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Abstract

Metabolomics is a multidisciplinary field providing workflows for complementary

approaches to conventional analytical determinations. It allows for the study of meta-

bolically related groups of compounds or even the study of novel pathways within

the biological system. The procedural stages of metabolomics; experimental design,

sample preparation, analytical determinations, data processing and statistical analysis,

compound identification and validation strategies are explored in this review. The

selected approach will depend on the type of study being conducted. Experimental

design influences the whole metabolomics workflow and thus needs to be properly

assessed to ensure sufficient sample size, minimal introduced and biological variation

and appropriate statistical power. Sample preparation needs to be simple, yet poten-

tially global in order to detect as many compounds as possible. Analytical determina-

tions need to be optimised either for the list of targeted compounds or a universal

approach. Data processing and statistical analysis approaches vary widely and need

to be better harmonised for review and interpretation. This includes validation strate-

gies that are currently deficient in many presented workflows. Common compound

identification approaches have been explored in this review. Metabolomics applica-

tions are discussed for clinical and forensic toxicology, human and equine sports anti-

doping and veterinary residues.
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1 | INTRODUCTION

Metabolomics was first introduced as metabonomics and generally

focused on comparison between control and diseased samples, for

drug safety purposes.1 Metabonomics measured a multi-cellular or

organism response to a stimulus whereas metabolomics focuses on

measuring a specific cell type or tissue for metabolites secreted by the

sample type or found within it.1–4 Metabolomics has moved the focus

from conventional studies of a single set of compounds to a network

of compounds and metabolites to understand the dynamic

multiparametric response of a living system to stimuli.4–6 Met-

abolomics has been considered the ideal “omics” technique as it pro-

vides a more direct reading of metabolic activities which can be

related to a phenotype.7–9 The metabolome consists of compounds,

including but not limited to organic compounds such as amino acids

and nucleotides.10,11 Metabolomics studies these small molecules

(e.g., <2 kDa) using a multivariate approach within biological samples

to identify biomarkers.12,13 Metabolomics can have a targeted (focus-

ing on a specific group of compounds or metabolic pathway) and/or

an untargeted (where an unrestricted number of compounds are
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monitored) approach. Teale et al. define a biomarker as “any measur-

able parameter altered as a result of a challenge to an individual's sys-

tem.”14 This can enable investigations into responses from specific

stimuli that would otherwise require multiple individual assays to

assess the metabolites affected.12,15

Metabolomics has evolved over the past 20 years as a multi-

disciplinary area that includes drug discovery and development.11,16,17

It commonly employs the use of nuclear magnetic resonance (NMR)

and/or mass spectrometric (MS) data to measure the effects of stim-

uli.11,15,18,19 The implementation of these techniques into routine set-

tings can aid the identification of specific metabolic changes and

ultimately lead to a greater understanding of processes in different

fields of science, such as physiology and toxicology.9 Therefore, a

metabolomics approach has the potential to provide a complementary

analysis framework in human and equine anti-doping.20,21 Common

metabolomic workflows follow a chronological order of experimental

design, sample collection and preparation, analytical determinations,

statistical analysis and compound identification.11 This review will

explore each of these stages, together with validation strategies, and

discuss selected applications that highlight the benefits of a

metabolomic approach.

2 | EXPERIMENTAL DESIGN

Metabolomics, unlike traditional analytical approaches, has many

aspects to consider during the experimental design process. For exam-

ple, whether a targeted or untargeted metabolomics approach is going

to be used will define the future aspects of the workflow. Pre-analysis

considerations may include the instrument selection, column chemis-

tries and ionisation techniques.

The experimental design needs to account for variation; whether

this be introduced or biological variance.22 Introduced variance may

be attributed to sample preparation, analytical determinations and/or

data processing and statistical analysis.23 Biological variance is com-

monly seen within metabolomics studies23,24 due to gender, age, cir-

cadian rhythm and environmental factors. Factors of stress, excessive

exercise, disorders involving growth and/or hormones are known to

affect the steroidal profile.25 Therefore, reasonably large population

studies are required to evaluate the variance. A complementary

approach to account for biological variance is the introduction of an

endogenous reference compound (ERC). ERCs, which are metaboli-

cally related or chemically similar to the target compound, can be used

as a comparative tool to measure change. Progestins, corticosteroids

and other adrenal precursors are often used as ERCs for hormone-

related studies. The ERC can provide an internal normalisation with

the hypothesis that it remains stable for the experiment period. It fol-

lows that a biomarker ratio can also be established using the bio-

marker and ERC unaffected by the stimuli being investigated.26

Another approach is to explore mixed-effects modelling in the data-

processing pipeline. This was demonstrated by Wanichthanarak et al.

using previously published clinical metabolomics data, thus resulting

in a better classification model.24

Metabolomic effects, due to treatment, may be small and

difficult to detect such as correlated metabolites within a known

pathway or uncorrelated metabolites in an unknown pathway.

Effects may also display a delayed response to the treatment or

varied scale of the response. Therefore, the statistical power of

the experiment needs to be considered when planning the sample

size for a study.22

Data analysis methods (i.e., univariate or multivariate) should also

be considered as part of experimental design, not post-acquisition of

results. The suitability of parametric or non-parametric statistical tests

will be influenced by the sample size of the study.

2.1 | Targeted and untargeted metabolomics

Targeted metabolomics aims to obtain information from, and quan-

tify the presence of a pre-defined set of compounds. Information

relating to compounds of interest is required prior to the investiga-

tion.12 Targeted metabolomics is a common approach for nutrition

research.27 However, this is not classified as a true “omics”
approach as it is limited in analyte scope.10 Many direct detection

methods only target parent compounds, which is not always

useful.28,29 This is particularly notable in environmental studies,

when the metabolites of the parent compounds are generally more

toxic.28 However, it needs to be considered that the bioactivity of

some drugs may last longer than the detection periods for the

parent drug itself.30

An untargeted approach can potentially reduce bias when

screening for all metabolites in a sample and the resulting “signa-
ture” can then be used to identify novel biomarkers that are associ-

ated with a particular physiological state.10 This is considered to be

a true “omics” approach.19 Entities found from untargeted MS ana-

lyses are often described in terms of their mass-to-charge (m/z)

values and the intensity of detected ions.31 For MS-based methods,

the number of metabolites detected in an untargeted approach is

dependent on the sample preparation, column chemistry and

ionisation techniques used. Untargeted metabolomics is not limited

to a pre-defined list of compounds and aims to detect anything that

is significantly changed in the metabolome. Untargeted analysis

results in compounds which can be identified as potential diagnostic

tools (biomarkers) for which a targeted method can then be devel-

oped.10 High mass accuracy may be required to elucidate struc-

tures.21 Workflows for untargeted metabolomics can be considered

indirect detection strategies that measure the effect of substance

administration or exposure. Although untargeted metabolomics is

open to new findings, the challenge is the identification of

compounds of significance and interpretation of affected biological

pathways.25,26

Some common methods used for indirect detection are the

population-wise discriminant approach and common fragmentation

pathways.21 The population-wise discriminant approach uses a

comparison between treated individuals and a non-treated popula-

tion to identify markers of effect.21 An example of this approach for
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human disease research was a study conducted on 1211 subjects of

whom 365 were patients with catecholamine-producing tumours,

known as pheochromocytoma and paraganglioma.32 Statistical com-

parison of the two patient groups showed a significant increase in

dopamine and norepinephrine and significant decrease in epineph-

rine in patients with metastases. A biased non-targeted screening

can also identify compounds through mass-defect filtering and com-

mon fragmentation pathways.33 Common fragmentation pathways

aim to identify product ions which are shared between chemical

families.33 This approach complements targeted with untargeted

screening.

3 | SAMPLE PREPARATION TECHNIQUES

Sample preparation has long been the minimalised and potentially

compromised component of analytical method development. More-

over, sample preparation should be considered crucial to the experi-

mental design for metabolomics since the subsequent elements of a

workflow can only be as effective as the method used to extract the

compounds of interest.34,35 For metabolic studies, sample preparation

methods should be as simple and universal as possible.11,19,27,36–38

Sample preparation must consider multiple influences, which include

protein concentration, analyte polarity and stability.39 Consistent sam-

ple preparation methods are essential for “omics” studies since physi-

ological parameters such as diet, environmental effects and genetics

will cause small changes and these may be misinterpreted if the sam-

ple preparation protocol introduces bias.9 Methods commonly employ

steps to remove interfering compounds and thus reduce matrix

effects.10,37 Sample preparation needs to account for the collection

containers used as they may release compounds which can interfere

with the MS and/or NMR analysis.27 Some of the most common sam-

ple preparation techniques for MS-based analysis methods are protein

precipitation (PP), liquid–liquid extractions (LLE) and solid phase

extraction (SPE).40–43

3.1 | Dilute-and-shoot

Dilute-and-shoot methods employ minimal sample preparation before

analytical determination of the sample. It is commonly used for urine

analysis21 but may suffer from matrix effects that result in ion sup-

pression when compared with more comprehensive sample prepara-

tion methods.44

3.2 | Protein precipitation

PP, similar to a dilute-and-shoot method for urine,44 is a rapid tech-

nique for blood plasma sample preparation.19,20,45 Protein content

(approximately 35–40%) in blood needs to be removed to avoid

issues with sensitivity and interferences during instrument analy-

sis.28,38 PP methods generally involve the use of a small volume of

biological fluid (�100 μL) before quenching to preserve biological

activity.10,12,46 Quenching is generally achieved through the addition

of cold solvents, acids or rapid heating.11 Want et al. developed a

PP method using methanol and found it to provide a large number

of detected metabolites with less than 2% protein from serum.47

One issue with PP is ion suppression, which is particularly prevalent

when using electrospray ionisation (ESI) in MS analysis. Ion suppres-

sion can be mitigated by reducing co-extracted matrix interferences,

improving chromatographic separation to avoid co-elution of

unknown compounds and by optimising the ionisation conditions

for the MS-interface.48

3.3 | Solid phase extraction

SPE is a widely used sample preparation technique due to its high

extraction yields and repeatability.11,49 SPE works to isolate com-

pounds by van der Waals interactions, dipole–dipole interactions,

hydrogen bonding or electrostatic forces.10 Selectivity, via washing

to remove matrix interferences and elution of desired analytes, is

one of the main benefits of SPE.11,29 However, this selectivity intro-

duces bias by exclusion of compounds.37 To balance the need for

selectivity with the desired compound scope, mixed-mode sorbents

show the most potential for implementation into metabolomic

studies.10

3.4 | Liquid–liquid extraction

LLE uses immiscible solvents to transfer target compounds between

aqueous (i.e., hydrophilic) and organic (i.e., hydrophobic) phases.50

This technique allows for selection and isolation of target

compounds with minimal matrix contamination.50 LLE has limited

scope for affordable automation and may require large volumes of

organic solvent.28,49 LLE is often used in methods analysing tissue

samples.10 Salting-out can be used in conjunction with LLE to aid

the recovery of organic compounds by increasing the ionic density

of the aqueous phase.51 Purification of small organic molecules can

be achieved with high polarity solvent mixtures used for

extraction.51

3.5 | QuEChERS

The Quick, Easy, Cheap, Effective, Rugged, Safe (QuEChERS) extrac-

tion is increasing in application for forensic studies using whole

blood.28 QuEChERS is a two-step extraction process that uses aceto-

nitrile in the presence of a salt to extract analytes of interest followed

by dispersive SPE for clean-up.52 The implementation of QuEChERS

can improve the extraction of both polar and non-polar drugs in a

range of matrices.39 Historically, QuEChERS has been frequently used

in the pesticide and pharmaceutical industry, but it is gaining popular-

ity within the metabolomics community.53
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4 | ANALYTICAL DETERMINATIONS

4.1 | Gas chromatography–mass spectrometry
(GC–MS)

GC–MS has excellent separation efficiency while maintaining repro-

ducible retention times.27 Electron impact (EI) is the most commonly

used ionisation technique for GC.27 The development of benchtop

instrumentation during the 1970s and 1980s saw GC–MS become

the gold standard for analytical determinations with increased

sensitivity and specificity, together with the use of spectral

libraries.27,29,54,55 The major challenge for GC–MS is analysis of non-

volatile, highly polar and thermally unstable compounds.55 Com-

pounds are often subjected to chemical modification,55 but these

derivatised compounds can display limited stability.27 Recent develop-

ment of “variable” or “soft” EI, using energies less than 70 eV, has the

potential to increase the scope of GC–MS analysis for met-

abolomics.56 This can alleviate the complexities of traditional

soft-ionisation, such as chemical ionisation (CI), which require

separate sources and hazardous reagent gases, where a laboratory

does not have access to dedicated instrumentation. The application of

GC–MS for metabolomics is particularly useful due to the availability

of spectral libraries for easier identification of biomarkers.57

4.2 | Liquid chromatography–mass spectrometry
(LC–MS)

The 1990s saw the development of liquid chromatography (LC) in

combination with MS to improve the ability to detect and characterise

a broader range of analytes, particularly small polar compounds that

are insufficiently volatile and/or too labile for GC-MS.54 ESI is the

most commonly used interface between LC and MS,13,49 however

Atmospheric Pressure Chemical Ionisation (APCI) may also be used

for low molecular weight and non-polar compounds.58 Tandem LC–

MS (LC–MS/MS) methods were developed in the 2000s to provide

the sensitivity and specificity for early metabolomic studies, comple-

mented sometimes by NMR.6,36,59 At present, considerable effort is

being made by instrument manufacturers to improve the use of LC–

MS libraries, in part due to the expansion of metabolomics

applications.

4.3 | Liquid chromatography-high resolution mass
spectrometry (LC-HRMS)

The evolution of analytical methods has seen improved sensitivity

from microgram per millilitre (μg/mL) detection capabilities in the

1980s to nanogram per millilitre (ng/mL) in the 1990s then to pico-

gram per millilitre (pg/mL) in the 2000s and 2010s.29 The mid-2000s

and then 2010s saw greater use of LC coupled to high resolution

mass spectrometry (LC-HRMS) technology for metabolomic

studies.10,13,21,36,55,59 Quadrupole time-of-flight (QTOF) and orbitrap

instruments are increasingly popular due to their advantage of acquisi-

tion in full-scan mode, high scanning speeds, accurate mass and high

resolution.15,33,59 Full-scan data allow for retrospective analysis of the

presence of new compounds as they become known within the field,

such as new psychoactive substances (NPS).33,55 Several fields, such

as environmental monitoring, food safety and forensic science, have

demonstrated that LC-HRMS allows for the screening and confirma-

tion of a large scope of organic compounds.33

4.4 | Hydrophilic interaction liquid
chromatography (HILIC)

Reverse phase (RP) chromatography performs well for hydrophobic

analytes, whilst a more polar approach, such as HILIC, is rec-

ommended for hydrophilic compounds which experience poor reten-

tion using RP chromatography.11,19,60,61 Kouassi Nzoughet et al.

reported the complementary metabolomics approach of using both

RP and HILIC to monitor the effects of a trenbolone acetate/

oestradiol implant administration where the results from both

approaches agreed.62 HILIC stationary phases allow for a diverse sep-

aration mechanism and lower back pressure using an acetonitrile

mobile phase.61 Buffered eluents not only maintain the pH of the

mobile phase but also reduce electrostatic interactions.61,63 Narduzzi

et al. demonstrated the sensitive nature of a HILIC column in their

comparison of ammonium acetate and ammonium fluoride where they

assessed the column in terms of peak quality, intra-day and inter-day

repeatability.64 The addition of ammonium fluoride proved to be opti-

mal for all assessed parameters thus providing a better alternative for

a mobile phase buffer for future HILIC studies. Despite these exam-

ples of its implementation, the use of HILIC columns has been

scrutinised due to changes in sensitivity within small pH ranges,

mobile phase variation and long re-equilibration times.65 Therefore,

alternatives, such as amino acid columns, have been gaining popularity

in metabolomics.66

5 | DATA PROCESSING AND STATISTICAL
ANALYSIS

Quantitative bioanalysis involving data pre-processing, normalisation,

statistical tests and metabolite identification is well described by sev-

eral groups22,23,27 and further discussed in this section.

Data pre-processing may involve peak alignment, background

subtraction and charge state evaluation.10,22,23,36 Sample

normalisation involves adjusting either the sample pre-acquisition or

the data signal post-acquisition to ensure equal signals of different

metabolites.67,68 The ideal sample normalisation will result in a short

distance between samples in the same biological group but a large dis-

tance between separate groups.67 While post-acquisition

normalisation is easier and often preferred due to the data size col-

lected for metabolomic studies, pre-acquisition can improve informa-

tion on biological activities.67 Normalisation may also be applied to
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account for variations in different batches of data thus reducing sys-

tematic error.68 Centring is used to condense the data around zero

rather than surrounding the mean of the metabolite concentrations.23

This allows for a reduction in variation to only that of significance in a

metabolomics study. Scaling uses an adjustable factor to correct for

differences in the fold change of the metabolites.23 Transformations,

such as log and power functions, are also commonly used to make the

distribution more symmetric.23 Normality (i.e., parametric behaviour)

can be tested for through the use of distribution plots and significance

tests.69 While there is often debate on the most appropriate statistical

test to use, the Shapiro–Wilk test is generally agreed to be the most

appropriate for normality testing among many researchers.69 It is

favoured over the Kolmogorov–Smirnov test as it provides greater

power.69

Statistical analysis of metabolomics data is commonly multivari-

ate, although gene-expression generally uses univariate analyses.

Saccenti et al. summarise and review both univariate and multivariate

analyses in relation to metabolomics in their review article.70 Univari-

ate analyses investigate one variable at a time and commonly use

t tests and analysis of variance (ANOVA). These statistical tests are

corrected for, with methods like the Bonferroni and Benjamini-

Hochberg, to reduce the probability of false positives. Statistical anal-

ysis of metabolomic data generally involves a combination of super-

vised and unsupervised multivariate techniques.69 A supervised

statistical tool requires both training and validation data sets to

develop reliable models.71 The most universally applied unsupervised

statistical tool for metabolomic studies is principal component analysis

(PCA). This aids the visualisation of the data in a simplified manner to

reveal underlying patterns and clusters. Hierarchical cluster analysis

(HCA) is another unsupervised tool used to visualise similarities and

differences within variables through a dendrogram.72 Commonly

applied supervised methods include partial least squares (PLS), sup-

port vector machine (SVM) and artificial neural networks (ANN). PLS

analyses independent variables to form a matrix containing dependent

variables.9,11,12,67 SVM classifies the data by finding the optimal

hyperplane in an N-dimensional space; where N is the number of fea-

tures.73 ANN attempts to mimic the analysis and processing system of

the human brain.36 These techniques develop models that enable the

discovery of biomarkers following classification and the prediction of

future data.71 One limitation of these techniques is the possibility of

over-fitting the data,11 which can lead to a loss in predictive power.

However, this issue can be identified at the validation stage.

Pathway enrichment analysis is common for omics studies to

identify compounds which are overrepresented.12,27 Tools used for

the enrichment of “omics” data allow for a better understanding of

the metabolome and how biological systems influence it. This occurs

through the reduction of complex data and increased interpreta-

tion.13,74 Enrichment analysis may include over-representation analy-

sis (ORA), hypergeometric, Kolmogorov–Smirnov or Wilcoxon

statistical tests.74

There are multiple issues pertaining to current data processing

methods. One limitation of metabolomic analyses is that a “true” find-
ing may not be considered significant in a statistical setting.21 Pre-

defined criteria set by the analyst for the statistical test applied may

be too stringent to identify metabolites that are indicative of a change

to the system.75 Therefore, Ortmayr et al. propose the use of fold

change and its uncertainty as an alternative statistical assessment to

avoid the exclusion of entities that may be suitable biomarkers.75 A

lack of disclosure of the whole statistical workflow is another limita-

tion or common error of the analyst.27 This issue is further highlighted

by the poor harmonisation of metabolomics workflows, which require

analysts to be proficient in a number of areas such as experimental

design, sample preparation, analytical instrumentation and statistical

analysis. Therefore, it is common to experience errors from the appli-

cation of statistical tests that may make incorrect classifications lead-

ing to false-negative results.21 Metabolomic studies use a range of

software tools to analyse data, and this can lead to inconsistencies.

Proprietary tools have the limitation of only working with a specific

type of data defined by the vendor.76 These packages are usually

“closed” systems with limited flexibility for the analyst to review the

data pipeline. Software that is available on the open market is cost

effective compared with the proprietary tools, but there can be

resource implications for training and long-term support, which is

often provided by informal user networks.77

A major challenge for metabolomics is confirming the identifica-

tion of putative metabolites when only a small amount of information

is known about such compounds.11,20,78 Scalbert et al. provided a use-

ful example for metabolite identification.27 Following initial informa-

tion (e.g., [M + H]+, 13C isotopic pattern) for a putative compound

being obtained,78 additional information (e.g., MS/MS, in silico analysis

and spectral library comparison) can be performed to increase confi-

dence about the identity. In silico fragmentation software, such as

MetFrag, MS-DIAL, Metlin and more, are often used to increase the

annotation rate for putative biomarkers.79–81 Metabolome databases,

such as the Kyoto Encyclopedia of Genes and Genomes (KEGG),

PubChem, BioCyc/HumanCyc and the Human Metabolome Database

(HMDB), are used to identify potential biomarkers.74 Confirmation

can then be attempted by comparison with an authentic reference

standard, if one is available.11 In the absence of a commercially avail-

able reference material, custom synthesis is required, but this is usu-

ally costly and results in considerable delays for confirming findings

from metabolomic analyses. Another common limitation is the sample

volume available for follow-up analyses, which may require further

procurement of incurred samples.

6 | BEST PRACTICE AND PERFORMANCE
STANDARDS

Notwithstanding the rapid expansion of metabolomics over the last

20 years, a consistent limitation is the extent to which workflows

have been validated as fit-for-purpose. However, there is a consider-

able body of work to address this. The Standard Metabolic Reporting

Structure (SMRS) group published recommendations for stand-

ardisation of experimental design and result recording.82 Similarly,

Goodacre et al. proposed a framework for the standardisation of
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metabolomics studies.83 The diversity of “omics” workflows requires

different approaches towards standardisation.84 This has evolved into

the Metabolomics Standards Initiative (MSI).85 A challenge remains to

find a balance between academia's desire for full disclosure and

industry's need for protection of intellectual property.86 Moreover, it

is essential that as the field continues to grow so do protocols sur-

rounding sample collection and preparation, together with data analy-

sis and interpretation.86,87 Minimum requirements have been

proposed for four areas; the source of biological samples, analytical

methodologies, multivariate statistical methods and databases.88

Sample origin, storage and metadata (such as gender, age, weight

and diet) related to the sample are essential.11,82,89 For sample collec-

tion and storage, it is important to consider freeze–thaw cycles and

factors such as clotting time and temperature.27 Experimental design

is a key part to attaining robust and reliable data from analytical meth-

odologies used.90 When designing the experiment, samples should be

replicated in a randomised order.19,82 Important parameters to specify

for analytical instruments are the manufacturer, model, software and

settings used.82 For MS techniques, the instrument resolution, sensi-

tivity, mass calibration and mass accuracy should be reported.21,82

Quality control parameters of instrument stability, estimation of

data reproducibility, reporting and exclusion of data should be docu-

mented.19,21,82,91,92 Depending on the analytical methodology chosen,

suitable instrument calibration is essential for quality control pur-

poses.82 Broadhurst et al. provided an in-depth review on the

harmonisation of metabolomics workflows with a particular focus on

quality assurance and quality control.93 The review provides guide-

lines and recommendations into appropriate quality management pro-

tocols for maintaining system suitability and QC across the workflow.

In particular, routine use of blank and pooled QC samples were

emphasised together with reporting of the QC data within published

work and through the use of databases.

The significance of the statistical modelling completed within

research should also be a focus of future validation strategies. Cur-

rently, statistical modelling and validation is not consistently reported

within the field. For univariate analyses, false discovery rates are a

commonly encountered issue which is due to an inadequate sample

size.94 This particular issue is notable when the number of variables

outweighs the number of samples. However, this issue can be quite

common for “omics” studies. Whilst the correlation and false discov-

ery rate improve with a greater sample size, bias may also perpetu-

ate.94 One way to avoid this is to align the metadata; for example,

gender matching of different groups will aid in reducing bias. One

harmonisation measure for future publications would be including all

metadata related to the study to improve transparency. For univariate

analysis, pure Bonferroni analysis was recommended by Broadhurst

and Kell due to its ease of comprehension and implementation.94 One

particular means of assessing statistical models is measurement of

capability. The model's descriptive capacity is expressed as R2, and the

model's predictive power is defined as adjusted R2.95 The distribution

of the R2 and adjusted R2 values can give an indication into the statis-

tical significance of the model.95 Moreover, PLS models can also be

assessed by permutation test, classification accuracy, k-fold cross-

validation, receiver operating characteristic (ROC) curves and area

under the receiver operating curve (AUC).96,97 For SVM models, com-

mon validation techniques of leave-one-out-cross-validation, n-fold

cross-validation and split-validation are employed to assess the

model.98 An S-plot, a proprietary model in the SIMCA software, deter-

mines the most relevant variables involved in the discrimination of the

groups and/or samples.99 Variable importance in projection (VIP),

available through open-source software, measures the impact of each

variable with a higher VIP score indicating an influential variable.100

Rubingh et al. demonstrate, through a study involving 50 obese and

50 lean patients, how having a small ratio between the number of

subjects and variables can result in less trusted validation results.101

The study emphasised the need for a large cohort of subjects repre-

sentative of the population when conducting tests that require cross

validation in order to make suitable interpretations without portraying

misleading information. The implementation of these measured capa-

bilities within the field of metabolomics will promote harmonisation in

determining the significance of statistical models. These statistical

parameters can provide an indication into analytical bias and outliers

within the data, thus allowing a determination of the validity of the

model, with respect to biological variability.

Data formatting, such as naming conventions, should be

harmonised and followed.82,85 Data alignment and processing need to

be harmonised to ensure errors are not introduced.91 It is common

practice to normalise mass spectra to the most abundant (i.e., base)

ion.82 Quality control measures should be considered for multivariate

analysis in relation to how errors will be identified.19,27,91 The control

sample population should be used for the comparison to the meta-

bolic perturbations.19,82 Ren et al. proposed suitable methodologies

for statistical analysis in an attempt to assist analysts in the met-

abolomics field who have limited expertise in statistics.71 Considine

et al. explained, in their review of metabolomics studies for biomarker

discovery involving serum samples, that the reporting of data, such as

data filtering, removal and processing, was often not clear or was

incompletely reported.92 Therefore, the harmonisation of met-

abolomics studies still remains an area that requires improvement.

7 | APPLICATIONS

7.1 | Clinical

Metabolomics is used for insight into the complex regulatory pro-

cesses of mammalian systems through metabolic variation.102–104 The

majority of clinical applications has focused on studying advanced dis-

eases with little focus on early onset diseases102 that would be bene-

ficial for preventative medicine. For clinical purposes, drug screening

allows for the improvement of patient care with treatment guid-

ance.55 Human nutritional experiments have been a major focus for

clinical application of metabolomics, particularly with the growing

interest in gut microbiota as a good indicator of health, but other

areas of interest include gastrointestinal disease, metabolic disease,

cancer, neurological and psychiatric disorders.102
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A thorough literature review by Yan et al. accentuates the need

for the inclusion of cerebrospinal fluid (CSF) into clinical practice as a

tool for detecting neuroinflammatory disorders in humans.105 It high-

lights a multitude of potential diagnostic biomarkers, such as the

tryptophan-kynurenine pathway, nitric oxide pathway, neopterin and

lipid species, that enable differentiation between control and patient

samples. Lai et al. developed and validated a HILIC-ESI-MS/MS

method targeting the quantification of arginine, citrulline and orni-

thine, in relation to impaired nitric oxide synthesis, in human

plasma.106 Four different methods, using a blank matrix, surrogate

matrix, surrogate analyte and background subtraction, were investi-

gated to establish a suitable quantitative method. Three of the four

methods were successfully validated and applied to the analysis of

97 human plasma samples to measure the concentrations of the tar-

get analytes. The three validated methods showed negligible differ-

ences between the measured concentrations. Yan et al. also furthered

previous research by developing an untargeted metabolomics method,

using LC-HRMS, for the analysis of CSF to identify diagnostic bio-

markers of neuroinflammation.107 Statistical comparison, using

orthogonal partial least squares-discriminant analysis (OPLS-DA), of a

disease group of patients with acute encephalitis and an age-matched

control group revealed 35 metabolites able to discriminate the two

groups. Nine metabolites originated from the tryptophan-kynurenine

pathway. Variation in the tryptophan-kynurenine pathway, nitric

oxide pathway and neopterin were indicative of neuroinflammation

and thus can be implemented into clinical practice.

For routine clinical testing, urine is a common biological matrix

due to its ease of collection.55 Urine allows for extended detection of

both the parent drug and metabolites in comparison to blood.55 The

sampling site for extraction of blood needs to be considered due to

differences in arterial and venous sampling for the local release of

compounds, such as catecholamines.49 A study by Michopoulos et al.

investigated the use of dried blood spots as an alternative to plasma.38

This could make clinical testing, which can often be frequent for those

with chronic conditions, less invasive. They found that dried blood

spots were more concentrated than plasma due to the increased vis-

cosity of blood, but the repeatability of the blood spots was not good

in comparison. The PP plasma sample had the best repeatability. Nev-

ertheless, this pilot study demonstrated the use of implementing dried

biofluid spots for metabolomic analysis.38

Amino acids, lipids and hormones have previously been the focus

of disease studies.89 Levodopa was first introduced as a treatment for

Parkinson's disease 40 years ago and is still the preferred treatment.45

The blood–brain barrier (BBB) is not crossed by dopamine,45 and

therefore, an alternative compound is needed for treatment. For

example, a study investigating hypertension was conducted on

590 human volunteers.108 It was found through multivariate analysis

that males had higher concentrations of metanephrine and meth-

oxytyramine in their urine than females.

The increased incidence of chronic diseases is a challenge for the

health field,109 and metabolomics could be a useful diagnostic tool for

management. A targeted metabolomics approach, using 10 free

organic acids was developed to profile hospitalised children's urine for

metabolic or health disorders.110 The authors plan to expand the

study to a larger set of organic acids in order to support other clinics

in their diagnosis of these disorders.

7.2 | Forensic toxicology

Forensic toxicology uses metabolomics to aid the identification of

new psychoactive substances (NPS), which is a growing problem glob-

ally. Szeremeta et al. state that “metabolomics-related procedures

present an alternative strategy for the identification of biomarkers

and might be highly beneficial to provide fast response to suspected

NPS consumption and aid in the overall diagnostics of drug abuse or

overdose.”111 Toxicologists are looking for a major change in the

metabolome in response to the consumption of these drugs, and so,

there are fewer issues associated with data extraction.27

The major question around drugs that are also present endoge-

nously is whether they originated from the body (being naturally pre-

sent) or from the bottle (an exogenous source). One particular

endogenous compound, gamma-hydroxybutyrate (GHB), is known to

induce feelings of euphoria and to enhance sexuality, and therefore, it

has gained popularity as a recreational drug and notoriety in drug-

facilitated sexual assault.112 Due to the rapid metabolism and small

window of detection of GHB,113 metabolites of GHB have been pro-

posed to extend detection windows with promising results using urine

samples.114,115 Hair testing is another method suggested for exten-

ding the window of detection due to the incorporation of drugs into

this matrix. Recent progress in hair testing highlights the growing

applicability of metabolomics to forensic testing.116–119

Heroin and amphetamine-type substances are potentially the

most well-known drugs in the wider community and therefore are a

focus for forensic toxicology due to their recreational use. Potential

heroin biomarkers were investigated in human plasma from 50 partici-

pants (20 heroin addicts with acute abstinence, 15 with prolonged

abstinence and 15 controls) by Zhou et al. using ultraperformance

LC–MS/MS.120 The major finding of the study was that alpha-

aminobutyric acid, alloisoleucine, ketoleucine and oxalic acid did not

recover following the heroin administration. Plasma metabolites were

found to experience severe change during the withdrawal period.

Steuer et al. performed a similar metabolomics study investigating the

administration of 3,4-methylenedioxymethamphetamine (MDMA),

amphetamine and mephedrone in human plasma using LC-HRMS.121

It was found that energy metabolism, steroid biosynthesis and amino

acids were the main groups affected by the different drugs with both

increased and decreased concentrations. Specifically, linoleic acid and

pregnenolone-sulphate displayed similar alterations. These studies

show the ability of metabolomics studies to advance the understand-

ing of the pharmacology and metabolic mechanisms associated with

the consumption of these drugs.

Adulteration of samples is an important consideration when con-

ducting forensic toxicology analyses. Eisenbeiss et al. developed a

metabolomics approach for the detection of adulterated hair sam-

ples.122 The authors found that the use of biomarker ratios allows for
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the discrimination of oxidative adulteration from unadulterated sam-

ples. Steuer et al. investigated oxidative adulteration of urine samples

through a metabolomics approach.123 The ROC analysis revealed

5-hydroxyisourate as the most suitable biomarker followed by uric

acid. This study also highlighted the usefulness of an ERC as a refer-

ence point for the normalisation of a ratio or threshold.

7.3 | Human sports anti-doping

The proportion of doped athletes in a population of athletes at a spe-

cific time defines the prevalence of doping. This can be estimated

using Bayesian networks to provide intelligence for authorities and

their respective laboratories.124 Direct detection methods are then

tailored to prohibited substances. It is due to a lack of influence from

biological or genetic factors that they are considered to be sufficient

proof of doping efforts.21 Narduzzi et al. reviewed untargeted met-

abolomics approaches to detect hormone doping in animals and then

discuss its applicability for human athletes with a particular focus on a

lack of application and validation of metabolomics methods.21 The

review summarises the vast amount of known information about hor-

mones and how they affect metabolism, indirect detection methods

used in the animal and human fields, current limitations and expected

effects on the metabolic system.

A particular focus of human anti-doping is the use of anabolic

androgenic steroids (AAS).125 A recent study by Raro et al. used two

different analytical approaches, QTOF and Q Exactive both coupled

to LC, to analyse urine collected pre- and post-administration of tes-

tosterone cypionate.126 A “dilute-and-shoot” method was used to

prevent analyte loss and samples were run in both positive and nega-

tive ionisation modes.126 Using the XCMS software and multivariate

analysis, the biomarker, 1-cyclopentenoylglycine, was identified and

found in the results from both methods.126

Boccard et al. used targeted and untargeted metabolomics of

urine samples to investigate steroid profiles following the oral admin-

istration of testosterone undecanoate.127 A series of supervised

methods were applied, including N-way-partial least squares-

discriminant analysis (N-PLS-DA), O-PLS-DA and Shared and Unique

Structures (SUS) plots, to identify metabolites of interest. Potential

biomarkers were then confirmed using ROC curves inspection, with

the results mainly being either glucuronide or sulphate steroid conju-

gates. Palermo et al. also used an untargeted workflow to analyse the

urine steroidal profile following a testosterone administration

study.128 This revealed significant metabolites related to circadian ste-

roidal pathways and androgen metabolites which were both indicative

of testosterone administration. This study provided a solid foundation

for the consideration of external influences that cause variations in

the metabolome.

Recombinant human growth hormone (rhGH) is a well-known

performance enhancing agent that regulates anabolism and lipolysis in

humans.129 Misuse of rhGH is difficult to detect due to rapid turnover

and inter-individual variation from age, ethnicity and sex.129 Narduzzi

et al. conducted an administration study using micro-dosing

techniques to investigate biomarkers indicative of growth hormone

doping.129 Discriminant analysis using population-wise modelling was

able to distinguish between the control and treatment groups, but

was subject to false positive results. Therefore, longitudinal modelling

was used to account for variance within individuals thus allowing for

more effective differentiation between the groups.129

Longitudinal profiling has been used in the human and equine

fields through the Athlete Biological Passport (ABP) and the Equine

Biological Passport (EBP).30,130,131 A longitudinal (i.e., intra-individual)

assessment refers to a series of tests completed over the course of

time on the same individual.131 Metadata for potential covariances,

such as gender, age and ethnicity, may be useful to improve the sensi-

tivity of developed models by reducing intra-individual vari-

ance.124,131,132 It is important to determine whether these parameters

are time-dependent for longitudinal assessments.131 Metabolomic

principles have supported the expansion of the ABP to include a ste-

roidal module and will likely do so for the planned endocrine mod-

ule.25 Narduzzi et al. found through their investigation of rhGH

administration that the leukopoietic, steroidal and endocrine bio-

markers were able to correctly classify over 98% of samples. While

the endocrine module of the ABP did not suffer false positives, it was

limited in its classification individually with only 50% of treated sam-

ples being correctly classified due to the variable response to treat-

ment in an athlete population. Therefore, the influence of covariance

and external factors still needs to be considered and evaluated as they

may have a large effect on the outcome.

7.4 | Equine anti-doping

Genetics, training and nutrition are all influencing factors, which

determine how well a horse runs on the track.133 The horse has

shown advanced aerobic and muscular capabilities that has been iso-

lated through breeding.12 Common metabolomics studies of the

equine athlete look at its exercise physiology, and therefore, metabo-

lites are measured for energy production and utilisation.12,134

Investigations into the health status of an equine athlete will pro-

vide information on biomarkers of disease and healthy athletes. Yuan

et al. used an orthogonal ionisation approach to investigate the health

status of the equine athlete when targeting compounds such as pro-

teins, lipids and small polar metabolites.134 The one-horse urine study

revealed 46 proteins, 10 lipids and 474 small polar metabolites, which

are indicative of a healthy mare. These findings can be used to track

the health status of horses, specifically mares, and for future reference

to other administration or health studies as a comparative measure.

The expansion of this study to other horse genders would be benefi-

cial to the field.

The study conducted by Le Moyec et al. showed that long

endurance racing had a significant effect on plasma lipid and amino

acid metabolite signatures.135 This research was furthered by Jang

et al., who utilised OPLS-DA along with variable importance plots

and t tests as a statistical tool to analyse metabolic patterns before

and after exercise in horses and predict 36 pathways.136 This study
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highlights the role of statistical analysis to aid metabolic discoveries

by relating biomarkers to their metabolic pathways for routine drug

testing and equine welfare. Also, biomarkers that will not be useful

as doping indicators can be identified and excluded from further

research. A Mach et al. pilot study showed promising results after a

one-horse study using metabolomics, transcriptomics and miR-

Nomics to predict racing performance.137 Kieken et al. studied urine

and plasma following an administration of recombinant equine

growth hormone (reGH) using an orthogonal metabolomics approach

to detect metabolic differences between control and treatment

groups.138 The OPLS models for both plasma and urine were

assessed using descriptive (R2(Y)) and predictive (adjusted R2(Y))

capabilities to validate the discriminatory power of the proposed

models. While there were no common ions of interest found

between the two matrices, each still has a specific use, plasma being

useful for unknown sample prediction and urine being useful for

long-term detection.

Recently, there has been a shift to utilise a metabolomics

approach for the detection of endogenous compounds. As previously

mentioned, the labile and variable nature of endogenous compounds

makes them difficult to detect or establish a threshold for. Dopamine

and related compounds are of particular interest due to the stimulant

effects on the equine nervous system.139 It has been proposed that a

lack of information on equine metabolism of dopamine-related com-

pounds may permit their abuse to go undetected in current screening

efforts.140 Wynne et al. have done extensive research into dopami-

nergic manipulation and established a urinary threshold for

3-methoxytyramine (3-MT) of 4 μg/ml to combat misuse of com-

pounds containing levodopa.141 This provided a good basis for further

research into 3-MT and potential dopamine-related compound mis-

use. Stanley et al. found that tolcapone and its metabolites were read-

ily detected in all samples for up to 18 h post-administration and the

dose administered in this study was thought to be a third or half of

what would be used as a masking agent for dopamine-related

doping.139

Similar to the human field, steroid doping is a concern due to the

difficulty in differentiating whether there was an exogenous or endog-

enous source.142 This was evident in a study conducted by Kaabia

et al. where two matrices, equine plasma and urine, were used to

develop a successful statistical model that enabled the extension of

the detection period of nandrolone abuse in entire male horses.143

More intrinsic information was provided beyond the established

threshold for nandrolone abuse. Chan et al. used an OPLS-DA model

to identify seven biomarkers that were indicative of steroidal aroma-

tase inhibitor administration. From these, androst-4-ene-3,6,17-trione

(6-OXO) and androsta-1,4,6-triene-3,17-dione (ATD) extended the

detection period to 4 and 9 days, respectively.144

Greater retrospectivity for the detection of prohibited substances

is one of the goals of antidoping. This objective is especially important

for equine antidoping as drug prohibition is enforced for performance

enhancing and performance impairing substances. Equine serum and

urine samples were analysed using a metabolomics approach follow-

ing an administration study involving 11 horses that were given

treatment with eye drops containing dexamethasone and predniso-

lone.145 Prednisolone was detected the day after administration was

stopped, but dexamethasone was not. This study highlights the use-

fulness of establishing cut-off values and clearance times through out-

of-competition testing. Another study investigated the expansion of a

detection window through the administration of the erythropoiesis

stimulating agent, Mircera®, to three horses to study haematological

and metabolic changes.146 Haematological studies revealed signifi-

cantly elevated levels of haemoglobin and haematocrit. Statistical

analysis, using an O-PLS model, was able to differentiate pre- and

post-administration samples which extended the current detection

window by 43 days. Metabolomics is therefore not only useful for the

detection of analytically challenging compounds, but also the expan-

sion of detection windows.

Duluard et al. conducted a longitudinal follow-up study, focusing

on detecting protein-based drugs, recombinant human erythropoietin

(rHuEPO) and reGH, on racehorses to investigate the applicability of

metabolomics and transcriptomics as being an additional approach to

current anti-doping testing efforts.30 Using the 42 horses analysed for

a 1-year period, it was found that the OPLS predictive model was able

to use 80 ions to differentiate between reGH-treated horses and the

control group. The study found the metabolomic profile of horses

analysed throughout 2009 to be normal as they aligned with the non-

treated population.

7.5 | Veterinary residues

Veterinary residues aim to detect the misuse of drugs in animals

mainly for food safety purposes.147 The proposed use of met-

abolomics within the field would be to identify chemical residues

within the animal sample,148 thus allowing for a determination of the

impact in the cell metabolism that the contamination would have.

Another approach, that is more focused on accreditation and regula-

tion of food, would be identifying biomarkers relating to regulatory

issues and compliance.149 Metabolomics also enables the determina-

tion of quality, taste, fragrance and more for the food product.150 The

potential for improved application of metabolomics within the veteri-

nary residues field was highlighted by many in review

papers.147,150,151

Cacciatore et al. studied 10-week-old male and female veal cal-

ves, treated with a combination of 17β-estradiol-3-benzoate,

19-nortestosterone decanoate and dexamethasone, with the aim of

detecting potential biomarkers for residue monitoring that were indic-

ative of growth promoters.152 Within a 6-week period of testing, it

was found that the treated animals had an accelerated growth rate

with the hormone treatment revealing a decreased level of immunore-

active inhibin in males, and the dexamethasone revealing a decreased

level of osteocalcin. Therefore, both osteocalcin and immunoreactive

inhibin were considered potential biomarkers for a screening assay to

detect growth promoters. Courant et al. showed the use of an

untargeted LC-HRMS metabolomics method to detect the administra-

tion of clenbuterol in the urine of calves.148 Multivariate statistical
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analysis resulted in two different models tailored for the detection of

clenbuterol administration, one during the treatment period and one

for several days post-administration. An OPLS-DA model was able to

identify ions of interest that were able to discriminate the two differ-

ent testing periods.

Doué et al. used a similar approach to develop a metabolomics

workflow for the investigation of growth hormone abuse in cattle

where the target compounds were mostly proteins.99 The model was

determined to be valid, using assessment factors such as R2, adjusted

R2 and cross-validation, and successful in distinguishing the two sam-

ple classes: treated and control. The S-plot revealed insulin-like

growth factor-I, urea, non-esterified fatty acid, insulin and cholesterol

as the compounds with the most discriminating power.

Kouassi-Nzoughet et al. used a LC-HRMS metabolomics approach

for the analysis of bovine serum to characterise the disruption of the

metabolite profile when administered with trenbolone acetate and

estradiol.62 A screening model was developed based on nine putative

biomarkers, one of which was classified as dopamine based on elution

time and MS/MS fragmentation. The model allowed for the discrimi-

nation of treated and control samples up to 4 weeks post-administra-

tion. This research was furthered with a lipidomics approach using

both HILIC and RPLC for optimal lipid coverage, to compare the effec-

tiveness of both LC methods.153

Dervilly-Pinel et al. highlight the need for guidelines covering the

validation of untargeted methods.149 A metabolomics screening

method was developed, for the detection of β-agonist administration

in calves, to showcase the validation criteria that should be presented

in future studies of a similar nature. While the method was success-

fully validated, not all biomarkers used in the untargeted method were

structurally elucidated which would be an important step to complete

the untargeted metabolomics workflow.

8 | CONCLUSION

Metabolomics continues to expand as a multidisciplinary field requir-

ing expertise in biology, chemistry and statistical analysis. Workflow

components such as experimental design, sample preparation, analyti-

cal determinations, data processing and statistical analysis, and valida-

tion strategies, were explored in this review. With greater scrutiny of

interpretations made from metabolomics analyses in the applications

presented, there will likely be an improvement in validation strategies.

This would include the implementation of harmonised reporting

criteria including information surrounding data processing. Another

useful future direction would be the establishment of an equine

metabolome database. While a significant proportion of the

metabolome may be suspected to be similar to human, there are dif-

ferences and it would be useful for researchers to have an easy access

point for information on equine athletes. Expansion and integration of

ABP modules and further development of the EBP would be useful to

support an intelligence-based approach to anti-doping. Applications of

metabolomics in the fields of clinical and forensic toxicology, and in

the human and equine sports anti-doping fields, were explored. This

review highlights the potential of metabolomics into expanding cur-

rent research efforts to identify biomarkers of interest and potentially

indirect or unknown metabolite pathways.
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