.2. Influencer nomination by autonomous agents

In ABEM, users are modeled as autonomous and proactive
gents, which are capable of communicating with their neighbors,
etrieving information from the local environment and estimating
he influence capability. Influencer nomination is initiated by user
gents proactively. The outcome of such nomination is revis-
ng the influencer pool, keeping it update-to-date with evolving
ocial networks.
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Table 1
Notations description.
Notations Description

pa Activation probability of diffusion model
R0(t) The initial/first population for G(t)
|R0(t)| The size of R0(t)
S(t) The optimal chromosome/seed set/solution for G(t)
k The size of chromosome S(t), k = |S(t)|
ps Selection rate
pc Crossover rate
pm Mutation rate
pd Degree change rate

Algorithm 1 describes the agent-based influencer nomination
rocess, where all the computations are conducted by agents
ocally. The inputs include user agent vi, the degree threshold θs,
nd influence quartile threshold θq. The output is the updated
nfluencer pool C(t) at time step t . Lines 1–3 aim to initialize
ariables and examine the neighborhood at t . Lines 4–9 request
eighbors’ update-to-date information, including the influence
apability, and calculate the count of neighbors whose influence
apability is weaker than vi. Lines 10–14 compare the influence
capability and influence quartile of vi against the thresholds θs
nd θq, respectively, and determine how to update the influencer
ool.

Algorithm 1 Agent-based Influencer Nomination Algorithm.
Input: User agent vi, degree threshold θs, and influence quartile
hreshold θq
Output: Decision of nomination by updating influencer pool C(t)

1: Obtain the up-to-date neighbors Γvi
2: Estimate vi’s degree |Γvi | and influence capability σ (vi)
3: Initialize var := 0
4: for vj ∈ Γvi do
5: Request vj’s influence capability σ (vj)
6: if σ (vi) > σ (vj) then
7: var := var + 1
8: end if
9: end for
0: if ( var

|Γvi |
> θq) ∧ (σvi ≥ θs) then

11: C(t) := {vi} ∪ C(t)
12: else if vi ∈ C(t) then
13: C(t) := C(t) \ {vi}

4: end if

4.3. Adaptive solution optimization

Adaptive solution optimization incorporates two key concur-
ent processes, i.e., solution optimization and adaptation. In the
ormer, GA has been adopted to continuously optimize the solu-
ions over time, where the search space is defined by the Adaptive
olution Optimizer (ASO). In the latter, ASO re-calibrates the
olutions by considering both the update-to-date influence pool
nd the existing outcome. Obviously, ASO plays a critical role in
ridging the decisions from user agents and the outputs from
he evolutionary algorithm, which also reflects the main idea of
ur proposed ABEM for addressing the influence maximization
roblem.
Algorithm 2 describes the overall process of mining influ-

ncers by facilitating ABEM, where four fundamental operators,
ncluding initialization, selection, crossover, and mutation, are
ailored to fit the problem space. Furthermore, since the evo-
ution of networks can be reflected by the variation of the in-
luencer pool, the solutions will be adapted between two con-
ecutive generations by replacing the outdated candidates with
6

Algorithm 2 ABEM for Influence Maximization.
Input: Dynamic social network G(t), influencer pool C(t),
activation probability pa, crossover rate pc , mutation rate pm, and
seed set size k
Output: A seed set S(t) = {v1, v2, . . . , vk}.

1: Initialize generation i = 0, Population Ri(t), a seed set S(t) = ∅

2: Evaluate influence coverage ∀Sj(t) ∈ R0(t), calculate σ (Sj(t))
using Eq. (5)

3: Find out the best solution Sfittest (t) from R0(t) and assign to
S(t)

4: while !Termination Condition do
5: Start re-calibration Rec[C(t), Ri−1(t)] → Ri(t)
6: Start selection Sel[Ri(t)] → Ri(t)
7: if random ξc < pc then
8: Start crossover Cro[Ri(t), C(t), pc] → Ri(t)
9: end if
0: if random ξc < pm then
1: Start mutation Mut[Ri(t), C(t), pm] → Ri(t)
2: end if
3: Evaluate influence coverage ∀Sj(t) ∈ Ri(t), calculate

σ (Sj(t)) using Eq. (5)
4: Find the solution Sfittest (t) with the greatest influence

coverage
5: if σ (Sfittest (t)) > σ (Sj(t)) then
6: S(t) := Sfittest (t)
7: end if
8: i := i + 1.
9: end while
0: return The seed set S(t)

new influencers who appeared in the influencer pool, namely, a
re-calibration operation.

Lines 1–3 initialize a population from the current influencer
pool C(t) and evaluate the influence coverage of each individual,
here the output of fitness function σ (·) represents the estimated

nfluence coverage based on the IC model. Line 4 starts the
eeding process, where the termination condition is triggered
hen σ (·) of the best solution Sm starts to converge and remains
nchanged for a number of generations. This is measured within
fixed number g of generations, i.e., the maximum number of

terations. Lines 5–12 run through the operators for optimization,
here Sel(·), Cro(·), Mut(·) and Rec(·) represent the selection,
rossover, mutation and re-calibration operators, respectively.
ines 13–18 evaluate the fitness value of each solution yield by
he current generation and find out the best solution, i.e., a seed
et with the greatest influence coverage. Line 20 returns the best
olution.
In the following subsection, we explain the key operators

tilized in ABEM, including initialization, selection, crossover, and
utation, as well as re-calibration for solution adaptation.

.4. Key operators

Population Initialization. The initial population of seed sets
urns out to be very important since it defines the starting point
f exploring the ‘‘best’’ solution, i.e., a seed set, for the influ-
nce maximization problem. ASO generates the initial population
0 = {S1, S2, . . . , Sm} with a population size of |R0| = m, i.e., a
ollection of m candidate solutions (chromosomes or seed sets). A
hromosome Sm = {v1, v2, . . . , vk} corresponds to one seed set,
where k = |Sm| denotes seed set size.

Selection Operator. The selection operator assists in identify-

ing a collection of seed sets for further improvement, where the
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itness value of each individual is considered the key factor. In
ther words, seed sets with a higher influence coverage have a
reater chance to be selected for the next generation. Moreover,
ince both original solutions and modified ones via the operators
ill remain, the number of candidate solutions is much greater
han the population size. The selection operator also filters out
he ‘‘bad ones’’ and controls population size.

Therefore, the selection rate ps of an individual Sj(t) from
population Ri(t) to be selected can be formulated in Eq. (6). N =

Ri(t)| is the population size of Ri(t).

ps[Sj(t)] =
σ (Sj(t))∑N
j=1 σ (Sj(t))

. (6)

Algorithm 3 Selection Operator.
Input: An augmented population Ri(t), target population size
R′

i(t)|.
Output: Population R′

i(t) after selection.

1: if |Ri(t)| == |R′

i(t)| then
2: return Ri(t)
3: end if
4: Initialize R′

i(t) := ∅

5: for ∀Sj(t) ∈ Ri(t) do
6: Estimate the influence coverage of Sj(t), i.e., σ (Sj(t)) using

Eq. (5)
7: Calculate selection rate ps[Sj(t)] using Eq. (6)
8: if random ξs < ps[Sj(t)] then
9: R′

i(t) := R′

i(t) ∪ {Sj(t)}
0: end if
1: end for
2: while |R′

i(t)| < |Ri(t)| do
3: Select Sx(t), σ (Sj(t)) ≥ ∀Sj(t) ∈ Ri(t) ∧ Sx(t) /∈ R′

i(t)
4: R′

i(t) := R′

i(t) ∪ {Sx(t)}
5: end while
6: Return R′

i(t).
Algorithm 3 describes how the selection operator works. Lines

–3 check the size variance and determine if the selection con-
inues or not. Lines 4–11 copy over the solutions from an aug-
ented population Ri(t) to R′

i(t) based on the selection probability
in Eq. (6). Lines 12–15 fill R′

i(t) if the size of R′

i(t) does not reach
|Ri(t)|.

Crossover Operator. The crossover operation in the influence
maximization problem recombines two seed sets (parents) and
generates two new solutions (offspring). In other words, two
selected seed sets exchange the influencers at a random slicing
point and produce two new seed sets. Mixing two solutions may
cause duplicated elements in a seed set. Thus, a repair function is
required to fix the solution by replacing the duplicated influencer
with a random user from the influencer pool.

The crossover operator is described in Algorithm 4. Lines 2–3
check if the current seed set Sm is selected for crossover. Lines 5–7
prepare the operation by obtaining another seed set, generating
a slicing point and initializing two offspring. Lines 8–15 conduct
crossover. Lines 16–23 repair the generated seed set by adding
users from the influencer pool. Because offspring is modeled as a
hash set where duplicated items remain a single copy. In other
words, the offspring with a lower size requires to be ‘‘fixed’’.
Line 24 expands the current generation by appending the newly
generated offspring and Line 26 returns the updated Ri after
crossover as R′

i .
Mutation Operator. The mutation operator works on an in-

dividual user of a seed set, replacing a specific seed (user) with
another potential influencer. This operator helps to maintain the
diversity of seed sets from one generation to the next, which
enables ABEM to have a wide range of feasible solutions, avoiding
 p

7

Algorithm 4 Crossover Operator.
Input: Population Ri(t), influencer pool C(t), and crossover rate
pc .
Output: Population R′

i(t) after crossover.

1: for ∀Sj(t) ∈ Ri(t) do
2: if random ξc > pc then
3: next
4: end if
5: Select a seed set Sfittest (t) ∈ Ri(t) \ {Sj(t)} which is the best

solution in Ri(t)
6: Randomly select a slicing point ξs
7: Initialize two offspring solutions, i.e., offspring1, offspring2
8: for i in range(0,ξs) do
9: offspring1.add(Sj(t).get(i))
0: offspring2.add(Sfittest (t).get(i))
1: end for
2: for i in range(ξs, |Sj(t)|) do
3: offspring1.add(Sfittest (t).get(i))
4: offspring2.add(Sj(t).get(i))
5: end for
6: while |offspring1| < |Sj(t)| do
7: newgene := C(t).get(random(|C(t)|))
8: offspring1.add(newgene)
9: end while
0: while |offspring2| < |Sj(t)| do
1: newgene := C(t).get(random(|C(t)|))
2: offspring2.add(newgene)
3: end while
4: R′

i(t) := Ri(t) ∪ {offspring1, offspring2}
5: end for
6: return R′

i(t).

rapid coverage to a local optimal solution. Specifically, a seed is
supposed to be substituted by a randomly selected seed candidate
from the current influencer pool with a certain probability. The
operator is described in Algorithm 5.

Algorithm 5 Mutation Operator.
Input: A population Ri(t), influencer pool C(t), and mutation rate
pm
Output: A mutated population R′

i(t).

1: for Sj(t) ∈ Ri(t) do
2: for vi ∈ Sj(t) do
3: if random ξm < pm then
4: Randomly select vk ∈ C(t) ∧ vk /∈ Sj(t).
5: vk → vi
6: end if
7: end for
8: end for
9: return R′

i(t).

Re-calibration Operator. The re-calibration operator aims to
dapt the existing population based on the changing environ-
ent. As the influence capabilities of the seeds introduced to

he current population vary over time, it is essential to update
he existing solution by replacing partial ‘‘out-dated’’ influencers.
pecifically, the re-calibration operator checks through all the
eed sets within a population, figuring out the users whose in-
luence capabilities are degraded significantly. Such users will be
eplaced with those who are newly introduced to the influence
ool.
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Algorithm 6 describes the re-calibration process. The inputs
include user set V (t) at time step t , influencer pool C(t), and the
current population Ri(t) to be adapted. The output is re-calibrated
population R′

i(t). Lines 3–5 identify the users from Ri(t), who quit
the network and replace these users with a randomly selected
user from the influence pool. Lines 6–13 initiate adaptation based
on the estimated degree variation rate.

Algorithm 6 Re-calibration operator.
Input: A user set V (t), influencer pool C(t), current population
i(t)
utput: Re-calibrated population R′

i(t)

1: for ∀Sj(t) ∈ Ri(t) do
2: for ∀vi ∈ Sj(t) do
3: if ∄vi ∧ vi ∈ V (t) then
4: Randomly select vk ∈ C(t) ∧ vk /∈ Sj(t)
5: vk → vi
6: else if vi /∈ C(t) then
7: Calculate degree change rate pd = 1 −

di(t)
|di(t−1)|

8: if random ξd < pd then
9: Randomly select vk ∈ C(t) ∧ vk /∈ Sj(t)

10: vk → vi
11: end if
12: end if
13: end for
14: end for
15: Return R′

i(t).

5. Experiments

In this section, four experiments are conducted to evaluate
he performance of ABEM. The first experiment analyzes the
onvergence of ABEM with different experimental settings. In the
econd experiment, we evaluate the continuous performance of
BEM on influence maximization within a dynamic environment.
he third experiment compares the performance of ABEM against
everal baselines by influence maximization. The last experiment
urther explores the parameter settings of ABEM. The follow-
ng subsections introduce the experimental settings, present the
xperiment details and discuss the results, respectively.

.1. Experimental settings

Three real-world datasets are utilized for the experiments,
ncluding Ego-Facebook,1 [61] Git,2 [62] and Flixster.3 [63] The
properties of these datasets are described in Table 2, and the
parameters of ABEM are listed in Table 3.

Influence coverage, i.e., the classic evaluation metrics of the
influence maximization problem, is adopted for all the experi-
ments. Influence coverage refers to the number of users activated
(influenced) by the identified influencers. On top of that, we
use elapsed running time as evaluation metrics in Experiment
3, indicating the time cost for the algorithm to find the solu-
tions. To conclude, influence coverage and running time repre-
sent the effectiveness and efficiency of the proposed algorithm,
respectively.

The following baselines for the influence maximization prob-
lem are utilized for performance comparison, where the greedy
algorithm is recognized as one of the strongest baselines.

1 https://snap.stanford.edu/data/ego-Facebook.html
2 http://snap.stanford.edu/data/github-social.html
3 http://www.flixster.com/
8

Table 2
Datasets.
Network No. of nodes No. of edges Type

Ego-Facebook 1,899 20,296 static, undirected
Git 13,419 59,259 static, undirected
Flixster 14,231 79,265 dynamic, directed

Table 3
Parameters of ABEM.
Parameter Description Value

pc Crossover rate 1
pm Mutation rate 0.1

|Ri(t)| Population size, the number of chromosomes in
one population Ri(t).

50

g Generation numbers, the maximum number of
iterations

1000

• Greedy: Each seed is selected by iterating all the users,
aiming at reaching the maximum influence marginal gain.
The greedy algorithm is not scalable as it relies on enormous
times of Monte-Carlo simulations.

• Degree-based selection: Users with the highest degree will
be selected as influencers.

• Degree Discount Heuristics (DDH): The seeds are selected by
deterministic degree strategy. This algorithm is developed
based on the idea that users with high degrees normally
cluster together. Hence, it is not necessary to select all of
them [24].

• Genetic Algorithm (GA): The traditional GA without any
optimization or tailoring. Specifically, the seeds are selected
after evolving for a few generations using classic GA opera-
tors.

• GA with influence pool: The traditional GA with an opti-
mized initial population, where the solutions are initialized
based on the influencer pool.

• Random: The seeds are randomly selected at each time
step. The executing time is the fastest but normally with
the lowest influence coverage as it does not follow any
heuristics.

5.2. Experiment 1: Convergence analysis

Experiment 1 analyzes the convergence of ABEM by tracking
the evolution pattern of the continuously optimized solutions,
i.e., seed sets. For each generation, both average influence cover-
age (average fitness) and the highest influence coverage (the best
fitness) are estimated. The evolutionary algorithms are validated
by using two datasets, i.e., Git and Ego-Facebook. The experiment
also defines a fixed number of generations, i.e., 1000.

Fig. 2 shows the evolutionary trends for each population by
facilitating ABEM, GA and GA with influencer pool. It is evident
that after a series of generations, all the three algorithms start
to converge, and finally reach an optimal solution. Furthermore,
ABEM demonstrates the best performance of all, which can be
revealed by comparing the influence coverage of the best solution
against others at the end of 1000 generations.

The experimental results also implicitly reveal the advantages
of ABEM. First, ABEM converges much faster than that of GA,
which can be observed by comparing Fig. 2(a) with Fig. 2(b),
or Fig. 2(d) with Fig. 2(e). The reason is ABEM leverages the
influencer pool for initialization, which enables ABEM to start
with a higher point and have a better chance to obtain an optimal
solution at speed. Second, ABEM still has a greater chance to im-
prove the existing solutions even reaching a convergence status.

Whereas, GA with an influencer pool almost makes no chance

https://snap.stanford.edu/data/ego-Facebook.html
http://snap.stanford.edu/data/github-social.html
http://www.flixster.com/
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Table 4
Flixster quarterly network.
Snapshot ID Quarter No. of nodes No. of links Average degree

1 2006 Q1 463 1050 4.54
2 2006 Q2 564 1614 5.72
3 2006 Q3 825 2146 5.2
4 2006 Q4 1287 4027 6.26
5 2007 Q1 2958 8965 6.06
6 2007 Q2 2993 8611 5.75
7 2007 Q3 2051 5789 5.65
8 2007 Q4 1280 3517 5.5
9 2008 Q1 1387 4252 6.13
10 2008 Q2 1529 4758 6.22
11 2008 Q3 1615 4610 5.71
12 2008 Q4 1353 3907 5.78

after convergence. This is because the ABEM clearly defines the
scope of searching influencers, but the other algorithms conduct
the search process in the world. Therefore, in ABEM, the average
fitness of all the populations always appears higher than those of
the others. Third, ABEM demonstrates greater computational ef-
ficiency. Based on the oscillation degree of average fitness, ABEM
shows a relatively stable trend. Whereas, the average fitness of
other algorithms fluctuates significantly. The reason behind this
also relies on the search scope. In ABEM, the influencer explo-
ration scope is narrowed down by the individual user agents,
which greatly reduces the centralized computational cost. By
contrast, the other algorithms have to handle a larger scope with
dramatic changes in the population.

5.3. Experiment 2: Continuously influence maximization in dynamic
social networks

Experiment 2 aims to evaluate the continuous performance of
BEM on influence maximization within a dynamic environment.
his experiment also explicitly demonstrates the adaptability of
BEM, namely, continuously updating the identified seed sets in
changing environment and adapting the solutions based on past
xperiences.
9

In this experiment, the dynamic environment is simulated
by using 12 consecutive quarters’ transactions from the Flixster
dataset, ranging from 2006 to 2008 [63]. The statistics of the
dataset are listed in Table 4. Since the size of some snapshots
appears small, we give k = 5, θs = 2, and θq = 0.7. Five seeding
algorithms, i.e., Greedy, Degree, DDH, GA, and GA with influence
pool, are utilized as the counterparts. In the influence maximiza-
tion problem, the greedy algorithm is recognized as one of the
strongest baselines [1,24]. On top of that, the IC model is adopted
as the influence diffusion model, with a uniform probability of
0.1, and a number of Monte-Carlo simulations of 100. We also
list the assumptions as follows.

• A user joins the network when giving the first rating, and
quits after the last rating. A user only can be influenced
when he or she appears as an active user in the social
network.

• When a user joins the network, the corresponding relation-
ships are established immediately. Likewise, the associated
links are removed if the user quits the network.

• The greedy algorithm recalibrates the selected seed set on
an annual basis. This is because the greedy algorithm is not
scalable for large-scale networks. It is unrealistic to launch
the greedy algorithm frequently.

• The Degree and DDH reselect influencers every four quarters
as well. This is because these heuristic algorithms require
the entire network topology. It is unrealistic to rank all of
the users’ degrees in large-scale networks frequently.

First, we compare the influence coverage [1,64] of ABEM against
the other baselines with different seed set sizes, i.e., k = 5, k =

10, and k = 15. Fig. 3 illustrates the experimental results using
12 consecutive quarters, where the network topology, including
both nodes and links, evolves over time. Figs. 3(a) to 3(c) compare
the influence coverage at each quarter. Figs. 3(d) to 3(f) compare
the accumulative influence coverage, i.e., the overall influence
coverage from time step 0 to t , at each quarter. As can be seen
from the figure that ABEM outperforms the classic seeding algo-
rithms, implying that the greedy algorithm losses the advantages
in a changing environment without any calibration. By contrast,
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Fig. 3. ABEM performance in Flixster quarterly network.
Fig. 4. ABEM performance in dynamic environment.
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BEM adapts the solutions over time, and this feature stems
rom its internal design, i.e., a hybrid of multi-agent systems and
volutionary computation. Furthermore, ABEM outperforms the
ther two evolutionary approaches, i.e., GA and GA with influence
ool algorithms, in dynamic networks. This is because ABEM
everages the influencer pool for initialization and re-calibration,
hich gives ABEM a better starting point and a higher chance to

ast converge to an optimal solution.
Second, we further investigate how ABEM adapts the seed

et in dynamic networks by using the same dataset, where four
onsecutive quarters from Flixster, i.e., from 2007 Q1 to 2007 Q4,
re selected. The evolutionary process of ABEM is demonstrated
n Fig. 4, where the x-axis represents discrete time steps, i.e., net-
ork snapshots, and the y-axis denotes the influence coverage
roduced by the algorithm. 1000 units are allocated between any
wo consecutive quarters, and each unit presents a generation
roduced by evolutionary algorithms. We have selected a seed set
ize of k = 5, k = 10, and k = 15 for the exploration. As can be
een from these figures that in Q2 2007, ABEM quickly reaches
n optimal solution merely within 500 generations. When the
etwork evolves, in Q2 2007, the performance of ABEM drops but
limbs up quickly only after a few generations. This is because
10
he existing potential influencers are retained in the influencer
ool and the solution can be adapted rapidly. In Q3 2007, ABEM
equires a greater number of generations to converge. The reason
s dramatic variations occur in the network at this point, many
xisting influencers need to be replaced within the population.
herefore, it can be proved that ABEM has great adaptability to
andle the dynamics of social networks efficiently.
Third, we further validate the adaptive capabilities of ABEM

ith different parameter settings. Recall that the influencer pool
f ABEM is shared by all the agents and scopes the problem
earch space. Therefore, the influence pool significantly affects
he performance of ABEM. In this experiment, we observe the
utcome by varying the degree threshold θs and influence quartile
hreshold θq of the influencer pool.

Fig. 5 shows the influence coverage with three different set-
ings over 12 quarters of the Flixster dataset: (1) θs = 1 and
θq = 0.5 (2) θs = 2 and θq = 0.3 (3) θs = 2 and θq = 0.7,
with a seed set size of 5. The table of Fig. 5 depicts the detailed
outcome based on various settings.

Not much difference can be observed when the network size is
small, i.e., from Q1 2006 to Q3 2006. However, with the increase
of network scale, the pool size shows a great impact on influence
coverage. A larger pool size (θ = 1 and θ = 0.5) leads to
s q
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Fig. 5. ABEM performance with different pool size.

elatively lower performance. This is because the search space of
BEM is expanded and it requires more generations to reach an
ptimal solution. By contrast, given a small pool size (i.e., θs = 2

and θq = 0.7), ABEM yields better performance than those with
different settings in most of the snapshots but demonstrates a
relatively weak performance in 2008 Q2 and Q3. This suggests
that the over shrink of the influencer pool inevitably filters out
some potential influencers.

5.4. Experiment 3: Influence maximization comparison

Experiment 3 aims to evaluate the performance of ABEM by
classical influence maximization comparison. We compare ABEM
against the baselines introduced in Section 5.1, where two static
networks, i.e., Ego-Facebook and Git, are adopted. In this experi-
ment, the seed set size k ranges from 5 to 10 with a step of 5. On
top of that, it facilitates the IC model as the influence diffusion
model, with a uniform probability of 0.1.

The experimental results on Ego-Facebook and Git are demon-
strated in Figs. 6(a) and 6(b), respectively. As aforementioned,
greedy selection has been recognized as one of the strongest
baselines in the influence maximization problem, but not scal-
able. As can be seen from both figures the greedy selection yields
the best performance of these two datasets. Despite carrying out
a similar performance as greedy, ABEM is capable of mitigating
the scalability issue since the major computations are distributed

to the individual agents and the search scope is limited.

11
In Fig. 6(a), no significant performance difference can be ob-
served among ABEM, Degree, DDH, and Greedy selection. This
is because the size of the Ego-Facebook network is small, and
the identified seed sets are also similar. Despite this, ABEM per-
forms slightly better than degree and DDH. Given a relatively
larger network, in Fig. 6(b), ABEM outperforms other baselines
and demonstrates a similar performance as the greedy selection.
Notably, when a small seed set is required, e.g., k = {5, 10, 15},
the performance of ABEM can exceed the greedy selection.

5.5. Experiment 4: Parameter analysis

In Experiment 4, we further investigate the performance of
ABEM by varying the parameters, including the number of gen-
eration g , the degree threshold θs, and the influence quartile
threshold θq.

First, we analyze the impact on the influence coverage and
running time by increasing the number of generations. As we can
observe from Fig. 7 that with the rise of evolutionary genera-
tion, the elapsed running time increases linearly. The influence
coverage also demonstrates a steady escalation trend, with slight
improvement after 500 generations. This is due to the fact that
almost all the potential influencers are incorporated into the
population, and it takes time to figure out a better seed set by
re-organizing the existing influencers.

Second, we investigate the influencer pool size variations by
adjusting the degree threshold θs and influence quartile threshold
θq. Both parameters control the individual’s ‘‘propose as an influ-
encer’’ behavior, which directly impacts the size of the influencer
pool. Subsequently, it determines the search scope and influences
the performance of ABEM. A high degree threshold θs implies only
those with large neighbor sizes can be proposed as an influencer.
Likewise, a high quartile threshold θq allows the users who are
influencers in their social circle to join the influencer pool.

Figs. 8(a) and 8(b) demonstrate the impact on influencer pool
size by varying both parameters in the Ego-Facebook and Git
datasets, respectively. It is evident that in both figures, the in-
fluencer pool size shows a downside trend with the increase of
θs or θq. However, in the Git dataset, the influencer pool size is
more sensitive to θs than that of the Ego-Facebook dataset. This
is because the node connectivity in Git appears to turn out to be
much sparser than Ego-Facebook.

Third, we investigate how the influencer pool size impacts the
ABEM’s performance. It is important to strike a balance between
efficiency and effectiveness. Specifically, a larger influencer pool
size enables ABEM to find out a better solution, but with less ef-
ficiency due to the large scope. ABEM can converge more rapidly
with a smaller influencer pool but may not yield a better solution.
Fig. 6. Influence maximization with different seed set size.
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Fig. 7. ABEM performance with different generation numbers.
Fig. 8. Pool size with different parameter settings.
Fig. 9. Pool size analysis.
This is due to the reason that potential influencers may be filtered
out when decreasing the size of the influencer pool.

Figs. 9(a) and 9(b) demonstrate the influencer pool size analy-
sis by using two datasets. In the Ego-Facebook dataset, no signifi-
cant performance improvement can be observed when decreasing
the influencer pool size. In other words, the smallest size enables
the ABEM to yield almost the same performance as that of a
larger pool size. This phenomenon also implies ABEM will carry
12
out a similar seed set as that of the degree-based selection in the
Ego-Facebook network. This is also consistent with the results of
Experiment 2. By contrast, Fig. 9(b) reveals a different pattern.
The best fitness shows a steady trend until θq reaches 0.9. Starting
from this point, both best and average fitness drop dramatically.
This is because potential influencers are filtered out due to nar-
rowing down the search scope. Therefore, by considering both

efficiency and effectiveness, ABEM will adopt θq = 0.9 with an
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nfluencer pool size of 600. In this case, ABEM will definitely
utperform degree-based selection, which is also consistent with
he results of Experiment 2.

. Conclusion

In this paper, a novel agent-based evolutionary approach,
.e., ABEM, is proposed to mine influencers in online social net-
orks. We elaborate on the proposed approach, including algo-
ithms, mining process and each component of ABEM in detail.
e also clarify the major capabilities of ABEM, i.e., handling

arge-scale networks and dynamic environments. The former
elies on agent-based modeling, where the major computational
ost can be distributed to the individual agent in ABEM. The
ehavioral outcome provides a reasonable search scope for ABEM.
lso, agent-based modeling enables ABEM to identify potential
nfluencers in a distributed manner, which is suitable for real-
orld situations where the network changes without capturing
ny snapshots. The search scope of ABEM is updated by the
ser agents. The latter is handled by the proposed algorithms,
hich can retain the existing potential influencers and mod-

fy part of the solutions. Extensive experiments are conducted
o evaluate the performance and capability of ABEM, includ-
ng convergence analysis, continuous influence maximization in
ynamic networks, classical influence maximization comparison
nd parameter analysis. The experimental results demonstrate
hat ABEM not only outperforms the state-of-the-art algorithms
n the performance of influence maximization but also can be
pplied to a large-scale and dynamic environment.
In the future, we plan to further improve ABEM by employing

ome heuristics, which can expedite the convergence speed in
changing environment. Furthermore, we will develop an en-
anced version of ABEM to fit a more sophisticated influence
iffusion process with the consideration of context.
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