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In the present work, a deep learning-based network called LeNet is applied for accurate grasslandmap pro-
duction from Sentinel-2 data for the Greater Sydney region, Australia. First, we apply the technique to the
base date Sentinel-2 data (non-seasonal) tomake the vegetationmaps. Then,we combine short time-series
(seasonal) data and enhanced vegetation index (EVI) information to the base date imagery to improve the
classification results and generate high-resolution grasslandmaps. Theproposedmodel obtained anoverall
accuracy (OA) of 88.36% for the mono-temporal data, and 92.74% for the multi-temporal data. The experi-
mental products proved that, by combining the short time-series images and EVI information to the base
date, the classification maps’ accuracy is increased by 4.38%. Moreover, the Sentinel-2 produced grassland
maps are comparedwith the pre-existingmaps such as Australian LandUse andManagement (ALUM) 50m
resolution and Dynamic Land Cover Dataset (DLCD) with 250 m resolution as well as some traditional
machine learning methods such as Support Vector Machine (SVM) and Random Forest (RF). The results
show the effect of the LeNet network’s performance and efficiency for grasslandmapproduction from short
time-series data. As a result, decision-makers and urban planners can benefit from this work in terms of
grassland change identification, monitoring, and planning assessment.
� 2022 National Authority of Remote Sensing & Space Science. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One of the major research topics in the field of remote sensing is
vegetation mapping based on the spectral properties of targets
(Rapinel et al., 2019). Vegetation cover maps are undoubtedly in
high demand for global change studies, natural resourcemonitoring
and management, desertification evaluation, and many other Earth
observation applications (Foley et al., 2005), (Hansen and Loveland,
2012). Due to its high spatial and temporal resolution, Sentinel-2
data has gained global attention among the remote sensing commu-
nity. It is the ESA (European Space Agency) latest generation Earth
observation mission that provides high temporal (ten days/five
days) with a spatial resolution of 10–60 m (Cisneros et al., 2020).
Also, it has gained a lot of attention in research because of its global
coverage and is freely downloadable (Sonobe et al., 2018). Tradi-
tional pixel-based and object-based remote sensing imagery classi-
fication methods are commonly used to create vegetation cover
maps; however, it remains a challenge for the remote sensing com-
munity to process remote sensing imagery in a time-effective man-
ner and produce accurate maps (Gómez et al., 2016).

The emergence of Deep Learning (DL) has risen to prominence in
the field of remote sensing. Feature extraction ability has been
enhanced by the recent advancement of convolutional neural net-
works (CNN) structures. As a result, the principal issues of tradi-
tional machine learning techniques (inefficient in performance
and time-consuming) have been improvedwith these sophisticated
deep learning techniques. Furthermore, particular challenges such
as (1) high temporal, structural, and spatial variety of vegetation
composition, (2) spectral similarity, and (3) the small spatial extent
of grasslands render grassland mapping a problematic task. There-
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fore, it is important to provide high-quality grasslandmaps to better
monitor and assess the grassland changes, preserve and rehabilitate
the grass areas. Previous research has shown that mapping grass-
lands from single-date remote sensing data is difficult due to the
comparable physiognomy of some communities. Also, assessing
grass cover in urban and peri-urban areas is difficult due to small
and irregular grass patch sizes (e.g., road strips, small parks, aban-
doned lots, etc.). In addition, grass mapping in urban areas is cur-
rently accomplished via costly and infrequent airborne
photography. Thus, in the current study, the objective is to apply a
deep learning-based tool called LeNet network, which is a
spectral-temporal CNN network to freely available short-time-
series Sentinel-2 images of Enhanced Vegetation Index (EVI) green-
ness values to generate high-resolution grasslandmaps for the Syd-
ney region, Australia. The model is able to classify the images more
accurately than traditional methods because it can automatically
learn temporal (and spectral) properties using convolutions in the
temporal dimension.

The main purpose of the methodology is to initially use the base
date (mono-temporal) of Sentinel-2 data and implement the pro-
posed method to classify vegetation cover and generate grassland
maps. After that,weadded short time series Sentinel-2 images (tem-
poral) with EVI to the base date to improve the classification accu-
racy and produce high-quality grassland maps. To the best of our
knowledge, the presented LeNet approach has not been imple-
mented in the literature, and this is the first time that the network
is implemented on short-time-series Sentinel-2 imagery for grass-
land maps production. Finally, in comparison with the pre-existing
classification maps such as Australian Land Use and Management
(ALUM) and Dynamic Land Cover Dataset (DLCD), the presented
LeNet network could improve the results, achieving higher classifi-
cation accuracy and producing high-resolution grassland maps for
the region. Moreover, we compared both quantitative and qualita-
tive results obtained by the deep learningmodel with some popular
conventional machine learning methods such as Support Vector
Machine (SVM) and Random Forest (RF). The experimental out-
comes demonstrated that the LeNet model tackled the abovemen-
tioned challenges presented by traditional grassland mapping
machine learning methods, improved the performance, and pro-
ducedhigh-resolutiongrasslandmapswithhigh spatial consistency.

The remainder of the paper is divided into the sub-sections
mentioned below. Section 2 presents related works, and Section 3
delves into the detailed descriptions of data, study area, and the
specifics of the proposed LeNet network for classifying vegetation
cover maps and producing grassland maps based on Sentinel-2
images. Section 4 highlights measurement metrics and experimen-
tal outcomes. Section 5 contains comprehensive qualitative and
quantitative comparisons of the produced maps with the other
pre-existing classification maps. Finally, in Section 6, we will dis-
cuss the conclusion and critical results.

2. Literature review

The usefulness of Sentinel-2 has been evaluated and has shown
its high potential for vegetation mapping (Lefebvre et al., 2016).
However, the vegetation mapping results are affected not only by
the suitability of image-derived features but also by the right
choice of classification approach (Lu and Weng, 2007). Diverse
classification approaches for vegetation classification, and grass-
land generation maps based on remote sensing data have been
implemented and deployed in the literature (Trisurat et al.,
2000). These algorithms include parametric supervised systems,
such as random forest (RF), decision tree (DT), artificial neural net-
work (ANN), support vector machine (SVM), and k-Nearest Neigh-
bors (KNN); to unsupervised methods such as K-means and
ISODATA (Sohn and Rebello, 2002).
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In the following, some of the previous works that applied vari-
ous classification methods for classifying vegetation cover and gen-
erating grassland maps are discussed. For example, (Feng et al.,
2015) presented a hybrid method based on texture analysis and
RF algorithm to differentiate urban vegetation cover from
Unmanned Aerial Vehicle (UAV) imagery. Schuster et al. (2015)
performed the SVM method to classify synthetic aperture radar
(TerraSAR-X) and multi-spectral (RapidEye) images and generate
grassland habitats maps in northeastern Germany. Esch et al.
(2014) implemented the tree C5.0 classifier to classify multi-
temporal AWiFS images and identified primary grassland and crop
types for the Brandenburg and Mecklenburg Western Pomerania
regions, Germany. Their study demonstrated that for the separa-
tion of grassland and crops during spring time, additional data
acquisitions are required. The traditional machine learning algo-
rithms have shown some limitations when processing big satellite
data for vegetation cover classification. For instance, (Zhang and
Xie, 2013) stated that RF and SVM are sensitive to overtraining
and noise. Also, (Pande-Chhetri et al., 2017) indicated that in terms
of computational processing, the ANN approach has a high degree
of complexity. Naidoo et al. (2012) specified that it is difficult to set
an ideal value of k for the KNN method. According to (Prasad et al.,
2006), DT has a tendency to overfit the model and is often incon-
sistent. Also, they reported that DT is excessively sensitive to minor
changes in the training dataset.

In contrast, CNN has resulted in a number of advancements in
many remote sensing applications and vegetation mapping
domains. For example, Lang et al. (2019) applied a CNN model to
map vegetation height using Sentinel-2 imagery. For regressing
vegetation height, they collected multi-spectral Sentinel-2 imagery
for a study area in Switzerland for several months and trained the
CNNmodel to obtain appropriate textural and spectral information
from reflectance images. Nijhawan et al. (2017) used a deep learn-
ing (DL) framework for vegetation cover mapping in Uttarakhand,
India, that combined CNNs with local binary patterns. They mixed
topographic, texture, and multi-spectral Sentinel-2 (10 m spatial
resolution) data to train the model and produce the maps.

CNN is distinguished by its deep architecture (multilayer inter-
connected channels), ability to categorize concurrently, and capabil-
ity to set parameters simultaneously, which has a high capacity to
automatically learn the classifiers and features from data
(Nogueira et al., 2017). Thus, in the current study, we present a deep
learning-based technique named LeNet model to classify remote
sensing imagery and generate grassland maps. LeNet is a popular
network among CNNs that is commonly used for image classifica-
tion. As a pre-processing stage, this network eliminates the require-
ment for manually extracted characteristics. In practice, the model
can identify patterns straight from normalized input data. LeNet
uses its backpropagation (BP) approach to create a self-studyingpro-
cessing system by integrating feature extraction and pattern recog-
nition. Through the self-studying process, the model can determine
the most effective attributes for categorization. Thus, we perform
the model on the short time-series Sentinel-2 data to alleviate the
limitations of traditional machine learning methods (e.g., lack the
capacity to reduce salt-and-pepper class noise and lack the capabil-
ity to classify specific pixels with similar spectral values accurately)
and produce high-quality grassland maps.
3. Methodology

3.1. Test area and data

The test area is an urban and peri-urban part of Sydney which is
situated on Australia’s east coast at 33� 510 54.514800 S and 151� 120

35.640000 E (Fig. 1). For the data, short time-series Sentinel-2 satel-



Fig. 1. Study area map of Sydney, Australia showing the Sentinel-2 data.
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lite imagery (Table 1) was acquired from the Copernicus Open
Access Hub to implement the classification. The product form is
Level-2A, and the dataset contains 6 different cloud free dates, such
as 19/02/2020, 14/04/2020, 24/04/2020, 04/05/2020, 03/06/2020
and 23/06/2020. We first selected the base date (04/05/2020) to
implement the classification method and produce grassland maps.
The base date was selected from a set of temporal EVI values, and
the image with the highest EVI values over grassland was the spec-
ified base date. Then, we combined short-time-series EVI images
Table 1
Sentinel-2 satellite data spatial and spectral resolution.

Bands Central wavelength
(nm)

Bandwidth
(nm)

Spatial resolution
(m)

Band 1 443 20 60
Band 2 490 65 10
Band 3 560 35 10
Band 4 665 30 10
Band 5 705 15 20
Band 6 740 15 20
Band 7 783 20 20
Band 8 842 115 10
Band

8a
865 20 20

Band 9 945 20 60
Band

10
1380 30 60

Band
11

1610 90 20

Band
12

2190 180 20
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including all the images with various dates with the proposed
model to generate higher classification accuracy for our method.
Level-2A products provide top of atmosphere (TOA) surface reflec-
tance and they are geometrically, atmospherically and radiometri-
cally corrected (Vasilakos et al., 2020).
3.2. Samples datasets

We manually analyzed the downloaded Sentinel-2 images for 6
different dates, as well as high-resolution Google Earth imagery, to
collect samples for the training dataset. For compiling the training
samples, the Fishnet tool in the ArcGIS 10.6 toolbox was utilized to
cover the whole area of interest and to generate polygons for each
class. In the next step, we used a data normalization method to
boost the progress of activation functions and gradient descent
optimization. Thus, we applied one of the most common methods
for avoiding unusual gradients and normalizing the pixel values,
which is called feature scaling or min–max normalization method.
In this method, each future’s maximum value is converted to a 1,
the minimum value is converted to a 0, and all other values are
converted to a decimal between 0 and 1. The feature scaling
method can be calculated as:
z ¼ x�min xð Þ
max xð Þ �min xð Þ ð1Þ

where, the minimum and maximum values in x is defined as
min and max, respectively, and z is the normalized data.
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3.3. The architecture of LeNet

Figs. 2 and 3 illustrate the applied LeNet network structure for
grassland map production. Fig. 2 shows the applied model’s archi-
tecture on the base date images (mono-multi-temporal imagery),
while Fig. 3 depicts the model’s structure for the multi-temporal
images. In the first structure (Fig. 2), we only used the spectral
information of the base date as an input, while in this structure,
we added short-time-series Sentinel-2 images (spectral informa-
tion for various multi-temporal images along with EVI information
used as an input) to the model to improve the classification accu-
racy. As Figs. 2 and 3 show, the proposed model consists of two
convolutional layers (C1 and C3) with 6 and 16 feature maps with
a kernel size of 3 � 3 followed by two pooling layers (S2 and S4)
with 2 � 2 kernel size and then two fully connected layers (F5
and F6) with 120 and 84 feature maps, respectively. An activation
function, which is a type of transformation function, is used with a
convolution mechanism. Presume xk ii; jjð Þ is an input to the neural
network’s activation function, which is the convolution process’s
output. The bias vector is b, and the weight vector is w. The follow-
ing is the description of the activation function:

Z xk ii; jjð Þð Þ ¼ f
Xk
k¼1

xk ii; jjð Þ:wk þ bk

 !
() Z ¼ f X �W þ bð Þ ð2Þ

There are different functions f �ð Þ such as tanh, sigmoid, rectified
function, etc. The Rectified Linear Unit function (ReLU) was used in
this study as an activation function that was described as:

A xk ii; jjð Þð Þ ¼ max 0; z xk ii; jjð Þð Þð Þ ð3Þ
In order to compose semantically similar features in one, pool-

ing operations are often used. For carrying out the spatial sub-
sampling, a pooling operation uses a pooling window to consider
the maximum or average value. In this work, we applied an aver-
age pooling operator with a stride of sp to the prior activation func-
tion output A Xk ii; jjð Þð Þ, which is calculated as:

Xk iip; jjp
� � ¼ average

0 6 iip 6 hp � 1; 0 6 jjp 6 wp � 1
A xk ii; jjð Þð Þ ð4Þ

In the average pooling method, the k-th channel input
W �wf

� �
=sf þ 1

� �� W �wf

� �
=sf þ 1

� �
is reduced to the

W �wf

� �
=ssf :sp þ 1

� �
� W �wf

� �
=ssf :sp þ 1

� �
. A classifier function

was utilized after dense layers to predict class possibility. The most
common transformation function is a Softmax classifier for multi-
class prediction. The classifier is denoted as a multi-channel patchbm of the input data patch n and the ground truth data patch em.
Suppose the number of channels for the output data patch bm is
defined as K and the reshaped LeNet model output is denoted as

m�Hm � K . Then, the pixel value in the dense layer’s output is

expressed as x ¼ x1; . . . ; xk½ �T and every � is converted into the
probability vector bm = [ bm 1,. . ., bm k]T based on the Softmax classifier
as follows:bm ¼ ð5Þ
Fig. 2. LeNet network structure for mono-temporal data or base
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We also utilized the categorical cross-entropy (CCE) loss func-
tion that is for multi-class classification to train the proposed net-
work for vegetation classification and grassland maps generation.
The CCE loss function is calculated as:

LCCE g; f oð Þ; h1ð Þ ¼
XS
i¼1

XP
j¼1

XC
c¼1

�1 gj
i ¼ C

� �
log lc Iji

� �
ð6Þ

where, the output of the last convolutional layer at the pixel Iji is

f Iji
� �

, the ground truth label is gj
i, the number of classes is C, the jth

pixel in the ith patch is Iji, the size of the batch is S, the number of
pixels in each patch is P, the network parameters are d1, and each

class probability of pixel Iji is lc Iji
� �

that is denoted as:

lc Iji
� �

¼
exp f c Iji

� �� �
Pc

l¼1exp f l Iji
� �� � : ð7Þ
3.4. Experimental setting

In this study, we used the Adaptive Moment Estimation (Adam)
optimizer with a learning rate of 0.001 to optimize the loss func-
tion. The presented LeNet network was trained with a batch size
of 64, and the trained network was then used to classify vegetation
cover and generate grassland maps on test data. A dropout layer of
0.25 (Shi et al., 2018) was added to the network’s deeper convolu-
tional layers to overcome the overfitting issue. This strategy can
provide a model regularization that is both computationally afford-
able and efficient. We performed the suggested network with the
Keras 2.0 system and Tensorflow backend.

3.5. Evaluation of performance

The measurement variables like precision, recall, F1 score, and
overall accuracy (OA) were used to test the proposed method’s effi-
cacy, which is shown in equations (8–11). Precision is defined as
the proportion of grass pixels that are correctly classified among
all anticipated pixels. The ratio of grass pixels that are correctly
identified among all actual grass pixels is referred to as recall. OA
is the precision of grass and other pixels, and the F1 score is a com-
bination of recall and precision.

Recall ¼ TP
TP þ FN

ð8Þ

Precision ¼ TP
TP þ FP

ð9Þ

F1 score ¼ 2� Precision� Recall
Precisionþ Recall

ð10Þ

OA ¼ TP þ TN
N

ð11Þ
date imagery (04/05/2020) with spectral and spatial values.



Fig. 3. LeNet network structure for multi-temporal data (short time-series imagery with all the dates), which includes both spectral, spatial and temporal information.
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where, FP denotes false-positive pixels, FN denotes false-
negative pixels, TP denotes true-positive pixels, TN denotes true-
negative pixels, and N denotes the number of pixels.
3.6. Comparing methods

We compared the generated grassland maps by the proposed
LeNet network from Sentinel-2 imagery with the pre-existing
grassland maps for Australia such as DLCD with 250 m resolution
and ALUM with 50 m resolution as well as traditional machine
learning methods such as SVM and RF to further investigate the
benefit of the presented method and Sentinel-2 data. We compared
both quantitative and quantitative products for the grassland maps
derived from Sentinel-2 (LeNet, SVM, and RF), DLCD and ALUM and
note that the results for the other classification maps (DLCD and
ALUM) were taken from the published works, while the presented
network was applied for creating grassland maps using experien-
tial Sentinel-2 dataset.
Fig. 4. Qualitative outcomes of the presented approach for vegetation mapping from m
original imagery, while the second row shows the results for vegetation cover classifi
predictions. (For interpretation of the references to colour in this figure legend, the read
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4. Results

We utilized several images from complex backgrounds to vali-
date the presented model for classifying vegetation cover and gen-
erating grassland maps from Sentinel-2 images. Fig. 4 depicts the
proposed network’s vegetation cover classification results based
on the base date (mono-temporal data). We selected 04/05/2020
date as the base date because during the month of May, peak veg-
etation growth is achieved. Also, we applied the models on some
other dates (e.g., 19/02/2020 and 23/06/2020) and noticed that
the proposed model achieved better results on this date. Fig. 5
illustrates the results of the proposed model for dates
19/02/2020 and 23/06/2020. Additionally, Fig. 5 shows that the
model predicted more FPs and other pixels on the images captured
for the above dates compared to the images captured on
04/05/2020, which is selected as the base date. In contrast, Fig. 6
illustrates the results for the base date image after adding short
time-series images and EVI details. The network could achieve sat-
ono-temporal data or base date imagery (04/05/2020). The first row displays the
cation with background, grass and forest areas. The yellow box presents the FPs’
er is referred to the web version of this article.)



Fig. 5. Qualitative outcomes of the presented approach for vegetation mapping from other mono-temporal data or images. The first row displays the original imagery, while
the second and third row show the results for vegetation cover classification with background, grass and forest areas for dates 19/02/2020 and 23/06/2020, respectively. The
yellow box presents the FPs’ predictions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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isfactory qualitative results for vegetation cover mapping from
both mono-temporal (one date) and multi-temporal (short time-
series) images. However, the model obtained more accurate results
for multi-temporal data than for mono-temporal data. In fact, the
model misclassified pixels (predicted more FPs) that present simi-
lar spectral values when we only used base date imagery, which
leads to obtaining less accuracy for vegetation mapping. For exam-
ple, the model misclassified grass pixels as other or forest pixels,
specifically for the complex background such as urban areas, where
buildings, shadows, etc., cover grass pixels.

Figs. 7 and 8 display the presented approach’s performance
accuracy on training and validation datasets (several images),
using either mono-temporal or multi-temporal training data,
respectively. Based on the decrease in model loss and increase in
model accuracy over time, the method has learned efficient fea-
tures for classifying the images into vegetation cover maps with
various class labels. In fact, the training and validation accuracy
are close together in the learning curve for both mono-temporal
and multi-temporal datasets, and the model reduced over-fitting,
and the variance of the method is negligible. However, we discov-
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ered that adding short time-series Sentinel-2 data (seasonal) to the
base date resulted in improving the training and validation
accuracy.

Also, we calculated the specified evaluation metrics to assess
the quantitative outcomes attained by the presented approach
for vegetation mapping. Table 2 presents the average quantitative
results on other mono-temporal data (19/02/2020 and
23/06/2020), whereas, Tables 3 and 4 present the average quanti-
tative results for all the images on both mono-temporal (base date)
and multi-temporal data, respectively. As shown in Table 2, the
average OA achieved by the presented method for classifying veg-
etation cover maps for date 19/02/2020 and 23/06/2020 is 87.19%
and 85.01, respectively, while the model reached the average OA of
88.36% for the base date data. Also, by looking at the results of
F1_score achieved by the model for grass areas, it can be seen that
the model could improve the results to 5.36% and 8.41% compared
to the dates of 19/02/2020 and 23/06/2020, respectively. This con-
firms that the proposed model showed better results for classifica-
tion and grassland mapping from the based date images with high
vegetation growth. Also, the accuracy of the proposed model



Fig. 6. Qualitative outcomes of the presented approach for vegetation mapping from multi-temporal data (short time-series imagery with all the dates). The original images
are shown in the first row, while the results for vegetation cover classification with background, grass and forest areas are illustrated in the second row. The yellow box
presents the FPs’ predictions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Vegetation cover classification accuracy on train and validation results with mono-temporal data or base date information (04/05/2020) through training epochs.
Images 1, 2, 3 and 4 present the training and validation accuracy/loss for the four Sentinel-2 sub-tiles, respectively.
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Fig. 8. Vegetation cover classification accuracy on train and validation results with short time-series data (multi-temporal information with all date’s information) through
training epochs. Images 1, 2, 3 and 4 present the training and validation accuracy/loss for the four Sentinel-2 sub-tiles, respectively.

Table 2
The average percentage of assessment metrics such as Precision, Recall, F1_score and Overall accuracy (OA) attained on testing data sets for other dates.

Dates Classes Precision Recall F1_score OA

Other 98.30 98.67 98.48 87.19
19/02/2020 Grass 75 69.96 72.39

Forest 68.85 73.52 71.11
Other 98.82 98.96 98.89

23/06/2020 Grass 67.86 70.90 69.34 85.01
Forest 64.04 60.39 62.16

Table 3
The average percentage of assessment metrics such as Precision, Recall, F1_score and Overall accuracy (OA) attained on testing data sets for mono-temporal data (04/05/2020).

Precision Recall F1_score OA

Other 97 97.25 97.25 88.36
Grass 77.25 79 77.75
Forest 80 76 77.5

Table 4
The average percentage of assessment metrics such as Precision, Recall, F1_score and Overall accuracy (OA) attained on testing data sets for multi-temporal data.

Precision Recall F1_score OA

Other 97.75 97.5 97.75 92.74
Grass 85.25 87 86
Forest 88.5 86.5 87.5
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Fig. 9. Confusion matrix for the test dataset used in the proposed LeNet model’s training process for mono-temporal data vegetation classification. Images 1, 2, 3 and 4
present the normalized confusion matrix for the four original Sentinel-2 images, respectively.
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reached 92.74% for the multi-temporal data. In other words, by
adding short time-series images and EVI information to the base
date, the accuracy of the classification maps is increased, and the
method could improve the accuracy to 4.38% compared to the
results achieved for the mono-temporal data. In fact, the suggested
technique could identify grass pixels more accurately even under
complex backgrounds and vast areas of occlusion.

The accuracy of the proposed LeNet network for vegetation
cover classification was assessed using the confusion matrix of
the test dataset, which is depicted in Figs. 9 and 10 for both
mono-temporal and multi-temporal data, respectively. As it is clear
from both figures, the presented technique obtained more accurate
results for the confusion matrix on multi-temporal data than for
mono-temporal data. In other words, the method could identify
the pixels for each class label more effectively when we combined
the short time-series images to the base date data, which resulted
in obtaining higher OA compared to the mono-temporal images.
For instance, for image 1 in Fig. 9, the model could identify only
70% of the grass pixels while predicting 82% of grass pixels for
the same image in Fig. 10. This confirms that the addition of short
temporal data has a significant effect on increasing the model
accuracy for the classification of vegetation maps and the produc-
tion of high-resolution grassland maps.
5. Discussion

Table 5 illustrates the quantitative outcomes (F1_score) for the
grassland maps creation from Sentinel-2, DLCD, and ALUM. The
F1_score achieved for the DLCD grassland map is ranked the lowest
with 31.1%, while the F1_score for the ALUM grassland map
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slightly increased to 43.04%. In contrast, the F1_score for the
Sentinel-2 grassland map produced by SVM, RF and LeNet is much
higher than the DLCD and ALUM. The proposed LeNet model
achieved an accuracy of 86% for generating grassland maps from
Sentinel-2 data, which could improve the quantitative results to
54.9% and 42.96% compared to the DLCD and ALUM grassland
maps, respectively. The conventional machine learning models,
such as SVM and RF achieved 80.67% and 82.9% for F1_score,
respectively, improving the quantitative results compared to DLCD
and ALUM results. However, our proposed LeNet model could
obtain better results and increased the F1_score to 5.33% and
3.1% compared to the SVM and RF, respectively, which proved
the model’s effectiveness for grassland mapping.

Fig. 11 depicts the visual grassland map products derived from
DLCD, ALUM, and Sentinel-2 data to assess the efficacy of mixing
deep learning-based techniques with Sentinel-2 data for producing
high-resolution grassland maps. In addition, Fig. 12 shows the
results of the proposed LeNet model with other SVM and RF meth-
ods for grassland mapping derived from Sentinel-2 data. It is clear
that the proposed LeNet technique could classify grass pixels accu-
rately and generate high-quality grassland maps from Sentinel-2
imagery compared to the DLCD and ALUM maps and the results
of SVM and RF. In contrast, the grassland maps derived from DLCD,
ALUM. SVM and RF are shown in low-resolution types. This is
because most of the grass pixels are not identified precisely, espe-
cially for regions like complex urban areas, where the grass pixels
are covered by buildings, shadows, and other occlusions. Also, in
these maps, the other pixels are classified as grass pixels, and more
FPs and less FNs grass pixels are detected. Therefore, very low-
resolution grassland maps are produced using those methods com-



Table 5
Percentage of OA obtained for the grassland maps over testing data sets.

DLCD ALUM SVM RF LeNet

F1 score 31.1 43.04 80.67 82.9 86

Fig. 10. Confusion matrix for the test dataset used in the proposed LeNet model’s training process for short time series (multi-temporal) data vegetation classification. Images
1, 2, 3 and 4 present the normalized confusion matrix for the four original Sentinel-2 images, respectively.
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pared to the proposed LeNet model. By adding more time-series
Sentinel-2 data, more information and features about the grass
pixels were deduced, which helped the proposed model to classify
the vegetation cover better. Also, we used a deep learning model
that can encode both spatial and spectral information into a classi-
fication scheme, the ability to set parameters and learn the features
from data simultaneously and produce high-quality classification
maps with satisfactory quantitative results.

5.1. Landsat 8 OLI

We also applied our proposed LeNet model on Landsat 8 OLI
data to demonstrate the model’s efficiency in vegetation classifica-
tion and grassland mapping from different remote sensing images.
To fairly compare the results, we captured the data for the same
region (Sydney region), and the date 07/05/2020 that is the same
season as Sentinel-2 based date (04/05/2020) with high vegetation
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growth. We only used the bands with 30 m spatial resolution (e.g.,
coastal/aerosol, blue, green, red, Near-IR, SWIR-1, SWIR-2, and Cir-
rus) that show detailed features of the Earth’s surface. We applied a
bicubic interpolation (Stoian et al., 2019) to resample 30 m resolu-
tion bands to 10 m and achieved a similar spatial resolution like
Sentinel-2 data. We applied the proposed model using the same
parameters on one image similar to image 3 (Fig. 4) and achieved
both quantitative and qualitative results for the Landsat 8 OLI data.
In general, the proposed method could attain satisfactory results
for classifying the Landsat 8 image and mapping the vegetation
covers. However, it obtained an OA of 84.93%, which decreased
by 4.33% compared to the same Sentinel-2 image with an accuracy
of 89.26%. In addition, the model classified other pixels as grass and
forest pixels and detected more FPs and fewer FNs for forest and
grass pixels compared with the Sentinel-2 data (Fig. 13). The rea-
son could be due to the resampling of the Landsat data, which
results in over-smoothing and blurring or loss of image resolution



Fig. 11. A comparison of the grassland maps derived from Sentinel-2 imagery against DLCD and ALUM. The zoomed images are shown in the last row to present the
differences better.
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(Giri and Muhlhausen, 2008). Thus, the model could not classify
the image and map the vegetation cover as accurately.
6. Conclusion

In this work, we used Sentinel-2 imagery to classify vegetation
and generate grassland maps using a deep learning-based network
called the LeNet network. We performed the suggested technique
on the base date (non-seasonal) Sentinel-2 images and short
time-series (seasonal) data. The results obtained by the presented
LeNet network for both mono-temporal and multi-temporal data-
sets were firstly compared. The proposed model obtained an over-
all accuracy (OA) of 88.36% for the mono-temporal data and 92.74%
for the multi-temporal data. The visualization and quantitative
products confirmed that the proposed architecture could improve
the qualitative results and the OA (4.38% higher) for vegetation
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classification maps after adding the short time-series data to the
base date data. Besides, we compared the quantitative and visual-
ization products obtained by the LeNet model with traditional SVM
and RF methods and pre-existing grassland maps such as ALUM
and DLCD maps to demonstrate the efficiency of the proposed
model in producing high-resolution grassland maps. All of these
findings indicate that the model is an excellent learner for time-
series data with high spatial and spectral resolution. As a result,
given the availability of Sentinel-2 and Landsat satellite imagery
for the region of interest (ROI), this methodology can also be used
to determine vegetation cover and produce grassland maps from
various remote sensing images at any different locations to confirm
its reliability. However, the existence of salt and pepper noise also
suggests that, in addition to the spectral and temporal dimensions,
the textural dimension of satellite image time-series should be
considered. Including the textural dimension is a good avenue for
future studies.



Fig. 13. Qualitative outcomes of the presented approach for vegetation mapping from Sentinel-2 and Landsat 8 OLI data. (a) shows the results of Landsat 8 OLI image and (b)
presents the results of the Sentinel-2 image.

Fig. 12. A comparison of the grassland maps derived from Sentinel-2 imagery using SVM, RF, and LeNet methods.
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